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Abstract: A comprehensive understanding of the linear/nonlinear dynamic behavior of wireless
microresonators is essential for micro-electromechanical systems (MEMS) design optimization. This
study investigates the dynamic behaviour of a magnetoelectric (ME) microresonator, using a finite
element method (FEM) and machine learning algorithm. First, the linear/nonlinear behaviour of a
fabricated thin-film ME microactuator is assessed in both the time domain and frequency spectrum.
Next, a data driven system identification (DDSI) procedure and simulated annealing (SA) method
are implemented to reconstruct differential equations from measured datasets. The Duffing equation
is employed to replicate the dynamic behavior of the ME microactuator. The Duffing coefficients
such as mass, stiffness, damping, force amplitude, and excitation frequency are considered as
input parameters. Meanwhile, the microactuator displacement is taken as the output parameter,
which is measured experimentally via a laser Doppler vibrometer (LDV) device. To determine the
optimal range and step size for input parameters, the sensitivity analysis is conducted using Latin
hypercube sampling (LHS). The peak index matching (PIM) and correlation coefficient (CC) are
considered assessment criteria for the objective function. The data-driven developed models are
subsequently employed to reconstruct/predict mode shapes and the vibration amplitude over the
time domain. The effect of driving signal nonlinearity and total harmonic distortion (THD) is explored
experimentally under resonance and sub-resonance conditions. The vibration measurements reveal
that as excitation levels increase, hysteresis variations become more noticeable, which may result in a
higher prediction error in the Duffing array model. The verification test indicates that the first bending
mode reconstructs reasonably with a prediction accuracy of about 92 percent. This proof-of-concept
study demonstrates that the simulated annealing approach is a promising tool for modeling the
dynamic behavior of MEMS systems, making it a strong candidate for real-world applications.

Keywords: magnetoelectric; microresonator; nonlinearity; simulated annealing; numerical simula-
tion; Duffing-oscillator

1. Introduction

Mechanical oscillators are increasingly utilized in metrology systems for monitoring
and controlling purposes. Microresonators, intentionally designed for miniaturization,
have proven to be indispensable across various fields. Notably, they find applications in
frequency filtering within communication systems [1,2], act as sensing elements in atomic
force microscopy [3], and serve as accelerometers [4]. Additionally, the unique properties of
piezoelectric materials, such as nano-scale resolution, robustness, and fast response rate [5],
make them well-suited for precision machining [6,7] and nano-positioning actuators [8,9].

While piezoelectric materials exhibit remarkable capabilities, scholarly interest in mag-
netostrictive materials has surged, particularly because of their wireless excitation potential
in displacement actuators [10]. The combination of magnetostrictive and piezoelectric
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layers in magnetoelectric composites enables simultaneous magnetic and charge ordering
capabilities. This feature unlocks a wide range of applications including energy harvest-
ing [11], mechanical actuators [12], magnetic sensors [13], electric current sensors [14],
magnetic particle imaging [15], magnetocardiography [16], and swallowing detection [17].

In the aforementioned applications, the incorporation of closed-loop feedback con-
trol to predict system behavior improves the performance of sensors and actuators [18].
Additionally, under certain conditions related to material properties and practical limita-
tions, nonlinear behavior may occur in the system that leads to significant modifications in
the operational characteristics. This aspect becomes particularly crucial in the design of
micro-electromechanical systems (MEMS), such as microresonators [19]. Microresonators
generally function within the linear range, where the vibration amplitude is constrained,
resulting in a restricted signal-to-noise ratio. Nonlinearities can have a profound impact on
the frequency response of microresonators, influencing their dynamic range and damping
behavior in response to changes in the excitation field. As a result, these nonlinear effects
can considerably enhance the sensitivity of oscillator devices [20,21]. Vibration energy har-
vesters and wireless microresonators function at resonance, which leads to amplified output
power through the mechanical quality factor. However, the difficulty lies in matching vi-
bration frequencies to the harvester’s resonance frequency, and the sensing range is limited
in low bandwidth. As a potential solution, researchers have explored the use of nonlinear
mechanical resonators to expand the power bandwidth and sensing range [22,23]. More
specifically, for wireless ME antennas [24,25], enhancing data transmission speed involves
utilizing a nonlinear signal component to effectively separate information bandwidth and
radiation from the antenna’s limited bandwidth. In this regard, the development of a
numerical/mathematical model is imperative to gain a comprehensive understanding and
to predict the dynamic behavior of microresonators, particularly magnetoelectric actuators.

Recently, researchers have devoted much effort to modeling magnetoelectric MEMS
devices using different approaches, such as analytical methods [26–28] and numerical
simulations [12,13,29]. These endeavors aim to enhance device performance and compre-
hend nonlinearity behavior [30–33]. The field-dependent analytical solutions for laminated
magnetoelectric composites [26] proposed tunable frequency-multiplying behavior to opti-
mize the piezomagnetic effect. The research findings indicate that when there is no bias
field present, only even harmonics are observed. However, in a region with a low-bias
field, some odd harmonics become apparent. Furthermore, increasing the bias field to
an optimal level enhances the fundamental frequency component in the signal, leading
to improved ME sensor linearity. The finite element (FE) analysis of ME heterostructure
for ME demonstrates the efficacy of numerical solutions in capturing ME sensor behavior.
In this regard, under DC bias conditions, a comparison of the strain, ME coefficient, and
voltage was conducted to optimize sensor performance through resonance-enhanced ME
coupling. In terms of nonlinearity, micromechanical formulations have been established for
the analysis of ME coupling for different composite structures including 1–3, 0–3, and 2–2
connectivities [32]. The study considered the nonlinearity effect when exposed to signifi-
cant magnetic/electric fields. In micromechanical simulations utilizing the Mori–Tanaka
model, it was observed that field-dependent magnetoelectric (ME) responses produced a
significant divergence between linear and nonlinear predictions.

The Duffing differential equation could be considered as an underlying model to
capture the dynamical behavior of MEMS, which has been reported in several stud-
ies [30,33–36]. Data-driven system identification procedures [36] have emerged as a promis-
ing method to reconstruct governing differential equations from recorded vibration signals.
In this regard, various machine learning techniques, including sparse identification of
nonlinear dynamical systems (SINDy) [35] and artificial neural network (ANN) [37], have
been successfully applied to model the systems. However, the application of neural net-
work algorithms in MEMS modeling poses several challenges for real-world scenarios. The
issues with excessively large training samples, a high output mean square error, and poor
diagnostic precision of backpropagation ANN could be considered in this category [38].
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Moreover, the performance of ANN is limited when confronted with slight variations in
the system’s input, particularly for vibrations in nonlinear regimes [38]. Despite significant
research efforts in the field of MEMS, according to the author’s knowledge, there is still no
comprehensive exploration of the dynamic modeling of magnetoelectric microresonators
using the data-driven system identification and simulated annealing methods.

The main aim of this study is to investigate the Duffing oscillation of a thin film mag-
netoelectric microactuator using a simulated annealing algorithm. The vibration behavior
of the microresonator is assessed via a laser Doppler vibrometer under various stimulation
conditions. Subsequently, an array of mathematical models is reconstructed from the
recorded dataset using machine learning method and differential equations. The model’s
predictive ability is evaluated through mode shape reconstruction and verification tests.
Additionally, the impact of nonlinearity on dynamic behavior is numerically investigated
using a finite element simulation. This proof-of-concept study convincingly establishes
the effectiveness of the proposed approach in comprehending and manipulating the lin-
earity/nonlinearity behavior of a magnetoelectric microresonator, as evidenced by both
numerical simulations and experimental data.

2. Material and Methods
2.1. Experimental Setup

The measurement apparatus, including the thin-film microresonator, field genera-
tor, displacement recorder, and electric appliances, has been illustrated in Figure 1a. A
microresonator, fabricated using wet/dry etching technologies, plays a central role in
the measurement setup. This microresonator was made of a thin-film magnetoelectric
composite, with a highly magnetostrictive alloy (Cr–FeCoSiB) sputtered in a magnetic
field to achieve a thickness of approximately 2 µm. The magnetostrictive layer enabled
vibration amplitude manipulation when excited by a wireless magnetic field. In addi-
tion, an aluminum nitride (2-µm AIN) layer was sputtered through a low-temperature
deposition process, allowing the microresonator to function as a sensor. Additionally, the
AIN piezoelectric layer enabled the microresonator to operate under delta-E stimulation
mode [39]. The significance of the fabrication procedure for the thin-film actuator lies in
the configuration and sequence of deposited layers, both of which exert a notable influence
on the output performance, resonance frequency and magnetic noise level of the microres-
onator [40,41]. To achieve the desired frequency range for the first bending mode with a
high-quality factor, a microresonator was designed in the form of a cantilever, measuring
3 mm in length and 1 mm in width. To enhance the stiffness and material compatibility,
both magnetostrictive and piezoelectric layers were symmetrically deposited on the 50 µm
polysilicon thin film substrate. To utilize the exchange bias effect, the microresonator was
subjected to annealing under a strong magnetic field oriented at an optimum angle to the
long axis of the cantilever. This approach ensured maximum performance at zero external
magnetic bias fields. For further details on the thin-film fabrication procedure, refer to our
previous publication [42].

The excitation AC magnetic field was generated using a pair of planar spiral coils. To
power the coil, a signal generator (RME Fireface UC, Germany) and an AC power amplifier
(WMA-320, Falco system, Netherland) were employed. Continuous measurement of the
current was conducted with an AC multimeter (Hp 34401A, Keysight, United States) to
guarantee a constant applied driving force. The microresonator was mounted on the
top layer of the planar coils. The vibration behavior was recorded using a laser Doppler
vibrometer (Psv-500, Polytec, United States). To capture dynamic vibrations on a small
surface area, a close-up unit with a micro scan lens (PSV-A-410-x, Polytec, United States)
was applied to the LDV device. The laser signal was amplified by an internal lock-in
amplifier. The lock-in amplifier is used to separate and extract the particular frequency
component of interest and the Doppler-shifted frequency from the signal, which may be
influenced by background noise. To ensure synchronization of the excitation signal and
laser measurement, a multifunction simultaneous sampling device (NI USB-6361, National
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Instruments, United States) was used. For a better understanding of the microresonator
configuration and electronic appliances used, refer to the schematic diagram shown in
Figure 1b,c.
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2.2. Data-Driven System Identification

Data-driven system identification is the process of reconstructing analytical dynamic
models for systems, based on the measured experimental data. It uses statistical and
machine learning techniques to describe and ideally predict system behavior without
relying on explicit physical equations. This approach proves applicable for complex,
nonlinear systems, where deriving precise numerical models is challenging [33–36].

In this section, the objective function and desired differential equation are described,
followed by a comprehensive procedure for system identification and model reconstruction
using a machine learning approach.

2.2.1. Duffing Oscillator Operation

The magnetoelectric microresonator operates under an applied wireless driving force
that influences the magnetostrictive layer. Due to the nonlinear characterization of the
magnetostrictive layer in the ME heterostructure, the displacement vibration is typically
modeled using the Duffing equation in a single degree-of-freedom (DOF) system. Previous
studies [33,34] have demonstrated the Duffing oscillator’s ability to accurately replicate
the dynamic behavior of MEMS oscillation. The general Duffing system under no external
force can be modeled as the following non-linear second-order differential equation [43]:

..
z + ζ

.
z + µ

.
z3

+ αz + γz3 = 0 (1)

The variable z represents the out-of-plane displacement. Additionally, ζ is the damp-
ing ratio, α is the linear stiffness of the system, γ is the non-linear stiffness, and the µ
coefficient is the non-linear damping term. Under this condition, the system can exhibit
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three equilibrium points based on the values and signs of the αγ parameters. For the pur-
pose of this study, the non-linear damping element is neglected (µ = 0), while the driving
force is provided by an external magnetic field. The force can be treated as a monofrequency
pure signal. Nevertheless, accounting for the noise component and harmonic nonlinearity
source in the force signal results in the derivation of the following modified equation:

..
z + ζ

.
z + αz + γz3 = Fr1cos(ωt) + Fr2cos(2ωt) + Fr3cos(3ωt) . . . + n(t) (2)

In this context, Fr1 and ω denote the amplitude and angular frequency of the desired
stimulation force, respectively. The contribution of noise, represented by n(t), and the
nonlinearity of the excitation signal is controlled by the ratio between Fr1, Fr2, and Fr3
values. Depending on the specific values of the mentioned ratio and the amplitude of Fr1,
the oscillator may either exhibit a chaotic state or a periodic state.

2.2.2. Simulated Annealing Algorithm

Simulated annealing (SA) is a machine learning algorithm first introduced by Kirk-
patrick et al. [44]. Inspired by metallurgical annealing processes, SA aims to find the ground
state of matter, where the material achieves its minimal energy level. It stochastically ex-
plores the solution space and efficiently reaches the minimum condition with limited
iterations. SA has demonstrated remarkable success in various fields, including force
control [37], manufacturing processes [45], and production optimization [46], showcasing
its efficacy for real-world applications.

During each iteration, the algorithm incorporates a minor stochastic alteration to the
current solution. The movement to a new point in the solution space is quantitatively
assessed by the objective function. Better solutions are directly accepted, while non-
improving solutions are accepted based on the cost of the Boltzmann distribution. This
approach enables the algorithm to escape local optima and converge toward global optima.
The acceptance rate is controlled by the initial temperature and cooling factor parameters,
gradually diminishing the acceptance probability of solutions without any enhancements
over time. The following equation evaluates the probability of each state based on the
objective function [46].

P(x) = exp
(
−∆ f (x)

kT

)
(3)

where f (x) is the objective function or system energy, T is temperature, and k is the Boltz-
mann constant. More detail about the SA optimization procedure can be found in the
literature [47–49]. Algorithm 1 demonstrates the SA optimization process that was im-
plemented to reconstruct the Duffing differential equation from the measured dataset. It
should be mentioned that the algorithm parameter including initial temperature, cool-
ing rate, and Duffing coefficients’ ranges has been determined via a sensitivity check
analysis and trial and error running based on the nature of the objective function and
measured dataset.
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Algorithm 1. Adapted SA method for data-driven system identification application

1 Initialize the algorithm parameters: Cooling rate alfa, Temp. T0, Boltzmann’s constant k
2 Initialize the input parameters ranges: Duffing coefficients’ variational range (m, alpha, delta,
beta, gamma, omega)
3 while termination criterion is not satisfied do (reach final iterations = 300)
4 for i:M iteration without temperature change (M = 30)
5 Active Random mechanism to select the set of corresponding Duffing coefficient.
6 Make a new solution e.g., for only two parameters: beta0 + ∆beta &
gamma0 + ∆gamma and so on based on step 5
7 if f(beta0 + ∆beta, gamma0 + ∆gamma) > f(beta0, gamma0) then
8 fbest = f(beta0 + ∆beta & gamma0 + ∆gamma);
9 beta0 = beta0 + ∆beta & gamma0 = gamma0 + ∆gamma
10 else
11 random r(0, 1) (select random number)
12 if r > exp(−∆f/kT) then (check the Boltzmann’s probability)
13 fbest = f(beta0 + ∆beta & gamma0 + ∆gamma);
14 beta0 = beta0 + ∆beta & gamma0 = gamma0 + ∆gamma
15 else
16 fbest = f(beta0 & gamma0),
17 End if
18 End if
19 if abs((∆f (i −)) >= (abs(∆f (i −2))) && i > 5
20 sgn= −1*sgn; (change the movement direction)
21 End if
22 End for
23 T = alfa ×T0 (applying a cooling procedure)
24 f = fbest
25 End while

2.3. Numerical Simulation
2.3.1. Governing Equation

In this section, an overview of the governing equations utilized in the numerical model
is presented. The model consists of two main components: the magnetic field generator
and the microresonator. The magnetic field is modeled by a 2D multilayer spiral coil in the
shell interface. Solving the electric currents in the shell problem enables the determination
of the electric potential drop along the conductor. Subsequently, the lumped resistance (R)
is computed using Ohm’s law.

R =
∪
I

(4)

where, U represents the electric potential at the specific terminal, and I is the current
flowing through it. The surface current density is then calculated and used as a source
term in Ampère’s law to determine the magnetic field in the space surrounding the coil. By
considering the total magnetic energy (wm), the inductance can be formulated as follows:

L =
2wm

I2 (5)

The magnetic behavior of materials is simulated by utilizing Equation (6), which
employs non-linear magnetostrictive models, relying on the homogeneity assumption of
magnetic domain anisotropy energy [50].

λθ =
3
2

λs(cos(θ)2 − 1
3
) =

3
2

λs(
M2

M2
s
− 1

3
) =

3
2

λs

M2
s

dev(M⊗M− 1
3
) (6)

where M is the dipole moment, Ms is the saturation magnetization, λθ is the magne-
tostriction coefficient, λs is the saturation magnetostriction, and cosine represents the
trigonometric ratio between the dipole moment and saturation magnetization. Magne-
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tostriction strain is determined under the assumption of a constant volume, considering
solely the deviatoric component of the stress tensor. Modeling the nonlinear magnetization
was achieved using the Langevin function and the following equations [50]:

M = MsL(
∣∣∣He f f

∣∣∣) He f f∣∣∣He f f

∣∣∣ (7)

He f f = H +
3λs

µ0M2
s

Sed M (8)

Sed = dev(CHεel) (9)

L = coth(
3χm

∣∣∣He f f

∣∣∣
Ms

)− Ms

3χm

∣∣∣He f f

∣∣∣ (10)

Here, L is the Langevin function, χm is the mass magnetic susceptibility, Sed is the
deviatoric elastic tensor, and CH and εel are the elastic modulus tensor and elastic strain,
respectively. Meanwhile, the magnetic field and magnetic flux can be calculated from the
material susceptibility properties.

2.3.2. Modeling Procedure

In this study, numerical modeling was conducted using the finite element method
in COMSOL 6.1 software. The ambient conditions were simulated with an air domain
element represented by a cubic shape. To avoid unwanted wall effects, an infinite element
was applied to the external boundary of the air domain. The magnetic field was generated
by a 2D multilayer spiral coil, coupling the electric currents in Shells physics interface
with the Magnetic Field physics interface. The PCB coil was modeled using copper as
the layered material with a thickness of 0.1 mm, while the PCB substrate utilized epoxy
resin as an insulating layer between conducting layers. For the purposes of the model, the
focus is on current conduction, and therefore, zero conductivity was applied to both the air
material and the substrate. The excitation AC signal was applied to the coil via harmonic
perturbation functions. The microresonator model comprises a stack of layers: a 2-µm AIN
piezoelectric layer on top, a 50-µm Si polysilicon layer in the middle, and a 2-µm FeCoSiB
magnetostrictive layer below. The length and width dimensions are set to 1 × 3 mm, which
was aligned with the fabricated version. The material specifications used in the simulation
can be found in Appendix A.

The discretization and meshing were implemented using custom size mapped and
tetrahedral elements. The solving procedure involved coupling different physics, such as
magnetic field and solid mechanics, to simulate the magnetostrictive effect and stress–strain
interaction, respectively. The eigenvalue, frequency domain, and time domain solver were
employed to assess the mode shapes, frequency responses, and dynamic behaviors of
the microresonator.

2.4. Measurement Scheme

The displacement of the microresonator was measured using a laser Doppler vi-
brometer with sub-picometer detection accuracy. The laser spot was precisely aligned
perpendicular to the microresonator surface, and 55 network points were selected for dis-
crete measurement. Velocity was directly measured from the laser sensor, and integration
was applied to calculate the displacement from the time domain signal. To enhance mea-
surement accuracy and reduce the level of noise, each point was measured 10 times, and the
mean value was considered. A 200 ms delay was implemented between each measurement
to ensure reaching a steady-state condition. The vibration data were recorded using a
1.25 MHz sampling rate for the first bending mode around 7.5 kHz. To minimize noise
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interference, a digital bandpass filter with a range of 6–40 kHz was applied to the laser
signal. Subsequently, the measured data were analyzed using both Polytec and MATLAB
software to reconstruct the mode shape.

To convert the current to the magnetic field, the sensitivity of the spiral coil was
measured within the kHz frequency range using a Tesla meter (FM302 AS-Lab). Figure 2
illustrates that within the 1–10 k frequency working range, the sensitivity remains nearly
constant. Evidently, at 7.5 kHz, the sensitivity is approximately 2.6 mT/A.
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To model the magnetic behavior of the thin-film microresonator and assess the lin-
ear regime, magnetization was measured using a vibrating-sample magnetometer (VSM)
device. The measurements were conducted over a range of 0–10 mT. As shown in Fig-
ure 3, the magnetic layer exhibits nonlinearity along the sensitive axis, which initiates at
approximately 1 mT.
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3. Results and Discussion
3.1. Numerical Model

The excitation magnetic field serves as a driving force for the ME microresonator,
significantly influencing its oscillation performance. To assess the degree of magnetic
uniformity across the ME microresonator position, the magnetic flux density magnitude
within the spiral coil area has been calculated using a numerical simulation method in the
cubic air domain (Figure 4a). As shown in Figure 4b, a 98% homogeneity is attainable along
the longitudinal axis.
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Figure 4. Simulation result; (a) embedded spiral coil in cubic air domain, (b) magnetic flux density
contour (mT).

The magnetoelectric microresonator could manifest nonlinear behaviors when the
excitation amplitude exceeds a certain threshold. In such scenarios, the oscillator undergoes
detuning, causing the frequency response to shift asymmetrically. The threshold for reach-
ing nonlinearity was around 1 mT based on the experimental results (Figure 3). Figure 5a
illustrates the frequency response of the microresonator for different magnetic excitation
amplitudes, selected based on experimental measurements. The inset within Figure 5a
presents the outcome of the clamp-free eigenfrequency analysis. The resonance frequency
occurred around 7.5 kHz, aligning reasonably with the experimental results (Figure 5b). As
can be seen, when the excitation amplitude remains below a certain value, the resonance
shifts to lower frequencies, and after that it increases to higher frequencies. This transition
in resonance frequency can be attributed to the increasing influence of nonlinearity in
the oscillator’s behavior. Specifically, as the symmetric frequency response experiences a
pronounced tilt towards lower frequencies, the heightened nonlinear contribution results in
a softening of the resonator, leading to a reduction in the resonance frequency. Conversely,
when the frequency response tilts towards higher frequencies, the resonator exhibits a
hardening behavior, indicating an elevation in the resonance frequency. Notably, points of
discontinuity within the frequency behavior indicate an unstable regime for the resonator,
denoted by the accompanying arrows. This frequency-shifting phenomenon observed in
magnetoelectric oscillators is in line with earlier investigation [33].
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Developing a numerical model to predict the nonlinearity behavior of the thin-film
oscillator is a formidable task due to the computational expense incurred by the mesh
aspect ratio issue. In this context, the model has been solved for only five oscillation
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periods using a time domain solver. Figure 6a displays the magnetic field amplitude
at the microresonator’s evaluation point, ranging from 0.5 to 3.5 mT. The assessment of
magnetostriction for the first bending mode was calculated on the Z component of the
magnetostrictive tensor. Subsequently, Figure 6b illustrates the fast Fourier transform (FFT)
of the simulated magnetostriction signal. Remarkably, the onset of nonlinearity becomes
evident at a threshold, roughly around 1 mT, validating the model’s performance. The
total harmonic distortion (THD) increases as the driving force grows. In the simulation, the
signal is originally pure and monofrequency so the observed nonlinearity stems from the
properties of the magnetostrictive layer and material characterization.
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of time domain magnetostriction signal.

3.2. Data-Driven Model

The focus of this section is to reconstruct governing equations from the time series
dataset obtained during the excitation of the ME microresonator. The experimental setup
(Figure 1) has been utilized to measure both vibration and velocity signals. The simulated
annealing algorithm (SA) has been employed to reconstruct the governing equations of
the experimental system. The first assessment focused on measuring the displacement
at the cantilever tips. With the aim of enhancing processing speed, data reduction has
been applied to the measured dataset, resulting in a reduction in the sampling rate to
125 kHz. The recorded signal, lasting for 1 s, underwent reconstruction over 187 s, using
the SA algorithm with 300 iterations over an i7-intel CPU. The objective function and
the current optimization problem are well-posed, implying the existence of a unique
solution. Nevertheless, the problem may exhibit ill-conditioning, implying that even a
slight perturbation in the system’s input could lead to significantly magnified errors in the
resulting solutions. To address this, a global sensitivity analysis was performed to ascertain
the appropriate range and step size for each Duffing coefficient within the SA algorithm’s
framework. This analysis aids in understanding how perturbations in these coefficients
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impact the system’s behavior and facilitates the selection of optimal parameter intervals and
incremental values for the SA optimization process. Consequently, the Duffing equation
has been solved for various input parameter combinations using the Latin hypercube
sampling (LHS) method. The sensitivity indices were then determined using the computed
normalized output values through the finite differences method (FDM), with a minor
perturbation size of approximately 1 × 10−5. As depicted in Figure 7, the driving force
amplitude, identified as Gamma, and the stiffness parameter, termed Delta, exhibit the
highest levels of sensitivity, which has been considered in the determination of the step size.
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The applied driving force frequency is known. However, from a practical point of view,
there exists a slight discrepancy between the desired frequency and the measured applied
frequency. This discrepancy has been incorporated into the SA algorithm as an input
parameter, Omega, constrained within a limited range of variation. The initial temperature
of the SA algorithm has been determined through 5 executions of the algorithm, using
the average value of the delta function. This parameter prioritizes the acceptance of
solutions without improvement during the initial stages. Afterward, the cooling factor
has been adjusted to progressively lower the acceptance rate every 30 iterations, leading
to a controlled reduction in the acceptance rate value. To ensure numerical accuracy,
different objective functions including peak–peak amplitude (PP) of error, peak index
matching (PIM), and correlation coefficient (CC) were considered as the figure of merit in
the SA algorithm.

The reconstructed Duffing equation has been solved over the time domain with a
125 kHz sampling rate in line with the recorded signal. Figure 8 depicts a comparison
between the original and reconstructed signals across different time slots. As can be seen,
for the entire signal duration a minor discrepancy in amplitude matching is observed in
the range of 4 × 10−9 or less than a 2 percent error (Figure 8a). Additionally, Figure 8b–d
demonstrate strong consistency in the signal phase. The high correlation coefficient of 0.995
between the two signals confirms the accuracy of the model. It should be noted that the
governing model was specifically developed based on recorded data from the fabricated
exchange ME microresonator. However, the same measurement procedure and proposed
algorithm could potentially be applied for modeling other types of ME resonators.
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in the reconstructed model, leading to distortions in the time domain signal. Figure 9 
illustrates the comparison between the short-time Fourier transform of the reconstructed 
signals for two distinct amplitudes. As shown in Figure 9a, the entire signal exhibits a 
monofrequency, indicating a clear linear response of the microresonator. In Figure 9b, the 
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Figure 8. (a) Amplitude Comparison between measured displacement and reconstructed Duffing
equation solutions across multiple time intervals including (b) first, (c) mid, and (d) last slot of time
domain (driving force 0.28 mT).

Displacement measurements have been taken across various amplitudes, subsequently
allowing for the reconstruction of the Duffing equation. The results reveal that under higher
driving forces, the “beta” term in the Duffing equation becomes evident in the reconstructed
model, leading to distortions in the time domain signal. Figure 9 illustrates the comparison
between the short-time Fourier transform of the reconstructed signals for two distinct
amplitudes. As shown in Figure 9a, the entire signal exhibits a monofrequency, indicating
a clear linear response of the microresonator. In Figure 9b, the initial signs of nonlinearity
occur in the reconstructed signal, proved by the presence of a weak harmonic response.
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To effectively design an ME microresonator, it is essential to consider various contribu-
tors to nonlinearity. These sources encompass both the nonlinearity of the excitation signal
and the material itself. When employing an AC excitation scheme, particularly at high
amplitudes and high frequencies, generating a pure magnetic field proves challenging,
due to hardware limitations. In this context, the linearity of the excitation signal has been
initially quantified by direct measurement before its application to the microresonator.
Subsequently, the output voltage of the ME resonator was measured to assess its response.
The FFT analysis has been performed on the recorded signals using the Han filter at the
469 kHz sampling rate. Every measurement has been repeated 30 times to improve accuracy,
with the average value reported. Figure 10a,b provide a visual representation of the mi-
croresonator’s response under distinct conditions: resonance excitation and sub-resonance
excitation, both at a magnetic field strength of 0.28 mT. As can be seen, even with low exci-
tation levels, the signal displays discernible higher harmonic components. The THD values
for resonance and sub-resonance excitation are 2.16 and 2.48, respectively. This observation
emphasizes the significance of harmonic distortion and source nonlinearity, especially in
sub-resonance mode. This type of source noise could potentially be harnessed as a dual- or
triple-oscillation source, enhancing the actuator’s bandwidth within a nonlinearity regime
and being considered as an advantage [22],[23]. However, for applications such as weak
signal detection, this mentioned nonlinearity could be challenging to deal with.
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Figure 10. The microresonator response under (a) sub-resonance and (b) resonance mode excitation
signal.

Figure 11 illustrates the harmonic response of both the source signal and microres-
onator voltage at resonance mode. As illustrated, the mechanical quality factor of the
microresonator amplifies the fundamental components of the frequency by a factor of
about 6.5. This behavior is crucial to consider in weak signal detection due to the esca-
lating impact of the nonlinearity issue in sub-harmonic excitation. Evidently, the level
of nonlinearity in the source signal progressively intensifies, reaching a critical point for
higher amplitudes of the driving force. This phenomenon directly affects actuator/sensor
performance and should be a key consideration in the design process. It should be noted
that at the high magnetic fields, the resonance frequency of the ME resonator will shift, due
to the nonlinear magnetization. However, here the comparison was conducted at a fixed
frequency to ensure a more consistent basis for evaluating varying amplitudes, spanning
from the linear to nonlinear regimes.
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applications [8,9]. In order to predict the vibration amplitude across the cantilever surface 
over the time domain, the 55 points on the microresonator surface have been selected and 

Figure 11. The harmonic response measurement at resonance mode, about 7.5 kHz.

The vibration amplitude of the ME microresonator has been assessed across varying
driving force amplitudes. To achieve this, diverse magnetic field strengths were applied
to the microresonator using a half-Gaussian function for a 10-s duration at the resonance
frequency. As depicted in Figure 12, a noticeable hysteresis effect emerges at higher driving
force levels. It is important to highlight that the hysteresis, attributed to the remanent
magnetic field and magnetic wall domains in the magnetostrictive layer, cannot be modeled
by the reconstructed Duffing equation. However, for lower excitation fields, the hysteresis
effect is negligible and exerts minimal influence on prediction accuracy.
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Figure 12. Investigation of hysteresis effects on microresonator displacement in resonance mode
through experimental measurements.

Accurate mode shape reconstruction of microactuators plays a pivotal role in precise
actuator design. Employing a Duffing equations array enables effective control strategies,
and enhances system reliability, which is particularly crucial in micro-positioning applica-
tions [8,9]. In order to predict the vibration amplitude across the cantilever surface over the
time domain, the 55 points on the microresonator surface have been selected and measured
separately in a steady-state situation. In the initial step, the impact of noise level on the SA
algorithm’s performance has been numerically evaluated for each point. As depicted in
Figure 13a, achieving optimization below a 30 dB S/N level poses a challenge. Figure 13b
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shows that for low SNR values, due to the ill-conditioned nature of the Duffing oscillator,
the algorithm fails to converge even for 300 iterations. The driving force amplitude has
been experimentally chosen to achieve robust signal-to-noise levels for all points, including
those in proximity to the clamp area, as highlighted in the inset of Figure 13a.
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function, (b) convergence behavior of SA algorithm during data reconstruction at low S/N ratio.

The Duffing oscillator array has been trained using a driving force given by a magnetic
field of 0.28 mT and subsequently solved for 0.4 mT to reconstruct the first bending mode
shape. For more details regarding the reconstructed coefficients at different points, please
refer to Appendix B. To validate the simulation results, microresonator vibrations were
recorded using an LDV device at the resonance frequency. The mode shape reconstruction
results are illustrated in Figure 14a–e. Moreover, the video of the comparison between mea-
surement and simulation results can be found in the Supplementary Materials (Video S1).
In Figure 14a, it is clear that the simulated vibration range spans ±0.74476 µm, exceed-
ing the actual measurement values by 3 percent. The accuracy of the developed Duffing
equation varied for each point based on the SNR level, yielding an average correlation
coefficient (CC) of around 0.92 percent. Although the vibration amplitude within the upper
and lower ranges closely matched experimental data, certain border points exhibited lag
responses, as shown in Figure 14c,e, causing surface distortion. Reconstructing intricate
mode shapes using the Duffing array is achievable, subject to practical constraints such
as the number of network points, SNR value, and LDV dimensional measurements along
different axes. To encompass the spectrum from linear to nonlinear behavior, training
the Duffing array with a step Gaussian function is recommended and will be explored in
upcoming research. Emphasizing the Duffing oscillator model’s limitation, it is incapable of
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predicting hysteresis effects. Nevertheless, for minimal hysteresis, the developed model is
useful in closed-loop feedback systems, enabling time-domain control of the MEMS system.
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4. Conclusions

This study introduces a new approach to modeling magnetoelectric microresonators
through data-driven system identification and a simulated annealing algorithm. It in-
vestigates the dynamic behavior of the Cr–FeCoSiB/AIN thin-film ME microactuator,
particularly in its first bending mode, exploring both linear and nonlinear domains. The dis-
placement vibration is described by a Duffing equation within a single degree-of-freedom
(DOF) system. A magnetic driving force is generated by a spiral coil, ensuring 98 percent
magnetic homogeneity. Coil sensitivity measurements reveal consistent sensitivity within
the operational range, with a transfer factor of approximately 2.6 mT/A. The microres-
onator’s displacement was precisely measured using a laser Doppler vibrometer device at
7.5 kHz. Nonlinearity’s impact on the microresonator’s response was explored through
finite element (FE) simulations, revealing significant nonlinearity emerging after reaching
1 mT, in alignment with VSM magnetization measurements. To reconstruct dynamic be-
havior using the Duffing oscillator, input parameter ranges for the simulated annealing
optimization algorithm were established through global sensitivity analysis. Comparing
measured displacement with reconstructed Duffing equation solutions indicated a model
precision of approximately 98 percent. The study highlights challenges faced by the sim-
ulated annealing algorithm when converging for boundary points on the cantilever with
signal-to-noise ratios (SNR) below 30 dB. an examination of the microresonator’s response
underscores the importance of harmonic distortion and source nonlinearity, particularly in
the sub-resonance mode, due to the quality factor of the ME resonator. Vibration measure-
ments revealed significant hysteresis variations at higher excitation levels, which impact
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the prediction precision of the developed Duffing array. Nonetheless, minimal hysteresis
values at lower excitation levels enable reasonable reconstruction and prediction of the first
bending mode shape, with an average correlation coefficient of approximately 92 percent.
In conclusion, the proposed method is a promising tool for dynamic behavior analysis of
MEMS actuators. It effectively contributes to predicting mode shapes and displacement
profiles over time, which significantly enhances the precision of MEMS actuator design
and control. Further research is required to explore the contributions of hysteresis effects,
the sensitivity axis angle, temperature, and complex mode shape reconstruction.
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Abbreviations

MEMS Micro-electromechanical systems
ME Magnetoelectric
SA Simulated Annealing
LDV Laser Doppler Vibrometer
THD Total Harmonic Distortion
STFT Short-time Fourier Transform
FE Finite Element
SINDy Sparse Identification of Nonlinear Dynamical Systems
ANN Artificial Neural Network
DOF Degree-of-Freedom
VSM Vibrating-Sample Magnetometer
LHS Latin hypercube sampling
FDM finite differences method
RMS Root mean square
PIM Peak Index Matching
CC Correlation Coefficient
z Out-of-plane displacement
ζ Damping ratio
α Linear stiffness
γ Non-linear stiffness
µ Non-linear damping
Fri Amplitude of the desired stimulation force
ω Angular frequency of the desired stimulation force
f(x) Objective function
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T Temperature
k Boltzmann’s constant
∆f Difference between objective function for every iteration
U Electric potential
I Current
L Surface current density
wm Total magnetic energy
M Dipole moment
Ms Saturation magnetization
λθ Magnetostriction coefficient
λs Saturation magnetostriction
L Langevin function
χm mass magnetic susceptibility
Sed Deviatoric elastic tensor
CH Elastic modulus tensor
εel Elastic strain

Appendix A

Material parameters [51,52]:

ρsilicon = 2329
[

kg
m3

]

υsilicon = 0.28 [1]

σsilicon = 1−12 [S/m]

CEH
silicon =



216 84 84 0 0 0
84 216 84 0 0 0
84 84 216 0 0 0
0 0 0 66 0 0
0 0 0 0 66 0
0 0 0 0 0 66

 Gpa

µAir = 1

εAir = 1

σAir & AIN = 1−12 [S/m]

ρAIN = 3268
[

kg
m3

]

CEH
AIN =



410 149 99 0 0 0
149 410 99 0 0 0
99 99 389 0 0 0
0 0 0 125 0 0
0 0 0 0 125 0
0 0 0 0 0 125

 Gpa

υAIN = 0.3 [1]
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εAIN =

80 0 0
0 80 0
0 0 80

 pF/m

σFeCoSiB = 0.833333 [MS/m]

ρAIN = 7250
[

kg
m3

]
Ms FeCoSiB = 159.15 [KA/m]

χFeCoSiB = 40

υFeCoSiB = 0.33 [1]

CEH
FeCoSiB =



150 45 45 0 0 0
45 150 45 0 0 0
45 45 150 0 0 0
0 0 0 40 0 0
0 0 0 0 40 0
0 0 0 0 0 40

 Gpa

Appendix B

Table A1. Reconstructed Duffing coefficients for 0.4 mT driving force.

Points Number

Parameter
Delta Alpha Omega Gamma Mass

1 0.361671999593 0.278040544940 4.66328953897 × 104 0.339451442238 0.065870878718
2 0.363013075806 0.309101936376 4.66334492152 × 104 0.337459733144 0.064703821094
3 0.362175254191 0.302470915090 4.66330440760 × 104 0.337614422055 0.065506621181
4 0.362394000000 0.303695603594 4.66330521002 × 104 0.34024500000 0.06593900000
5 0.363506320901 0.283383704287 4.66333831975 × 104 0.332648966731 0.064578975393
6 0.362433330694 0.299659422394 4.66330872224 × 104 0.340984715495 0.06593900000
...

...
...

...
...

...
52 0.361974686843 0.330977245251 4.66330944730 × 104 0.336451973259 0.066092226877
53 0.362475601632 0.296297000000 4.6633521067 × 104 0.3402450000 0.0661028238
54 0.3621115925123 0.299697723699 4.66331662856 × 104 0.3387779527 0.0647517934
55 0.362820938412 0.360317841738 4.6633158936 × 104 0.3553373737 0.0683564117

Beta was detected as zero for all points based on the force amplitude. All output values have been scaled for SA
convergence improvement.
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