12 research outputs found

    Pengukuran Ketebalan Tulang Kortikal Pada Citra Panorama Gigi Berbasis Model

    Full text link
    Pengukuran ketebalan tulang kortikal pada citra panorama gigi merupakan salah satu cara yang dapat digunakan untuk mendiagnosa osteoporosis. Ketebalan tulang kortikal pada gigi merupakan predictor penting untuk mengetahui kualitas kepadatan tulang. Namun, pengukuran ketebalan tulang kortikal pada citra panorama gigi masih dilakukan secara manual oleh ahli medis. Penelitian ini mengusulkan sebuah sistem otomatis untuk mengukur ketebalan tulang kortikal pada citra panorama gigi berbasis model profil. Pengukuran ketebalan tulang kortikal terdiri dari 5 tahapan yaitu ekstraksi fitur menggunakan multiscale line operator dan gradient orientation analysis pada citra Region Of Interest (ROI), segmentasi tulang kortikal, deteksi centerline pada tulang kortikal, pemodelan profil tulang kortikal, dan estimasi tebal tulang kortikal. Metode ini dievaluasi menggunakan 30 citra panorama gigi. Berdasarkan hasil uji coba, rata-rata akurasi segmentasi tulang kortikal pada ROI paling kiri, ROI kiri-tengah, ROI kanan-tengah, dan ROI paling kanan secara berurut-turut sebesar 95.41%, 89.96%, 95.12%, dan 93.50%. Persentase rata-rata selisih ketebalan tulang kortikal antara sistem dan ground truth menggunakan uji-t dengan 95% confidence interval sebesar 96.65%

    Computer-aided diagnosis for osteoporosis based on trabecular bone analysis using panoramic radiographs

    Get PDF
    Background: Mandibular bone on panoramic radiographs has been proven to be useful for identifying postmenopausal women with low skeletal bone mineral density. One of the important parts of mandibular bone is trabecular bone. Trabecular bone architecture is one of the factors that governs bone strength and may be categorized as a contributor to bone quality. Purpose: The purposes of this study were to develop a computer-aided system for measuring trabecular bone line strength on panoramic radiographs in identifying postmenopausal women with osteoporosis and to clarify the diagnostic efficacy of the system. Methods: Reduction and expansion of trabecular bone sample images using a two level Gaussian pyramid for removing noises and small segments were first introduced. Then, line strength at each pixel was calculated based on its existence on the trabecular bone with emphasizes line segment which has similar orientation with the root of tooth. The density was measured with respect to line strength of segment structure which has similar orientation with the root of tooth, either on the left and the right in the mandibular bone. Number of pixels in the line segment area was compared with a threshold value to determine whether normal or osteoporosis. Results: From experiment on 100 data, the accuracy of 88%, sensitivity of 92%, and specificity of 86.7% were achieved. Conclusion: The computer-aided system of trabecular bone analysis may be useful for detecting osteoporosis using panoramic radiographs.Latar belakang: Tulang mandibula pada panoramik radiografi telah banyak diteliti dan terbukti mampu digunakan untuk mengidentifikasi wanita pasca menopause dengan menggunakan bone mineral density rendah. Salah satu bagian tulang mandibula yang penting adalah tulang trabekula. Arsitektur tulang trabekula merupakan salah satu dari faktor-faktor yang mempengaruhi kekuatan tulang dan dapat digolongkan sebagai kontributor bagi kualitas tulang. Tujuan: Penelitian ini bertujuan untuk membangun sebuah sistem dengan bantuan komputer untuk mengukur kekuatan garis pada tulang trabekula dan menggunakannya untuk mendeteksi osteoporosis pada wanita postmenopause. Metode: Dilakukan sampling pada sebagian tulang mandibular yang menghasilkan sebuah sampel citra. Sampel citra ini selanjutnya diperbaiki dari derau (noise) dengan menggunakan piramida Gaussian dua level. Kekuatan garis pada tiap piksel dihitung berdasarkan orientasi segmen garis tulang trabekula yang sejajar dengan akar gigi. Setelah dilakukan binerisasi, luasan segmen yang dihasilkan dihitung dan dibandingkan dengan sebuah nilai ambang. Bila luasan melebihi nilai threshold maka dikategorikan sebagai normal. Sebaliknya bila luasan dibawah nilai threshold, dikategorikan sebagai osteoporosis. Hasil: Berdasarkan eksperimen terhadap 100 data, sistem mampu mencapai akurasi identifikasi sebesar 88%, sensitivitas 92%, dan spesifisitas 86,7%. Kesimpulan: Sistem analisa trabecular bone dengan bantuan komputer ini dapat digunakan oleh para dokter gigi untuk mendeteksi osteoporosis menggunakan panoramik radiografi.</p

    PENGUKURAN KETEBALAN TULANG KORTIKAL PADA CITRA PANORAMA GIGI BERBASIS MODEL

    Get PDF
    Pengukuran ketebalan tulang kortikal pada citra panorama gigi merupakan salah satu cara yang dapat digunakan untuk mendiagnosa osteoporosis. Ketebalan tulang kortikal pada gigi merupakan predictor penting untuk mengetahui kualitas kepadatan tulang. Namun, pengukuran ketebalan tulang kortikal pada citra panorama gigi masih dilakukan secara manual oleh ahli medis. Penelitian ini mengusulkan sebuah sistem otomatis untuk mengukur ketebalan tulang kortikal pada citra panorama gigi berbasis model profil. Pengukuran ketebalan tulang kortikal terdiri dari 5 tahapan yaitu ekstraksi fitur menggunakan multiscale line operator dan gradient orientation analysis pada citra Region Of Interest (ROI), segmentasi tulang kortikal, deteksi centerline pada tulang kortikal, pemodelan profil tulang kortikal, dan estimasi tebal tulang kortikal. Metode ini dievaluasi menggunakan 30 citra panorama gigi. Berdasarkan hasil uji coba, rata-rata akurasi segmentasi tulang kortikal pada ROI paling kiri, ROI kiri-tengah, ROI kanan-tengah, dan ROI paling kanan secara berurut-turut sebesar 95.41%, 89.96%, 95.12%, dan 93.50%. Persentase rata-rata selisih ketebalan tulang kortikal antara sistem dan ground truth menggunakan uji-t dengan 95% confidence interval sebesar 96.65%

    PENGUKURAN KETEBALAN TULANG KORTIKAL PADA CITRA PANORAMA GIGI BERBASIS MODEL

    Full text link

    A Review: Person Identification using Retinal Fundus Images

    Get PDF
    In this paper a review on biometric person identification has been discussed using features from retinal fundus image. Retina recognition is claimed to be the best person identification method among the biometric recognition systems as the retina is practically impossible to forge. It is found to be most stable, reliable and most secure among all other biometric systems. Retina inherits the property of uniqueness and stability. The features used in the recognition process are either blood vessel features or non-blood vessel features. But the vascular pattern is the most prominent feature utilized by most of the researchers for retina based person identification. Processes involved in this authentication system include pre-processing, feature extraction and feature matching. Bifurcation and crossover points are widely used features among the blood vessel features. Non-blood vessel features include luminance, contrast, and corner points etc. This paper summarizes and compares the different retina based authentication system. Researchers have used publicly available databases such as DRIVE, STARE, VARIA, RIDB, ARIA, AFIO, DRIDB, and SiMES for testing their methods. Various quantitative measures such as accuracy, recognition rate, false rejection rate, false acceptance rate, and equal error rate are used to evaluate the performance of different algorithms. DRIVE database provides 100\% recognition for most of the methods. Rest of the database the accuracy of recognition is more than 90\%

    Una revisión sistemática de métodos de aprendizaje profundo aplicados a imágenes oculares

    Get PDF
    Artificial intelligence is having an important effect on different areas of medicine, and ophthalmology has not been the exception. In particular, deep learning methods have been applied successfully to the detection of clinical signs and the classification of ocular diseases. This represents a great potential to increase the number of people correctly diagnosed. In ophthalmology, deep learning methods have primarily been applied to eye fundus images and optical coherence tomography. On the one hand, these methods have achieved an outstanding performance in the detection of ocular diseases such as: diabetic retinopathy, glaucoma, diabetic macular degeneration and age-related macular degeneration.&nbsp; On the other hand, several worldwide challenges have shared big eye imaging datasets with segmentation of part of the eyes, clinical signs and the ocular diagnostic performed by experts. In addition, these methods are breaking the stigma of black-box models, with the delivering of interpretable clinically information. This review provides an overview of the state-of-the-art deep learning methods used in ophthalmic images, databases and potential challenges for ocular diagnosisLa inteligencia artificial está teniendo un importante impacto en diversas áreas de la medicina y a la oftalmología no ha sido la excepción. En particular, los métodos de aprendizaje profundo han sido aplicados con éxito en la detección de signos clínicos y la clasificación de enfermedades oculares. Esto representa un potencial impacto en el incremento de pacientes correctamente y oportunamente diagnosticados. En oftalmología, los métodos de aprendizaje profundo se han aplicado principalmente a imágenes de fondo de ojo y tomografía de coherencia óptica. Por un lado, estos métodos han logrado un rendimiento sobresaliente en la detección de enfermedades oculares tales como: retinopatía diabética, glaucoma, degeneración macular diabética y degeneración macular relacionada con la edad. Por otro lado, varios desafíos mundiales han compartido grandes conjuntos de datos con segmentación de parte de los ojos, signos clínicos y el diagnóstico ocular realizado por expertos. Adicionalmente, estos métodos están rompiendo el estigma de los modelos de caja negra, con la entrega de información clínica interpretable. Esta revisión proporciona una visión general de los métodos de aprendizaje profundo de última generación utilizados en imágenes oftálmicas, bases de datos y posibles desafíos para los diagnósticos oculare

    Automatic Segmentation of Optic Disc in Eye Fundus Images: A Survey

    Get PDF
    Optic disc detection and segmentation is one of the key elements for automatic retinal disease screening systems. The aim of this survey paper is to review, categorize and compare the optic disc detection algorithms and methodologies, giving a description of each of them, highlighting their key points and performance measures. Accordingly, this survey firstly overviews the anatomy of the eye fundus showing its main structural components along with their properties and functions. Consequently, the survey reviews the image enhancement techniques and also categorizes the image segmentation methodologies for the optic disc which include property-based methods, methods based on convergence of blood vessels, and model-based methods. The performance of segmentation algorithms is evaluated using a number of publicly available databases of retinal images via evaluation metrics which include accuracy and true positive rate (i.e. sensitivity). The survey, at the end, describes the different abnormalities occurring within the optic disc region

    Automatic Segmentation of Optic Disc in Eye Fundus Images : a Survey

    Get PDF
    Optic disc detection and segmentation is one of the key elements for automatic retinal disease screening systems. The aim of this survey paper is to review, categorize and compare the optic disc detection algorithms and methodologies, giving a description of each of them, highlighting their key points and performance measures. Accordingly, this survey firstly overviews the anatomy of the eye fundus showing its main structural components along with their properties and functions. Consequently, the survey reviews the image enhancement techniques and also categorizes the image segmentation methodologies for the optic disc which include property-based methods, methods based on convergence of blood vessels, and model-based methods. The performance of segmentation algorithms is evaluated using a number of publicly available databases of retinal images via evaluation metrics which include accuracy and true positive rate (i.e. sensitivity). The survey, at the end, describes the different abnormalities occurring within the optic disc region

    Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators

    No full text
    We employed multiscale line operators (MSLO) in order to segment blood vessels in digital fundus images. Separately, a median filter technique was used in order to provide results that were compared to those of the MSLO. The green channel of the colour image was used, and both sets of results were further enhanced by subsequently employing a simple “randomly seeded” region-growing algorithm. We applied this approach to two sets of retinal images, namely, the ARIA (www.eyecharity.com/aria_online/) and STARE (www.ces.clemson.edu/∼ahoover/stare/) retinal image archives. The ARIA dataset contained colour fundus images from healthy subjects, diabetic subjects, and age-related macular degeneration (AMD) subjects. Similarly, the STARE dataset contained images from both “normal” (i.e., healthy) and “abnormal” (i.e., diseased) eyes. Manual segmentations of the blood-vessel structure for all images in the ARIA and STARE datasets were obtained by a retinal image interpretation expert. These images were then taken to be our gold standards. Receiver–operator characteristic (ROC) curves were determined and the areas under the ROC curve (AZ) were obtained. A large increase in efficiency for our MSLO algorithm was observed for the entire datasets (ARIA AZ=0.899; STARE AZ=0.953) compared to basic thresholding alone (ARIA AZ=0.608; STARE AZ=0.753). Interestingly, the simple median filter algorithm followed by region growing also performed well (ARIA AZ=0.888; STARE AZ=0.947). Our results compared favourably to those results of previous segmentation procedures for the STARE dataset. As expected, the best results were found for the healthy control group for ARIA and for the normal subjects for STARE
    corecore