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PII: S0895-6111(16)30070-2
DOI: http://dx.doi.org/doi:10.1016/j.compmedimag.2016.07.005
Reference: CMIG 1456

To appear in: Computerized Medical Imaging and Graphics

Received date: 29-2-2016
Revised date: 18-7-2016
Accepted date: 21-7-2016

Please cite this article as: Pavel Vostatek, Ela Claridge, Hannu Uusitalo, Markku Hauta-
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Abstract

Retinal blood vessel structure is an important indicator of many retinal and
systemic diseases, which has motivated the development of various image seg-
mentation methods for the blood vessels. In this study, two supervised and
three unsupervised segmentation methods with a publicly available implemen-
tation are reviewed and quantitatively compared with each other on five public
databases with ground truth segmentation of the vessels.

Each method is tested under consistent conditions with two types of prepro-
cessing, and the parameters of the methods are optimized for each database. Ad-
ditionally, possibility to predict the parameters of the methods for each database
by the linear regression model is tested. Resolution of the input images and
amount of the vessel pixels in the ground truth are used as predictors.

The results show the positive influence of preprocessing on the performance
of the unsupervised methods. The methods show similar performance for seg-
mentation accuracy, with the best performance achieved by the method by Az-
zopardi et al. (Acc 94.0) on ARIADB, the method by Soares et al. (Acc 94.6,
94.7) on CHASEDB1 and DRIVE, and the method by Nguyen et al. (Acc 95.8,
95.5) on HRF and STARE. The method by Soares et al. performed better with
regard to the area under the ROC curve. Qualitative differences between the
methods are discussed. Finally, it was possible to predict the parameter settings
that give performance close to the optimized performance of each method.
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1. Introduction

Visual examination of the retina provides a non-invasive view into the eye
and at the same time into the central nervous system. One of the distinct
features of the retina are the blood vessels, whose structure is an important
indicator of disorders such as diabetes, hypertension and cardiovascular dis-
ease [1]. Retinal imaging has been used to characterize the vessel structure, and
diagnose, monitor and document abnormal conditions [2]. With current tech-
nology, it is already possible to produce quantitative information of the signs of
eye diseases like diabetic retinopathy and glaucoma, as well in many cardiovas-
cular and neurovascular diseases. A review of retinal imaging and its medical
implications has been provided in [3].

To diagnose incipient abnormalities and diseases in their early stages, screen-
ing programs with systematic protocols are being implemented for groups at risk.
As the screening programs become more extensive, the amount of data increases
and in many cases manual diagnosis becomes a bottleneck. To remedy the prob-
lem with the increasing workload, computer-aided diagnosis tools can be used
to provide access to retinal images and enable high-throughput workflows for
the screening programs. To enable automatic or semi-automatic image analysis
and the structural characterization of the blood vessels, various approaches have
been proposed for segmenting the vessels from retinal images, see [4] and [5]. A
review of general vessel extraction techniques has been published in [6].

The aim of this study is to review and compare the performance of pixel-
wise blood vessel segmentation methods designed for retinal images and for
which an implementation is publicly available. Five methods, two supervised
and three unsupervised, were studied (see Section 2.1), and their performance
was assessed using five publicly available databases with ground truth for vessel
segmentation (see Section 2.2). To assess the performance potential of each
method, an experiment was set up so that the parameter space of each method
was sampled for each database and searched for optimal performance using grid
search (see Section 3.1). In order to keep the conditions of the experiment
consistent, the image preprocessing parts of the methods were separated and
applied to all the methods.

Analysis of the algorithms’ performance over the parameter ranges allows to
get several valuable results: (1) comparison and assessment of the generalization
capability of the methods over several different databases while exploiting the
segmentation potential of each method, (2) comparison of the performance and
settings of the methods with the original publications and with the state-of-the-
art, and (3) baseline settings suitable for application of the methods to other
data.

This study is an extended and enhanced version of the research published
in [7]. The method presented by Azzopardi et al. was added to the review,
as well as a step for image preprocessing. The Matthew correlation coefficient
and area under the receiver-operating characteristic (ROC) curve were added
to the set of performance measures. Improvements were made in the parameter
optimization, i.e. the parameter spaces were sampled more densely and more

2
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widely. Finally, corrections were made to the implementation of the method by
Nguyen et al. and to the contents of the table reviewing the image databases.

2. Databases and methods

2.1. Retinal blood vessel segmentation methods
The method proposed by Soares et al.1 in [8] (Soares method) is a supervised

classification algorithm that uses the Morlet (Gabor) wavelet filter response as
the classification feature. Three types of classifiers – Gaussian mixture model
(GMM), K-nearest neighbor (KNN) and least mean square error (LMSE) – are
available to use. Furthemore, the green channel of an input image is by default
added to the feature set. All features are normalized individually to zero mean
and unit standard deviation. The parameters of the method are: the set of
Morlet scales (Λmor) to define the classification features; the number of training
samples (ns), number of Gaussians for modeling the vessels and non-vessels
(ng1, ng2), and number of iterations of the expectation maximization (EM)
algorithm (ni) to define the GMM. The authors emphasize efficiency of the
Gabor transform to enhance the vessel contrast. At the same time they conclude
long training yet short classification time of the GMM classifier. Simplicity of
the implemented algorithms is emphasized. The reported disadvantages are
false detections around high-contrast structures like pathologies or the optic
disc, and in rare occasions, bad tolerance to uneven illumination.

The method proposed by Sofka et al.2 in [9] (Sofka method) is a super-
vised classification algorithm based on multiscale matched filtering, and con-
fidence and edge measures. The method extracts the vessel centerlines, and
originally, its pixel-wise segmentation performance was not evaluated. However
the method offers pixel-wise vessel likelihood (LRV) as an output. The LRV
measure with subsequent binarization by thresholding was used in our experi-
ments. The method is available as a pretrained executable with no parameters
to set. The authors claim statistically significant improvement of the vessel
segmentation performance over Frangi’s vesselness measure and matched filter.
Particular focus is on the detection of low-contrast and narrow vessels and im-
provement of the classifier performance on pathologies. The performance of the
method is, however, assessed on thinned vessels due to the wider response of
the filter around the vessel edges.

The method proposed by Azzopardi et al.3 in [10] (Azzopardi method) is an
unsupervised algorithm that employs a bar-selective version of a ’combination of
a shifted filter responses’ (COSFIRE) filter – B-COSFIRE – which first filters
the image with a difference of Gaussians (DoG) mask and then through the
COSFIRE mechanism emphasizes the line patterns (creating response R). The
final segmentation is obtained by thresholding. For proper detection of vessel

1https://sourceforge.net/projects/retinal/
2https://www.cs.rpi.edu/~sofka/vessels_exec.html
3http://www.mathworks.com/matlabcentral/fileexchange/37395
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endings, R of two types, symmetric and asymmetric, are combined by averaging.
Each R is defined by 4 parameters: Standard deviation of the DoG filter (σ),
length of the line pattern (ρ) and parameters allowing for spatial tolerance in
computation of R (σ0, α). The authors emphasize versatility of the COSFIRE
filter as it can be easily rearranged to detect shapes other than lines which were
used in the case of the vessel segmentation. The efficiency of the implementation
and robustness to noise are also emphasized.

The method proposed by Bankhead et al.4 in [11] (Bankhead method) is
an unsupervised algorithm based on isotropic undecimated wavelet transform
(IUWT) [12] and binarization by percentile-computed threshold. After the bina-
rization, post-processing by removing isolated objects and filling holes is done.
The parameters are a set of wavelet levels (Λban) for IUWT, percentile (pt)
used to compute the threshold value, and sizes of the isolated objects and holes
(ξs, ξh) for the post-process. The authors emphasize high processing speed of
the method and simplicity of the setup where the most important parameter –
Λban – has a small range of values even for images of very different resolutions.
The disadvantage of the method is a slightly worse segmentation performance
compared to the state-of-the-art methods.

The method proposed by Nguyen et al.5 in [13] (Nguyen method) is an un-
supervised algorithm based on line operators [14]. Vessel pixels are amplified by
filtering the image with a mask of defined size (W ) that enhances pixels along
lines with different orientations. Multiple filters with varying length of the line
(l1..n) together with the green channel of the input color image are averaged
to produce a single response with enhanced vessel contrast. The response is
normalized to zero mean and unit standard deviation. The number of filters is
defined by step ω. The output of the algorithm is a gray-scale map. Threshold-
ing (threshold τ) is used to produce the binary map. The authors emphasize the
classification speed as an advantage of the method. Also local accuracy (seg-
mentation near the vessel pixels) is claimed to be high. The method is supposed
to handle well such areas that are often merged by other segmentation methods.
The method is claimed to perform ’extremely well on non-pathological images’.

2.2. Databases with blood vessel ground truth
Medical image databases with an appropriate ground truth about the im-

age contents enable the development and proper evaluation of automatic image
analysis methods. Information about the databases selected for testing the reti-
nal blood vessel segmentation methods is summarized in Table 1. The number
of images, image dimensions, field of view (FOV) angle and diameter, subsets
and percentage of vessel pixels in the ground truth are presented.

DRIVE and STARE are currently the datasets most commonly used to eval-
uate retinal vessel segmentation methods. All methods reviewed in this paper
were originally evaluated using DRIVE and STARE, with an exception of the

4http://petebankhead.github.io/ARIA/
5http://people.eng.unimelb.edu.au/thivun/projects/retinal_segmentation/
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Table 1: Summary of database information. Ni is the number of images and NGT is the num-
ber of experts and percentage of annotated vessel pixels (per expert) in the ground truth seg-
mentation. Abbreviations of the image subsets are age-related macular degeneration (AMD)
and diabetic retinopathy (DR).

Name, ref. Ni FOV [°]
Dimensions

Subsets NGT
FOV �

ARIADB [15] 143 50°
768x576 AMD (23)

2 (9.6%, 8.5%)739 px Healthy (61)

DR (59)

CHASEDB1 [16] 28 30°
999x960 Left eye (14)

2 (10.1%, 9.7%)
916 px Right eye (14)

DRIVE [17] 40 45°
565x584 Training (20) 2 (12.7%, 12.3%)

540 px Test (20)

HRF [18] 45 60°
3504x2336 Healthy (15)

1 (9.13%)3262 px DR (15)

Glaucoma (15)

STARE [19] 20 35°
700x605

– 2 (10.3%, 14.8%)
649 px

Bankhead method, which was evaluated only using DRIVE. Our experiments
were done on three other databases with a range of different properties that
lead to more robust comparison of the methods and allow to model and predict
settings of the methods’ parameters.

3. Experiment setup

3.1. Setup of the grid search
A grid search was used to find the best segmentation performance in a sub-

space created by a cartesian product over the sampled sets of the parameter
values in Table 2. The parameters of the methods were optimized for highest
accuracy (Acc)6. Below we discuss the details for each method that differ from
standard grid search procedure.

With the Soares method, parameter settings of the classifiers were determined
by preliminary experiments and the reported values were set as indicated in
Table 2. To search for the best Λmor, a greedy optimization approach was used
in order to avoid evaluating poorly performing Λmor.

6Optimization for highest area under the ROC curve (AUC) was also done, although this
paper deals only with the results of the Acc optimization except for Figure 2. Complete results
from the optimization procedure are available at http://www.it.lut.fi/mvpr/medimg along
with the testing framework.

5
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Table 2: Sampled values of the parameters. Superscript over the set of wavelet levels
(e.g., {1, 2}≤2) represents subsets of the indicated size (e.g. {1, 2}≤2 = {{1}, {2}, {1, 2}}).
Azzopardi method : Assessment of the algorithm performance was done separately for in-
dividual parameters beginning at the ‘Starting point’ and adding values indicated in the
column ‘Test ranges’. Bankhead method : ξs was sampled logarithmically in the interval
〈0,max value (all vessels removed)〉 on each database. AR, CH, DR, HR, ST are abbreviated
names of the databases.

Soares method Bankhead method Nguyen method

Λmor {1, 2 · · · 17}≤3 Λban {1, 2, · · · , 4}≤4 (AR,CH,DR,ST) W {12, 13, · · · , 16} (AR, DR, ST)

ns {2 · 105} (AR, DR, ST) {1, 2, · · · , 5}≤3 (HR) {45, 46, · · · , 55} (HR)

{3 · 105} (CH, HR) pt {.05, .1, · · · , .3} {25, 26, · · · , 35} (CH)

ng1 {30} ξs 40 values in log. scale ω {2, 4, · · · ,W − 1}

ng2 {40} ξh {0} τ {0.5, 0.55, · · · , 1.5}

Sofka method Azzopardi method
τ , pad {0.50, 0.52, · · · , 2.0} (AR) Starting point

preprocessing {0.50, 0.52, · · · , 1.5} (CH,DR) Parameter AR CH DR HR ST Test ranges
{0.50, 0.52, · · · , 1.5} (HR,ST) σ1 2.5 4.8 2.4 7.2 2.7 {0,±0.2,±0.4}

τ , CLAHE {20.0, 20.02, · · · , 21.0} (AR) σ2 2 4.3 1.8 6.8 2.1 {0,±0.2,±0.4}
preprocessing {18.0, 18.02, · · · , 20.5} (CH) r1 10 18 8 26 12 {0,±3,±6}

{8.0, 8.02, · · · , 14.0} (DR) r2 24 34 22 50 24 {0,±3,±6}
{31.50, 31.52, · · · , 33.5} (HR) σ01 2 3 3 2 1 {0,±1,±0.5}
{20.0, 20.02, · · · , 22.0} (ST) σ02 1 1 2 1 1 {0,±1,±0.5}

a1 0.4 0.2 0.7 0.4 0.6 {0,±0.4,±0.2}
a2 0.1 0.1 0.1 0.1 0.1 {0,±0.4,±0.2}
τ {0.1, 0.105, · · · , 0.25}

6
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With CHASEDB1 and HRF, it was infeasible to execute the Sofka method
on the images in the original resolution. Therefore, the images were downscaled
so that the longer side of an image was 600 pixels.

The Azzopardi method is set up using 8 parameters, which is a relatively
large number. As a consequence, an exhaustive search in the parameter space
requires evaluating the performance at too many points. Therefore, it was
decided to explore the performance for the parameters individually beginning
at a point defined in the paper [10] or selected randomly. Then, the ranges
defined in Table 2 were followed from the starting point only in the direction of
the parameter axes. The whole procedure was repeated from the best observed
point as long as there was an improvement in the performance.

Performance of the Bankhead method was observed to be influenced very
little by parameter ξh, and thus, ξh was not used in the experiment. It should be
noted that the AUC measure was assessed on the vessel-enhanced image before
the binarization and cleaning as the post-processing step. As a consequence, it
yielded low values. It is possible to observe the influence of the cleaning on the
ROC characteristics in Figure 2.

3.2. Training data
Subsets of the databases were used as training data to optimize the param-

eters and to train the classifier of the Soares method. The number of training
images differed for each database: With DRIVE, the dedicated training set was
used. With HRF, 15 random images were selected for training. With ARIADB,
30 random images were selected. With STARE and CHASEDB1, each database
was randomly divided into two subsets of the same length and each subset was
used to train a classifier. Each of the classifiers was then used to classify images
from the training set of the other classifier.

3.3. Image preprocessing
Two different preprocessing approaches of the input images were identified

among the methods. The first one is the ‘pad only’ preprocessing method which
pads the edges of the FOV [8] and forms a part of the Soares method. The
second one is the ‘CLAHE’ preprocessing method, where the image is padded
as above and then contrast limited adaptive histogram equalization (CLAHE) is
applied. This approach comes as a part of the implementation of the Azzopardi
method. With the pad only preprocessing, padding by 50 pixels was used. With
the CLAHE preprocessing, the image was padded to the image edges before
applying the CLAHE algorithm with 6x6 tiles per image.

Each method except Sofka was applied to the green channel of the input
image. The Sofka method can be applied to the green channel only or to the
full color image. It produced better results when applied to the color image.

3.4. Performance measures
The segmentation performance of each algorithm was assessed using the

manual segmentation of a database’s first observer (sorted in alphabetic order)

7
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93 93.5 94 94.5 95 95.5 96

Nguyen

Bankhead

Azzopardi

Sofka

Soares

Segmentation accuracy [%]

Influence of the preprocessing type. 

DRIVE

CHASEDB1

HRF

STARE

ARIADB

performance 
of the second
manual segm.

pad only

CLAHE

pad only

CLAHE

pad only

CLAHE

pad only

CLAHE

pad only

CLAHE

Figure 1: Comparison of the segmentation performance: ’pad only’ (circles) and ’CLAHE’
(triangles). The databases are marked with different colors. Solid dots and triangles mark
the algorithm accuracy. Vertical lines mark the performance of the second observer when
available.

as the ground truth and Matthew’s correlation coefficient (MCC) [20], Acc,
sensitivity (Sn), specificity (Sp) and AUC as the performance measures. Acc,
Sn, Sp and AUC are established measures for assessing the vessel segmentation
performance. MCC appeared recently in the vessel segmentation literature (for
example, [10]) and can give more insight into the evaluation when the sample
sizes of the classes are skewed, which is the case in vessel segmentation. The
performance measures are expressed as percentages. If two sets of manual seg-
mentations were provided in a database, the performance of the second observer
(second manual segmentation) was assessed and compared to the performance
of the automatic methods. Measurement of the performance was always done
only on pixels inside the FOV. In the case of databases without a FOV mask
(ARIADB, CHASEDB1, STARE), the mask was generated using edge detection
and ellipse fitting.

4. Results

This section is organized as follows; Section 4.1 reports the best performance
on each database for each algorithm and compares the algorithms, Section 4.2
reports parameters corresponding to the results reported in Section 4.1 and
deals with prediction of the parameters, and Section 4.3 provides a comparison
of the results to current state-of-the-art methods.

4.1. Performance of the algorithms
The performance of the algorithms is presented in Table 3. It is possible

to refer to Figure 1 for visual comparison of the resulting accuracy and its
change with change of the preprocessing. ROC characteristics of the methods
are provided in Figure 2 for a more general comparison of the methods. In
the ROC comparison, each method is presented only with the preprocessing
type that resulted in better performance, applied to all databases, to keep the
amount of data reasonable.

First we compare the influence of preprocessing on each method and focus
only on the preprocessing approach that leads to better performance. Influence
of the preprocessing selection is illustrated in Figure 1. Applying the CLAHE

8
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Frangi et al. [43]
Fraz et al. [36]

You et al. [39]
Lázár and Hajdu. [33]

Zhang et al. [45]

Xiao et al. [26]

Kaba et al. [44]

Mendoça et al. [34]
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Figure 2: ROC characteristics of the studied methods. Manual segmentation by second ob-
server is marked with an asterisk. The ROC curves correspond to parameters optimized by
Acc (solid line) and AUC (dotted line) measures. The Bankhead method is different due to
its postprocessing: one is the ROC curve of the IUWT response (solid line) and the other is
the convex hull of all possible performances from the parameter search (dotted line). Legend
relevant for all sub-figures is placed in the ARIADB sub-figure.
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Table 3: Performance of the methods, each assessed with selected type of preprocessing –
Soares and Sofka methods with pad only and Azzopardi, Bankhead and Nguyen methods with
CLAHE. Corresponding parameter settings are given in Section 4.2. The results published in
the original papers are shown in italics under the current results. Best scoring result in sense
of Acc and AUC for each database.

Pad only – Soares, Sofka. CLAHE – Azzopardi, Bankhead, Nguyen.
Soares method Sofka method Azzopardi method

— Acc Sn Sp MCC AUC Acc Sn Sp MCC AUC Acc Sn Sp MCC AUC
AR 93.6 53.6 97.7 57.6 90.7 93.3 44.5 98.3 53.3 86.3 94.0 56.2 97.9 60.8 89.2
CH 94.6 69.0 97.4 68.9 96.4 93.2 50.9 98.0 58.0 90.8 94.3 63.7 97.8 66.7 93.2

— — — — — — — — — — 93.9 75.9 95.9 68.0 94.9
DR 94.7 71.7 98.1 75.0 96.1 93.5 60.9 98.2 67.9 91.5 94.5 70.0 98.1 74.0 95.6

94.7 — — — — — — — — — 94.4 76.6 97.0 74.8 96.1
HR 95.8 73.4 98.0 73.3 97.0 94.3 58.3 97.8 61.4 93.7 95.7 69.3 98.3 72.0 95.6
ST 95.1 70.3 98.0 72.6 96.7 93.8 56.5 98.1 62.7 92.4 95.3 71.4 98.0 73.3 95.2

94.8 — — — — — — — — — 95.0 77.2 97.0 73.4 95.6

Bankhead method Nguyen method Second manual segm.
— Acc Sn Sp MCC AUC Acc Sn Sp MCC AUC Acc Sn Sp MCC

AR 93.8 56.9 97.6 50.0 85.7 93.8 52.4 98.1 58.7 87.5 93.0 57.6 96.7 57.0
CH 94.0 64.4 97.4 65.4 91.7 94.4 66.5 97.5 67.4 93.5 95.6 77.0 97.8 75.7
DR 94.0 63.1 98.6 70.7 90.5 94.5 67.8 98.4 73.3 93.4 94.7 77.6 97.3 76.0

93.7 70.2 97.2 — — 94.1 — — — — — — — —
HR 95.6 71.2 98.1 71.8 92.1 95.8 72.0 98.2 73.3 94.7 — — — —
ST 95.2 69.2 98.2 72.3 93.7 95.5 71.5 98.3 74.3 95.8 93.5 89.5 93.8 72.2

— — — — — 93.2 — — — — — — — —

preprocessing had a positive effect on the Azzopardi and Bankhead methods.
With the Nguyen method, the effect was positive on average, but the results
were inconsistent. In general, the choice of the preprocessing approach had
the smallest effect on the Nguyen method. The effect on the Soares method
was negative, with the exception of the STARE database. The effect on the
Sofka method was negative for all databases. The absolute difference between
the accuracy measured with CLAHE and pad only was up to 0.5 in percentage
units. As a result, the comparison that follows will consider the results from
CLAHE preprocessed images for the Nguyen, Azzopardi and Bankhead methods,
and the results based on pad only for the Soares and Sofka methods.

Comparison of the methods reveals relatively similar performance. For the
four methods except Sofka method, the absolute difference between the best and
the worst accuracy on individual databases was up to 0.5 in percentage units.
No method seemed to be clearly superior. The best and second best performance
was achieved by the Azzopardi and Bankhead methods on ARIADB, the Soares
and Nguyen methods on CHASEDB1, the Soares and Azzopardi methods on
DRIVE, the Nguyen and Soares methods on HRF and the Nguyen and Azzopardi
methods on STARE.

The search for optimal parameters brought small improvement in the perfor-
mance of the algorithms compared to the performance published in the original
papers. Nguyen et al. [13] obtained lower τ value than was obtained in the ex-
periments presented in this paper which led to significantly worse performance
on STARE. Compared to the original papers, the performance of the Bankhead
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Table 4: Parameters corresponding to the results reported in Table 3.

ARIADB CHASEDB1 DRIVE HRF STARE
Soares pad only pad only pad only pad only pad only
Λmor {2,3,5} {3,7,9} {2,4} {5,13,15} {2,4,5}
ns 2e5 3e5 2e5 3e5 2e5

Sofka pad only pad only pad only pad only pad only
τ 1.86 1.3 0.82 3.74 1.75

Azzopardi CLAHE CLAHE CLAHE CLAHE CLAHE
σ1, σ2 3.3, 1.6 5.3, 3.9 2, 1.6 7.2, 6.4 2.8, 1.6
r1, r2 19, 27 21, 22 8, 25 23, 44 12, 28
σ01, σ02 1, 0.5 2.5, 0 3, 1.5 0.5, 0 0.5, 0.5
a1, a2 0.4, 0.1 0.2, 0 0.5, 0.1 0.4, 0 0.5, 0.1
τ 0.14 0.16 0.16 0.16 0.15

Bankhead CLAHE CLAHE CLAHE CLAHE CLAHE
Λban {2,3} {3,4} {2,3} {3,4} {2,3}
pt 0.12 0.12 0.12 0.12 0.12
ξs 522 780 150 1030 270

Nguyen CLAHE CLAHE CLAHE CLAHE CLAHE
W 19 33 17 45 17
ω 18 16 4 22 16
τ 1.05 0.95 0.9 1.05 1.05

and Nguyen methods were slightly improved by CLAHE preprocessing.

4.2. Prediction of the parameters
Parameters obtained from the state-space search are reported in Table 4.

These parameters correspond to the results in Table 3. Taking advantage of
having multiple test databases with different image resolutions, we aimed to
estimate how well is it possible to predict the optimized parameters using linear
models. Two different predictors were chosen: angular resolution of the seg-
mented database dr = FOV�

FOV[°] and the percentage of the pixels in the ground
truth dn = N1 using the values from Table 1.

The parameters dr and dn were used to create two linear models using least
squares fitting: model Mr with dr as a predictor, and model Mrn with two
predictors dr and dn. As illustrated in Figure 3, many of the parameters are
well correlated with dr. The ability of the models to fit the parameter values
was measured by the segmentation accuracy when the predicted parameters are
used. The results are reported in Table 5. Selection of Mr or Mrn in Table 5
depends on the segmentation performance achieved by the predicted settings.
ModelMrn was selected when it gave better results thanMr; otherwiseMr was
preferred.
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Figure 3: Illustration of the linear models. Selected parameters are correlated with angular
resolution of the databases.
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Table 5: Prediction of the method parameters by angular resolution of the databases (Mr) or
by the angular resolution and the percentage of vessel pixels in the ground truth (Mrn). Least
squares method was used to fit the models. Assessment reports the segmentation accuracy
when the predicted parameters were used.

database ARIA CHASEDB1 DRIVE HRF STARE

Soares, Λmor {2,3,5} {3,7,9} {2,3,4} {5,13,15} {2,4,5}

Mr {2,3,5} {3,7,9} {2,3,4} {5,13,15} {2,4,6}

assessment 93.6 94.6 94.7 95.8 95.1

Azz., s1, s2 3.3,1.6 5.3,3.9 2.0,1.6 7.2,6.4 2.8,1.6

Mrn 3.2,1.4 4.7,3.6 2.0,1.6 7.4,6.5 3.4,2.0

Azz., r1, r2 19,27 21,22 8,25 23,44 12,28

Mrn 17.7,24.9 18.0,31.0 7.8,23.4 23.8,40.5 16.0,26.3

Azz., s01, s02 1,0.5 2.5,0 3,1.5 0.5,0 0.5,0.5

Mrn 0.8,0.3 1.3,0.4 3.0,1.4 0.87,0 1.4,0.5

Azz., a1, a2 0.4,0.1 0.2,0 0.5,0.1 0.4,0 0.5,0.1

Mrn 0.4,0.1 0.4,0 0.5,0.1 0.3,0 0.4,0.1

Azz., τ 0.14 0.16 0.16 0.16 0.16

Mrn 0.14 0.15 0.16 0.16 0.15

assessment 94.0 94.0 94.5 95.5 95.3

Bankhead, ξr 522 780 150 1029 270

Mr 336 634 284 1084 407

assessment 93.8 94.1 93.9 95.6 95.2

Nguyen, τ 1.05 0.95 0.90 1.05 1.05

Mrn 1.05 1.01 0.90 1.03 1.01

Nguyen, W 19 33 17 45 17

Mrn 18 29 17 46 21

Nguyen, ω 18 16 4 22 16

Mrn 16 16 4 22 16

assessment 93.8 94.1 94.5 95.8 95.4
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All the methods scale well among images of different resolution. Of the
multiscale parameters that were modeled—Λmor, r1, r2, s1, s2 and W—the pa-
rameters r1, r2 of the Azzopardi method were the most difficult to predict. With
the Soares method, three models were trained—one for each wavelet level in
Λmor—and they provided very good prediction of the parameters. Other mod-
eled parameters included τ of the Azzopardi and Nguyen methods, which were
well predicted by Mrn. Parameter ξr of the Bankhead method was predicted suf-
ficiently by Mr. The parameters pt,Λban of the Bankhead method spans small
range of values and fixed value 0.12 was used as the modeled one.

4.3. Comparison with state-of-the-art
Here we provide a brief comparison of the tested methods with state-of-

the-art methods which are not available with implementation. Papers for the
comparison that were published before year 2011 were gathered from the re-
view by Fraz et al. [4]. The more recent papers were gathered from the list
of papers that cite [15], [16], [17], [18], [19], the publications introducing the
databases reviewed in Section 2.2. We observed that many methods report high
performance but without providing clear methodology of the performance as-
sessment. To ensure that the comparison is fair, only methods explicitly stating
that performance was measured on pixels inside the FOV were included.

Typically the performance of retinal vessel segmentation algorithms is re-
ported on DRIVE and STARE and, thus, many results are available using those
databases. Few methods were identified that reported performance also on
CHASEDB1 and HRF. Comparison of those state-of-the-art methods for which
accuracy was reported is presented in Tables Table 6, 7 and 8. When sensitivity
and specificity were also provided, the performance was plotted in Figure 2.
The latter way of comparing the methods enables clearer and more fair way of
comparison.

5. Discussion

As a consequence of lacking standard evaluation methodology for automatic
retinal image processing methods [53], factors affecting the outcome of the eval-
uation (for example, test set size, image preprocessing, evaluation metrics) vary
among studies. Here, segmentation accuracy was used as the primary mea-
sure for comparing the segmentation performance. It is the most widely used
measure for assessing the segmentation performance and it makes interpreting
the results intuitive. Using accuracy alone can lead to simplifying conclusions
when, in general, accuracy of the segmentations with different sensitivity are
compared. Typically, human raters tend to produce results with higher sensi-
tivity than automatic algorithms, but their accuracy can be lower. Performance
on STARE database is a typical example [8]. Automatic methods, on the other
hand, might not be able to compete with manual segmentation at the same
sensitivity level. Therefore, we found it necessary to provide also the ROC
characteristics (Figure 2) of the algorithms so that the relative performance of
the methods at different sensitivity is demonstrated.
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are sorted by mean performance on both databases.

DRIVE STARE
Algorithm Sn Sp Acc AUC Sn Sp Acc AUC

Wang et al. [24] 81.7 97.3 97.7 94.8 81.0 97.9 98.1 97.5
Moghimirad et al. [25] 78.5 99.4 96.6 95.8 81.3 99.1 97.6 96.8

Imani et al. [27] 75.2 97.5 95.2 — 75.0 97.5 95.9 —
Al-Rawi et al. [49] — — 95.4 94.4 — — — —
Lam et al. [50] — — 94.7 96.1 — — 95.7 97.4
Liu et al. [31] 73.5 97.7 94.7 — 76.3 97.1 95.7 —

Annunziata et al. [47] — — — — 71.3 98.4 95.6 96.6
Roychowdhury et al. [22] 72.5 98.3 95.2 96.2 77.2 97.3 95.2 96.9

Fraz et al. [21] 74.1 98.1 94.8 97.5 75.5 97.6 95.3 97.7
Xiao et al. [26] 75.1 97.9 95.3 — 71.5 97.4 94.8 —
Zhang et al. [28] 78.1 96.7 95.0 — — — — —

Strisciuglio et al. [32] 77.3 97.2 94.7 95.9 80.1 97.2 95.4 96.3
Zhao et al. [29] 73.5 97.9 94.8 — 71.9 97.7 95.1 —
Krause et al. [30] 75.2 97.4 94.7 — — — — —
Soares method 71.7 98.1 94.7 96.1 70.3 98.0 95.1 96.7
Zhang et al. [37] 77.4 97.1 94.5 — 79.4 97.1 95.1 —
Nguyen method 67.8 98.4 94.5 93.4 71.5 98.3 95.5 95.8

Azzopardi method 70.0 98.1 94.5 95.6 71.4 98.0 95.3 95.2
Orlando and Blaschko [23] 78.5 96.7 — — — — — —

Staal et al. [17] — — 94.4 95.2 — — 95.2 96.1
Miri and Mahlooji [35] 73.5 98.0 94.6 — — — —

Fraz et al. [36] 73.5 97.7 94.5 96.7 73.3 97.5 95.0 96.7
Perret and Collet [38] 71.4 97.8 94.4 — 67.1 98.2 95.1 —
Lázár and Hajdu. [33] 76.5 97.2 94.6 — 72.5 97.5 94.9 —

You et al. [39] 74.1 97.5 94.3 — 72.6 97.6 95.0 —
Tagore et al. [51] — 94.2 95.3 — — — 95.0 96.1

Masooomi et al. [42] 73.5 96.3 94.3 — — — — —
Frangi et al. [43] 74.6 97.2 94.2 — 75.4 97.4 95.0 —

Mendoça et al. [34] 75.0 97.5 94.6 — 71.8 97.3 94.6 —
Bankhead method 63.1 98.6 94.0 90.5 69.2 98.2 95.2 93.7
Argüello et al. [41] 72.1 97.6 94.3 — 73.1 96.9 94.5 —
Zhang et al. [45] 71.2 97.2 93.8 — 71.8 97.5 94.8 —
Kaba et al. [44] 74.7 96.8 94.1 — 76.2 96.7 94.6 —
Yin et al. [40] 78.0 96.8 94.3 — 85.4 94.2 93.3 —
Sofka method 60.9 98.2 93.5 91.5 56.5 98.1 92.4 93.8
Li et al. [46] 71.5 97.2 93.4 — 71.9 96.9 94.1 —

Odstrčilík et al. [18] 70.6 96.9 93.4 95.2 78.5 95.1 93.4 95.7
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Table 7: Overview of state-of-the-art methods evaluated on CHASEDB1.

Algorithm Sn Sp Acc AUC
Roychowdhury et al. [22] 72.0 98.2 95.3 95.3

Fraz et al. [21] 72.2 97.1 94.7 97.1
Soares method 69.0 97.7 94.6 96.4
Nguyen method 66.5 97.5 94.4 93.5

Azzopardi method 63.7 97.8 94.3 93.2
Bankhead method 64.4 97.4 94.0 91.7

Sofka method 45.6 98.3 93.0 89.1

Table 8: Overview of state-of-the-art methods evaluated on HRF.

Algorithm Sn Sp Acc AUC
Cheng et al. [52] 70.4 98.6 96.1 —
Soares method 73.4 98.0 95.8 97.0

Christodoulidis et al. [48] 85.1 95.8 94.8 —
Nguyen method 72.0 98.2 95.8 94.7

Annunziata et al. [47] 71.3 98.4 95.8 —
Azzopardi method 69.3 98.3 95.7 95.6
Bankhead method 71.2 98.1 95.6 91.3

Lázár and Hajdu. [33] 71.0 98.3 95.3 —
Odstrčilík et al. [18] 77.4 96.7 94.9 96.7

Sofka method 58.3 97.8 94.3 93.7

The performance of all the methods, except the Sofka method, was very
much similar on all the databases studied, and the order of best-performance
varied based on the different databases analyzed. Soares method provides a
slightly better AUC—it offers better accuracy when higher sensitivity is con-
sidered. The comparison with the state-of-the-art methods (Figure 2) revealed
only few significantly better methods and showed the methods perform close
to each other. There might thus be a need to improve the whole assessment
methodology. One option could be to use skeletonized vessels [9], which results
in higher demands on the detection of narrower vessels.

As stated above, ROC curves offer a meaningful way to compare the perfor-
mance of the automatic methods and manual segmentations. It was shown in
Figure 2 that the manual segmentation of CHASEDB1 and STARE outperform
the automatic segmentation markedly, and they can be regarded as challeng-
ing datasets. For DRIVE, the Soares and Azzopardi methods offer performance
very close to the manual segmentation, and for ARIA, the manual segmentation
is outperformed by all the methods.

Considering the advantages and disadvantages of the methods reviewed from
the original publications in Section 2.1, most authors claimed fast segmentation.
The exact segmentation times were not measured in our study, but it is pos-
sible to conclude that each method classified an image of STARE or DRIVE
within the order of seconds, the fastest method being the Bankhead method
and followed by the Nguyen and Azzopardi methods. It is worth noting that
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training phase of the Soares method was speeded up approximately 20 times by
optimizing the source code.

The Sofka method was the only method designed to prevent false positive
classifications around high-contrast areas like pathologies or the optic disc. Per-
formance of the method was, however, well below the others. Qualitative in-
spection of the results showed that the reason for the poor performance can be
mainly because of the method is not well suited for pixel-wise classification [9].
The resulting vesselness gains high values near the vessels thus producing clas-
sification wider than the one used as the ground truth. Therefore, in [9] the
method was used to detect the vessel centerlines. However, the method was not
inspected closer as it is provided as an executable binary, and our focus was
more on the methods provided with the source code.

Qualitative inspection7 of the other methods showed that with the Soares
method false positive detections at the edge of the optic disc are rare but appear
more often with the unsupervised methods. This was, however, largely corrected
by applying the CLAHE preprocessing. The preprocessing, on the other hand,
increased the noise in the images as well as the subsequent classifications. The
Azzopardi method was the most resistant to the noise and the only one benefiting
significantly from the preprocessing. Uneven illumination does not seem to
influence the classification of the unsupervised methods. A more important
factor appears to be that the vessels in the over or under illuminated areas have
reduced contrast. On the other hand, the Soares method is affected more by the
uneven illumination, possibly due to fact that there are not enough examples of
such images in the training data.

Considering the individual methods, the Soares method provides very good
performance if part of the classified data is available for training. Training on
a different database leads to a performance drop [8] and when databases with
different image resolution are considered, it is infeasible to properly train the
classifier unless the images are resampled. The Soares method, when properly
trained, provides high AUC which is valuable when segmentation with higher
sensitivity is desired. Of the unsupervised methods, the Azzopardi method
yielded the highest AUC, that in some databases was even comparable with
the Soares method. The Azzopardi method seems to produce robust segmenta-
tion of the wider vessels and also has the best robustness against pathologies
and other high-contrast areas. Narrow vessels cause lower response of the filter
and are usually missed. The Nguyen method provides performance similar to
the Azzopardi method, but looses performance around the pathologies with high
contrast. On the other hand, it gives higher response for narrow vessels thus
providing a more balanced segmentation. AUC of the Nguyen method is lower
than the Soares and Azzopardi methods. Lastly, the Bankhead method provides
the worst performance although not by a high margin. At the same time, it is
the fastest method. Also the Bankhead method exhibits performance improve-

7The vessel segmentation in all tested images is available at http://www.it.lut.fi/mvpr/
medimg.
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ment from simple postprocessing such as the removal of isolated objects up to a
certain size, as can be seen in the performance gain of the method in Figure 2.

Most of the parameters of the methods proved to be possible to model and
predict by using the database resolution and the expected percentage of vessel
pixels in the ground truth. Also, strong correlation of most of the parame-
ters with the predictors (Figure 3) supports this hypothesis. As a result, the
proposed models are expected to provide close-to-optimal parameters for the
methods. However, the models were not on databases not used to establish the
models. This was due to the limited number of the databases. Therefore, the
models could fail on other unseen databases. In that case, the Bankhead method
seems to be the option with the smallest number of choices required about the
parameter settings and the best robustness against parameter variation as it
needs a small range of wavelet coefficients, uses the percentile-based threshold-
ing and the size of the removed objects can be defined proportional to the ROI
size.

With regard to the sets of the tested parameter values, the range limits
were carefully selected. In the case of the Bankhead and Nguyen methods, the
parameters are expected to be sampled properly to get close-to-optimal set-
tings on each database. The Azzopardi method is harder to optimize because
it has eight parameters. The whole parameter subspace defined by the ranges
was thus difficult to evaluate, so there might be room for improvement. Az-
zopardi et al. [10] have, however, optimized the parameters already for DRIVE,
STARE and CHASEDB1. With the Soares method, no parameter search was
done for the parameters of the Morlet wavelet other than Λmor, which was lim-
ited to integer values. This provides room for further improvement of the Morlet
wavelet based vessel segmentation methods and the current tested method in
particular; setting the ε and k0 parameters can produce a filter with similar
properties as the line operator that is implemented in the Nguyen method. Ad-
vantages of this type of response could be integrated into the framework of the
Soares method. One observation with respect to the wavelet filter mask is that
between the Λmor values 1 and 1.5, the wavelet mask has a different mean value
for different orientations and using a different normalization of the mask might
enable use of the response with wavelet level size <2.

6. Conclusion

This study reviewed retinal vessel segmentation methods with publicly avail-
able implementation and publicly available databases of color fundus photographs
containing ground truth for vessel segmentation. Two supervised and three un-
supervised methods were studied and quantitatively compared using five pub-
licly available databases. Two types of image preprocessing approaches were
tested and the method parameters were optimized for the best performance
on each database. In addition, the studied methods were compared to recent
state-of-the-art approaches.

The results show that the parameter optimization does not significantly im-
prove the segmentation performance of the methods when the original data is
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used. However, the performance of the methods in new image data differs sig-
nificantly. The performance of the tested methods with respect to accuracy was
very close; highest performance was achieved on ARIADB by the Azzopardi
method (Acc 94.0), on CHASE and DRIVE by the Soares method (Acc 94.6,
94.7) and on HRF and STARE by the Nguyen method (Acc 95.8, 95.5). The
Soares and Azzopardi methods usually provides higher area under the ROC curve
than the other methods. Preprocessing of the images with CLAHE improved
the overall performance of the unsupervised methods. Parameters yielding the
reported performance are also provided to give reasonable parameter ranges and
starting points to support optimization on new data. Finally, it was possible to
predict parameters that give best segmentation performance for each method.

7. Conflict of interest

None.

8. Acknowledgements

The authors would like to thank the Academy of Finland for the financial
support of the ReVision project (No. 259560).

[1] J. J. Kanski, B. Bowling, Synopsis of Clinical Ophthalmology, Elsevier
Health Sciences, 3rd edition, 2013.

[2] G. Liew, J. J. Wang, P. Mitchell, T. Y. Wong, Retinal vascular imaging
a new tool in microvascular disease research, Circulation: Cardiovascular
Imaging 1 (2008) 156–161.

[3] M. Abràmoff, M. Garvin, M. Sonka, Retinal imaging and image analysis,
IEEE transactions on medical imaging 3 (2010) 169–208.

[4] M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka,
C. G. Owen, S. A. Barman, Blood vessel segmentation methodologies in
retinal images - a survey, Comput. Methods Prog. Biomed. 108 (2012)
407–433.

[5] R. Bernardes, P. Serranho, C. Lobo, Digital ocular fundus imaging: A
review, Ophthalmologica 4 (2011) 161–81.

[6] C. Kirbas, F. Quek, A review of vessel extraction techniques and algo-
rithms, ACM Comput. Surv. 36 (2004) 81–121.

[7] P. Vostatek, E. Claridge, P. Fält, M. Hauta-Kasari, H. Uusitalo, L. Lensu,
Evaluation of publicly available blood vessel segmentation methods for reti-
nal images, in: C. X, G. MK, L. J, T. E, X. Y (Eds.), Proceedings of
the Ophthalmic Medical Image Analysis Second International Workshop,
OMIA 2015, Held in Conjunction with MICCAI 2015, Iowa Research On-
line, 2015, pp. 137–144.

19



Page 20 of 23

Acc
ep

te
d 

M
an

us
cr

ip
t

[8] J. Soares, J. Leandro, R. Cesar, H. Jelink, M. Cree, Retinal vessel seg-
mentation using the 2-d gabor wavelet and supervised classification, IEEE
Transactions on Medical Imaging 25 (2006) 1214–1222.

[9] M. Sofka, C. V. Stewart, Retinal vessel extraction using multiscale matched
filters, confidence and edge measures, IEEE Transactions on Medical Imag-
ing 25 (2006) 1531–1546.

[10] G. Azzopardi, N. Strisciuglio, M. Vento, N. Petkov, Trainable cosfire filters
for vessel delineation with application to retinal images, Medical image
analysis 19 (2015) 46–57.

[11] P. Bankhead, C. N. Scholfield, J. G. McGeown, T. M. Curtis, Fast retinal
vessel detection and measurement using wavelets and edge location refine-
ment, PLoS ONE 7 (2012) e32435.

[12] J. Starck, J. Fadili, F. Murtagh, The undecimated wavelet decomposition
and its reconstruction, IEEE Transactions on Image Processing 16 (2007)
297–309.

[13] U. T. Nguyen, A. Bhuiyan, L. A. Park, K. Ramamohanarao, An effective
retinal blood vessel segmentation method using multi-scale line detection,
Pattern recognition 46 (2013) 703–715.

[14] E. Ricci, R. Perfetti, Retinal blood vessel segmentation using line operators
and support vector classification, Medical Imaging, IEEE Transactions on
26 (2007) 1357–1365.

[15] D. J. Farnell, F. Hatfield, P. Knox, M. Reakes, S. Spencer, D. Parry,
S. Harding, Enhancement of blood vessels in digital fundus photographs
via the application of multiscale line operators, Journal of the Franklin
institute 345 (2008) 748–765.

[16] C. G. Owen, A. R. Rudnicka, R. Mullen, S. A. Barman, D. Monekosso,
P. H. Whincup, J. Ng, C. Paterson, Measuring retinal vessel tortuosity in
10-year-old children: validation of the computer-assisted image analysis of
the retina (caiar) program, Investigative ophthalmology & visual science
50 (2009) 2004–2010.

[17] J. Staal, M. Abrámoff, M. Niemeijer, M. Viergever, B. van Ginneken,
Ridge-based vessel segmentation in color images of the retina, IEEE Trans-
actions on Medical Imaging 23 (2004) 501–509.

[18] J. Odstrcilik, R. Kolar, A. Budai, J. Hornegger, J. Jan, J. Gazarek,
T. Kubena, P. Cernosek, O. Svoboda, E. Angelopoulou, Retinal vessel
segmentation by improved matched filtering: evaluation on a new high-
resolution fundus image database, IET Image Processing 7 (2013) 373–383.

20



Page 21 of 23

Acc
ep

te
d 

M
an

us
cr

ip
t

[19] A. Hoover, V. Kouznetsova, M. Goldbaum, Locating blood vessels in retinal
images by piece-wise threhsold probing of a matched filter response, IEEE
Transactions on Medical Imaging 19 (2000) 203–210.

[20] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, H. Nielsen, Assess-
ing the accuracy of prediction algorithms for classification: an overview,
Bioinformatics 16 (2000) 412–424.

[21] M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. R. Rudnicka,
C. G. Owen, S. Barman, et al., An ensemble classification-based approach
applied to retinal blood vessel segmentation, Biomedical Engineering, IEEE
Transactions on 59 (2012) 2538–2548.

[22] S. Roychowdhury, D. D. Koozekanani, K. K. Parhi, Blood vessel segmen-
tation of fundus images by major vessel extraction and subimage classifi-
cation, IEEE journal of biomedical and health informatics 19 (2015) 1118–
1128.

[23] J. I. Orlando, M. Blaschko, Learning fully-connected crfs for blood ves-
sel segmentation in retinal images, in: Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2014, Springer, 2014, pp. 634–
641.

[24] S. Wang, Y. Yin, G. Cao, B. Wei, Y. Zheng, G. Yang, Hierarchical retinal
blood vessel segmentation based on feature and ensemble learning, Neuro-
computing 149 (2015) 708–717.

[25] E. Moghimirad, S. H. Rezatofighi, H. Soltanian-Zadeh, Retinal vessel seg-
mentation using a multi-scale medialness function, Computers in biology
and medicine 42 (2012) 50–60.

[26] Z. Xiao, M. Adel, S. Bourennane, Bayesian method with spatial constraint
for retinal vessel segmentation, Computational and mathematical methods
in medicine 2013 (2013).

[27] E. Imani, M. Javidi, H.-R. Pourreza, Improvement of retinal blood vessel
detection using morphological component analysis, Computer methods and
programs in biomedicine 118 (2015) 263–279.

[28] L. Zhang, M. Fisher, W. Wang, Retinal vessel segmentation using multi-
scale textons derived from keypoints, Computerized Medical Imaging and
Graphics 45 (2015) 47–56.

[29] Y. Q. Zhao, X. H. Wang, X. F. Wang, F. Y. Shih, Retinal vessels seg-
mentation based on level set and region growing, Pattern Recognition 47
(2014) 2437–2446.

[30] M. Krause, R. M. Alles, B. Burgeth, J. Weickert, Fast retinal vessel anal-
ysis, Journal of Real-Time Image Processing (2013) 1–10.

21



Page 22 of 23

Acc
ep

te
d 

M
an

us
cr

ip
t

[31] X. Liu, Z. Zeng, X. Wang, Vessel segmentation in retinal images with a
multiple kernel learning based method, in: Neural Networks (IJCNN), 2014
International Joint Conference on, IEEE, pp. 507–511.

[32] N. Strisciuglio, G. Azzopardi, M. Vento, N. Petkov, Multiscale blood vessel
delineation using b-cosfire filters, in: International Conference on Com-
puter Analysis of Images and Patterns, Springer, pp. 300–312.

[33] I. Lázár, A. Hajdu, Segmentation of retinal vessels by means of directional
response vector similarity and region growing, Computers in biology and
medicine 66 (2015) 209–221.

[34] A. Mendonça, B. Dashtbozorg, A. Campilho, Segmentation of the vascular
network of the retina, Image Analysis and Modeling in Opthalmology
(2014) 85–109.

[35] M. S. Miri, A. Mahloojifar, Retinal image analysis using curvelet transform
and multistructure elements morphology by reconstruction, Biomedical
Engineering, IEEE Transactions on 58 (2011) 1183–1192.

[36] M. Fraz, P. Remagnino, A. Hoppe, S. Barman, Retinal image analysis
aimed at extraction of vascular structure using linear discriminant clas-
sifier, in: Computer Medical Applications (ICCMA), 2013 International
Conference on, IEEE, pp. 1–6.

[37] J. Zhang, E. Bekkers, S. Abbasi, B. Dashtbozorg, B. ter Haar Romeny,
Robust and fast vessel segmentation via gaussian derivatives in orientation
scores, in: International Conference on Image Analysis and Processing,
Springer, pp. 537–547.

[38] B. Perret, C. Collet, Connected image processing with multivariate at-
tributes: an unsupervised markovian classification approach, Computer
Vision and Image Understanding 133 (2015) 1–14.

[39] X. You, Q. Peng, Y. Yuan, Y.-m. Cheung, J. Lei, Segmentation of retinal
blood vessels using the radial projection and semi-supervised approach,
Pattern Recognition 44 (2011) 2314–2324.

[40] B. Yin, H. Li, B. Sheng, X. Hou, Y. Chen, W. Wu, P. Li, R. Shen,
Y. Bao, W. Jia, Vessel extraction from non-fluorescein fundus images using
orientation-aware detector, Medical image analysis 26 (2015) 232–242.

[41] F. Argüello, D. L. Vilariño, D. B. Heras, A. Nieto, Gpu-based segmentation
of retinal blood vessels, Journal of Real-Time Image Processing (2014) 1–
10.

[42] R. Masooomi, A. Ahmadifard, A. Mohtadizadeh, Retinal vessel segmen-
tation using non-subsampled contourlet transform and multi-scale line de-
tection, in: Intelligent Systems (ICIS), 2014 Iranian Conference on, IEEE,
pp. 1–5.

22



Page 23 of 23

Acc
ep

te
d 

M
an

us
cr

ip
t

[43] A. F. Frangi, W. J. Niessen, K. L. Vincken, M. A. Viergever, Multiscale ves-
sel enhancement filtering, in: International Conference on Medical Image
Computing and Computer-Assisted Intervention, Springer, pp. 130–137.

[44] D. Kaba, C. Wang, Y. Li, A. Salazar-Gonzalez, X. Liu, A. Serag, Retinal
blood vessels extraction using probabilistic modelling, Health Information
Science and Systems 2 (2014) 2.

[45] B. Zhang, L. Zhang, L. Zhang, F. Karray, Retinal vessel extraction by
matched filter with first-order derivative of gaussian, Comput. Biol. Med.
40 (2010) 438–445.

[46] Q. Li, J. You, D. Zhang, Vessel segmentation and width estimation in reti-
nal images using multiscale production of matched filter responses, Expert
Systems with Applications 39 (2012) 7600–7610.

[47] R. Annunziata, A. Garzelli, L. Ballerini, A. Mecocci, E. Trucco, Leverag-
ing multiscale hessian-based enhancement with a novel exudate inpainting
technique for retinal vessel segmentation (2015).

[48] A. Christodoulidis, T. Hurtut, H. B. Tahar, F. Cheriet, A multi-scale tensor
voting approach for small retinal vessel segmentation in high resolution
fundus images, Computerized Medical Imaging and Graphics (2016).

[49] M. Al-Rawi, M. Qutaishat, M. Arrar, An improved matched filter for
blood vessel detection of digital retinal images, Computers in Biology and
Medicine 37 (2007) 262–267.

[50] B. S. Lam, Y. Gao, A. W.-C. Liew, General retinal vessel segmentation us-
ing regularization-based multiconcavity modeling, Medical Imaging, IEEE
Transactions on 29 (2010) 1369–1381.

[51] M. Tagore, G. B. Kande, E. K. Rao, B. P. Rao, Segmentation of retinal
vasculature using phase congruency and hierarchical clustering, in: Ad-
vances in Computing, Communications and Informatics (ICACCI), 2013
International Conference on, IEEE, pp. 361–366.

[52] E. Cheng, L. Du, Y. Wu, Y. J. Zhu, V. Megalooikonomou, H. Ling, Dis-
criminative vessel segmentation in retinal images by fusing context-aware
hybrid features, Machine Vision and Applications 25 (2014) 1779–1792.

[53] E. Trucco, A. Ruggeri, T. Karnowski, L. Giancarlo, E. Chaum, J. P. Hub-
schman, B. Al-Diri, C. Y. Cheung, D. Wong, M. Abramoff, G. Lim, D. Ku-
mar, P. Burlina, N. M. Bressler, H. Jelinek, F. Maiaudeau, G. Quellec,
T. MacGillivray, B. Dhillon, Validating retinal fundus image analysis al-
gorithms: Issues and a proposal, Investigative Ophthalmology & Visual
Science (2013) 3546–3559.

23


