923 research outputs found

    Overview of MV-HEVC prediction structures for light field video

    Get PDF
    Light field video is a promising technology for delivering the required six-degrees-of-freedom for natural content in virtual reality. Already existing multi-view coding (MVC) and multi-view plus depth (MVD) formats, such as MV-HEVC and 3D-HEVC, are the most conventional light field video coding solutions since they can compress video sequences captured simultaneously from multiple camera angles. 3D-HEVC treats a single view as a video sequence and the other sub-aperture views as gray-scale disparity (depth) maps. On the other hand, MV-HEVC treats each view as a separate video sequence, which allows the use of motion compensated algorithms similar to HEVC. While MV-HEVC and 3D-HEVC provide similar results, MV-HEVC does not require any disparity maps to be readily available, and it has a more straightforward implementation since it only uses syntax elements rather than additional prediction tools for inter-view prediction. However, there are many degrees of freedom in choosing an appropriate structure and it is currently still unknown which one is optimal for a given set of application requirements. In this work, various prediction structures for MV-HEVC are implemented and tested. The findings reveal the trade-off between compression gains, distortion and random access capabilities in MVHEVC light field video coding. The results give an overview of the most optimal solutions developed in the context of this work, and prediction structure algorithms proposed in state-of-the-art literature. This overview provides a useful benchmark for future development of light field video coding solutions

    Overview of 3D Video: Coding Algorithms, Implementations and Standardization

    Get PDF
    Projecte final de carrera fet en col.laboració amb Linköping Institute of TechnologyEnglish: 3D technologies have aroused a great interest over the world in the last years. Television, cinema and videogames are introducing, little by little, 3D technologies into the mass market. This comes as a result of the research done in the 3D field, solving many of its limitations such as quality, contents creation or 3D displays. This thesis focus on 3D video, considering concepts that concerns the coding issues and the video formats. The aim is to provide an overview of the current state of 3D video, including the standardization and some interesting implementations and alternatives that exist. In the report necessary background information is presented in order to understand the concepts developed: compression techniques, the different video formats, their standardization and some advances or alternatives to the processes previously explained. Finally, a comparison between the different concepts is presented to complete the overview, ending with some conclusions and proposed ideas for future works.Castellano: Las tecnologías 3D han despertado un gran interés en todo el mundo en los últimos años. Televisión, cine y videojuegos están introduciendo, poco a poco, ésta tecnología en el mercado. Esto es resultado de la investigación realizada en el campo de las 3D, solucionando muchas de sus limitaciones, como la calidad, la creación de contenidos o las pantallas 3D. Este proyecto se centra en el video 3D, considerando los conceptos relacionados con la codificación y los formatos de vídeo. El objetivo es proporcionar una visión del estado actual del vídeo 3D, incluyendo los estándares y algunas de las implementaciones más interesantes que existen. En la memoria, se presenta información adicional para facilitar el seguimiento de los conceptos desarrollados: técnicas de compresión, formatos de vídeo, su estandarización y algunos avances o alternativas a los procesos explicados. Finalmente, se presentan diferentes comparaciones entre los conceptos tratados, acabando el documento con las conclusiones obtenidas e ideas propuestas para futuros trabajos.Català: Les tecnologies 3D han despertat un gran interès a tot el món en els últims anys. Televisió, cinema i videojocs estan introduint, lentament, aquesta tecnologia en el mercat. Això és resultat de la investigació portada a terme en el camp de les 3D, solucionant moltes de les seves limitacions, com la qualitat, la creació de continguts o les pantalles 3D. Aquest proyecte es centra en el video 3D, considerant els conceptes relacionats amb la codificació i els formats de video. L'objectiu és proporcionar una visió de l'estat actual del video 3D, incloent-hi els estandàrds i algunes de les implementacions més interessants que existeixen. A la memòria, es presenta informació adicional per facilitar el seguiment dels conceptes desenvolupats: tècniques de compressió, formats de video, la seva estandardització i alguns avenços o alternatives als procesos explicats. Finalment, es presenten diferents comparacions entre els conceptes tractats i les conclusions obtingudes, juntament amb propostes per a futurs treballs

    Light field coding with field of view scalability and exemplar-based inter-layer prediction

    Get PDF
    Light field imaging based on microlens arrays—a.k.a. holoscopic, plenoptic, and integral imaging—has currently risen up as a feasible and prospective technology for future image and video applications. However, deploying actual light field applications will require identifying more powerful representations and coding solutions that support arising new manipulation and interaction functionalities. In this context, this paper proposes a novel scalable coding solution that supports a new type of scalability, referred to as field-of-view scalability. The proposed scalable coding solution comprises a base layer compliant with the High Efficiency Video Coding (HEVC) standard, complemented by one or more enhancement layers that progressively allow richer versions of the same light field content in terms of content manipulation and interaction possibilities. In addition, to achieve high-compression performance in the enhancement layers, novel exemplar-based interlayer coding tools are also proposed, namely: 1) a direct prediction based on exemplar texture samples from lower layers and 2) an interlayer compensated prediction using a reference picture that is built relying on an exemplar-based algorithm for texture synthesis. Experimental results demonstrate the advantages of the proposed scalable coding solution to cater to users with different preferences/requirements in terms of interaction functionalities, while providing better rate- distortion performance (independently of the optical setup used for acquisition) compared to HEVC and other scalable light field coding solutions in the literature.info:eu-repo/semantics/acceptedVersio

    Random access prediction structures for light field video coding with MV-HEVC

    Get PDF
    Computational imaging and light field technology promise to deliver the required six-degrees-of-freedom for natural scenes in virtual reality. Already existing extensions of standardized video coding formats, such as multi-view coding and multi-view plus depth, are the most conventional light field video coding solutions at the moment. The latest multi-view coding format, which is a direct extension of the high efficiency video coding (HEVC) standard, is called multi-view HEVC (or MV-HEVC). MV-HEVC treats each light field view as a separate video sequence, and uses syntax elements similar to standard HEVC for exploiting redundancies between neighboring views. To achieve this, inter-view and temporal prediction schemes are deployed with the aim to find the most optimal trade-off between coding performance and reconstruction quality. The number of possible prediction structures is unlimited and many of them are proposed in the literature. Although some of them are efficient in terms of compression ratio, they complicate random access due to the dependencies on previously decoded pixels or frames. Random access is an important feature in video delivery, and a crucial requirement in multi-view video coding. In this work, we propose and compare different prediction structures for coding light field video using MV-HEVC with a focus on both compression efficiency and random accessibility. Experiments on three different short-baseline light field video sequences show the trade-off between bit-rate and distortion, as well as the average number of decoded views/frames, necessary for displaying any random frame at any time instance. The findings of this work indicate the most appropriate prediction structure depending on the available bandwidth and the required degree of random access

    Light field image coding with flexible viewpoint scalability and random access

    Get PDF
    This paper proposes a novel light field image compression approach with viewpoint scalability and random access functionalities. Although current state-of-the-art image coding algorithms for light fields already achieve high compression ratios, there is a lack of support for such functionalities, which are important for ensuring compatibility with different displays/capturing devices, enhanced user interaction and low decoding delay. The proposed solution enables various encoding profiles with different flexible viewpoint scalability and random access capabilities, depending on the application scenario. When compared to other state-of-the-art methods, the proposed approach consistently presents higher bitrate savings (44% on average), namely when compared to pseudo-video sequence coding approach based on HEVC. Moreover, the proposed scalable codec also outperforms MuLE and WaSP verification models, achieving average bitrate saving gains of 37% and 47%, respectively. The various flexible encoding profiles proposed add fine control to the image prediction dependencies, which allow to exploit the tradeoff between coding efficiency and the viewpoint random access, consequently, decreasing the maximum random access penalties that range from 0.60 to 0.15, for lenslet and HDCA light fields.info:eu-repo/semantics/acceptedVersio

    Dünaamiline kiiruse jaotamine interaktiivses mitmevaatelises video vaatevahetuse ennustamineses

    Get PDF
    In Interactive Multi-View Video (IMVV), the video has been captured by numbers of cameras positioned in array and transmitted those camera views to users. The user can interact with the transmitted video content by choosing viewpoints (views from different cameras in the array) with the expectation of minimum transmission delay while changing among various views. View switching delay is one of the primary concern that is dealt in this thesis work, where the contribution is to minimize the transmission delay of new view switch frame through a novel process of selection of the predicted view and compression considering the transmission efficiency. Mainly considered a realtime IMVV streaming, and the view switch is mapped as discrete Markov chain, where the transition probability is derived using Zipf distribution, which provides information regarding view switch prediction. To eliminate Round-Trip Time (RTT) transmission delay, Quantization Parameters (QP) are adaptively allocated to the remaining redundant transmitted frames to maintain view switching time minimum, trading off with the quality of the video till RTT time-span. The experimental results of the proposed method show superior performance on PSNR and view switching delay for better viewing quality over the existing methods

    Dense light field coding: a survey

    Get PDF
    Light Field (LF) imaging is a promising solution for providing more immersive and closer to reality multimedia experiences to end-users with unprecedented creative freedom and flexibility for applications in different areas, such as virtual and augmented reality. Due to the recent technological advances in optics, sensor manufacturing and available transmission bandwidth, as well as the investment of many tech giants in this area, it is expected that soon many LF transmission systems will be available to both consumers and professionals. Recognizing this, novel standardization initiatives have recently emerged in both the Joint Photographic Experts Group (JPEG) and the Moving Picture Experts Group (MPEG), triggering the discussion on the deployment of LF coding solutions to efficiently handle the massive amount of data involved in such systems. Since then, the topic of LF content coding has become a booming research area, attracting the attention of many researchers worldwide. In this context, this paper provides a comprehensive survey of the most relevant LF coding solutions proposed in the literature, focusing on angularly dense LFs. Special attention is placed on a thorough description of the different LF coding methods and on the main concepts related to this relevant area. Moreover, comprehensive insights are presented into open research challenges and future research directions for LF coding.info:eu-repo/semantics/publishedVersio
    corecore