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Abstract— Light field imaging based on microlens arrays – 

a.k.a. holoscopic, plenoptic, and integral imaging – has currently 

risen up as a feasible and prospective technology for future image 

and video applications. However, deploying actual light field 

applications will require identifying more powerful 

representations and coding solutions that support arising new 

manipulation and interaction functionalities. In this context, this 

paper proposes a novel scalable coding solution that supports a 

new type of scalability, referred to as Field of View scalability. 

The proposed scalable coding solution comprises a base layer 

compliant with the High Efficiency Video Coding (HEVC) 

standard, complemented by one or more enhancement layers that 

progressively allow richer versions of the same light field content 

in terms of content manipulation and interaction possibilities. 

Additionally, for achieving high compression performance in the 

enhancement layers, novel exemplar-based inter-layer coding 

tools are also proposed, namely: i) a direct prediction based on 

exemplar texture samples from lower layers, and ii) an inter-

layer compensated prediction using a reference picture that is 

built relying on an exemplar-based algorithm for texture 

synthesis. Experimental results demonstrate the advantages of 

the proposed scalable coding solution to cater for users with 

different preferences/requirements in terms of interaction 

functionalities, while providing better rate-distortion 

performance (independently of the optical setup used for 

acquisition) compared to HEVC and other scalable light field 

coding solutions in the literature. 

 
Index Terms— Light Field, Holoscopic, Plenoptic, Integral 

Imaging, Field of View Scalability, Image Compression, HEVC 

I. INTRODUCTION 

HE recent advances in optical and sensor manufacturing 

allow having richer forms of visual data, where not only 

the spatial information about the three-dimensional (3D) scene 

is represented but also angular viewing direction – the so-

called four-dimensional (4D) light field/radiance sampling [1]. 

In the context of Light Field (LF) imaging technologies, the 

approach based on a single-tier camera equipped with a 

Microlens Array (MLA) [2] (hereinafter referred simply to as 

LF camera) has become a promising approach, being 

applicable in many different areas of research, such as 3D 

television [3], richer photography capturing [4], [5], biometric 

recognition [6], and medical imaging [7]. 
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Recognizing the potential of this emerging technology, as 

well as the new challenges that need to be overcome for 

successfully introducing light field media applications into the 

consumer market, novel standardization initiatives are also 

emerging. Notably, the Joint Photographic Experts Group 

(JPEG) committee has launched the JPEG Pleno 

standardization initiative [8], and the Moving Picture Experts 

Group (MPEG) has recently started a new work item on coded 

representations for immersive media (MPEG-I) [9]. The 

challenge to provide a LF representation with convenient 

spatial resolution and viewing angles requires handling a huge 

amount of data and, thus, efficient coding becomes of utmost 

importance. Another key requirement when designing an 

efficient LF representation and coding solution is to facilitate 

future interactive LF media applications with the new 

manipulation functionalities supported by the LF content. The 

advantages of enabling interactive media applications has been 

previously studied in the literature for a large range of media 

modalities, such as: i) interactive streaming of high resolution 

images [10]; ii) interactive multiview video streaming [11], 

[12]; and iii) interactive streaming of light field images 

captured by high density camera-arrays [13]. In this context, 

although standardized LF representation and coding solutions 

are still in an early stage of development, various LF coding 

solutions have been already proposed in the literature. 

A. Previous Work 

LF coding solutions available in the literature can be 

categorized in the following three main approaches, depending 

on the data format and prediction schemes that are adopted. 

1. LF raw data-based coding 

This category corresponds to encoding and transmitting the 

(raw) LF image in its entirety. As a result of the used optical 

system, the LF image corresponds to a two-dimensional (2D) 

array of micro-images (MIs), and a significant cross-

correlation exists between these MIs in a neighborhood [14]. 

To exploit this inherent MI cross-correlation, a non-local 

spatial prediction scheme is used, which is usually integrated 

(but not necessarily so) on a standard 2D image coding 

solution, such as the state-of-the-art High Efficiency Video 

Coding (HEVC). Following this approach, it has been shown, 

in [14]–[17], that efficient LF image coding can be achieved 

by using the concept of Self-Similarity (SS) compensated 

prediction. Similarly to motion estimation, a block-based 

matching algorithm is used to estimate the ‘best’ predictor 

block for the current block over the previously coded and 

reconstructed area of the current picture. This predictor block 

can be generated from a single candidate block [14], [15] or 
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from a combination of two different candidate blocks [16], 

[17]. Furthermore, an alternative prediction scheme based on 

locally linear embedding was proposed in [18], [19], where a 

set of nearest neighbor patches were linearly combined to 

predict the current block. More recently, in [20], a prediction 

scheme based on Gaussian Process Regression (GPR) was 

also proposed for LF image coding. In this case, the prediction 

was modeled from a set of nearest neighbor patches as a non-

linear (Gaussian) process, and GPR was then used for 

estimating the predictor block. 

However, although these coding schemes have shown to 

achieve significant compression gains when compared to 

state-of-the-art 2D image coding solutions [14]–[20], 

transmitting the entire LF data without a scalable bitstream 

may represent a serious problem since the end-user needs to 

wait until the entire LF data arrives before he/she can visualize 

and interact with the content. 

2. Multiview- and PVS-based LF coding 

Some other coding schemes proposed to extract the 

viewpoint images (VIs) from the LF content to be represented 

as multiview content [21]–[24], or as a Pseudo Video 

Sequence (PVS) [25]–[28]. In these coding approaches, each 

VI is constructed by simply extracting one pixel with the same 

relative position from each MI. The VI-based multiview 

content is then encoded using a 3D video coding solution, for 

instance, the Multiview Video Coding (MVC) [29] (in [21]–

[23]) and the multiview extension of HEVC (MV-HEVC) [30] 

(in [24]). An advantage of using a standard 3D video coding 

solution is that scalability and backward compatibility are 

straightforwardly supported. Differently, the PVS of VIs is 

encoded using a 2D video coding standard, such as 

H.264/AVC [29] (in [25]), or HEVC [31] (in [26]–[28]). 

Although conceptually different (in terms of coding 

architecture), both multiview- and PVS-based coding 

approaches have the same basic purpose of providing an 

efficient prediction configuration for better exploiting the 

correlations between the views. For this, different scanning 

patterns for ordering the views, as well as different inter-view 

prediction structures are proposed in [21]–[27] to improve the 

coding efficiency. 

However, although these approaches can provide scalability 

in the coded bitstream, it is possible to observe in the literature 

(e.g., in [15], [25], [27]) that their coding performance may 

vary significantly depending on the LF optical setup that is 

used for acquiring the LF content. As will be further discussed 

in Section II.B, there are basically two LF camera setups: i) 

unfocused (a.k.a. plenoptic camera 1.0); and ii) focused (a.k.a. 

plenoptic camera 2.0). For an LF image captured using the 

unfocused LF camera setup, each VI represents an 

orthographic projection of the captured scene that is all in 

focus [2]. On the other hand, for an LF image captured using a 

focused camera setup, a VI can be interpreted as a subsampled 

perspective of the captured scene (as in [32]) or as a low 

resolution rendered view that is all out of focus (as in [33]), 

which, consequently, presents aliasing artifacts. Furthermore, 

using an MLA with larger microlenses pitch leads to greater 

aliasing in the extracted VI [33]. Since these aliasing artifacts 

are difficult to predict and to compress, multiview- and PVS-

based LF coding solutions usually present a significantly 

worse coding performance for LF content captured using a 

focused LF camera setup (as shown in [15]). 

It should be noticed that an alternative to the multiview 

representation based on these aliased VIs for focused LF 

cameras was proposed in [34], [35] using super-resolved 

rendered views. In this case, a scalable coding approach is 

used, which supports backward compatibility to legacy 2D and 

3D multiview displays in the lower layer while the highest 

layer supports the entire LF content. However, with this 

coding architecture, the end-user still needs to receive the 

entire scalable bitstream to have a viewing experience with the 

novel interaction functionalities supported by the LF content. 

3. Disparity-assisted LF coding 

Other coding schemes proposed to represent the LF data by 

a subsampled set of MIs with their associated disparity 

information [36]–[38]. As firstly proposed in [39], the grid of 

MIs is subsampled to remove the redundancy between 

neighboring MIs and to achieve compression. Thus, only the 

remainder set of MIs and associated disparity are encoded and 

transmitted. At the decoder side, the LF data is reconstructed 

by simply applying a disparity shift (in [36], [38]) or by using 

a Depth Image Based Rendering (DIBR) algorithm modified 

to support the multiple MIs as input views (in [37]), and 

followed by an inpainting algorithm to fill in the missing 

areas. However, in real-world images, the disparity/depth 

information is estimated from the acquired LF raw data, which 

introduces some inaccuracies. Hence, the quality of the 

reconstructed MIs – and, consequently, the quality of rendered 

views – is severely affected by these inaccuracies at the 

encoder side. Additionally, due to occlusion problems and 

quantization errors when (lossy) encoding this disparity/depth 

maps, some synthesized MIs might present too many missing 

areas to be filled [37], thus introducing even further 

inaccuracies. Instead of uniformly selecting the MIs as in [38], 

the selection is performed adaptively in [36], [37], so as to 

obtain better view reconstruction. 

However, a common characteristic of these approaches is 

that the quality of rendered views is negatively affected by the 

inaccuracies in the synthesis of the missing MIs, thus 

presenting a significant drop in the Peak Signal to Noise Ratio 

(PSNR) and Structural Similarity (SSIM) Index, mainly for 

natural content. In [38], the residue between the reconstructed 

LF image and the original LF image is also encoded and 

transmitted in an enhancement coding layer so as to provide 

better rendered views. Nevertheless, in this case [38], the end-

user still needs to decode the entire scalable bitstream to 

visualize these rendered views with better quality. 

B. Motivations and Contributions 

Among the advantages of employing a LF imaging 

approach is the ability to open new degrees of freedom in 

terms of content production and manipulation, supporting 

manipulation functionalities not straightforwardly available in 

conventional imaging systems, namely: post-production 

refocusing, changing depth-of-field, and changing viewing 

perspective. This means, for instance, that the user can receive 

captured LF content and interactively adjust the plane of focus 

and depth-of-field of the rendered content. Moreover, as part 

of the creative process, the content creator can define how to 
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organize the LF content to be sent to multiple end-users who 

may be using different display technologies, as well as 

applications, that allow different levels of interaction. In this 

sense, an efficient scalable LF coding architecture is desirable 

to accommodate in a single compressed bitstream a variety of 

sub-bitstreams appropriate for users with different 

preferences/requirements and various application scenarios: 

from the user who wants to have a simple 2D version of the 

LF content without actively interacting with it; to the user who 

wants full immersive and interactive LF visualization. 

Based on the abovementioned application scenarios, the 

contributions of this paper are: 

 Field Of View (FOV) scalability – To support the richer 

and flexible interaction functionalities that arise in LF imaging 

applications, a new scalability concept, named FOV 

scalability, and a novel Field Of View Scalable Light Field 

Coding (FOVS-LFC) solution are proposed. Taking advantage 

of the 4D radiance distribution, the FOV scalability 

progressively supports richer forms of the same LF content by 

hierarchically organizing the angular information of the 

captured LF data. More specifically, the base layer contains a 

subset of the LF raw data with narrower FOV, which can be 

used to render a 2D version of the content with very limited 

rendering functionalities. Following the base layer, one or 

more enhancement layers are defined to represent the 

necessary information to obtain more immersive LF 

visualization with a wider FOV. Therefore, this new type of 

scalability creates bitstreams adaptable to different levels of 

user interaction, allowing increasing degrees of freedom in 

content manipulation at each higher layer. This means that, for 

instance, a user who wants to have a simple 2D visualization 

will only need to extract the base layer of the bitstream, thus 

reducing the necessary bitrate and the required computational 

power. On the other hand, a user who wants to creatively 

decide how to interact with the LF content can promptly start 

visualizing and flexibly manipulating the LF content, even 

over limited bandwidth connections, by extracting only the 

adequate bitstream subsets (which fit in the available bitrate). 

Additionally, this coding architecture enables easy support to 

quality scalability and Region Of Interest (ROI) coding [40]. 

 Exemplar-based Inter-Layer (IL) coding tools – To 

improve the efficiency when coding an enhancement layer, 

two novel inter-layer prediction schemes are also proposed: 

i) a direct IL prediction, and ii) an IL compensated prediction. 

In the direct IL prediction, a set of samples from a previously 

coded layer is used as exemplar samples for estimating a good 

prediction block. Therefore, no further information about the 

used predictor block needs to be transmitted to the decoder 

side. The IL compensated prediction relies on an IL reference 

picture, which is constructed using samples from previously 

coded layers and a new exemplar-based [41] algorithm for 

texture synthesis. 

In a nutshell, the proposed FOVS-LFC solution is able to 

overcome some of the limitations of previously proposed LF 

coding solutions by providing: i) a scalable bitstream that 

supports richer and flexible manipulation functionalities (such 

as refocusing, changing perspective and depth-of-field) and 

backward compatibility with the current state-of-the-art 

HEVC standard [31]; ii) support for quality scalability and 

ROI coding; iii) high compression efficiency for LF content 

captured using different LF camera setups; as well as iv) high 

quality of rendered views in all hierarchical layers. 

C. Paper Outline 

The remainder of this paper is organized as follows. Section 

II briefly reviews the LF imaging principles that are important 

to understand the concepts discussed in this paper. Section III 

presents the concept of FOV scalability, while Section IV 

describes the FOVS-LFC solution architecture. Section V 

describes the exemplar-based inter-layer coding tools that are 

proposed for LF enhancement layer coding. Section VI 

presents the test conditions and experimental results; and, 

finally, Section VII concludes the paper. 

II. LF IMAGING TECHNOLOGY 

As illustrated in Fig. 1a, an LF camera basically comprises 

a main lens, and an MLA that lies at a distance 𝑏 of the image 

sensor. Therefore, different from a conventional 2D camera 

that captures an image by integrating the intensities of all rays 

(from all directions) impinging each sensor element 

(hereinafter referred to as pixel1) at position (x,y); in an LF 

camera, each pixel collects the light of a single ray (or of a 

thin bundle of rays) from a given angular direction (θ,φ) that 

converges on a specific microlens at position (x,y) in the 

array. This means that it is possible to sample the 4D radiance 

and organize it in a conventional 2D image, known as the 

(raw) LF image.  

To simplify the visualization of this 4D function 

(coordinates x, y, θ and φ), the flat Cartesian ray-space 

diagram [1], [42] shown in Fig. 2a is used in this paper, where 

only two dimensions – in this case, x and θ – are represented. 

A. LF Camera Setups 

As discussed in [2], [33], different LF camera setups can be 

derived from the basic elements in Fig. 1a (i.e., a main lens, 

and an MLA at a distance 𝑏 of the image sensor), namely: 

 Unfocused LF camera – In this setup, the main lens is 

focused on the microlens plane while the microlenses are 

focused at infinity as illustrated in Fig. 2b (top) (the sensor is 

placed at the MLA focal length f, i.e., 𝑏 = 𝑓 in Fig. 1a). 

Moreover, since microlenses usually have a much smaller 

focal length than the main lens, it is reasonable to admit that 

the main lens is at the microlenses optical infinity. 

Consequently, the radiance coming from the captured scene is 

refracted through the main lens and then split by each 

microlens in the array. This can be seen in Fig. 2b (bottom), 

where the captured radiance is split into different columns 

corresponding to the bundle of rays sampled as an MI at the 

sensor. Afterwards, the light rays that hit a single microlens 

are separated into different angular directions to be projected 

onto the pixels in the image sensor underneath. Hence, each 

small rectangle in Fig. 2b, corresponds to the tiny bundle of 

rays (with width given by the microlens aperture, 𝑑) that is 

integrated into a single pixel of the MI. Examples of LF 

cameras using this setup are the Lytro LF cameras [5]. 

 
1 For the sake of simplicity, a pixel is here understood as a three-

dimensional variable where each dimension contains the information of one 
color component: Red, Green, and Blue (RGB). 
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 Focused LF camera – As discussed in [2], [33], the 

unfocused LF camera (Fig. 2b) can be generalized to an 

alternative camera setup that is referred to as focused LF 

camera [33]. Examples of focused LF cameras are the Raytrix 

LF cameras [4]. In this setup, the main lens and the MLA are 

both focused in an image plane at a distance 𝑎 of the MLA 

plane, as illustrated in Fig. 2c (top). Thus, the main lens forms 

a relay system with each microlens, and the MLA works as a 

conventional camera array (with very low resolution and small 

baseline). As shown in [42], each MI will then capture what 

corresponds to a slanted stripe of the radiance (slope 𝑎−1), 

depicted by the ray-space diagram in Fig. 2c (bottom). 

Consequently, this configuration allows an effective increase 

in spatial resolution at the price of a decrease in angular 

resolution [2]. Comparing the ray-space diagram in Fig. 2b 

and c (bottom), it is possible to see that an MI captured using 

the focused LF camera setup contains more spatial 

information (at 𝑥 axis) than an MI captured using the 

unfocused LF camera setup (Fig. 2b). In a generalized LF 

camera, changing the distance 𝑏 will change the slope 𝑎−1 in 

Fig. 2c (bottom) and, consequently, the balance between 

providing larger angular or spatial resolution in the captured 

LF image [2]. A notable limit is when 𝑏 → 𝑓, 𝑎 → ∞, and this 

generalized setup corresponds to the unfocused LF camera. 

B. FOV in LF Cameras 

The FOV of a lens (typically expressed by a measurement 

of area or angle) corresponds to the area of the scene over 

which objects can be reproduced by the lens. In a conventional 

2D camera, the FOV is related to the lens focal length and the 

physical size of the sensor. In an LF camera, the microlens 

FOV is directly related to the aperture of the main lens. To 

illustrate this fact, Fig. 1a depicts the unfocused LF camera 

with two different aperture sizes (as shown by the blue and red 

aperture stops). As can be seen with the blue and the dashed 

red lines, all the rays coming from the focused subject will 

intersect at the MLA (at the image plane) and will then 

diverge until they reach the image sensor. Moreover, 

comparing the blue lines with the dashed red ones (in Fig. 1a), 

it is possible to see that the main lens aperture (or more 

specifically, the F-number2 of the main lens) needs to be 

matched to the F-number of the MLA to guarantee that MIs 

receive homogeneous illumination on their entire area, as seen 

in the blue line case (Fig. 1a). Otherwise, in the case of the 

dashed red line (Fig. 1a), pronounced vignetting (with the 

shape of the main lens aperture) will be visible in each MI, as 

illustrated in Fig. 1b. 

Moreover, as depicted in Fig. 1b, the common area where 

the FOV of all microlenses overlaps can be seen as a measure 

of the amount of angular information in the captured LF 

content. Note that, if there is MI vignetting (see dashed red 

lines in Fig. 1b), the microlens FOV will be further restricted 

and, consequently, the angular information will be narrowed. 

This means that it is possible to control the amount of angular 

information that is available in the captured LF content by 

adjusting the main lens aperture. This fact has motivated the 

FOV scalability concept that is presented in the following. 

III.  THE FOV SCALABILITY CONCEPT 

The basic idea of the proposed FOV scalability is to split 

the LF raw data into hierarchical subsets with partial angular 

information. Generally speaking, the FOV scalability can be 

thought of as a virtual increase in the main lens aperture (see 

Fig. 3a) from one scalable layer to the next higher layer, 

corresponding to a wider microlens FOV and virtual narrower 

vignetting inside each MI (along its border). 

A. LF Data Organization for FOV Scalability 

As was shown in Section II, each pixel underneath its 

corresponding microlens gathers light information from a 

given angular direction. Therefore, it is possible to split the 

overall angular information available in the captured LF image 

by properly selecting subsets of pixels from each MI. This 

concept is depicted in Fig. 3 for a hypothetical case in which 

three subsets of pixels are sampled from each MI. Therefore, 

the angular information is split into three hierarchical layers as 

seen in Fig. 3b (for the generalized focused LF camera setup). 

In each lower layer (from top to bottom in Fig. 3b), the 

 
2 In optical terminology, the F-number corresponds to the ratio between the 

lens focal length and its aperture diameter. 
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Fig. 2 Parameterization of the 4D radiance in an LF camera: (a) A single light 

ray is described by the position it intersects the plane 𝑥 and its slope 𝜃. Each 
possible ray in the ray diagram (top) corresponds to a different point in the 
Cartesian ray-space diagram (bottom); (b) Sampling the radiance at the main 

lens image plane for the unfocused LF camera (when 𝑏 = 𝑓); and (c) 
Sampling the radiance at the image plane for the focused LF camera (when 

𝑏 > 𝑓) 
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microlenses FOV will be further restricted (see Fig. 3a) and, 

consequently, the angular information of the system will be 

narrowed. 

The angular information is chosen to grow from the central 

to the border pixels in each MI due to two essential reasons: i) 

the central angular direction is usually the perspective the 

shooter will point towards when capturing the LF image; and 

ii) pixels at the MI border are usually more affected by optical 

and geometric distortions than the central pixels. As an 

illustrative example, Fig. 3c shows the selection of the three 

subsets of pixels with different angular information from each 

MI to build a FOV scalable data format. For the base layer in 

Fig. 3c (bottom), only a set with central angular information is 

gathered. For the enhancement layers 1 and 2 in Fig. 3c 

(respectively, middle and top), the samples progressively 

contain wider angular information (from the center to the 

borders). 

Due to the nature of the LF imaging technology, where 

angular (θ,φ) and spatial (x,y) information is spatially 

arranged in a 2D image (i.e., the LF image), the increased 

angular information in each higher FOV scalable layer implies 

also an increase in the mega-ray3 resolution of the LF content 

in the layer. This means that resolution scalability is inherently 

associated to the FOV scalability (see Fig. 3c). 

It is also important to notice that the FOV scalable LF data 

format is always restricted by the optical setup used when 

acquiring the original LF content. For instance, the total 

amount of angular information that is available to be 

subsampled in each MI is controlled by: 

 
3 Mega-ray is a measure of light field data capture that corresponds to the 

number of rays that are captured by the image sensor. This is numerically 
given by the resolution of the LF camera image sensor. 

 Real aperture size – As seen in Section II.B, the (real) 

main lens aperture used in the LF content acquisition controls 

the amount of light angular information that is admitted 

through the LF camera optical system and that is sampled by 

the MIs. 

 Distance 𝑏 in the generalized (focused) LF camera – As 

discussed in Section II.A, the distance 𝑏 (Fig. 1a) controls the 

balance between angular and spatial resolution in the captured 

LF image. Then, the closer 𝑏 is to the MLA focal length, 𝑓, 

the wider angular information is sampled by the MIs (Fig. 2). 

B. Application of the FOV Scalability for Flexible Interaction 

The great advantage of the proposed FOV scalable data 

format is the increased flexibility it gives to the authoring 

process. This means that the content creator is able to select 

the number of hierarchical layers and the size of the subset of 

pixels to be sampled for each layer as a part of the creative 

process. 

With this format, it is possible to define new levels of 

scalability, for instance, in terms of the following rendering 

capabilities: 

 Changing perspective – It is straightforward to see that 

narrowing the FOV of each MI will limit the angular 

information in lower scalable layers and, consequently, the 

number of different viewpoint perspectives that are possible to 

render. Therefore, the higher the layer is, the greater the 

number of available viewpoints is for the user’s interaction. 

 Changing focus (refocusing) – Refocusing can be seen as 

virtually translating the image plane of the LF camera to 

another plane in front or behind it. Briefly, narrowing the FOV 

of the MI in each scalable layer will result in fewer depth 

planes that are available for refocusing. Hence, the higher the 

layer is, the richer the refocusing range is for the user’s 

interaction. 

 Varying depth-of-field – Increasing or decreasing the 

depth-of-field in LF images simply means to define larger or 

smaller (discrete) numbers of depth planes to be in focus 

simultaneously. Similarly to refocusing, limiting the MI 

angular information in each scalable layer will also limit the 

number of planes that are available to be in focus. Therefore, 

the higher the layer is, the deeper is the depth-of-field that can 

be selected during the user’s interaction. 

Therefore, the author can decide which perspective(s) and 

depth plane(s) need to be in focus when presenting the content 

in each of the hierarchical layers. Depending on his/her 

decision, narrower or wider angular information needs to be 

gathered for these layers. 

C. LF Data Organization for ROI Coding 

Another advantage of the proposed FOV scalable data 

format is the ability to enable easy integration of ROI coding 

[40], [43]. ROI coding can be an important functionally, 

especially in limited network channels [43], in applications 

scenarios where some portions of the visualized content are of 

higher importance than others. In the proposed FOV scalable 

data organization, this functionality would allow further 

flexibility in the bitstream for supporting the new interactive 

manipulations capabilities in the LF visualization. 

For instance, for an LF image with very large resolution, the 

size of the compressed bitstream may be still considerably big 

 

 

  

 

  

 

  
(a) (b) (c) 

Fig. 3 The concept of FOV Scalability for a hypothetical three-layer approach: 

(a) Ray tracing diagram showing that three hierarchical layers of FOV 
Scalability can be sampled by properly selecting three subsets of pixels (with 

different colors) from each MI, corresponding to a virtual increase in the main 

lens aperture; (b) Corresponding ray-space diagram showing the angular 
information in each hierarchical layer; and (c) Illustrative example for 

gathering the three subsampled set of pixels from each MI. From the base 

layer (bottom) to the last enhancement layer (top), the FOV is wider and, 

consequently, the LF content resolution progressively grows as well 
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in some LF enhancement layers to be streamed efficiently. 

Thus, a solution would be to send in these layers only a 

portion of the image which is of the most interest (i.e., the 

ROI) with wider FOV. Therefore, the end-user receives a 

coarse version of the LF content in the base layer and, if the 

network conditions permit, he/she has the option of 

interactively refining a portion or portions of the coarse 

received LF content with the new manipulation functionalities 

(such as refocusing, changing perspective and depth-of-field) 

by decoding further enhancement layers. 

Fig. 4 illustrates this concept for a hypothetical case in 

which three hierarchical layers are defined. In the base layer 

(bottom), a coarse version of the LF content is gathered with 

very restricted FOV. Following this, there is a great variety of 

options for defining the ROI enhancement layers. Two of 

these possibilities are depicted in Fig. 4a and b. In Fig. 4a, the 

highest ROI enhancement layer (top) considers the same ROI 

as the previous layer, but with wider FOV. Differently, in Fig. 

4b, the highest ROI enhancement layer considers the same 

FOV as the previous layer but increases the ROI size. In both 

cases, a similar amount of texture information is gathered in 

the highest layer. 

Additionally, Fig. 5 illustrates examples of refinements, in 

terms of FOV manipulation functionalities, which can be 

allowed by using the ROI enhancement layers defined in Fig. 

4a. Fig. 5a shows a central view rendered from the coarse 

version of the LF content in the base layer. In this case, the 

amount of LF information that is coded and transmitted is 

about 6 times less compared to the complete three-layered 

scalable bitstream in Fig. 4a. However, it can be seen that this 

significant reduction in terms of bits comes at the expense of 

limited FOV manipulation functionalities. For instance, it is 

not possible for an end-user to adjust the focus at the object in 

the man’s hand, since it is outside the refocusing range 

allowed in the base layer (Fig. 4a). Differently, Fig. 5b depicts 

the refinement in the plane of focus that becomes available 

when decoding the ROI enhancement layer 2. 

Moreover, Fig. 5c illustrates a possible refinement in the 

rendered view perspective that becomes available in the ROI 

enhancement layer 2. In this case, the perspective is slightly 

changed inside the ROI (to the left) while fixing the non-ROI 

 

 

  

  
(a) (b) 

Fig. 4 Illustrative examples for gathering three hierarchical layers from the 

base layer (bottom) to the last enhancement layer (top) to enable the ROI 
functionality. The amount of information gathered in each layer is depicted 

with proportional sizes: (a) The last ROI enhancement layer (top) considers 

the same ROI as the previous layer, but with wider FOV; (b) The last ROI 
enhancement layer (bottom) considers the same FOV as the previous layer but 

with a larger ROI. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5 Examples of refinements in terms of refocus and perspective 
manipulation functionalities allowed by using the ROI enhancement layers in 

Fig. 4a: (a) The central view rendered from the coarse version of the LF 

content available in the base layer; (b) The refinement in the plane of focus 
when overlaying the ROI enhancement layer 2, for focusing at the object on 

the man’s hand; and (c) Changing the perspective (to the left) inside the ROI 

while fixing the non-ROI area in the central view. 
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area in the central view. It should be noticed that some 

blending inconsistencies may appear, in this case, where the 

ROI and non-ROI join, (e.g., in the man’s beard and knee in 

Fig. 5c). A possible solution to this is to use an arbitrarily 

shaped ROI instead of a rectangular one. This solution will be 

considered in the future work. 

IV. PROPOSED FOVS-LFC ARCHITECTURE 

The coding architecture adopted in the proposed FOVS-

LFC solution is built upon a predictive and multi-layered 

approach, as depicted in Fig. 6. 

A. Coding Flow 

The coding information flow in the proposed FOVS-LFC 

architecture is presented in the following: 

 LF decimation – As illustrated in Fig. 6a, the LF data is 

firstly decimated into several layers, where higher layers 

contain LF content with wider FOV. In this process, the 

content creator will select the number of hierarchical layers 

and the size of the subset of pixels to be sampled for each 

layer. The decision of having narrower or wider angular 

information in each hierarchical layer may be made, for 

example, targeting a set of particular application scenarios. 

The base layer contains a sub-sampled portion of the LF data, 

which can be used to render a 2D version of the content with 

limited interaction capabilities (narrow FOV, limited in focus 

planes, and shallow depth-of-field). As shown in Fig. 6b, this 

base layer is coded with a conventional HEVC intra encoder 

to provide backward compatibility with a state-of-the-art 

coding solution, and the reconstructed picture is used for 

coding the higher layers. Following the base layer, one or 

more enhancement layers (enhancement layers 1 to N in Fig. 

6a) are defined to represent the necessary information to 

obtain more immersive LF visualization. Each higher 

enhancement layer picture contains progressively richer 

angular information, thus increasing the LF data manipulation 

flexibility. Finally, the last enhancement layer represents the 

additional information to support full LF visualization with 

maximum manipulation capabilities. Each enhancement layer 

is encoded with the proposed LF enhancement layer codec 

seen in Fig. 6b, which is based on the HEVC architecture and 

uses the following new and modified modules: 

 Direct IL prediction – To improve the RD performance 

when coding an LF enhancement layer, a new direct IL 

prediction is proposed, as shown in Fig. 6b. This direct IL 

prediction aims at exploiting the redundancy between adjacent 

layers to implicitly derive an IL predictor block for encoding 

the current block in an LF enhancement layer picture. As a 

result, the decoder can simply use the same process for 

inferring the predictor block. To avoid further signaling, only 

an index is transmitted together with the coded residual 

information, which is used to distinguish the direct IL 

prediction from the conventional HEVC merge mode [31]. 

The process to derive the direct IL predictor is presented in 

Section V.A. 

 IL compensated prediction – A new IL compensated 

prediction can also be used to further improve the LF 

enhancement layer coding efficiency by removing redundancy 

between adjacent layers. For this, an enhanced IL reference 

picture is constructed and used as a new reference picture 

when encoding the current LF enhancement layer picture. To 

construct this enhanced IL reference picture, an exemplar-

based texture synthesis algorithm is used, which is presented 

in Section V.B. If this IL prediction mode is used, the residual 

information and an IL vector are coded and transmitted to the 

decoder side. 

 SS prediction – Since the proposed FOV scalable data 

organization still presents high redundancy between adjacent 

MIs (or decimated MI texture samples), the SS prediction (see 

Section I.A.1), previously proposed by the authors [15], can 

also be used as an alternative prediction to exploit this existing 

MI redundancy and to improve coding efficiency within each 

  
(a) (b) 

Fig. 6 The FOVS-LFC architecture (novel and modified blocks are highlighted in blue): (a) The LF decimation process to generate content for each hierarchical 

layer; (b) Proposed coding architecture in which one or more enhancement layers (from 1 to N-1) are coded with the proposed LF enhancement encoder 
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LF enhancement layer. As a result, the residual information 

and SS vector(s) are coded and sent to the decoder. 

 General coding control –The decision among using 

conventional HEVC intra prediction, SS, direct IL and IL 

compensated prediction is made in a Rate-Distortion (RD) 

optimization manner [44]. 

Header formatting & Context-Adaptive Binary Arithmetic 

Coding (CABAC) – Additional syntax elements are carried 

through the high-level syntax bitstream to support FOV 

scalability. These are acquisition information (e.g., MI 

resolution and LF decimation information) and dependency 

information (for signaling the use of SS and IL prediction). 

Residual and prediction signaling are coded using CABAC. 

 

B. Quality Scalability and ROI Coding Support 

In addition to the FOV scalability, other functionalities are 

straightforwardly supported by the proposed FOVS-LFC 

solution, notably: 

 

 Quality Scalability – Quality scalability can be achieved 

by quantizing the residual texture data in an LF enhancement 

layer with a smaller Quantization Parameter (QP) size relative 

to that used in the previous hierarchical layer. The QP values 

to be used in each layer can be adaptively adjusted to achieve 

the best tradeoff between quality and bitrate consumption. 

 ROI Coding – In this case, the encoder can send, in 

different FOV enhancement layers, the information of the ROI 

with richer manipulation capabilities and better visual quality, 

at the expense of limited manipulation capabilities and 

potential lower visual quality in the background. For this, an 

adaptive quantization approach can also be used to proper 

assign reasonable bit allocation among different scalable 

layers. 

V. EXEMPLAR-BASED IL CODING TOOLS 

To achieve a high coding efficiency, the proposed FOVS-

LFC solution relies on two exemplar-based IL coding tools 

detailed in this section: i) direct IL prediction, and ii) IL 

compensated prediction. 

A. Direct IL Prediction 

Similarly to template matching [45], the proposed direct IL 

prediction uses an implicit approach to avoid transmitting any 

information about the used predictor block. Hence, the 

decoder can simply use the same process for inferring the 

predictor block to be used for reconstructing the current block 

(using the decoded residual information).  

The process to derive the IL predictor block can be divided 

in the following two steps. 

1. Exemplar Block Derivation 

In this first step, an exemplar-block is derived using the 

coded and reconstructed samples from a previous FOV 

scalable layer (referred to as the reference layer). This 

exemplar-block will then be used for implicitly finding a 

prediction to the current block, 𝐼(𝐱), at position 𝐱 = (𝑥, 𝑦) in 

the LF enhancement layer picture being coded (referred to as 

current layer). 

Since a lower layer has narrower FOV and, consequently, a 

lower number of texture samples, it is firstly necessary to re-

organize the texture information to align the MI samples from 

the reference layer according to the MI samples in the current 

layer. As a result, the reference layer is then represented as a 

picture with the same spatial resolution of the current layer 

picture and comprising a sparse set of known MI samples, as 

illustrated by the gray blocks in Fig. 7. This sparse picture is 

hereinafter referred to as sparse IL reference picture. 

As the output of this step, an exemplar block, 𝑃(𝐱), with the 

same size and co-located position to the current block, 𝐼(𝐱), is 

derived from the sparse IL reference picture (Fig. 7). 

2. Direct IL Prediction Estimation 

In this step, the exemplar block, 𝑃(𝐱), that was derived in 

the previous step is used as a template (similarly to template 

matching [45]) for estimating the ‘best’ predictor block to the 

current block, 𝐼(𝐱). For this, a matching algorithm is used to 

find the candidate block that ‘best’ agrees with 𝑃(𝐱) in the 

previously coded and reconstructed area of the current layer 

picture (Fig. 7). However, the ‘best’ candidate block is chosen 

by matching only the known samples of 𝑃(𝐱) (referred to as 

exemplar samples), since these are the only samples available 

at the decoding time. 

Therefore, let 𝑃(𝐱) be a column vector containing the 𝑝-

pixel samples of the exemplar block, where only the 𝑝𝑒-pixel 

exemplar samples (Fig. 7) are known at decoding time. Also, 

let 𝐼(𝐱 − 𝐯) be a column vector containing the 𝑝-pixel 

previously coded and reconstructed samples of a candidate 

predictor block in the current layer picture (Fig. 7). This 

candidate predictor block is displaced from 𝐼(𝐱) by the vector 

𝐯 (Fig. 7). Since 𝑃 contains (𝑝 − 𝑝𝑒) unknown samples, it can 

be modeled as P =A Ĩ, where 𝐀 is a binary mask in which only 

the corresponding known 𝑝𝑒 sample positions are non-zero. 

Thus, 𝐀 can be represented as a 𝑝 × 𝑝  binary diagonal matrix 

whose (𝑝 − 𝑝𝑒) unknown diagonal samples are set to zero. 

Finally, since the mask 𝐀 is known a priori, the ‘best’ 

candidate predictor block can be simply found by solving the 

matching algorithm in (1). 

 min
𝐯,𝐼(𝐱−𝐯) ⊂𝐖 

‖𝑃(𝐱) − 𝑨 𝐼(𝐱 − 𝐯)‖
1
 (1)  

To keep the complexity low, the predictor block is searched 

inside a limited search window, 𝐖, as depicted in Fig. 7 (i.e., 

𝐼(𝐱 − 𝐯) ⊂ 𝐖), and the ℓ1-norm (or the sum of absolute 

differences), ‖ ‖1, is used as the matching criterion in (1). 

 
Fig. 7 Exemplar-based direct IL prediction, where an implicit predictor block 

for the current block is estimated by solving (1). In this process, the candidate 
block (within the search window W in the current layer picture) that ‘best’ 

agrees with the exemplar block is chosen as the predictor block. 
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B. IL Compensated Prediction 

To further improve the LF enhancement layer coding 

efficiency, an IL compensated prediction is also proposed, 

which relies on an enhanced IL reference picture. This section 

describes the process for building the enhanced IL reference. 

1. Input Information 

The input information for this process is the coded and 

reconstructed samples from a reference layer picture that are 

properly aligned to the MI samples in the current layer picture. 

As seen in Section V.A.1, this re-arrangement results in the 

sparse IL reference picture (Fig. 7) that comprises a sparse set 

of known MI samples, as depicted in Fig. 8. 

This sparse IL reference picture is used as the basis for 

building the enhanced IL reference picture. In this process, an 

exemplar-based texture synthesis algorithm is used to find a 

good estimation to fill in the unknown data in the sparse IL 

reference picture. This is clearly an ill-posed problem; 

however, it is still possible to obtain a realistic approximate 

solution by imposing additional constraints coming from the 

physics of the problem. This is done here by using the prior 

knowledge that neighboring MI samples present significant 

cross-correlation, and for this reason, it is likely to find the 

unknown region of a particular MI in an area of neighboring 

MIs. This problem is formalized as follows. 

2. Problem Formulation 

Firstly, the unknown pixels in the sparse IL reference 

picture are set to zero. Moreover, this sparse IL reference 

picture is divided into 𝑛-pixel non-overlapping patches, 𝜙𝑠, to 

apply the texture synthesis algorithm (Fig. 8). Each patch is 

then given by 𝑛𝑠 known samples – referred to as the support 

samples – and (𝑛 − 𝑛𝑠) unknown samples to be synthesized 

(Fig. 8). Hence, each patch can be represented as the product 

of a texture column vector, 𝜙𝑠, and a binary mask, 𝐒, in which 

all but (𝑛 − 𝑛𝑠) samples have value equal to one. The binary 

mask 𝐒 is given by an 𝑛 × 𝑛 binary diagonal matrix with the 

respective (𝑛 − 𝑛𝑠) unknown diagonal samples set to zero. 

Accordingly, the goal of the texture synthesis algorithm is 

to find an 𝑛-pixel exemplar patch 𝜙𝑒
𝑏𝑒𝑠𝑡(𝐱 − 𝛚) in the sparse 

IL reference picture – at position (𝐱 − 𝛚) – that ‘best’ agrees 

with the support samples of the patch 𝜙𝑠(𝐱)  at position 𝐱 =
(𝑥, 𝑦). To solve this, it can be assumed, without loss of 

generality, that the exemplar patch can be found in a 

neighborhood, 𝛀, of 𝐱 (i.e., 𝜙𝑒
𝑏𝑒𝑠𝑡(𝐱 − 𝛚) ⊂  𝛀) comprising 𝐾 

neighbor MIs (i.e.,  𝛀 = {𝑀𝑘}𝑘=1…𝐾 where 𝑀𝑘 denotes an MI) 

as shown in Fig. 8. Additionally, it is assumed that a candidate 

exemplar patch 𝜙𝑒 comprises only 𝑛𝑒 known pixels. 

Consequently, it can also be represented as the product of a 

texture column vector,  𝜙𝑒, and an 𝑛 × 𝑛 binary diagonal 

matrix, 𝐄, with (𝑛 − 𝑛𝑒) diagonal samples set to zero. 

Therefore, the best exemplar patch, 𝜙𝑒
𝑏𝑒𝑠𝑡, can then be 

found by solving the optimization problem in (2), 

 
min

𝜙𝑒(𝐱−𝛚)⊂ 𝛀,𝐀 
‖𝐁 ⋅ (𝜙𝑠(𝐱) − 𝜙𝑒(𝐱 − 𝛚))‖

1

+ 𝜆 × ‖𝑑𝑖𝑎𝑔(𝐈𝑛 − 𝐁)‖0 
(2)  

where 𝐁 corresponds to a binary diagonal matrix that 

represents the samples from 𝜙𝑠 and 𝜙𝑒 that overlap (i.e., 𝐁 =
𝐒 ⋅ 𝐄); 𝐈𝑛 corresponds to an 𝑛 × 𝑛 identity matrix; 𝑑𝑖𝑎𝑔( ) 

denotes a vector of the diagonal elements of a matrix; and ‖ ‖1 

e ‖ ‖0 denote ℓ1 and ℓ0 norms, respectively. 

The problem in (2) comprises a data-fitting term and a 

sparseness prior function, respectively. The former term tries 

to find the best match within the region where 𝜙𝑠 and 𝜙𝑒 

overlap, while the latter term penalizes candidate patches 

whose 𝑛𝑒-pixel region is too small. In addition to this, since 

the border of the MIs typically exhibits high intensity 

variations (mainly due to the vignetting), a further constraint is 

imposed to the problem formulated in (2) to guarantee that 

these high frequency samples from the borders of an MI 

sample, 𝑀k ⊂ 𝛀, do not affect negatively the synthesized 

patterns, which is to solve the problem in (2), subjected to: 

(𝜙𝑒(𝐱 − 𝛚) ∈ 𝑀𝑘) ∩ (𝜙𝑒(𝐱 + 𝛚) ∉ 𝑀𝑚≠𝑘) = { }. 

In the experimental results presented Section VI, the λ value 

(2) is selected empirically, and the patch size is selected to be 

a quarter of the size of an MI sample in the current layer. 

The presented exemplar-based solution is chosen due to its 

simplicity and effectiveness for tackling the proposed 

problem. However, better solutions might still be formulated, 

for instance, by adding an edge-preserving regularizer in (2), 

or by using superpixel-based inpainting [46]. Moreover, 

although the angular information is limited in each 

subsampled MI in a lower layer, it is still possible to derive 

disparity or ray-space information to reconstruct the discarded 

4D radiance samples at the receiver side. These solutions are 

left for future work. 

3. Texture synthesis 

Once the best patch 𝜙𝑒
𝑏𝑒𝑠𝑡 is obtained by solving (2), the 

synthesized region is derived by simply copying the samples 

of the region defined by 𝐄 ∖ 𝐁. This optimization process is 

iteratively repeated until all unknown samples are filled in or 

until the number of unknown samples stabilizes (i.e., the 

number of unknown samples remains the same between two 

iterations). Thus, at each iteration, the values of 𝜙𝑒 and 𝐁 are 

updated from the values found in the previous iteration. 

As an illustrative example, Fig. 9 shows a portion of the 

constructed enhanced IL reference picture for the LF 

enhancement layer 2 illustrated in Fig. 3c (top). 

 
Fig. 8 Exemplar-based texture synthesis algorithm for building an enhanced 

IL reference picture. For each patch 𝜙𝑠 in the sparse IL reference picture, the 

‘best’ candidate exemplar patch, 𝜙𝑒
𝑏𝑒𝑠𝑡, is derived by solving the optimization 

problem in (2). 
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VI. PERFORMANCE ASSESSMENT 

This section assesses the performance of the proposed 

FOVS-LFC solution. For this purpose, the test conditions are 

firstly introduced and, then, the obtained experimental results 

are presented and discussed. 

A. Test Conditions 

The performance assessment considered the following test 

conditions: 

 LF Test Images – Twelve LF test images captured using 

different optical acquisition setups and with different scene 

characteristics are used, as shown in Fig. 10 and Table I. 

Before being coding, the raw LF images were pre-processed in 

order to: i) align and center the microlens grid to the pixels 

grid; ii) discard incomplete MIs (at the border of the LF 

image) iii) transform from hexagonal to rectangular microlens 

grid (only if necessary, see Table I); and iv) correcting color 

and gamma. As suggested in [47], only after this pre-process 

the LF image was convert to Y’CbCr 4:2:0 color format (8 

bits) to avoid decreasing the visual quality after coding [47]. 

For LF test images whose calibration information was 

available (i.e., Fig. 10g to l), the Matlab LF Toolbox [48] was 

used for the pre-processing. It is worth noting that 

transforming from hexagonal to rectangular grid with the 

Matlab LF Toolbox results in an LF image with multiple black 

pixels at the MIs border. These black pixels were also 

discarded when pre-processing the LF test images. For the 

remaining LF test images (i.e., for the LF images in Fig. 10a 

to Fig. 10f, whose calibration information was not available), 

a DCT-based interpolation filter [49] was used for aligning 

and centering the microlens grid. 

 LF Decimation – To generate the content for each 

hierarchical layer, l, in the FOVS-LFC solution, a central 

texture sample block with size (2l+2×2l+2) is selected from 

each MI in the LF image to support FOV scalability. These 

squared texture sample blocks with a power of two size were 

here chosen to better fit into the CTU and PU partition 

patterns of HEVC [31]. However, the proposed scalable codec 

can be generalized for any texture sample block size and 

aspect ratio. The number of hierarchical layers varies for each 

LF test image and is given by ⌈1 2⁄ log2 𝑀⌉ for a squared MI 

with 𝑀 × 𝑀 pixels size (see Table I). Finally, the highest layer 

contains the entire LF image, whose resolution is shown in 

Table I. No ROI coding is considered in order to analyze the 

worst-case scenario in terms of the amount of texture 

information that is coded in each hierarchical layer. 

 Codec Software Implementation – The MV-HEVC 

reference software version 12.0 [30] is used as the base 

software for implementing the proposed FOVS-LFC codec. 

 Coding Configuration – Each LF test image is encoded 

using four different Quantization Parameter (QP) values: 22, 

27, 32, and 37, according to the HEVC common test 

conditions defined in [50]. The same QP value is used for 

coding all hierarchical layers in order to analyze the worst-

case scenario in terms of bitrate allocation. For both exemplar-

based IL prediction and for the SS prediction, a search 

window with w= 128 (see Fig. 7) is adopted. 

 RD Evaluation – For evaluating the overall RD 

performance of the proposed FOVS-LFC codec, two different 

objective quality metrics are considered, which are referred to 

as: i) Overall PSNRY; and ii) Rendering-dependent PSNRY. 

The overall PSNRY is calculated by taking the average luma 

Mean Squared Error (MSE̅̅ ̅̅ ̅̅ ) over the pictures in each 

hierarchical layer, and, then, converting it to the PSNR. 

Differently, the rendering-dependent PSNRY is measured in 

terms of the average luma PSNR calculated from a set of 

views rendered from the reconstructed LF content, similarly to 

the metrics proposed in [8]. To have a representative number 

of rendered views, a set of 11×11 views was rendered from 

uniformly distributed directional positions. For rendering the 

views from LF images captured using a focused LF camera 

setup, the algorithm proposed in [33] and referred to as Basic 

Rendering algorithm was used. In this case, the plane of focus 

was chosen to represent the case where the main object of the 

scene is in focus. For LF images captured using the unfocused 

LF camera setup, 11×11 VIs were extracted. The rate is 

calculated as the total number of bits needed for encoding all 

scalable layers divided by the number of pixels in the LF 

image given in Table I (bpp). 

In addition, the performance of the proposed FOVS-LFC 

solution is compared to the following solutions: 

      
(a) (b) (c) (d) (e) (f) 

      
(g) (h) (i) (j) (k) (l) 

Fig. 10 Example of a central view rendered from each light field test image: (a) Demichelis Spark [53], (b) Plane and Toy [53]; (c) Robot 3D [53]; (d) Fredo 
[54], (e) Seagull [54], (f) Laura [54], (g) Flowers [55], (h) Vespa [55], (i) Ankylosaurus_&_Diplodocus_1 [55], (j) Fountain_&_Vincent_2 [55], 

(k) Stone_Pillars_Outside [55], and (l) Friends_1 [55] 

   
(a)  (b) 

Fig. 9 A portion of the enhanced IL reference picture built for the 

enhancement layer 2 in Fig. 3c: (a) the sparse IL reference picture; (b) the 
enhanced IL reference picture built by solving (2); and, (c) the difference to 

the  original LF enhancement picture 
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 HEVC (Single Layer) – In this case, the entire LF raw data 

is encoded into a single layer with HEVC using the Main Still 

Picture profile [31].Since the proposed FOVS-LFC codec 

provides an HEVC-compliant base layer, this solution is used 

as the benchmark for non-scalable LF coding to compare the 

bit savings with the proposed scalable LF coding solution. 

Thus, it would correspond to the ideal RD performance if 

scalability was supported without any rate penalty. 

 FOVS-LFC (Simulcast) – This solution corresponds to the 

benchmark for the simulcast case, where all pictures from 

each hierarchical layer are coded independently with HEVC 

intra coding. For this, the MV-HEVC reference software 

version 12.0 is used with “All Intra, Main” configuration [50]. 

 FOVS-LFC (SS Simulcast) – In this case, each picture 

from each hierarchical layer is coded with the FOVS-LFC 

codec but only enabling the SS prediction and conventional 

HEVC intra prediction. Hence, not only local spatial 

prediction is exploited (with conventional intra prediction) but 

also the non-local spatial correlation between neighboring MIs 

(with SS prediction [15]). Since each scalable layer is still 

coded independently (from each other) when using the SS 

prediction, the proposed FOVS-LFC (SS Simulcast) can be 

seen as an alternative simulcast coding solution. 

 VI-Based PVS (Low Delay P) – This PVS-based solution 

represents a benchmark coding approach for providing 

scalability in the bitstream (as discussed in Section I.A.2). 

Similarly to what has been proposed in [25], [26], a PVS of 

VIs is coded using HEVC with the Low Delay P [50] 

configuration. However, to fairly compare this solution with 

the proposed FOVS-LFC solution, the QP values are kept the 

same for all VIs in the PVS. The VIs are scanned in outward 

clock-wise direction (referred to as spiral order) to form the 

PVS. 

 VI-Based PVS (Random Access) – In this case, the PVS 

of VIs scanned in spiral order is encoded using HEVC using 

the Random Access [50] configuration. Similarly to the 

previous solution – VI-based PVS (Low Delay P), the QP 

values are kept the same for all VIs in the PVS. 

For the FOVS-LFC (Proposed) solution, the base layer is 

encoded as an intra frame and the remaining LF enhancement 

layers are coded as inter B frames so as to allow bi-prediction. 

B. Analysis of Coding Efficiency and FOV Scalability 

Tables II and III present the RD performance of the 

proposed FOVS-LFC solution and the benchmark scalable 

solutions in terms of the Bjøntegaard Delta in PSNR (BD-

PSNR) and bitrate (BD-BR) [51] with respect to (w.r.t) HEVC 

(Single Layer) for all test images in Fig. 10. For the PSNR 

results, Table II considers the MSE̅̅ ̅̅ ̅̅  over the pictures in each 

hierarchical layer, while Table III considers the rendering-

dependent PSNR metric (see Section VI.A). 

As shown in Table II, the proposed FOVS-LFC solution 

presents better RD performance (0.38 dB or 7.92 % of bit 

savings in average) than the non-scalable HEVC (Single 

Layer) for most of the LF test images, independently of the 

used LF camera setup (i.e., focused versus unfocused). 

Moreover, significant coding gains of up to 3.87 dB or 

82.66 % of bit savings can be achieved for LF images that 

present more homogeneous texture areas (e.g., for the LF 

image in Fig. 10i). 

Considering the rendering-dependent PSNR metric in Table 

III, the proposed FOVS-LFC solution presents significant RD 

gains for focused LF images (0.72 dB or -12.66 % in average). 

For unfocused LF images, it is possible to support the FOV 

scalability with no performance loss in average. However, a 

comparison of the results in Tables II and III shows that the 

proposed FOVS-LFC is the solution with the best overall RD 

coding performance independently of the adopted quality 

metric. In terms of the rendering-dependent metric, the FOVS-

LFC (Proposed) is able to achieve in average for all LF images 

(in terms of BD metrics): 2.59 dB (or -42.0 %) w.r.t the 

FOVS-LFC (Simulcast); 1.40 dB (or -28.18 %) w.r.t. FOVS-

LFC (Simulcast SS); 2.83 dB (or -12.74 dB) w.r.t. PVS-based 

(Low Delay P); and 1.86 dB (or -10.54 %) w.r.t. PVS-based 

(Random Access). 

Similar conclusions were observed when considering the 

objective quality metrics computed on all Y’CbCr 

components. For this reason, these results are omitted to avoid 

significantly increasing the size of the paper. 

These results show that it is possible to support a FOV 

scalable bitstream with high coding efficiency for most of the 

LF test images (in comparison to the state-of-the-art HEVC). 

To complete this discussion, Section VI.D will analyze in 

more detail one of the worst-cases highlighted in Table II (i.e., 

for the LF image in Fig. 10c) where the overall RD 

performance of the proposed FOVS-LFC is worse than HEVC 

(Single Layer). This analysis will show that this RD 

performance penalty may be a negligible cost in some 

application scenarios considering the flexibility that is 

provided by the scalable bitstream in terms of LF interaction 

functionalities and bandwidth consumption. 

As usually observed, the significantly better performance of 

the FOVS-LFC solution comes at the price of additional 

computational load compared to HEVC (Single Layer). 

Regarding the SS and the IL compensated predictions, the 

encoder and decoder computational complexity is 

conceptually the same as for HEVC inter prediction [52]. 

Concerning the direct IL prediction, the encoder complexity is 

similar to HEVC inter prediction, but the decoder complexity 

is increased since for coded blocks that use this type of 

prediction the decoder must estimate the direct IL predictor 

block. Regarding the exemplar-based IL texture synthesis 

algorithm, encoder and decoder complexities are similar, and 

the algorithm is employed only once for each LF enhancement 

layer. A careful analysis of the execution time for encoding 

TABLE I DESCRIPTION OF EACH LF TEST IMAGE IN FIG. 10 

LF 

Image 

Resolution* 

(mega-ray) 
Camera 

Setup 
MLA packing MLA Pitch 

MI Size* 

(𝑀 × 𝑀) 

(a) 2812×1520 Focused Rectangular grid 300 µm 38×38 
(b) 1904×1064 Focused Rectangular grid 250 µm 28×28 

(c) 1904×1064 Focused Rectangular grid 250 µm 28×28 

(d) 7104 ×5328 Focused Rectangular grid 500 µm 74×74 
(e) 7104 ×5328 Focused Rectangular grid 500 µm 74×74 

(f) 7104 ×5328 Focused Rectangular grid 500 µm 74×74 

(g) 6864×4774 Unfocused Hexagonal grid 20 µm 11×11 
(h) 6864×4774 Unfocused Hexagonal grid 20 µm 11×11 

(i) 6864×4774 Unfocused Hexagonal grid 20 µm 11×11 

(j) 6864×4774 Unfocused Hexagonal grid 20 µm 11×11 
(k) 6864×4774 Unfocused Hexagonal grid 20 µm 11×11 

(l) 6864×4774 Unfocused Hexagonal grid 20 µm 11×11 

   *Values after pre-processing 
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and decoding each hierarchical layer using the proposed 

FOVS-LFC solution (according to the test conditions in 

Section VI.A) has shown that, in the worst case, the 

complexity load of the FOVS-LFC solution becomes larger 

than the HEVC (Single Layer) after coding/decoding two 

complete hierarchical layers. As will be seen in Section VI.D, 

scaling the complexity load may be advantageous since the 

user may not need to decode the complete bitstream to start 

visualizing and interacting with the LF content. 

C. Analysis of the Exemplar-Based Coding Tools Efficiency 

Comparing the results of the proposed FOVS-LFC solution 

with the FOVS-LFC (Simulcast) in Tables II and III, it can be 

seen that the FOVS-LFC (Proposed) outperforms this 

simulcast case with significant RD gains. These RD gains 

confirm the efficiency of the proposed FOVS-LFC in 

exploiting the redundancy in all domains, notably: i) local 

(using the HEVC intra prediction) and non-local (using the SS 

prediction) spatial redundancy within a single LF 

enhancement layer; and ii) the redundancy between the FOV 

scalable layers (using the proposed exemplar-based IL coding 

tools). Moreover, comparing these results with the FOVS-LFC 

(SS Simulcast), where the SS prediction is also available to be 

used in all LF enhancement layers, it can be seen that a 

considerable portion of the RD gains in the proposed FOVS-

LFC solution is due to the proposed exemplar-based IL coding 

tools (i.e., the direct IL, and the IL compensated predictions). 

D. RD Performance for Different Application Scenarios 

To further discuss the usability of the proposed scalable 

architecture, the RD coding performance is here analyzed for 

three possible application scenarios, for which the use of LF 

imaging can be advantageous and likely to happen in the 

future. For each of the considered scenarios, the corresponding 

RD performance of proposed FOVS-LFC is compared to 

HEVC (Single Layer), in which scalability is not supported, to 

analyze the advantages of the proposed FOVS-LFC solution in 

terms of the flexibility enabled in the bitstream. 

This analysis will consider one of the worst-case scenario 

highlighted in Table II (i.e., for the LF image Robot 3D in Fig. 

10c), where the FOVS-LFC solution overall RD performance 

is worse than HEVC (Single Layer), so as to show the 

advantageous flexibility of the proposed coding architecture in 

terms of interaction capabilities and compression efficiency in 

each layer. For this, Fig. 11 shows the RD performance for the 

LF image Robot 3D (Fig. 10c), in terms of PSNR of a central 

rendered view and the corresponding bpp in each of the 

following scenarios: 

TABLE III RD PERFORMANCE OF THE PROPOSED FOVS-LFC CODEC AGAINST THE BENCHMARK SOLUTIONS W.R.T. HEVC (SINGLE LAYER) (IN TERMS OF THE 

RENDERING-DEPENDENT PSNRY METRIC AND TOTAL NUMBER OF BITS FOR THE SCALABLE BITSTREAM) FOR ALL LF TEST IMAGES IN FIG. 10 

LF Image 

FOVS-LFC (Proposed) FOVS-LFC (Simulcast) FOVS-LFC (SS Simulcast) PVS-Based (Low Delay P) PVS-Based (Random Access) 

BD-PSNR 
[dB] 

BD-BR 
[%] 

BD-PSNR 
[dB] 

BD-BR 
[%] 

BD-PSNR 
[dB] 

BD-BR 
[%] 

BD-PSNR 
[dB] 

BD-BR 
[%] 

BD-PSNR 
[dB] 

BD-BR 
[%] 

(a) 0.33 -8.41 -3.20 129.44 -1.80 69.68 -6.40 341.90 -4.82 212.55 
(b) 0.01 0.07 -2.79 50.44 -1.50 28.04 -6.18 122.29 -4.33 86.53 

(c) -1.04 14.80 -4.61 77.97 -3.80 64.99 -9.47 177.23 -7.98 152.27 

(d) 1.58 -27.20 -4.90 125.64 -1.93 46.73 -8.02 250.54 -7.59 214.51 
(e) 2.21 -35.90 -5.46 158.99 -2.27 65.09 -5.51 147.50 -5.20 139.95 

(f) 1.24 -19.30 -6.11 143.73 -3.14 76.33 -6.14 115.39 -5.40 103.65 

(g) -0.85 21.53 -2.22 61.81 -2.06 56.78 0.43 -10.36 1.53 -30.63 
(h) 0.47 -13.91 -1.40 51.78 -0.59 19.99 2.02 -49.76 2.87 -60.91 

(i) 1.70 -64.44 -0.44 30.99 0.72 -35.75 2.60 -79.93 2.87 -81.77 
(j) 0.32 -7.58 -1.60 45.97 -0.81 21.51 2.41 -49.41 3.38 -61.22 

(k) -1.18 33.40 -2.12 63.00 -1.96 57.04 -1.36 54.71 0.10 -2.30 

(l) -0.69 24.94 -1.57 61.24 -1.38 52.30 -1.04 42.58 -0.05 1.55 

Avg. Foc. 0.72 -12.66 -3.46 75.09 -1.19 25.17 -5.73 140.70 -4.65 105.05 

Avg. Unf. 0.04 -1.01 -1.56 52.47 -1.01 28.65 0.84 -15.36 1.78 -39.21 

Avg. All 0.34 -6.83 -2.51 63.78 -1.10 26.91 -2.44 62.67 -1.44 32.92 

 

TABLE II RD PERFORMANCE OF THE PROPOSED FOVS-LFC SOLUTION AND THE BENCHMARK SOLUTIONS W.R.T. HEVC (SINGLE LAYER) (IN TERMS OF THE 

OVERALL PSNRY METRIC AND TOTAL NUMBER OF BITS FOR THE SCALABLE BITSTREAM) FOR ALL LF TEST IMAGES IN FIG. 10 

LF Image 

FOVS-LFC (Proposed) FOVS-LFC (Simulcast) FOVS-LFC (SS Simulcast) PVS-Based (Low Delay P) PVS-Based (Random Access) 

BD-PSNR 
[dB] 

BD-BR 
[%] 

BD-PSNR 
[dB] 

BD-BR 
[%] 

BD-PSNR 
[dB] 

BD-BR 
[%] 

BD-PSNR 
[dB] 

BD-BR 
[%] 

BD-PSNR 
[dB] 

BD-BR 
[%] 

(a) 0.56 -13.98 -1.99 61.64 -0.39 11.86 -3.98 162.97 -2.49 83.77 

(b) -0.08 1.12 -2.54 40.36 -0.92 15.38 -5.31 99.11 -3.39 62.76 

(c) -1.27 17.34 -3.11 43.97 -2.09 30.13 -7.38 128.07 -5.79 101.96 
(d) 0.79 -13.86 -4.93 111.29 -1.30 27.49 -6.68 184.50 -6.19 153.00 

(e) 1.57 -25.73 -4.49 108.06 -0.83 21.20 -3.55 86.02 -3.15 73.38 

(f) 0.73 -11.47 -5.59 115.79 -2.14 46.77 -4.86 88.95 -4.02 73.60 
(g) -0.89 22.37 -2.28 63.70 -2.04 55.54 0.91 -20.39 2.00 -38.10 

(h) 0.85 -22.92 -0.94 32.15 -0.01 0.86 2.49 -56.42 3.35 -65.74 

(i) 3.17 -82.66 1.10 -45.34 2.41 -74.53 3.75 -86.20 4.03 -87.87 
(j) 0.87 -18.61 -0.99 26.73 -0.09 2.51 2.96 -56.26 3.94 -66.25 

(k) -1.22 33.77 -2.23 65.07 -1.98 56.56 -1.02 39.29 0.47 -11.82 

(l) -0.56 19.56 -1.46 54.91 -1.18 43.10 -0.66 25.08 0.34 -10.15 

Avg. Foc. 0.38 -7.76 -3.78 80.19 -1.28 25.47 -5.29 124.94 -4.17 91.41 

Avg. Unf. 0.37 -8.08 -1.13 32.87 -0.48 14.01 1.41 -25.82 2.36 -46.66 

Avg. All 0.38 -7.92 -2.45 56.53 -0.88 19.74 -1.94 49.56 -0.91 22.38 
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 Scenario 1 (no interaction capabilities) – This first 

scenario supports the simplest LF visualization, in which the 

user only wants to visualize a simple 2D version of the LF 

content, possibly due to a limited bandwidth connection. In 

this case, the user would access (or start accessing) the LF 

content by decoding only the subset of the bitstream that 

corresponds to the base layer. As can be seen in Fig. 11a, the 

base layer corresponds to a very small percentage of the 

complete scalable bitstream and the RD efficiency of the 

proposed FOVS-LFC solution would greatly increase. 

 Scenario 2 (limited interaction capabilities) – This 

scenario supports applications in which the user can select 

different viewpoints or can interact with the content with a 

larger degree of freedom. Additionally, it would also support 

3D visualization of the LF content with horizontal and vertical 

motion parallax, but with narrower angular information. In 

this case, depending on the user’s demand and the network 

conditions, a different number of scalable layers would have 

to be decoded. Consider, for instance, that for two different 

users it is necessary to decode the bitstream up to 

enhancement layer 1 (for user 1) and up to enhancement layer 

2 (for user 2). The corresponding RD performance is 

illustrated in Fig. 11b. In both cases, it is still possible to 

significantly improve the coding efficiency compared to the 

HEVC (Single Layer). Fig. 12 illustrates a portion of the 

central views rendered from reconstructed frames in each 

scalable layer for the tested image Robot 3D. As expected, the 

richer angular information in higher layers (from Fig. 12a to 

Fig. 12d) allows the user to have larger degrees of freedom in 

manipulation (e.g., enabling a shallow depth-of-field). 

However, comparing Fig. 12b and Fig. 12c with Fig. 12d, it 

can be seen that in Fig. 12c the user may not need to decode 

the complete bitstream to have rendered views with similar 

perceived results to Fig. 12d. 

 Scenario 3 (full interaction capabilities) – This scenario 

supports LF applications in which the user demands full 

interaction capabilities and visualization with maximum 

angular information. This corresponds to the lower bound case 

of the RD performance when FOV scalability is provided to a 

user without limitations in the network bandwidth. Fig. 11c 

shows that this is the only case where the scalable solution 

proposed FOVS-LFC presents worse RD performance 

compared to the HEVC (Single Layer). However, Table III 

shows that for most of the LF test images the proposed FOVS-

LFC outperforms HEVC (Single Layer) with bit savings of 

17.19 % in average. Hence, comparing this worst-case 

scenario with the average case, this bit saving loss for 

allowing the scalable coding architecture may be a 

considerably small cost to pay for the increased flexibility. 

Moreover, differently from what happens in scalable LF 

solutions in the literature that rely on the accuracy of the depth 

estimation (as discussed in Section I.A.3), there is no 

significant discrepancy between the quality (in terms of 

PSNR) of a view rendered from the entire LF image coded in 

the latest layer (see Fig. 11c) and a view rendered from the LF 

content in a lower layer (see Fig. 11a and b). 

To complete this analysis, Fig. 13 illustrates the needed bits 

for encoding each of the scalable layers using the proposed 

FOVS-LFC solution compared to the bits needed for the non-

scalable HEVC (Single Layer) solution for all LF test images. 

From these results, it is possible to see that, in most cases, the 

rate cost to have the complete proposed FOVS-LFC solution 

does not exceed the cost of encoding the LF content in a single 

layer with HEVC. 

E. Comparison against PVS-based Coding Approaches 

It can be seen (Tables II and III) that the proposed 

FOVS-LFC solution architecture presents better overall RD 

performance than the PVS-based arrangement of VIs for both 

tested configurations (Low Delay P and Random Access). 

Moreover, it can be seen that the RD performance of these 

PVS-based coding solutions varies significantly depending on 

the LF camera setup that is used for capturing the LF test 

 
(a) 

 
(b) 

 
(c) 

Fig. 11 RD efficiency for Robot 3D regarding three different streaming scenarios for different user preferences and/or network conditions: (a) Scenario 1 – 

support of a 2D version of the LF content; (b) Scenario 2 – flexible support for LF applications with limited angular information; and (c) Scenario 3 – support for 
LF applications with full functionalities and angular information 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12 Example of a portion from rendered views (for test image Robot 3D in Fig. 10c) when using the proposed FOVS-LFC solution (with QP 22). Each image 

corresponds to a different hierarchical layer: (a) base layer; (b) enhancement layer 1; (c) enhancement layer 2; and (d) enhancement layer 3. It is possible to 
observe how the larger angular information in higher layer allows having richer depth-of-field effects when manipulating the rendered views. This can be 

noticeable mainly by the blur at the out-of-focus areas. 
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image. A significantly worse RD performance of PVS-based 

approach is observed for LF images captured using a focused 

LF camera setup. In these cases, the extracted VIs correspond 

to subsampled views with very low resolution and with 

significant aliasing artifacts (as discussed in Section I.A.2). 

Alternatives to deal with these aliased views are still possible, 

but would involve to work with a super-resolved LF image 

and/or to make use of depth information for improving the 

quality of these rendered views [32], [33]. In both cases, this 

would mean to increase the amount of information that is 

coded and transmitted to the decoder side. Assessing the RD 

performance of these alternative PVS-based coding 

approaches for LF images captured using a focused LF camera 

is out of the scope of this paper, but will be considered in 

future work. On the other hand, Tables II and III also show 

that the PVS-based arrangements is advantageous in terms of 

RD performance for coding LF images captured with 

unfocused LF cameras, outperforming the proposed 

FOVS-LFC solution. However, it is important to highlight that 

the proposed FOV scalability may be still advantageous in this 

case, in terms of the flexibility for supporting ROI 

enhancement layers, as discussed in Sections III.C and IV.B. 

Considering ROI enhancement layers, the proposed 

FOVS-LFC solution may also achieve a more competitive RD 

performance since less texture information is coded and 

transmitted in LF enhancement layers. This solution will be 

further studied in future work. 

Comparing the results of the PVS-based approaches for the 

different coding configurations (i.e., Low Delay P versus 

Random Access) shows that it is possible to improve the RD 

performance of the PVS-based approach by selecting 

enhanced inter-view prediction structures. In fact, it has been 

shown in the literature that a 2D inter-view prediction 

structure [23], [27] may lead to further RD gains for LF 

images captured using a unfocused LF camera setup. 

However, it should be noticed that these solutions have not 

addressed the problem of coding aliased VIs yet (as discussed 

in Section I.A.2). These solutions were not evaluated in this 

paper due to difficulties to implement them for the very high 

number of VIs in the LF test images in Table I (in order to 

avoid making decisions and modifications that might not 

perfectly reflect the original solutions in [23], [27]).  

 

VII. FINAL REMARKS 

This paper has proposed a flexible and efficient scalable 

coding framework for emerging LF applications that provides 

a novel type of scalability, here referred to as FOV scalability. 

The proposed FOVS-LFC solution comprises an HEVC 

backward compatible base layer and a flexible number of 

enhancement layers, which are coded using two new 

exemplar-based IL prediction schemes for improving the RD 

compression performance. The proposed scalable coding 

architecture satisfies many of the current requirements for the 

emerging image and video technologies, being easily 

adaptable to various user case scenarios demanding richer and 

immersive visualization. Experimental results have shown that 

the proposed FOVS-LFC solution can achieve significantly 

better RD performance compared to the tested benchmark 

scalable solutions, independently of the LF camera setup used 

for acquiring the content. Furthermore, the proposed scalable 

design provides flexibility in the rendering functionalities that 

emerge from LF imaging applications at no rate cost (in 

average) compared to the non-scalable benchmark HEVC. 

Additionally, it is shown that the compressed rendered views 

presented high quality in all hierarchical layers. 
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