313 research outputs found

    Thermal Characterization of Dynamic Silicon Cantilever Array Sensors by Digital Holographic Microscopy

    Get PDF
    In this paper, we apply a digital holographic microscope (DHM) in conjunction with stroboscopic acquisition synchronization. Here, the temperature-dependent decrease of the first resonance frequency (S1(T)) and Young’s elastic modulus (E1(T)) of silicon micromechanical cantilever sensors (MCSs) are measured. To perform these measurements, the MCSs are uniformly heated from T0 = 298 K to T = 450 K while being externally actuated with a piezo-actuator in a certain frequency range close to their first resonance frequencies. At each temperature, the DHM records the time-sequence of the 3D topographies for the given frequency range. Such holographic data allow for the extracting of the out-of-plane vibrations at any relevant area of the MCSs. Next, the Bode and Nyquist diagrams are used to determine the resonant frequencies with a precision of 0.1 Hz. Our results show that the decrease of resonance frequency is a direct consequence of the reduction of the silicon elastic modulus upon heating. The measured temperature dependence of the Young’s modulus is in very good accordance with the previously-reported values, validating the reliability and applicability of this method for micromechanical sensing applications

    Nonlinear dynamics and applications of MEMS and NEMS resonators.

    Get PDF
    Rich nonlinear behaviours have been observed in microelectromechanical and nanoelectromechanical systems (MEMS and NEMS) resonators. This dissertation has performed a systematic study of nonlinear dynamics in various MEMS and NEMS resonators that appear to be single, two coupled, arrayed, parametric driven and coupled with multiple-fields, with the aim of exploring novel applications. New study on dynamic performance of a single carbon nanotube resonator taking account of the surface induced initial stress has been performed. It is found that the initial stress causes the jumping points, the whirling and chaotic motions to appear at higher driving forces. Chaotic synchronization of two identical MEMS resonators has been theoretically achieved using Open-Plus-Closed-Loop (OPCL) method, and the coupled resonating system is designed as a mass detector that is believed to possess high resistance to noise. The idea of chaotic synchronization is then popularized into wireless sensor networks for the purpose of achieving secure communication. The arising of intrinsic localised mode has been studied in microelectromechanical resonators array that is designed intentionally for an energy harvester, which could potentially be used to achieve high/concentrated energy output. Duffing resonators with negative and positive spring constants can exhibit chaotic behaviour. Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos. Based on the principle of nanomechanical transistor and quantum shuttle mechanism, a high sensitive mass sensor that consists of two mechanically coupled NEMS resonators has been postulated, and the mass sensor which can be realized in large-scale has also been investigated and verified. Furthermore, an novel transistor that couples three physical fields at the same time, i.e. mechanical, optical and electrical, has been designed, and the coupled opto-electro-mechanical simulation has been performed. It is shown from the dynamic analysis that the stable working range of the transistor is much wider than that of the optical wave inside the cavity

    Piezoelectric energy harvesting solutions

    Get PDF
    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions

    Modeling of Magnetoelectric Microresonator Using Numerical Method and Simulated Annealing Algorithm

    Get PDF
    A comprehensive understanding of the linear/nonlinear dynamic behavior of wireless microresonators is essential for micro-electromechanical systems (MEMS) design optimization. This study investigates the dynamic behaviour of a magnetoelectric (ME) microresonator, using a finite element method (FEM) and machine learning algorithm. First, the linear/nonlinear behaviour of a fabricated thin-film ME microactuator is assessed in both the time domain and frequency spectrum. Next, a data driven system identification (DDSI) procedure and simulated annealing (SA) method are implemented to reconstruct differential equations from measured datasets. The Duffing equation is employed to replicate the dynamic behavior of the ME microactuator. The Duffing coefficients such as mass, stiffness, damping, force amplitude, and excitation frequency are considered as input parameters. Meanwhile, the microactuator displacement is taken as the output parameter, which is measured experimentally via a laser Doppler vibrometer (LDV) device. To determine the optimal range and step size for input parameters, the sensitivity analysis is conducted using Latin hypercube sampling (LHS). The peak index matching (PIM) and correlation coefficient (CC) are considered assessment criteria for the objective function. The vibration measurements reveal that as excitation levels increase, hysteresis variations become more noticeable, which may result in a higher prediction error in the Duffing array model. The verification test indicates that the first bending mode reconstructs reasonably with a prediction accuracy of about 92 percent. This proof-of-concept study demonstrates that the simulated annealing approach is a promising tool for modeling the dynamic behavior of MEMS systems, making it a strong candidate for real-world applications

    Towards an on-chip power supply: Integration of micro energy harvesting and storage techniques for wireless sensor networks

    Get PDF
    The lifetime of a power supply in a sensor node of a wireless sensor network is the decisive factor in the longevity of the system. Traditional Li-ion batteries cannot fulfill the demands of sensor networks that require a long operational duration. Thus, we require a solution that produces its own electricity from its surrounding and stores it for future utility. Moreover, as the sensor node architecture is developed on complimentary metal-oxide-semiconductor technology (CMOS), the manufacture of the power supply must be compatible with it. In this thesis, we shall describe the components of an on-chip lifetime power supply that can harvest the vibrational mechanical energy through piezoelectric microcantilevers and store it in a reduced graphene oxide (rGO) based microsupercapacitor, and that is fabricated through CMOS compatible techniques. Our piezoelectric microcantilevers confirm the feasibility of fabricating micro electro- mechanical-systems (MEMS) size two-degree-of-freedom systems which can solve the major issue of small bandwidth of piezoelectric micro-energy harvesters. These devices use a cut-out trapezoidal cantilever beam to enhance the stress on the cantilever’s free end while reducing the gap remarkably between its first two eigenfrequencies in 400 - 500 Hz and 1 - 2 kHz range. The energy from the M-shaped harvesters will be stored in rGO based microsupercapacitors. These microsupercapacitors are manufactured through a fully CMOS compatible, reproducible, and reliable micromachining processes. Furthermore, we have also demonstrated an improvement in their electrochemical performance and yield of fabrication through surface roughening from iron nanoparticles. We have also examined the possibility of integrating these devices into a power management unit to fully realize a lifetime power supply for wireless sensor networks

    Characterization of Mechanical Properties at the Micro/Nano Scale: Stiction Failure of MEMS, High-Frequency Michelson Interferometry and Carbon NanoFibers

    Get PDF
    Different forces scale differently with decreasing length scales. Van der Waals and surface tension are generally ignored at the macro scale, but can become dominant at the micro and nano scales. This fact, combined with the considerable compliance and large surface areas of micro and nano devices, can leads to adhesion in MicroElectroMechanical Systems (MEMS) and NanoElectroMechanical Systems (NEMS) - a.k.a. stiction-failure. The adhesive forces between MEMS devices leading to stiction failure are characterized in this dissertation analytically and experimentally. Specifically, the adhesion energy of poly-Si μcantilevers are determined experimentally through Mode II and mixed Mode I&II crack propagation experiments. Furthermore, the description of a high-frequency Michelson Interferometer is discussed for imaging of crack propagation of the μcantilevers with their substrate at the nano-scale and harmonic imaging of MEMS/NEMS. Van der Waals forces are also responsible for the adhesion in nonwoven carbon nanofiber networks. Experimental and modeling results are presented for the mechanical and electrical properties of nonwoven (random entanglements) of carbon nanofibers under relatively low and high-loads, both in tensions and compression. It was also observed that the structural integrity of these networks is controlled by mechanical entanglement and flexural rigidity of individual fibers as well as Hertzian forces at the fiber/fiber interface

    MEMS micromirrors for imaging applications

    Get PDF
    Strathclyde theses - ask staff. Thesis no. : T13478Optical MEMS (microelectromechanical systems) are widely used in various applications. In this thesis, the design, simulation and characterisation of two optical MEMS devices for imaging applications, a varifocal micromirror and a 2D scanning micromirror, are introduced. Both devices have been fabricated using the commercial Silicon-on-Insulator multi-users MEMS processes (SOIMUMPs), in the 10 m thick Silicon-on-Insulator (SOI) wafer. Optical MEMS device with variable focal length is a critical component for imaging system miniaturisation. In this thesis, a thermally-actuated varifocal micromirror (VFM) with 1-mm-diameter aperture is introduced. The electrothermal actuation through Joule heating of the micromirror suspensions and the optothermal actuation using incident laser power absorption have been demonstrated as well as finite element method (FEM) simulation comparisons. Especially, the optical aberrations produced by this VFM have been statistically quantified to be negligible throughout the actuation range. A compact imaging system incorporating this VFM has been demonstrated with high quality imaging results. MEMS 2D scanners, or scanning micromirrors, are another type of optical MEMS which have been widely investigated for applications such as biomedical microscope imaging, projection, retinal display and optical switches for telecommunication network, etc. For large and fast scanning motions, the actuation scheme to scan a micromirror in two axes, the structural connections and arrangement are fundamental. The microscanner introduced utilises two types of actuators, electrothermal actuators and electrostatic comb-drives, to scan a 1.2-mm-diameter gold coated silicon micromirror in two orthogonal axes. With assistance of FEM software, CoventorWare, the structure optimisation of actuators and flexure connections are presented. The maximum optical scan angles in two axes by each type of actuator individually and by actuating the two at the same time have been characterised experimentally. By programming actuation signals, the microscanner has achieved a rectangular scan pattern with 7° 10° angular-scan-field at a line-scan rate of around 1656 Hz.Optical MEMS (microelectromechanical systems) are widely used in various applications. In this thesis, the design, simulation and characterisation of two optical MEMS devices for imaging applications, a varifocal micromirror and a 2D scanning micromirror, are introduced. Both devices have been fabricated using the commercial Silicon-on-Insulator multi-users MEMS processes (SOIMUMPs), in the 10 m thick Silicon-on-Insulator (SOI) wafer. Optical MEMS device with variable focal length is a critical component for imaging system miniaturisation. In this thesis, a thermally-actuated varifocal micromirror (VFM) with 1-mm-diameter aperture is introduced. The electrothermal actuation through Joule heating of the micromirror suspensions and the optothermal actuation using incident laser power absorption have been demonstrated as well as finite element method (FEM) simulation comparisons. Especially, the optical aberrations produced by this VFM have been statistically quantified to be negligible throughout the actuation range. A compact imaging system incorporating this VFM has been demonstrated with high quality imaging results. MEMS 2D scanners, or scanning micromirrors, are another type of optical MEMS which have been widely investigated for applications such as biomedical microscope imaging, projection, retinal display and optical switches for telecommunication network, etc. For large and fast scanning motions, the actuation scheme to scan a micromirror in two axes, the structural connections and arrangement are fundamental. The microscanner introduced utilises two types of actuators, electrothermal actuators and electrostatic comb-drives, to scan a 1.2-mm-diameter gold coated silicon micromirror in two orthogonal axes. With assistance of FEM software, CoventorWare, the structure optimisation of actuators and flexure connections are presented. The maximum optical scan angles in two axes by each type of actuator individually and by actuating the two at the same time have been characterised experimentally. By programming actuation signals, the microscanner has achieved a rectangular scan pattern with 7° 10° angular-scan-field at a line-scan rate of around 1656 Hz

    Energy Harvesters and Self-powered Sensors for Smart Electronics

    Get PDF
    This book is a printed edition of the Special Issue “Energy Harvesters and Self-Powered Sensors for Smart Electronics” that was published in Micromachines, which showcases the rapid development of various energy harvesting technologies and novel devices. In the current 5G and Internet of Things (IoT) era, energy demand for numerous and widely distributed IoT nodes has greatly driven the innovation of various energy harvesting technologies, providing key functionalities as energy harvesters (i.e., sustainable power supplies) and/or self-powered sensors for diverse IoT systems. Accordingly, this book includes one editorial and nine research articles to explore different aspects of energy harvesting technologies such as electromagnetic energy harvesters, piezoelectric energy harvesters, and hybrid energy harvesters. The mechanism design, structural optimization, performance improvement, and a wide range of energy harvesting and self-powered monitoring applications have been involved. This book can serve as a guidance for researchers and students who would like to know more about the device design, optimization, and applications of different energy harvesting technologies

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc
    corecore