394 research outputs found

    Knowledge Infused Learning (K-IL): Towards Deep Incorporation of Knowledge in Deep Learning

    Get PDF
    Learning the underlying patterns in data goes beyond instance-based generalization to external knowledge represented in structured graphs or networks. Deep learning that primarily constitutes neural computing stream in AI has shown significant advances in probabilistically learning latent patterns using a multi-layered network of computational nodes (i.e., neurons/hidden units). Structured knowledge that underlies symbolic computing approaches and often supports reasoning, has also seen significant growth in recent years, in the form of broad-based (e.g., DBPedia, Yago) and domain, industry or application specific knowledge graphs. A common substrate with careful integration of the two will raise opportunities to develop neuro-symbolic learning approaches for AI, where conceptual and probabilistic representations are combined. As the incorporation of external knowledge will aid in supervising the learning of features for the model, deep infusion of representational knowledge from knowledge graphs within hidden layers will further enhance the learning process. Although much work remains, we believe that knowledge graphs will play an increasing role in developing hybrid neuro-symbolic intelligent systems (bottom-up deep learning with top-down symbolic computing) as well as in building explainable AI systems for which knowledge graphs will provide scaffolding for punctuating neural computing. In this position paper, we describe our motivation for such a neuro-symbolic approach and framework that combines knowledge graph and neural networks

    Semantics of the Black-Box: Can knowledge graphs help make deep learning systems more interpretable and explainable?

    Get PDF
    The recent series of innovations in deep learning (DL) have shown enormous potential to impact individuals and society, both positively and negatively. The DL models utilizing massive computing power and enormous datasets have significantly outperformed prior historical benchmarks on increasingly difficult, well-defined research tasks across technology domains such as computer vision, natural language processing, signal processing, and human-computer interactions. However, the Black-Box nature of DL models and their over-reliance on massive amounts of data condensed into labels and dense representations poses challenges for interpretability and explainability of the system. Furthermore, DLs have not yet been proven in their ability to effectively utilize relevant domain knowledge and experience critical to human understanding. This aspect is missing in early data-focused approaches and necessitated knowledge-infused learning and other strategies to incorporate computational knowledge. This article demonstrates how knowledge, provided as a knowledge graph, is incorporated into DL methods using knowledge-infused learning, which is one of the strategies. We then discuss how this makes a fundamental difference in the interpretability and explainability of current approaches, and illustrate it with examples from natural language processing for healthcare and education applications.Comment: 6 pages + references, 4 figures, Accepted to IEEE internet computing 202

    Semantics of the Black-Box: Can Knowledge Graphs Help Make Deep Learning Systems More Interpretable and Explainable?

    Get PDF
    The recent series of innovations in deep learning (DL) have shown enormous potential to impact individuals and society, both positively and negatively. The DL models utilizing massive computing power and enormous datasets have significantly outperformed prior historical benchmarks on increasingly difficult, well-defined research tasks across technology domains such as computer vision, natural language processing, signal processing, and human-computer interactions. However, the Black-Box nature of DL models and their over-reliance on massive amounts of data condensed into labels and dense representations poses challenges for interpretability and explainability of the system. Furthermore, DLs have not yet been proven in their ability to effectively utilize relevant domain knowledge and experience critical to human understanding. This aspect is missing in early data-focused approaches and necessitated knowledge-infused learning and other strategies to incorporate computational knowledge. This article demonstrates how knowledge, provided as a knowledge graph, is incorporated into DL methods using knowledge-infused learning, which is one of the strategies. We then discuss how this makes a fundamental difference in the interpretability and explainability of current approaches, and illustrate it with examples from natural language processing for healthcare and education applications

    FACTS-ON : Fighting Against Counterfeit Truths in Online social Networks : fake news, misinformation and disinformation

    Full text link
    L'Ă©volution rapide des rĂ©seaux sociaux en ligne (RSO) reprĂ©sente un dĂ©fi significatif dans l'identification et l'attĂ©nuation des fausses informations, incluant les fausses nouvelles, la dĂ©sinformation et la mĂ©sinformation. Cette complexitĂ© est amplifiĂ©e dans les environnements numĂ©riques oĂč les informations sont rapidement diffusĂ©es, nĂ©cessitant des stratĂ©gies sophistiquĂ©es pour diffĂ©rencier le contenu authentique du faux. L'un des principaux dĂ©fis dans la dĂ©tection automatique de fausses informations est leur prĂ©sentation rĂ©aliste, ressemblant souvent de prĂšs aux faits vĂ©rifiables. Cela pose de considĂ©rables dĂ©fis aux systĂšmes d'intelligence artificielle (IA), nĂ©cessitant des donnĂ©es supplĂ©mentaires de sources externes, telles que des vĂ©rifications par des tiers, pour discerner efficacement la vĂ©ritĂ©. Par consĂ©quent, il y a une Ă©volution technologique continue pour contrer la sophistication croissante des fausses informations, mettant au dĂ©fi et avançant les capacitĂ©s de l'IA. En rĂ©ponse Ă  ces dĂ©fis, ma thĂšse introduit le cadre FACTS-ON (Fighting Against Counterfeit Truths in Online Social Networks), une approche complĂšte et systĂ©matique pour combattre la dĂ©sinformation dans les RSO. FACTS-ON intĂšgre une sĂ©rie de systĂšmes avancĂ©s, chacun s'appuyant sur les capacitĂ©s de son prĂ©dĂ©cesseur pour amĂ©liorer la stratĂ©gie globale de dĂ©tection et d'attĂ©nuation des fausses informations. Je commence par prĂ©senter le cadre FACTS-ON, qui pose les fondements de ma solution, puis je dĂ©taille chaque systĂšme au sein du cadre : EXMULF (Explainable Multimodal Content-based Fake News Detection) se concentre sur l'analyse du texte et des images dans les contenus en ligne en utilisant des techniques multimodales avancĂ©es, couplĂ©es Ă  une IA explicable pour fournir des Ă©valuations transparentes et comprĂ©hensibles des fausses informations. En s'appuyant sur les bases d'EXMULF, MythXpose (Multimodal Content and Social Context-based System for Explainable False Information Detection with Personality Prediction) ajoute une couche d'analyse du contexte social en prĂ©disant les traits de personnalitĂ© des utilisateurs des RSO, amĂ©liorant la dĂ©tection et les stratĂ©gies d'intervention prĂ©coce contre la dĂ©sinformation. ExFake (Explainable False Information Detection Based on Content, Context, and External Evidence) Ă©largit encore le cadre, combinant l'analyse de contenu avec des insights du contexte social et des preuves externes. Il tire parti des donnĂ©es d'organisations de vĂ©rification des faits rĂ©putĂ©es et de comptes officiels, garantissant une approche plus complĂšte et fiable de la dĂ©tection de la dĂ©sinformation. La mĂ©thodologie sophistiquĂ©e d'ExFake Ă©value non seulement le contenu des publications en ligne, mais prend Ă©galement en compte le contexte plus large et corrobore les informations avec des sources externes crĂ©dibles, offrant ainsi une solution bien arrondie et robuste pour combattre les fausses informations dans les rĂ©seaux sociaux en ligne. ComplĂ©tant le cadre, AFCC (Automated Fact-checkers Consensus and Credibility) traite l'hĂ©tĂ©rogĂ©nĂ©itĂ© des Ă©valuations des diffĂ©rentes organisations de vĂ©rification des faits. Il standardise ces Ă©valuations et Ă©value la crĂ©dibilitĂ© des sources, fournissant une Ă©valuation unifiĂ©e et fiable de l'information. Chaque systĂšme au sein du cadre FACTS-ON est rigoureusement Ă©valuĂ© pour dĂ©montrer son efficacitĂ© dans la lutte contre la dĂ©sinformation sur les RSO. Cette thĂšse dĂ©taille le dĂ©veloppement, la mise en Ɠuvre et l'Ă©valuation complĂšte de ces systĂšmes, soulignant leur contribution collective au domaine de la dĂ©tection des fausses informations. La recherche ne met pas seulement en Ă©vidence les capacitĂ©s actuelles dans la lutte contre la dĂ©sinformation, mais prĂ©pare Ă©galement le terrain pour de futures avancĂ©es dans ce domaine critique d'Ă©tude.The rapid evolution of online social networks (OSN) presents a significant challenge in identifying and mitigating false information, which includes Fake News, Disinformation, and Misinformation. This complexity is amplified in digital environments where information is quickly disseminated, requiring sophisticated strategies to differentiate between genuine and false content. One of the primary challenges in automatically detecting false information is its realistic presentation, often closely resembling verifiable facts. This poses considerable challenges for artificial intelligence (AI) systems, necessitating additional data from external sources, such as third-party verifications, to effectively discern the truth. Consequently, there is a continuous technological evolution to counter the growing sophistication of false information, challenging and advancing the capabilities of AI. In response to these challenges, my dissertation introduces the FACTS-ON framework (Fighting Against Counterfeit Truths in Online Social Networks), a comprehensive and systematic approach to combat false information in OSNs. FACTS-ON integrates a series of advanced systems, each building upon the capabilities of its predecessor to enhance the overall strategy for detecting and mitigating false information. I begin by introducing the FACTS-ON framework, which sets the foundation for my solution, and then detail each system within the framework: EXMULF (Explainable Multimodal Content-based Fake News Detection) focuses on analyzing both text and image in online content using advanced multimodal techniques, coupled with explainable AI to provide transparent and understandable assessments of false information. Building upon EXMULF’s foundation, MythXpose (Multimodal Content and Social Context-based System for Explainable False Information Detection with Personality Prediction) adds a layer of social context analysis by predicting the personality traits of OSN users, enhancing the detection and early intervention strategies against false information. ExFake (Explainable False Information Detection Based on Content, Context, and External Evidence) further expands the framework, combining content analysis with insights from social context and external evidence. It leverages data from reputable fact-checking organizations and official social accounts, ensuring a more comprehensive and reliable approach to the detection of false information. ExFake's sophisticated methodology not only evaluates the content of online posts but also considers the broader context and corroborates information with external, credible sources, thereby offering a well-rounded and robust solution for combating false information in online social networks. Completing the framework, AFCC (Automated Fact-checkers Consensus and Credibility) addresses the heterogeneity of ratings from various fact-checking organizations. It standardizes these ratings and assesses the credibility of the sources, providing a unified and trustworthy assessment of information. Each system within the FACTS-ON framework is rigorously evaluated to demonstrate its effectiveness in combating false information on OSN. This dissertation details the development, implementation, and comprehensive evaluation of these systems, highlighting their collective contribution to the field of false information detection. The research not only showcases the current capabilities in addressing false information but also sets the stage for future advancements in this critical area of study

    Knowledge Infused Learning (K-IL): Towards Deep Incorporation of Knowledge in Deep Learning

    Get PDF
    Learning the underlying patterns in data goes beyondinstance-based generalization to external knowledge repre-sented in structured graphs or networks. Deep learning thatprimarily constitutes neural computing stream in AI hasshown significant advances in probabilistically learning la-tent patterns using a multi-layered network of computationalnodes (i.e., neurons/hidden units). Structured knowledge thatunderlies symbolic computing approaches and often supportsreasoning, has also seen significant growth in recent years,in the form of broad-based (e.g., DBPedia, Yago) and do-main, industry or application specific knowledge graphs. Acommon substrate with careful integration of the two willraise opportunities to develop neuro-symbolic learning ap-proaches for AI, where conceptual and probabilistic repre-sentations are combined. As the incorporation of externalknowledge will aid in supervising the learning of features forthe model, deep infusion of representational knowledge fromknowledge graphs within hidden layers will further enhancethe learning process. Although much work remains, we be-lieve that knowledge graphs will play an increasing role in de-veloping hybrid neuro-symbolic intelligent systems (bottom-up deep learning with top-down symbolic computing) as wellas in building explainable AI systems for which knowledgegraphs will provide scaffolding for punctuating neural com-puting. In this position paper, we describe our motivation forsuch a neuro-symbolic approach and framework that com-bines knowledge graph and neural networks

    Enhancing explainability and scrutability of recommender systems

    Get PDF
    Our increasing reliance on complex algorithms for recommendations calls for models and methods for explainable, scrutable, and trustworthy AI. While explainability is required for understanding the relationships between model inputs and outputs, a scrutable system allows us to modify its behavior as desired. These properties help bridge the gap between our expectations and the algorithm’s behavior and accordingly boost our trust in AI. Aiming to cope with information overload, recommender systems play a crucial role in ïŹltering content (such as products, news, songs, and movies) and shaping a personalized experience for their users. Consequently, there has been a growing demand from the information consumers to receive proper explanations for their personalized recommendations. These explanations aim at helping users understand why certain items are recommended to them and how their previous inputs to the system relate to the generation of such recommendations. Besides, in the event of receiving undesirable content, explanations could possibly contain valuable information as to how the system’s behavior can be modiïŹed accordingly. In this thesis, we present our contributions towards explainability and scrutability of recommender systems: ‱ We introduce a user-centric framework, FAIRY, for discovering and ranking post-hoc explanations for the social feeds generated by black-box platforms. These explanations reveal relationships between users’ proïŹles and their feed items and are extracted from the local interaction graphs of users. FAIRY employs a learning-to-rank (LTR) method to score candidate explanations based on their relevance and surprisal. ‱ We propose a method, PRINCE, to facilitate provider-side explainability in graph-based recommender systems that use personalized PageRank at their core. PRINCE explanations are comprehensible for users, because they present subsets of the user’s prior actions responsible for the received recommendations. PRINCE operates in a counterfactual setup and builds on a polynomial-time algorithm for ïŹnding the smallest counterfactual explanations. ‱ We propose a human-in-the-loop framework, ELIXIR, for enhancing scrutability and subsequently the recommendation models by leveraging user feedback on explanations. ELIXIR enables recommender systems to collect user feedback on pairs of recommendations and explanations. The feedback is incorporated into the model by imposing a soft constraint for learning user-speciïŹc item representations. We evaluate all proposed models and methods with real user studies and demonstrate their beneïŹts at achieving explainability and scrutability in recommender systems.Unsere zunehmende AbhĂ€ngigkeit von komplexen Algorithmen fĂŒr maschinelle Empfehlungen erfordert Modelle und Methoden fĂŒr erklĂ€rbare, nachvollziehbare und vertrauenswĂŒrdige KI. Zum Verstehen der Beziehungen zwischen Modellein- und ausgaben muss KI erklĂ€rbar sein. Möchten wir das Verhalten des Systems hingegen nach unseren Vorstellungen Ă€ndern, muss dessen Entscheidungsprozess nachvollziehbar sein. ErklĂ€rbarkeit und Nachvollziehbarkeit von KI helfen uns dabei, die LĂŒcke zwischen dem von uns erwarteten und dem tatsĂ€chlichen Verhalten der Algorithmen zu schließen und unser Vertrauen in KI-Systeme entsprechend zu stĂ€rken. Um ein Übermaß an Informationen zu verhindern, spielen Empfehlungsdienste eine entscheidende Rolle um Inhalte (z.B. Produkten, Nachrichten, Musik und Filmen) zu ïŹltern und deren Benutzern eine personalisierte Erfahrung zu bieten. Infolgedessen erheben immer mehr In- formationskonsumenten Anspruch auf angemessene ErklĂ€rungen fĂŒr deren personalisierte Empfehlungen. Diese ErklĂ€rungen sollen den Benutzern helfen zu verstehen, warum ihnen bestimmte Dinge empfohlen wurden und wie sich ihre frĂŒheren Eingaben in das System auf die Generierung solcher Empfehlungen auswirken. Außerdem können ErklĂ€rungen fĂŒr den Fall, dass unerwĂŒnschte Inhalte empfohlen werden, wertvolle Informationen darĂŒber enthalten, wie das Verhalten des Systems entsprechend geĂ€ndert werden kann. In dieser Dissertation stellen wir unsere BeitrĂ€ge zu ErklĂ€rbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten vor. ‱ Mit FAIRY stellen wir ein benutzerzentriertes Framework vor, mit dem post-hoc ErklĂ€rungen fĂŒr die von Black-Box-Plattformen generierten sozialen Feeds entdeckt und bewertet werden können. Diese ErklĂ€rungen zeigen Beziehungen zwischen BenutzerproïŹlen und deren Feeds auf und werden aus den lokalen Interaktionsgraphen der Benutzer extrahiert. FAIRY verwendet eine LTR-Methode (Learning-to-Rank), um die ErklĂ€rungen anhand ihrer Relevanz und ihres Grads unerwarteter Empfehlungen zu bewerten. ‱ Mit der PRINCE-Methode erleichtern wir das anbieterseitige Generieren von ErklĂ€rungen fĂŒr PageRank-basierte Empfehlungsdienste. PRINCE-ErklĂ€rungen sind fĂŒr Benutzer verstĂ€ndlich, da sie Teilmengen frĂŒherer Nutzerinteraktionen darstellen, die fĂŒr die erhaltenen Empfehlungen verantwortlich sind. PRINCE-ErklĂ€rungen sind somit kausaler Natur und werden von einem Algorithmus mit polynomieller Laufzeit erzeugt , um prĂ€zise ErklĂ€rungen zu ïŹnden. ‱ Wir prĂ€sentieren ein Human-in-the-Loop-Framework, ELIXIR, um die Nachvollziehbarkeit der Empfehlungsmodelle und die QualitĂ€t der Empfehlungen zu verbessern. Mit ELIXIR können Empfehlungsdienste Benutzerfeedback zu Empfehlungen und ErklĂ€rungen sammeln. Das Feedback wird in das Modell einbezogen, indem benutzerspeziïŹscher Einbettungen von Objekten gelernt werden. Wir evaluieren alle Modelle und Methoden in Benutzerstudien und demonstrieren ihren Nutzen hinsichtlich ErklĂ€rbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten

    Management perspectives on dealing with contextual uncertainty and unexpected emergent events

    Get PDF
    The economic meltdown and 9/11 in many respects were watershed events; they triggered unexpected effects that collectively have played a fundamental role in reshaping an emergent global landscape. It is one characterised by unprecedented technological innovation, socio-political upheaval, contextual uncertainty and as often termed to be “Black Swan” events that are extremely disruptive and have a significant impact on communities and institutions. The convergent emergent systemic effects and the uncertainty and unpredictability it engendered have exposed fundamental difficulties associated with traditional management practices based on ordered systems. The research study methodology underpinning this paper is that of a multidisciplinary literature review directed at exploring management perspectives that are deemed to be more effective for dealing with a context of innovative and discontinuous change. A key finding emerging from the research is the need to make use of the appropriate methodology for managing coexisting ordered and complex systems. Further found is the need for a culture of resiliency to deal with the transition from chaos to complex and ordered states.http://www.journals.co.za/ej/ejour_jcman.htmltm201

    Knowledge-Infused Learning

    Get PDF
    In DARPA’s view of the three waves of AI, the first wave of AI, symbolic AI, focused on explicit knowledge. The second and current wave of AI is termed statistical AI. Deep learning techniques have been able to exploit large amounts of data and massive computational power to improve human levels of performance in narrowly defined tasks. Separately, knowledge graphs have emerged as a powerful tool to capture and exploit a variety of explicit knowledge to make algorithms better apprehend the content and enable the next generation of data processing, such as semantic search. After initial hesitancy about the scalability of the knowledge creation process, the last decade has seen significant growth in developing and applying knowledge, usually in the form of knowledge graphs. Examples range from the use of DBPedia in IBM’s Watson to Google Knowledge Graph in Google Semantic Search to the application of ProteinBank in AlphaFold, recognized by many as the most significant AI breakthrough. Furthermore, numerous domain-specific knowledge graphs/sources have been applied to improve AI methods in diverse domains such as medicine, healthcare, finance, manufacturing, and defense. Now, we move towards the third wave of AI built on the Neuro-Symbolic approach that combines the strengths of statistical and symbolic AI. Combining the respective powers and benefits of using knowledge graphs and deep learning is particularly attractive. This has led to the development of an approach and practice in computer science termed knowledge-infused (deep) learning (KiL). This dissertation will serve as a primer on methods that use diverse forms of knowledge: linguistic, commonsense, broad-based, and domain-specific and provide novel evaluation metrics to assess knowledge-infusion algorithms on various datasets, like social media, clinical interviews, electronic health records, information-seeking dialogues, and others. Specifically, this dissertation will provide necessary grounding in shallow infusion, semi-deep infusion, and a more advanced form called deep infusion to alleviate five bottlenecks in statistical AI: (1) Context Sensitivity, (2) Handling Uncertainty and Risk, (3) Interpretability, (4) User-level Explainability, and (5) Task Transferability. Further, the dissertation will introduce a new theoretical and conceptual approach called Process Knowledge Infusion, which enforces semantic flow in AI algorithms by altering their learning behavior with procedural knowledge. Such knowledge is manifested in questionnaires and guidelines that are usable by AI (or KiL) systems for sensible and safety-constrained response generation. The hurdle to prove the acceptability of KiL in AI and natural language understanding community lies in the absence of realistic datasets that can demonstrate five bottlenecks in statistical AI. The dissertation describes the process involved in constructing a wide variety of gold-standard datasets using expert knowledge, questionnaires, guidelines, and knowledge graphs. These datasets challenge statistical AI on explainability, interpretability, uncertainty, and context-sensitivity and showcase remarkable performance gains obtained by KiL-based algorithms. This dissertation termed these gold-standard datasets as Knowledge-intensive Language Understanding (KILU) tasks and considered them complementary to well-adopted General Language Understanding and Evaluation (GLUE) benchmarks. On KILU and GLUE datasets, KiL-based algorithms outperformed existing state-of-the-arts in natural language generation and classification problems. Furthermore, KiL-based algorithms provided user-understandable explanations in sensitive problems like Mental Health by highlighting concepts that depicts the reason behind model’s prediction or generation. Mapping of these concepts to entities in external knowledge source can support experts with user-level explanations and reasoning. A cohort-based qualitative evaluation informed that KiL should support stronger interleaving of a greater variety of knowledge at different levels of abstraction with layers in a deep learning architecture. This would enforce controlled knowledge infusion and prevent model from extrapolating or overgeneralization. This dissertation open future research questions on neural models within the domain of natural language understanding. For instance, (a) Which layer within a deep neural language model (NLMs) require knowledge? (b) It is known that NLMs learn by abstraction. How to leverage external knowledge’s inherent abstraction in enhancing the context of learned statistical representation? (c) Layered knowledge infusion might result in high-energy nodes contributing to the outcome. This is counter to the current softmaxbased predictions. How to pick the most probable outcome? and others. This dissertation provide a firsthand towards addressing these questions; however, much efficient methods are needed that provide user-level explanations, be interpretable, and propel safe AI

    Hybrid human-machine information systems for data classification

    Get PDF
    Over the last decade, we have seen an intense development of machine learning approaches for solving various tasks in diverse domains. Despite the remarkable advancements in this field, there are still task categories that machine learning models fall short of the required accuracy. This is the case with tasks that require human cognitive skills, such as sentiment analysis, emotional or contextual understanding. On the other hand, human-based computation approaches, such as crowdsourcing, are popular for solving such tasks. Crowdsourcing enables access to a vast number of groups with different expertise, and if managed properly, generates high-quality results. However, crowdsourcing as a standalone approach is not scalable due to the latency and cost it brings in. Addressing the challenges and limitations that the human and machine-based approaches have distinctly requires bridging the two fields into a hybrid intelligence, seen as a promising approach to solve critical and complex real-world tasks. This thesis focuses on hybrid human-machine information systems, combining machine and human intelligence and leveraging their complementary strengths: the data processing efficiency of machine learning and the data quality generated by crowdsourcing. In this thesis, we present hybrid human-machine models to address the challenges falling into three dimensions: accuracy, latency, and cost. Solving data classification tasks in different domains has different requirements concerning accuracy, latency, and cost criteria. Motivated by this fact, we introduce a master component that evaluates these criteria to find the suitable model as a trade-off solution. In hybrid human-machine information systems, incorporating human judgments is expected to improve the accuracy of the system. Therefore, to ensure this, we focus on the human intelligence component, integrating profile-aware crowdsourcing for task assignment and data quality control mechanisms in the hybrid pipelines. The proposed conceptual hybrid human-machine models materialize in conducted experiments. Motivated by challenging scenarios and using real-world datasets, we implement the hybrid models in three experiments. Evaluations show that the implemented hybrid human-machine architectures for data classification tasks lead to better results as compared to each of the two approaches individually, improving the overall accuracy at an acceptable cost and latency

    Information consumption on social media : efficiency, divisiveness, and trust

    Get PDF
    Over the last decade, the advent of social media has profoundly changed the way people produce and consume information online. On these platforms, users themselves play a role in selecting the sources from which they consume information, overthrowing traditional journalistic gatekeeping. Moreover, advertisers can target users with news stories using users’ personal data. This new model has many advantages: the propagation of news is faster, the number of news sources is large, and the topics covered are diverse. However, in this new model, users are often overloaded with redundant information, and they can get trapped in filter bubbles by consuming divisive and potentially false information. To tackle these concerns, in my thesis, I address the following important questions: (i) How efficient are users at selecting their information sources? We have defined three intuitive notions of users’ efficiency in social media: link, in-flow, and delay efficiency. We use these three measures to assess how good users are at selecting who to follow within the social media system in order to most efficiently acquire information. (ii) How can we break the filter bubbles that users get trapped in? Users on social media sites such as Twitter often get trapped in filter bubbles by being exposed to radical, highly partisan, or divisive information. To prevent users from getting trapped in filter bubbles, we propose an approach to inject diversity in users’ information consumption by identifying non-divisive, yet informative information. (iii) How can we design an efficient framework for fact-checking? Proliferation of false information is a major problem in social media. To counter it, social media platforms typically rely on expert fact-checkers to detect false news. However, human fact-checkers can realistically only cover a tiny fraction of all stories. So, it is important to automatically prioritizing and selecting a small number of stories for human to fact check. However, the goals for prioritizing stories for fact-checking are unclear. We identify three desired objectives to prioritize news for fact-checking. These objectives are based on the users’ perception of truthfulness of stories. Our key finding is that these three objectives are incompatible in practice.In den letzten zehn Jahren haben soziale Medien die Art und Weise, wie Menschen online Informationen generieren und konsumieren, grundlegend verĂ€ndert. Auf Social Media Plattformen wĂ€hlen Nutzer selbst aus, von welchen Quellen sie Informationen beziehen hebeln damit das traditionelle Modell journalistischen Gatekeepings aus. ZusĂ€tzlich können Werbetreibende Nutzerdaten dazu verwenden, um Nachrichtenartikel gezielt an Nutzer zu verbreiten. Dieses neue Modell bietet einige Vorteile: Nachrichten verbreiten sich schneller, die Zahl der Nachrichtenquellen ist grĂ¶ĂŸer, und es steht ein breites Spektrum an Themen zur Verfügung. Das hat allerdings zur Folge, dass Benutzer hĂ€ufig mit überflüssigen Informationen überladen werden und in Filterblasen geraten können, wenn sie zu einseitige oder falsche Informationen konsumieren. Um diesen Problemen Rechnung zu tragen, gehe ich in meiner Dissertation auf die drei folgenden wichtigen Fragestellungen ein: ‱ (i) Wie effizient sind Nutzer bei der Auswahl ihrer Informationsquellen? Dazu definieren wir drei verschiedene, intuitive Arten von Nutzereffizienz in sozialen Medien: Link-, In-Flowund Delay-Effizienz. Mithilfe dieser drei Metriken untersuchen wir, wie gut Nutzer darin sind auszuwĂ€hlen, wem sie auf Social Media Plattformen folgen sollen um effizient an Informationen zu gelangen. ‱ (ii) Wie können wir verhindern, dass Benutzer in Filterblasen geraten? Nutzer von Social Media Webseiten werden hĂ€ufig Teil von Filterblasen, wenn sie radikalen, stark parteiischen oder spalterischen Informationen ausgesetzt sind. Um das zu verhindern, entwerfen wir einen Ansatz mit dem Ziel, den Informationskonsum von Nutzern zu diversifizieren, indem wir Informationen identifizieren, die nicht polarisierend und gleichzeitig informativ sind. ‱ (iii) Wie können wir Nachrichten effizient auf faktische Korrektheit hin überprüfen? Die Verbreitung von Falschinformationen ist eines der großen Probleme sozialer Medien. Um dem entgegenzuwirken, sind Social Media Plattformen in der Regel auf fachkundige Faktenprüfer zur Identifizierung falscher Nachrichten angewiesen. Die manuelle Überprüfung von Fakten kann jedoch realistischerweise nur einen sehr kleinen Teil aller Artikel und Posts abdecken. Daher ist es wichtig, automatisch eine überschaubare Zahl von Artikeln für die manuellen Faktenkontrolle zu priorisieren. Nach welchen Zielen eine solche Priorisierung erfolgen soll, ist jedoch unklar. Aus diesem Grund identifizieren wir drei wünschenswerte Priorisierungskriterien für die Faktenkontrolle. Diese Kriterien beruhen auf der Wahrnehmung des Wahrheitsgehalts von Artikeln durch Nutzer. Unsere Schlüsselbeobachtung ist, dass diese drei Kriterien in der Praxis nicht miteinander vereinbar sind
    • 

    corecore