4,482 research outputs found

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Automatic generation of human machine interface screens from component-based reconfigurable virtual manufacturing cell

    Get PDF
    Increasing complexity and decreasing time-tomarket require changes in the traditional way of building automation systems. The paper describes a novel approach to automatically generate the Human Machine Interface (HMI) screens for component-based manufacturing cells based on their corresponding virtual models. Manufacturing cells are first prototyped and commissioned within a virtual engineering environment to validate and optimise the control behaviour. A framework for reusing the embedded control information in the virtual models to automatically generate the HMI screens is proposed. Finally, for proof of concept, the proposed solution is implemented and tested on a test rig

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    Design Automation and Application for Emerging Reconfigurable Nanotechnologies

    Get PDF
    In the last few decades, two major phenomena have revolutionized the electronic industry – the ever-increasing dependence on electronic circuits and the Complementary Metal Oxide Semiconductor (CMOS) downscaling. These two phenomena have been complementing each other in a way that while electronics, in general, have demanded more computations per functional unit, CMOS downscaling has aptly supported such needs. However, while the computational demand is still rising exponentially, CMOS downscaling is reaching its physical limits. Hence, the need to explore viable emerging nanotechnologies is more imperative than ever. This thesis focuses on streamlining the existing design automation techniques for a class of emerging reconfigurable nanotechnologies. Transistors based on this technology exhibit duality in conduction, i.e. they can be configured dynamically either as a p-type or an n-type device on the application of an external bias. Owing to this dynamic reconfiguration, these transistors are also referred to as Reconfigurable Field-Effect Transistors (RFETs). Exploring and developing new technologies just like CMOS, require tackling two main challenges – first, design automation flow has to be modified to enable tailor- made circuit designs. Second, possible application opportunities should be explored where such technologies can outsmart the existing CMOS technologies. This thesis targets the above two objectives for emerging reconfigurable nanotechnologies by proposing approaches for enabling an Electronic Design Automation (EDA) flow for circuits based on RFETs and exploring hardware security as an application that exploits the transistor-level dynamic reconfiguration offered by this technology. This thesis explains the bottom-up approach adopted to propose a logic synthesis flow by identifying new logic gates and circuit design paradigms that can particularly exploit the dynamic reconfiguration offered by these novel nanotechnologies. This led to the subsequent need of finding natural Boolean logic abstraction for emerging reconfigurable nanotechnologies as it is shown that the existing abstraction of negative unate logic for CMOS technologies is sub-optimal for RFETs-based circuits. In this direction, it has been shown that duality in Boolean logic is a natural abstraction for this technology and can truly represent the duality in conduction offered by individual transistors. Finding this abstraction paved the way for defining suitable primitives and proposing various algorithms for logic synthesis and technology mapping. The following step is to explore compatible physical synthesis flow for emerging reconfigurable nanotechnologies. Using silicon nanowire-based RFETs, .lef and .lib files have been provided which can provide an end-to-end flow to generate .GDSII file for circuits exclusively based on RFETs. Additionally, new approaches have been explored to improve placement and routing for circuits based on reconfigurable nanotechnologies. It has been demonstrated how these approaches led to superior results as compared to the native flow meant for CMOS. Lastly, the unique property of transistor-level reconfiguration offered by RFETs is utilized to implement efficient Intellectual Property (IP) protection schemes against adversarial attacks. The ability to control the conduction of individual transistors can be argued as one of the impactful features of this technology and suitably fits into the paradigm of security measures. Prior security schemes based on CMOS technology often come with large overheads in terms of area, power, and delay. In contrast, RFETs-based hardware security measures such as logic locking, split manufacturing, etc. proposed in this thesis, demonstrate affordable security solutions with low overheads. Overall, this thesis lays a strong foundation for the two main objectives – design automation, and hardware security as an application, to push emerging reconfigurable nanotechnologies for commercial integration. Additionally, contributions done in this thesis are made available under open-source licenses so as to foster new research directions and collaborations.:Abstract List of Figures List of Tables 1 Introduction 1.1 What are emerging reconfigurable nanotechnologies? 1.2 Why does this technology look so promising? 1.3 Electronics Design Automation 1.4 The game of see-saw: key challenges vs benefits for emerging reconfigurable nanotechnologies 1.4.1 Abstracting ambipolarity in logic gate designs 1.4.2 Enabling electronic design automation for RFETs 1.4.3 Enhanced functionality: a suitable fit for hardware security applications 1.5 Research questions 1.6 Entire RFET-centric EDA Flow 1.7 Key Contributions and Thesis Organization 2 Preliminaries 2.1 Reconfigurable Nanotechnology 2.1.1 1D devices 2.1.2 2D devices 2.1.3 Factors favoring circuit-flexibility 2.2 Feasibility aspects of RFET technology 2.3 Logic Synthesis Preliminaries 2.3.1 Circuit Model 2.3.2 Boolean Algebra 2.3.3 Monotone Function and the property of Unateness 2.3.4 Logic Representations 3 Exploring Circuit Design Topologies for RFETs 3.1 Contributions 3.2 Organization 3.3 Related Works 3.4 Exploring design topologies for combinational circuits: functionality-enhanced logic gates 3.4.1 List of Combinational Functionality-Enhanced Logic Gates based on RFETs 3.4.2 Estimation of gate delay using the logical effort theory 3.5 Invariable design of Inverters 3.6 Sequential Circuits 3.6.1 Dual edge-triggered TSPC-based D-flip flop 3.6.2 Exploiting RFET’s ambipolarity for metastability 3.7 Evaluations 3.7.1 Evaluation of combinational logic gates 3.7.2 Novel design of 1-bit ALU 3.7.3 Comparison of the sequential circuit with an equivalent CMOS-based design 3.8 Concluding remarks 4 Standard Cells and Technology Mapping 4.1 Contributions 4.2 Organization 4.3 Related Work 4.4 Standard cells based on RFETs 4.4.1 Interchangeable Pull-Up and Pull-Down Networks 4.4.2 Reconfigurable Truth-Table 4.5 Distilling standard cells 4.6 HOF-based Technology Mapping Flow for RFETs-based circuits 4.6.1 Area adjustments through inverter sharings 4.6.2 Technology Mapping Flow 4.6.3 Realizing Parameters For The Generic Library 4.6.4 Defining RFETs-based Genlib for HOF-based mapping 4.7 Experiments 4.7.1 Experiment 1: Distilling standard-cells from a benchmark suite 4.7.2 Experiment 2A: HOF-based mapping . 4.7.3 Experiment 2B: Using the distilled standard-cells during mapping 4.8 Concluding Remarks 5 Logic Synthesis with XOR-Majority Graphs 5.1 Contributions 5.2 Organization 5.3 Motivation 5.4 Background and Preliminaries 5.4.1 Terminologies 5.4.2 Self-duality in NPN classes 5.4.3 Majority logic synthesis 5.4.4 Earlier work on XMG 5.4.5 Classification of Boolean functions 5.5 Preserving Self-Duality 5.5.1 During logic synthesis 5.5.2 During versatile technology mapping 5.6 Advanced Logic synthesis techniques 5.6.1 XMG resubstitution 5.6.2 Exact XMG rewriting 5.7 Logic representation-agnostic Mapping 5.7.1 Versatile Mapper 5.7.2 Support of supergates 5.8 Creating Self-dual Benchmarks 5.9 Experiments 5.9.1 XMG-based Flow 5.9.2 Experimental Setup 5.9.3 Synthetic self-dual benchmarks 5.9.4 Cryptographic benchmark suite 5.10 Concluding remarks and future research directions 6 Physical synthesis flow and liberty generation 6.1 Contributions 6.2 Organization 6.3 Background and Related Work 6.3.1 Related Works 6.3.2 Motivation 6.4 Silicon Nanowire Reconfigurable Transistors 6.5 Layouts for Logic Gates 6.5.1 Layouts for Static Functional Logic Gates 6.5.2 Layout for Reconfigurable Logic Gate 6.6 Table Model for Silicon Nanowire RFETs 6.7 Exploring Approaches for Physical Synthesis 6.7.1 Using the Standard Place & Route Flow 6.7.2 Open-source Flow 6.7.3 Concept of Driver Cells 6.7.4 Native Approach 6.7.5 Island-based Approach 6.7.6 Utilization Factor 6.7.7 Placement of the Island on the Chip 6.8 Experiments 6.8.1 Preliminary comparison with CMOS technology 6.8.2 Evaluating different physical synthesis approaches 6.9 Results and discussions 6.9.1 Parameters Which Affect The Area 6.9.2 Use of Germanium Nanowires Channels 6.10 Concluding Remarks 7 Polymporphic Primitives for Hardware Security 7.1 Contributions 7.2 Organization 7.3 The Shift To Explore Emerging Technologies For Security 7.4 Background 7.4.1 IP protection schemes 7.4.2 Preliminaries 7.5 Security Promises 7.5.1 RFETs for logic locking (transistor-level locking) 7.5.2 RFETs for split manufacturing 7.6 Security Vulnerabilities 7.6.1 Realization of short-circuit and open-circuit scenarios in an RFET-based inverter 7.6.2 Circuit evaluation on sub-circuits 7.6.3 Reliability concerns: A consequence of short-circuit scenario 7.6.4 Implication of the proposed security vulnerability 7.7 Analytical Evaluation 7.7.1 Investigating the security promises 7.7.2 Investigating the security vulnerabilities 7.8 Concluding remarks and future research directions 8 Conclusion 8.1 Concluding Remarks 8.2 Directions for Future Work Appendices A Distilling standard-cells B RFETs-based Genlib C Layout Extraction File (.lef) for Silicon Nanowire-based RFET D Liberty (.lib) file for Silicon Nanowire-based RFET

    Dynamic Yield Analysis and Enhancement of FPGA Reconfigurable Memory Systems

    Get PDF
    This paper addresses the issues of field programmable gate arrays (FPGA) reconfigurable memory systems with faulty physical memory cells and proposes yield measurement techniques. Static yield (i.e., the yield which does not take into account the inherited redundancy utilization for repair) and dynamic yield (i.e., the yield which takes into account the inherited redundancy utilization for repair) of FPGA reconfigurable memory systems and their characteristics are extensively analyzed. Yield enhancement of conventional memory systems relies on additional redundancy, but FPGA reconfigurable memory systems have inherited redundancy and customizability. Thus, they can accommodate numerous target memory configurations, and redundant memory cells, if any, can be used as spares to enhance the dynamic yield of a target memory configuration. Three fundamental strategies are introduced and analyzed; i.e., redundant bit utilization, redundant word utilization, and a combination of both. Mathematical analysis of those techniques also has been conducted to study their effects on the yield. Selecting the most yield enhancing logical memory configuration which can accommodate a target memory requirement among the candidate configurations is referred to as optimal fitting. Optimal fitting algorithms for single configuration fitting, sequential reconfiguration system fitting, and concurrent reconfiguration system fitting are investigated based on the proposed yield analysis techniques

    A reconfigurable real-time morphological system for augmented vision

    Get PDF
    There is a significant number of visually impaired individuals who suffer sensitivity loss to high spatial frequencies, for whom current optical devices are limited in degree of visual aid and practical application. Digital image and video processing offers a variety of effective visual enhancement methods that can be utilised to obtain a practical augmented vision head-mounted display device. The high spatial frequencies of an image can be extracted by edge detection techniques and overlaid on top of the original image to improve visual perception among the visually impaired. Augmented visual aid devices require highly user-customisable algorithm designs for subjective configuration per task, where current digital image processing visual aids offer very little user-configurable options. This paper presents a highly user-reconfigurable morphological edge enhancement system on field-programmable gate array, where the morphological, internal and external edge gradients can be selected from the presented architecture with specified edge thickness and magnitude. In addition, the morphology architecture supports reconfigurable shape structuring elements and configurable morphological operations. The proposed morphology-based visual enhancement system introduces a high degree of user flexibility in addition to meeting real-time constraints capable of obtaining 93 fps for high-definition image resolution

    Dynamic Yield Analysis and Enhancement of FPGA Reconfigurable Memory Systems

    Get PDF
    This paper addresses the issues of field programmable gate arrays (FPGA) reconfigurable memory systems with faulty physical memory cells and proposes yield measurement techniques. Static yield (i.e., the yield which does not take into account the inherited redundancy utilization for repair) and dynamic yield (i.e., the yield which takes into account the inherited redundancy utilization for repair) of FPGA reconfigurable memory systems and their characteristics are extensively analyzed. Yield enhancement of conventional memory systems relies on additional redundancy, but FPGA reconfigurable memory systems have inherited redundancy and customizability. Thus, they can accommodate numerous target memory configurations, and redundant memory cells, if any, can be used as spares to enhance the dynamic yield of a target memory configuration. Three fundamental strategies are introduced and analyzed; i.e., redundant bit utilization, redundant word utilization, and a combination of both. Mathematical analysis of those techniques also has been conducted to study their effects on the yield. Selecting the most yield enhancing logical memory configuration which can accommodate a target memory requirement among the candidate configurations is referred to as optimal fitting. Optimal fitting algorithms for single configuration fitting, sequential reconfiguration system fitting, and concurrent reconfiguration system fitting are investigated based on the proposed yield analysis techniques

    Sensitivity Evaluation Method for Aerospace Digital Systems with Collaborative Hardening

    Get PDF
    Complexity of current digital systems and circuits involves new challenges in the field of hardening and measuring circuits sensitivity under SEEs. In this work, a new solution for evaluating the SEU sensitivity of space systems based on using programmable logic devices is proposed. This solution is able to perform a deep analysis of fault effects in systems with hardware functionality distribution, taking into account the high complexity of the hardware nodes (complex programmable logic devices) and their collaborative hardening properties
    • …
    corecore