8 research outputs found

    Decentralized Parallel Ant Colony Optimization for Distributed Memory Systems

    Get PDF
    Ant Colony System (ACS) is a well-established variant of the Ant Colony Optimization (ACO) nature inspired metaheuristic for solving combinatorial optimization problems. We present the DMACS (Distributed Memory Ant Colony System) algorithm, which is a parallelization of ACS for distributed memory architectures. The system is decentralized, with each processor running an identical agent process which administers a part of the pheromone matrix used to record the movements of simulated ants over a graph. We evaluate a Message Passing Interface (MPI) implementation of the algorithm on the well-known Travelling Salesman Problem (TSP), running on a distributed memory cluster. The results show that the algorithm scales at least as well as previous agent-based distributed implementations of ACS, without the need to sacrifice core features of the algorithm such as local search. However, our results also demonstrate that scaling the ACS algorithm to large numbers of processes in distributed memory architectures remains a significant challenge

    Algoritmos de inteligencia de enjambres sobre GPU: una revisión exhaustiva

    Get PDF
    La Inteligencia de Enjambres involucra acciones de grupos de individuos descentralizados y auto-organizados, las cuales pueden realizarse en paralelo. Las GPUs han mostrado ser arquitecturas capaces de proporcionar paralelismo masivo, las cuales están en pleno desarrollo. En este trabajo se proporciona una breve revisión de metaherurísticas basadas en Inteligencia de Enjambres orientadas a GPUs, propuestas desde el año 2012. Abordamos dos de las metaheurísticas más estudiadas como la Optimización de Colonias de Hormigas y el Algoritmo Colonia de Abejas, además de otras metaheurísticas más recientes y menos estudiadas como los son: la Búsqueda Cuco y el Algoritmo Fuegos Artificiales.XV Workshop de Agentes y Sistemas InteligentesRed de Universidades con Carreras de Informática (RedUNCI

    Algoritmos de inteligencia de enjambres sobre GPU: una revisión exhaustiva

    Get PDF
    La Inteligencia de Enjambres involucra acciones de grupos de individuos descentralizados y auto-organizados, las cuales pueden realizarse en paralelo. Las GPUs han mostrado ser arquitecturas capaces de proporcionar paralelismo masivo, las cuales están en pleno desarrollo. En este trabajo se proporciona una breve revisión de metaherurísticas basadas en Inteligencia de Enjambres orientadas a GPUs, propuestas desde el año 2012. Abordamos dos de las metaheurísticas más estudiadas como la Optimización de Colonias de Hormigas y el Algoritmo Colonia de Abejas, además de otras metaheurísticas más recientes y menos estudiadas como los son: la Búsqueda Cuco y el Algoritmo Fuegos Artificiales.XV Workshop de Agentes y Sistemas InteligentesRed de Universidades con Carreras de Informática (RedUNCI

    Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization

    Get PDF
    © 2016 Springer Science+Business Media New York Ant colony optimisation (ACO) is a nature-inspired, population-based metaheuristic that has been used to solve a wide variety of computationally hard problems. In order to take full advantage of the inherently stochastic and distributed nature of the method, we describe a parallelization strategy that leverages these features on heterogeneous and large-scale, massively-parallel hardware systems. Our approach balances workload effectively, by dynamically assigning jobs to heterogeneous resources which then run ACO implementations using different search strategies. Our experimental results confirm that we can obtain significant improvements in terms of both solution quality and energy expenditure, thus opening up new possibilities for the development of metaheuristic-based solutions to “real world” problems on high-performance, energy-efficient contemporary heterogeneous computing platforms

    Minería de Reglas de Asociación en GPU

    Get PDF
    Premio extraordinario de Trabajo Fin de Máster curso 2012-2013.Sistemas Inteligentes

    Enhancing GPU parallelism in nature-inspired algorithms

    No full text
    We present GPU implementations of two different nature-inspired optimization methods for well-known optimization problems. Ant Colony Optimization (ACO) is a two-stage population-based method modelled on the foraging behaviour of ants, while P systems provide a high-level computational modelling framework that combines the structure and dynamic aspects of biological systems (in particular, their parallel and non-deterministic nature). Our methods focus on exploiting data parallelism and memory hierarchy to obtain GPU factor gains surpassing 20x for any of the two stages of the ACO algorithm, and 16x for P systems when compared to sequential versions running on a single-threaded high-end CPU. Additionally, we compare performance between GPU generations to validate hardware enhancements introduced by Nvidia’s Fermi architecture

    Optimización de algoritmos bioinspirados en sistemas heterogéneos CPU-GPU.

    Get PDF
    Los retos científicos del siglo XXI precisan del tratamiento y análisis de una ingente cantidad de información en la conocida como la era del Big Data. Los futuros avances en distintos sectores de la sociedad como la medicina, la ingeniería o la producción eficiente de energía, por mencionar sólo unos ejemplos, están supeditados al crecimiento continuo en la potencia computacional de los computadores modernos. Sin embargo, la estela de este crecimiento computacional, guiado tradicionalmente por la conocida “Ley de Moore”, se ha visto comprometido en las últimas décadas debido, principalmente, a las limitaciones físicas del silicio. Los arquitectos de computadores han desarrollado numerosas contribuciones multicore, manycore, heterogeneidad, dark silicon, etc, para tratar de paliar esta ralentización computacional, dejando en segundo plano otros factores fundamentales en la resolución de problemas como la programabilidad, la fiabilidad, la precisión, etc. El desarrollo de software, sin embargo, ha seguido un camino totalmente opuesto, donde la facilidad de programación a través de modelos de abstracción, la depuración automática de código para evitar efectos no deseados y la puesta en producción son claves para una viabilidad económica y eficiencia del sector empresarial digital. Esta vía compromete, en muchas ocasiones, el rendimiento de las propias aplicaciones; consecuencia totalmente inadmisible en el contexto científico. En esta tesis doctoral tiene como hipótesis de partida reducir las distancias entre los campos hardware y software para contribuir a solucionar los retos científicos del siglo XXI. El desarrollo de hardware está marcado por la consolidación de los procesadores orientados al paralelismo masivo de datos, principalmente GPUs Graphic Processing Unit y procesadores vectoriales, que se combinan entre sí para construir procesadores o computadores heterogéneos HSA. En concreto, nos centramos en la utilización de GPUs para acelerar aplicaciones científicas. Las GPUs se han situado como una de las plataformas con mayor proyección para la implementación de algoritmos que simulan problemas científicos complejos. Desde su nacimiento, la trayectoria y la historia de las tarjetas gráficas ha estado marcada por el mundo de los videojuegos, alcanzando altísimas cotas de popularidad según se conseguía más realismo en este área. Un hito importante ocurrió en 2006, cuando NVIDIA (empresa líder en la fabricación de tarjetas gráficas) lograba hacerse con un hueco en el mundo de la computación de altas prestaciones y en el mundo de la investigación con el desarrollo de CUDA “Compute Unified Device Arquitecture. Esta arquitectura posibilita el uso de la GPU para el desarrollo de aplicaciones científicas de manera versátil. A pesar de la importancia de la GPU, es interesante la mejora que se puede producir mediante su utilización conjunta con la CPU, lo que nos lleva a introducir los sistemas heterogéneos tal y como detalla el título de este trabajo. Es en entornos heterogéneos CPU-GPU donde estos rendimientos alcanzan sus cotas máximas, ya que no sólo las GPUs soportan el cómputo científico de los investigadores, sino que es en un sistema heterogéneo combinando diferentes tipos de procesadores donde podemos alcanzar mayor rendimiento. En este entorno no se pretende competir entre procesadores, sino al contrario, cada arquitectura se especializa en aquella parte donde puede explotar mejor sus capacidades. Donde mayor rendimiento se alcanza es en estos clústeres heterogéneos, donde múltiples nodos son interconectados entre sí, pudiendo dichos nodos diferenciarse no sólo entre arquitecturas CPU-GPU, sino también en las capacidades computacionales dentro de estas arquitecturas. Con este tipo de escenarios en mente, se presentan nuevos retos en los que lograr que el software que hemos elegido como candidato se ejecuten de la manera más eficiente y obteniendo los mejores resultados posibles. Estas nuevas plataformas hacen necesario un rediseño del software para aprovechar al máximo los recursos computacionales disponibles. Se debe por tanto rediseñar y optimizar los algoritmos existentes para conseguir que las aportaciones en este campo sean relevantes, y encontrar algoritmos que, por su propia naturaleza sean candidatos para que su ejecución en dichas plataformas de alto rendimiento sea óptima. Encontramos en este punto una familia de algoritmos denominados bioinspirados, que utilizan la inteligencia colectiva como núcleo para la resolución de problemas. Precisamente esta inteligencia colectiva es la que les hace candidatos perfectos para su implementación en estas plataformas bajo el nuevo paradigma de computación paralela, puesto que las soluciones pueden ser construidas en base a individuos que mediante alguna forma de comunicación son capaces de construir conjuntamente una solución común. Esta tesis se centrará especialmente en uno de estos algoritmos bioinspirados que se engloba dentro del término metaheurísticas bajo el paradigma del Soft Computing, el Ant Colony Optimization “ACO”. Se realizará una contextualización, estudio y análisis del algoritmo. Se detectarán las partes más críticas y serán rediseñadas buscando su optimización y paralelización, manteniendo o mejorando la calidad de sus soluciones. Posteriormente se pasará a implementar y testear las posibles alternativas sobre diversas plataformas de alto rendimiento. Se utilizará el conocimiento adquirido en el estudio teórico-práctico anterior para su aplicación a casos reales, más en concreto se mostrará su aplicación sobre el plegado de proteínas. Todo este análisis es trasladado a su aplicación a un caso concreto. En este trabajo, aunamos las nuevas plataformas hardware de alto rendimiento junto al rediseño e implementación software de un algoritmo bioinspirado aplicado a un problema científico de gran complejidad como es el caso del plegado de proteínas. Es necesario cuando se implementa una solución a un problema real, realizar un estudio previo que permita la comprensión del problema en profundidad, ya que se encontrará nueva terminología y problemática para cualquier neófito en la materia, en este caso, se hablará de aminoácidos, moléculas o modelos de simulación que son desconocidos para los individuos que no sean de un perfil biomédico.Ingeniería, Industria y Construcció

    Parallelised and vectorised ant colony optimization

    Get PDF
    Ant Colony Optimisation (ACO) is a versatile population-based optimisation metaheuristic based on the foraging behaviour of certain species of ant, and is part of the Evolutionary Computation family of algorithms. While ACO generally provides good quality solutions to the problems it is applied to, two key limitations prevent it from being truly viable on large-scale problems: A high memory requirement that grows quadratically with instance size, and high execution time. This thesis presents a parallelised and vectorised implementation of ACO using OpenMP and AVX SIMD instructions; while this alone is enough to improve upon the execution time of the algorithm, this implementation also features an alternative memory structure and a novel candidate set approach, the use of which significantly reduces the memory requirement of ACO. This parallelism is enabled through the use of Max-Min Ant System, an ACO variant that only utilises local memory during the solution process and therefore risks no synchronisation issues, and an adaptation of vRoulette, a vector-compatible variant of the common roulette wheel selection method. Through the use of these techniques ACO is also able to find good quality solutions for the very large Art TSPs, a problem set that has traditionally been unfeasible to solve with ACO due to high memory requirements and execution time. These techniques can also benefit ACO when it comes to solving other problems. In this case the Virtual Machine Placement problem, in which Virtual Machines have to be efficiently allocated to Physical Machines in a cloud environment, is used as a benchmark, with significant improvements to execution time
    corecore