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Abstract

In the last few decades, two major phenomena have revolutionized the electronic
industry – the ever-increasing dependence on electronic circuits and the Comple-
mentary Metal Oxide Semiconductor (CMOS) downscaling. These two phenomena
have been complementing each other in a way that while electronics, in general,
have demanded more computations per functional unit, CMOS downscaling has
aptly supported such needs. However, while the computational demand is still
rising exponentially, CMOS downscaling is reaching its physical limits. Hence, the
need to explore viable emerging nanotechnologies is more imperative than ever.
This thesis focuses on streamlining the existing design automation techniques for
a class of emerging reconfigurable nanotechnologies. Transistors based on this
technology exhibit duality in conduction, i.e. they can be configured dynamically
either as a p-type or an n-type device on the application of an external bias.
Owing to this dynamic reconfiguration, these transistors are also referred to as
Reconfigurable Field-Effect Transistors (RFETs).

Exploring and developing new technologies just like CMOS, require tackling two
main challenges – first, design automation flow has to be modified to enable tailor-
made circuit designs. Second, possible application opportunities should be explored
where such technologies can outsmart the existing CMOS technologies. This thesis
targets the above two objectives for emerging reconfigurable nanotechnologies by
proposing approaches for enabling an Electronic Design Automation (EDA) flow
for circuits based on RFETs and exploring hardware security as an application that
exploits the transistor-level dynamic reconfiguration offered by this technology.

This thesis explains the bottom-up approach adopted to propose a logic syn-
thesis flow by identifying new logic gates and circuit design paradigms that
can particularly exploit the dynamic reconfiguration offered by these novel nan-
otechnologies. This led to the subsequent need of finding natural Boolean logic
abstraction for emerging reconfigurable nanotechnologies as it is shown that the
existing abstraction of negative unate logic for CMOS technologies is sub-optimal
for RFETs-based circuits. In this direction, it has been shown that duality in
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Boolean logic is a natural abstraction for this technology and can truly represent
the duality in conduction offered by individual transistors. Finding this abstraction
paved the way for defining suitable primitives and proposing various algorithms
for logic synthesis and technology mapping.

The following step is to explore compatible physical synthesis flow for emerging
reconfigurable nanotechnologies. Using silicon nanowire-based RFETs, .lef
and .lib files have been provided which can provide an end-to-end flow to
generate .GDSII file for circuits exclusively based on RFETs. Additionally, new
approaches have been explored to improve placement and routing for circuits
based on reconfigurable nanotechnologies. It has been demonstrated how these
approaches led to superior results as compared to the native flow meant for CMOS.

Lastly, the unique property of transistor-level reconfiguration offered by RFETs
is utilized to implement efficient Intellectual Property (IP) protection schemes
against adversarial attacks. The ability to control the conduction of individual
transistors can be argued as one of the impactful features of this technology and
suitably fits into the paradigm of security measures. Prior security schemes based
on CMOS technology often come with large overheads in terms of area, power,
and delay. In contrast, RFETs-based hardware security measures such as logic
locking, split manufacturing, etc. proposed in this thesis, demonstrate affordable
security solutions with low overheads.

Overall, this thesis lays a strong foundation for the two main objectives – design
automation, and hardware security as an application, to push emerging reconfig-
urable nanotechnologies for commercial integration. Additionally, contributions
done in this thesis are made available under open-source licenses so as to foster
new research directions and collaborations.
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CHAPTER 1

Introduction

Inception

At the time, when I started writing this thesis, the iPhone 13-series was being
launched. And, the most striking thing, for me as a researcher, is that the new
generation iPhones have been able to shrink the CMOS channel width by yet
another 2nm. They used a 5nm technology node which allowed them to use 27%
more transistors than the previous generation. Still, this progression is not too far
from the quintessential Moore’s Law prediction [Moo+65]. Although, area scaling
continues roughly at the rate of 0.5 times every two years [BY17], the cost to build
transistors and the power consumption per unit transistor have not been able to
follow the promises of Moore’s law and Dennard scaling methodology [Den+74].
This trend has not been abrupt and the Moore’s Law that has been guiding and
predicting transistor downsizing from the last five decades is really pushing the
physical limits of transistor’s channel width, as 1nm is equivalent to the thickness
of just 5 silicon atoms!

Transistor downscaling refers to the decrease in the size of the channel length
of individual transistors. This has a clear impact on the resistance and power con-
sumption by individual transistors. Particularly at lower technology nodes, power
consumption and heat management issues in high-performance integrated circuits
are huge problems. It is not about the crude reality of transistor downscaling, but
it is about the real physical challenges that lie in the transistor’s geometry and
routing of metal interconnects at low technology nodes. In spite of these issues,
two major factors that allowed CMOS to flourish in the past and the present are
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Figure 1.1: Various emerging technologies have been compared in [BY17]. The
figure shows switching energy and delay for a 32-bit arithmetic logic unit circuit.

its increased circuit robustness and reduced power dissipation with every new
generation.

While the exploration to reach the physical limits of 1 silicon atom widths
for integrated circuits still continues, another plausible approach is to look for
emerging technologies that can bridge the requirements of future electronics cir-
cuits with their unique feature sets [Rai+18b]. The efforts are not directly aimed
at replacing CMOS technology for future electronics circuits but to investigate
the possibility of using emerging technologies to complement (or supplement) the
CMOS technology. Figure 1.1 shows various emerging technologies compared
with both high-performance and low-power CMOS technology. All these emerging
technologies are compared in terms of switching energy and delay. The figure
shows a clear perspective on various technologies and indicates which technologies
are worth exploring in terms of these two parameters. While this figure showcases
experimental data for various technology, another crucial factor that drives the
adoption of a specific emerging technology is the ease of fabrication and coherence
with the existing fabrication setup of CMOS. Establishing a new foundry setup
requires a multi-billion dollar investment. Hence, an emerging technology can
be readily adopted if there is a partial or full overlap with the established setup
in terms of their manufacturing. And, this is where the emerging reconfigurable
nanotechnology can be a game-changer as it promises new computational capabil-
ities and is also compatible with the existing top-down fabrication stack of the
contemporary CMOS [Sim+16; Mik+17].

One of the decisive prerequisites to efficiently integrate emerging nanotechnolo-
gies into commercial electronics is the consideration of the physical properties of
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the technologies within the EDA flow [Ama+15b; Rai+18b]. Devising efficient
flows is necessary to accelerate the commercial feasibility of newer nanotechnolo-
gies. The recent development of a modern RISC-V processor made with Carbon
Nanotube Field-Effect Transistors (CNTFETs) is one such example of a practical
circuit based on beyond-CMOS technologies [Hil+19]. The constant debate over
emerging nanotechnologies compared to existing silicon-based CMOS technologies
and the complexities involved in the overall design flow, has so far precluded
realization and development of strong examples for electronic circuits. The work
done in [Hil+19] stands out as a stepping stone to solve the ever-increasing problem
with CMOS dimension-scaling and the growing skew between cost and performance
for CMOS-based circuits [BY17]. Hence, exploring emerging nano-devices is not
just an academic exercise but an imperative demand to meet the requirements of
future electronics [Rai+18b].

In this direction, the thesis explores the feasibility of emerging nanotechnol-
ogy called Reconfigurable Nanotechnology through the lens of design automation.
Reconfigurable nanotechnology boasts of a remarkable feature where individual
transistors can be tuned to either demonstrate a p-type or an n-type functional-
ity. Within the research community, such devices are termed as Reconfigurable
Field-Effect Transistor (RFET) or Polarity-Control devices. Apart from exhibiting
transistor-level dynamic reconfiguration, these devices offer flexibility in terms of
power and come with low leakage power dissipation [Mik+17]. Efficient circuit
designs have been proposed in the literature exploiting these exciting proper-
ties [Rai+17; Tro+16; Gai+13b]. However, the non-existence of a well-formalized
EDA flow to build circuits with RFETs, opens up a major research direction which
is still under-explored. Owing to these special benefits offered by reconfigurable
nanotechnology, this thesis devises new techniques and approaches for enabling
design automation for RFETs-based circuits such as defining logical abstraction
for logic synthesis flows, designing standard cells for technology-independent map-
ping, and formalizing a physical synthesis flow compatible with existing industrial
tool-flows for RFETs-based circuits. The circuit design paradigms drive efforts in
EDA to propose RFET-centric synthesis flow that (i) gives trustworthy predictions
for circuits based on RFETs and (ii) provides complete design flow which can be
used to build actual circuits based on RFETs. The thesis also investigates suitable
application scenarios for such an exciting technology and maps the technology’s
feature set with the demands of Hardware Security. It proposes various circuit
design paradigms and lays down approaches that can be used in hardware security
applications.

1.1 What Are Emerging Reconfigurable Nanotech-
nologies?

Emerging reconfigurable nanotechnology is driven by transistors that exhibit
ambipolarity at the transistor level. Ambipolarity is a property by which both
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Figure 1.2: Current-Voltage characteristics showing reconfigurable device prop-
erties. The switch analogy demonstrate the dynamic reconfiguration between p-
and n-type behavior. Experimental data showcasing near-symmetrical electrical
properties for both p- and n-type behavior.

charge carriers – electrons and holes – can tunnel through an electrostatic barrier.
With process techniques, ambipolarity can be enhanced to demonstrate electrical
symmetry in both types of conduction, thereby enabling transistors to demonstrate
both p- and n-type properties independently on the application of external bias
potential. This enables dynamic reconfiguration of individual transistors either as
a p-channel Field-Effect Transistor (PFET) or n-channel Field-Effect Transistor
(NFET). This dynamic reconfiguration in RFETs is not facilitated using chemical
doping caused by impurities but rather due to electrostatic doping [Mik+17]
caused by an external bias potential. Exemplary I-V characteristics for an RFET
is shown in Figure 1.2 [Hei+13]. The right figure shows near-symmetrical I-V
characteristics for both p and n-type configurations. Reconfigurable transistors
encapsulate the functionality of two different devices (PFET and NFET) into a
single device. The symmetric I-V characteristics allows (re-)programmability of
transistor’s conductivity as a device that switches its properties from p-type to
n-type functionality [Tro+16].

The special property of dynamic reconfiguration enabled by metal-semiconductor-
metal contacts further allows symmetric electrical conduction in both p- and n-type
behavior [Tro+15]. RFETs, just like CMOS devices come with the same set of
terminals – source, drain, bulk, and gate. However, unlike CMOS, RFETs have
two types of gate terminals – the Program Gate (PG) and the Control Gate (CG).
The Control Gate (CG) is the same as that in the case of CMOS that controls
the flow of charge carriers while the PG controls the type of the charge carriers
flowing through the channel. The bias applied at the PG configures the transistor
to function either as a p-type or n-type device. Additionally, transistors belong-
ing to reconfigurable nanotechnology allow multiple gate terminals on a single
channel [Sim+18]. The possibility of having multiple gate terminals on a single
channel within a reconfigurable device opens up new circuit design opportunities
that were not possible using the classical Field-Effect Transistor (FET). The
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CMOS-style complementary pull-up and pull-down networks are thus, enriched by
the above-mentioned features and can be tuned to provide more functionalities
per computation unit. To address the atavistic excitement of a reader, a simple
manifestation of such interesting properties in a circuit design is to have NANDs
and NORs with equal performance and equal area.

1.2 Why Does This Technology Look So Promis-
ing?

The combination of dynamic reconfiguration between p and n-type behavior at the
transistor level, and the possibility of having multiple gate terminals on a single
channel opens up new design opportunities for circuits based on reconfigurable
nanotechnology. First, since the p- and n-type configurations exhibit symmetrical
electrical conduction, pull-up and pull-down networks offer equal current drive
strengths. Hence, unlike CMOS technology, effort for transistor sizing can be
saved in the case of circuits based on RFETs. This symmetry in conduction for
both p- and n-type configuration allows flexibility during (i) the design of circuit
topologies [Rai+17; GAM14], (ii) the design of layouts for standard cells [BM15;
Reu+21] and (ii) the placement and routing of individual cells [Kri+21]. Second,
having multiple gate terminals on a single channel reduces the channel on-resistance
per input [Tro+16]. This allows multiple inputs to be connected to a single
transistor, thereby allowing efficient logic gate designs with more than 2 inputs.
Additionally, multiple gate terminals also play an important role in controlling
the performance of a logic gate [Zha+14b].

With the freedom to choose transistor’s electrical behavior at runtime and
the possibility of designing logic gates with more than 2 inputs, contemporary
CMOS-styled circuit design is not optimal for RFETs and requires rethinking
in terms of logic gates and circuit designs [Mik+21]. The flexibility to alter the
properties of an individual transistor either to add more inputs or to increase
the performance finds extensive application in electronic circuits [Rai+18b]. This
dynamic reconfiguration of electrical properties allows circuits or logic gates to
exhibit multiple yet mutually-exclusive functionality with runtime reconfiguration
that finds huge applications in both contemporary and future applications such
as hardware security [RRK18; Rai+20b; Bi+17] and reconfigurable computing
fabric [DW04; Gai+15].

1.3 Electronics Design Automation

EDA comprises of various tools, algorithms, and approaches required to build an
electronic circuit from a given specification of an application. An EDA flow starts
with a description or a specification of an application and uses the above tools to
realize an actual physical layout.
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Figure 1.3: Various stages in EDA.

A typical EDA flow is shown in Figure 1.3. It primarily consists of two main
synthesis stages – Logic Synthesis and Physical Synthesis. Logic synthesis maps a
logic graph representing a circuit description onto some logic primitives. These
primitives can be either standard cells that represent logic gates in a typical
Application Specific Integrated Circuit (ASIC) flow or Look-up-tables (LUTs) in
an FPGA flow. Logic synthesis uses various algorithms and heuristics to reduce
the size (number of nodes in the logic representation) and depth (number of levels
between the primary input and primary output) of the starting logic network. Logic
synthesis, thus, has a huge impact on the final area and the delay of the circuit.
Logic synthesis primarily deals with logic minimization and optimization stages as
shown in Figure 1.3. In this thesis, we focus only on the standard-cell-based ASIC
flow.

After obtaining an optimized logic network, technology-independent mapping
generates a netlist using a library of standard cells. The technology mapping stage
uses various heuristics [CWD99b; MBV06] to map the netlist of a circuit onto some
logic primitives so as to minimize area, delay, or both. Physical synthesis uses
this technology-mapped netlist and converts it into a final physical layout that is
fabrication-ready. It translates a network of logic cells into a chip layout with actual
physical standard cells based on a particular underlying technology to be handed
over to the foundry for fabrication. As shown in Figure 1.3, physical synthesis
flow consists of two important steps of placement and routing (P&R). Placement
carries out a floorplanning of the available die area and places the connected
logic cells of the technology-mapped netlist onto the die area. It considers various
metrics so that the placement of logic cells is such that the connection between two
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parts of the circuit is not hampered by long metal wires. Routing further, aims to
minimize the actual wirelengths to reduce wire delays. After the placement and
routing, the physical synthesis stage generates a Graphic Data Stream (.GDSII)
file to be given to the foundry.

Both the logic and physical synthesis consist of multiple substages that are
interlinked to each other. For the sake of automation of these steps, these substages
are somewhat abstracted in a way to deal with a single set of problems. For example,
logic synthesis deals with logic optimization and minimization and does not consider
placing different logic gates together to reduce the wirelength. Similarly, placement
deals with the optimal placement of logic cell components on a die as bad placement
often leads to high parasitics due to connected cells as well as long wirelengths.
Throughout this flow, Boolean equivalence is necessary so that the optimized
network is equivalent to the original starting network.

Most of the problems in the EDA domain are computationally intractable i.e.
it is difficult to reach an optimal solution with polynomial-time complexity [Mic94].
Hence, most problems in EDA are solved through heuristics that perform well
over certain subclasses of problem. Hence, multiple heuristics have been proposed
over the last three decades that have pushed EDA tools for more efficient circuit
implementations based on CMOS. Recently, various learning approaches are being
explored that can cater to a particular goal or a cost-function to further empower
the EDA tools [Pan18; Bud+22; Per+21; Rai+21d].

From the last 3-4 decades, EDA has been playing a phenomenal role in utilizing
the benefits of every new generation of CMOS technology and translating them
into actual circuits. In fact, the very existence of Moore’s law has been enabled by
advancements in EDA. The quality of the final physical circuit is governed by how
well the approaches and algorithms within EDA have been able to optimize the
given hardware description. Now with CMOS downscaling and the emergence of
new nanotechnology, an important challenge that stands out for EDA tools is to
extract even better performance and quality of circuits than earlier [Ama+15b].

One of the biggest impending issues to enable support of emerging nanotech-
nologies is that the contemporary EDA tools are based on CMOS logic primitives
i.e. most of the algorithms or heuristics are tuned to develop optimal circuits
primarily based on CMOS. However, with the emergence of competing transistor
technology, the whole stack of EDA faces a tough challenge to incorporate the
enhanced functionality from these technologies within the EDA Flow. There are
several facets involved here. First, modeling of the functionality offered by these
technologies is required so that such models can be utilized by various algorithms
in EDA. For example, in order to incorporate a power gating approach for par-
ticular parts of the circuit, placement algorithms need to handle different power
domains in their placement algorithm to enable/disable power gating in those
parts of the circuit. Second, new logic synthesis primitives have to be developed
which can utilize the benefits of emerging technologies at the logic representation
level [Ama+15b]. Third, new design and layouts of standard cells are required for
logic gates based on emerging technology [Kri+21].
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In the next section, we look at various challenges that need to be addressed to
push emerging reconfigurable nanotechnologies for commercial adoption.

1.4 The Game Of See-Saw: Key Challenges Vs
Benefits For Emerging Reconfigurable Nan-
otechnologies

Any emerging technology faces multiple challenges during its development cycle.
For a commercial adoption of given emerging nanotechnology, challenges and
benefits occupy the two sides of a see-saw. From a technology point of view,
benefits come to attention first because as an emerging technology, that is where
they stand apart from conventional technology. Once, the given set of benefits is
recognized that a given technology can suitably complement the requirements of a
given application, research efforts are required to address the associated challenges.
With emerging reconfigurable nanotechnology, multiple challenges restrict their
adoption in mainstream electronics.

In terms of predicting whether a particular technology will be commercially
viable, one of the seminal paper [Bor06] that looked at electronics from a futuristic
point of view laid down three tenets that are essential for any emerging technology
to survive and exist. These three tenets are:

1. Gain: All major transistor-based technology showcased either current or
voltage gain. This is important to realize a logic fanout. A single logic gate
must be able to drive other logic to constitute a circuit. Technologies going
back from vacuum tubes to bipolar transistors to CMOS, all exhibited some
kind of current or voltage gain.

2. Signal to Noise: The signal gain through a logic based on any underlying
technology should be more than the ambient noise. This is important so as
to avoid auxiliary techniques to extract the useful signal.

3. Scalability: Scalability in terms of physical parameters (such as area, power,
or delay) is essential as it allows you to pack more functionality, or provide
higher performance or lower energy with every new generation. The perfect
example for this is CMOS downscaling, which provides all such benefits and
is a major reason that CMOS is still going strong even after 30 years!

RFETs share a lot of properties with contemporary CMOS technology. First,
just like CMOS, RFETs demonstrate voltage gain. This voltage gain has been
demonstrated through Technology Computer-Aided Design (TCAD) simulation.
Second, for the case of signal-to-noise ratio for RFETs, a similar argument can hold
as the signal gain is more than the ambient noise, albeit with different observable
gains for both p- and n-type configurations. Third, RFETs will also provide similar
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scalability with every generation due to their overlap with CMOS technology in
terms of the top-down manufacturing process.

However, one of the biggest challenges faced by RFETs is the asymmetrical
behavior of the VG -IDS characteristic which is typical for all Schottky-barrier Field-
Effect Transistors (SBFETs) with metal-semiconductor junctions [Mik+17]. This
can be ascertained due to different tunneling probabilities for electrons and holes.
However, various approaches ranging from tuning the tunneling probabilities to
work-function adjustments can be used to achieve acceptable symmetries. Scaling
trends with RFETs also hold few concerns, primarily due to two main factors
– (i) how downscaling impacts the transistor designs for RFETs considering the
transistors need to deliver near electrical symmetry (ii) how to integrate multiple
gate terminals on the channel for the future generation.

While the above tenets are more or less abstracted from the electrical properties
of individual transistors, techniques for circuit integration to enable widescale
implementation are a major milestone to achieve. Next, we look at these challenges
associated with emerging reconfigurable nanotechnology in detail.

1.4.1 Abstracting Ambipolarity In Logic Gate Designs

Ambipolarity is the main physical reason which is responsible for transistors to
exhibit dynamic reconfiguration between p- and n-type behavior. This can be very
well represented as shown in the Figure 1.4. Functionally, an RFET encapsulates
the two kinds of MOSFETs, followed by a multiplexer. The select line of that
multiplexer is the PG terminal of the RFET. Hence, an RFET can be logically
configured either as an NFET or a PFET by steering the bias at the PG.

This transistor-level reconfigurability transcends into logic gates and circuit
designs. The paradigm of using complementary networks also works in the case of
RFETs. Complementary networks in a typical static CMOS-based logic gate design
is characterized by separate pull-up and pull-down networks that are responsible
to realize logic 1 and logic 0 respectively. This can be seen in Figure 1.5a. On
the same lines, individual RFETs can be configured in such a way that a separate
pull-up and pull-down network can be realized and similar CMOS-styled logic
gates can be designed. However, conventional CMOS circuit designs when applied
directly with this emerging nanotechnology often results in sub-optimal designs.
This is attributed to the fact that individual RFET transistors are both larger
and slower as compared to CMOS transistors. Hence, such logic gate designs are
not practical since it raises the question – why opt for RFETs when similar logic
functions can be realized with faster and smaller CMOS transistors.

Hence, new approaches delivering tailored circuit designs are needed to truly tap
the exciting feature-set of these reconfigurable nanotechnologies. Logic gate designs
that are able to exploit the inherent ambipolarity can offer better performance and
area as compared to CMOS-styled designs. Using transistor-level reconfiguration,
RFETs-based circuit designs can use the switching capabilities of RFETs to
interchange pull-up and pull-down networks simultaneously. The interchangeable
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Figure 1.5: (a) Fixed pull-up and pull-down network in the case of complimentary
MOS logic gates. (b) Interchangeable pull-up and pull-down network in case of
RFET-based logic gates. The reconf_input decides the logic functionality.

pull-up and pull-down network as shown in Figure 1.5b enabled by ambipolar
RFETs allow efficient circuit designs based on RFETs [Rai+20a].

Such dynamic reconfiguration is not new in electronics, and an Arithmetic
Logic Unit (ALU) is a perfect example of such systems where a user has an option
to choose from a set of arithmetic functions. The whole ALU function, can be seen
as a function f encapsulating functions like addition, multiplication as g and h
respectively. This kind of reconfiguration is available because of extra circuitry and
such circuits are characterized with multiple control paths that can give more than
one function simultaneously. Such reconfigurability can be termed as extrinsic
reconfigurability. This is shown in Figure 1.6a. We can see that each inbuilt logic
function does produce multiple outputs simultaneously through multiple control
paths shown as O1, O2, O3, and O4. In the end, the MUX is used to select the
required output. It can be seen from the figure that logic functions from each
logic gate are implemented independently and their selection is done by MUX at
runtime.
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Figure 1.6: Reconfigurability in terms of logical abstraction.

The enhanced functionality exhibited by RFET differs from that of a con-
figurable circuit like ALU as there is a mutual exclusion in the availability of
multiple functions for RFETs. By mutual exclusion, we mean that an RFET based
logic gate can have one and only one logical output at a single instant of time,
unlike extrinsic reconfigurability. This mutual exclusion is the result of the way
input variables are connected to the gate terminals of the HOF. This is shown
in Figure 1.6b. Unlike extrinsic reconfigurability, there is neither extra circuitry
involved here, nor are there multiple output paths followed by a selection logic.
The unique behavior is possible due to the electrical properties of RFETs. Such
kind of reconfiguration can be termed as intrinsic reconfigurabilty.

Intrinsic reconfigurability can be used to implement circuits with more than
one functionality. Reconfigurability can thus be used as a radical measure to
tackle CMOS downscaling by realizing more functionality per computational unit.
However, reconfigurability often comes with delay and area overhead. Hence,
circuit design techniques should be aware of such overheads.

1.4.2 Enabling Electronic Design Automation For RFETs

EDA plays one of the most important roles in enabling the commercial integration
of an emerging technology. It provides a bridge from laboratory-level explorations
of an emerging technology to an actual physical realization in the form of a circuit.

Reconfigurable nanotechnology boasts many flexibility-friendly properties,
thereby altering the size, performance, and power consumption of circuits based
on reconfigurable nanotechnologies. They hold great promise as suitable primi-
tives for enabling multiple functionalities per computational unit. Hand-crafted
RFETs-based logic gate designs showcased huge improvements in terms of area
and delay over the contemporary CMOS-style designs [Rai+17; Gai+13b]. The
major limitation, however, is to bring such novelty in circuit designs within the
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fold of design automation techniques. From a circuit integration point of view,
there are a few challenges – first, an individual RFET transistor is bigger as
compared to a CMOS transistor at the same technology node (because of the extra
gate terminal). To compensate for the area overhead, circuit design approaches
should be explored which can utilize the high functional expression offered by
RFETs. Second, which design topologies can exploit the dynamic reconfiguration
between pull-up and pull-down networks? In this direction, is there any logical
abstraction that can guide circuit design exploration for RFETs-based circuits?
Third, which application can particularly use or exploit the properties of RFETs
to drive the overall development of RFETs as a potential technology? The various
tools and approaches within EDA should interact and reciprocate the properties of
reconfigurable nanotechnology. RFET’s unique properties need to be abstracted in
a way such that it can be handled during the synthesis stages as described earlier
in section 1.3.

An early evaluation in terms of circuit design is also essential to assess the
feasibility and practicability aspects of emerging nanotechnologies. This can be
only done through EDA tool-flows over a benchmark suite to have acceptable
estimates. This also helps to provide feedback to the technology designers to gauge
flaws in the transistor designs. This early evaluation has to be done both at the
physical synthesis as well as logic synthesis levels. For example – early hand-crafted
designs of logic gates demonstrate that RFETs can realize switchable pull-up and
pull-down networks that can allow reconfiguration as shown in Figure 1.5b. This
hugely impacts designing logic gates based on RFETs and also is a defining factor as
to how technology mapping needs to be modified to abstract the switching potential
of the pull-up and pull-down networks. Defining logical abstraction to encapsulate
the inherent ambipolarity is necessary to push for further gains [Ama+15b].

Most of the attempts in enabling EDA for RFETs focused to model manual
designs of logic gates and simple circuits into the fold of either logic synthesis
or technology mapping [AGM13; Ama+15a; AGD14a]. Apart from abstracting
ambipolarity, EDA (particularly physical synthesis) has to tackle new RFETs-
based layouts. This requires designing new physical synthesis flows which can
compensate the area overheads since an individual RFET is larger as compared
to CMOS. RFETs also come with an additional gate terminal which can lead to
routing congestion. Hence, delay overheads due to excess routing resources need
to be evaluated.

Scalability which has been portrayed as one of the tenets earlier is realized to a
great extent by EDA techniques. Design automation techniques should be able to
tap the benefits of a single device and map them to the application requirements.
Techniques to explore design automation for circuits based on RFETs are required
to investigate its commercial feasibility. A strong interaction between the above
challenges and EDA approaches can catapult this technology for commercial
adoption.
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1.4.3 Enhanced Functionality: A Suitable Fit For Hardware
Security Applications

With the rise of Neuromorphic computing and Internet-of-Things (IoT) applica-
tions, there is a growing trend of specialization of hardware for specific tasks [Sha20].
The demand for specialized hardware to tackle a specialized application require-
ment has opened up new avenues in the search for emerging nanotechnologies.
Several emerging technologies such as ReRAMs, spin-based devices, FeFETs find
huge applications in crossbar architecture, non-volatile memory, and neuromorphic
architectures respectively [Rad+; Rai+21a; YC16]. An emerging technology that
promises to solve one of the biggest limitations of a crucial application can be
readily adopted. The prime reason driving this trend is that the current hardware
architecture is limited from the physical point of view. Let us take the example of
neuromorphic computing which needs a huge amount of both memory and compu-
tational resources. Conventional Von Neumann architecture is characterized by
separate memory and processing elements where the transfer of information can be
a bottleneck in increasing throughput. In this case, the property of FeFETs to allow
simple mathematical operations in the memory itself plays a major role in reducing
the communication between memory and the processing element, thereby greatly
improving the computation paradigm for neuromorphic computing [Bas+21].

Hardware security has gained importance in the last decade due to widespread
globalization of the Integrated Circuits (IC) supply chain. Hence, ICs are suscep-
tible to different attacks at various phases of the global supply chain as shown
in Figure 1.7. Ensuring security in ICs is an unavoidable cost not only in terms
of capital required but also at the circuit level, as it often comes with associated
overheads.

Owing to the dynamic reconfiguration at the device level, RFETs open up new
avenues for efficient yet cost-effective solutions to implement hardware security
features for circuits [Kne20a]. The freedom to configure a transistor either as
a p-type or an n-type depending upon the requirement, allows constructing
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Realizing logic locking in conventional CMOS necessitates insertion of additional
logic gates whereas the inherent construction of RFETs facilitates non-insertion
of additional logic gates. The PG signals are driven from an on-chip tamper-proof
memory.

polymorphic logic gates at lesser overheads in terms of area, power, and delay
than the conventional CMOS. The dynamic reconfiguration allows the circuit to
be reconfigured at runtime to deliver a particular functionality from a range of
given functions. Such polymorphism can suitably fit within the paradigms of logic
locking schemes [Raj+15; Mas+17; Cha+20] as shown in Figure 1.8 [Rai+20b].
Here, unlike CMOS-based logic-locking, which requires insertion of additional logic
gates, RFETs due to their inherent-reconfigurability can enable efficient logic-
locking by using PG as shown in Figure 1.8. This can reduce the area overheads
for logic-locking schemes [Rai+20b]. Similarly, RFETs-based circuits can also
demonstrate increased robustness to side-channel attacks such as differential power
attacks [KJJ99]. This robustness is due to equal current drives for both p- and
n-type configurations in RFETs [GMT22]. This can prevent attackers at the
end-user level (shown in Figure 1.7) who intend to use reverse-engineering schemes
involving various side-channel attacks.

While RFETs provide various opportunities for implementing security guar-
antees in a given electronic circuit, designing circuits utilizing these properties
remains a major challenge. Analysis of circuits in terms of implemented measures
is the next step to ensure whether the security measures are comparable to the
state-of-the-art or not. Lastly, quantitative predictions and measurements should
be carried out to give estimates in terms of area, power, and delay for a conven-
tional CMOS circuit to motivate the adoption of newer technology. Additionally,
since reconfiguration is central to RFETs-based circuits, is there a possibility of
misconfiguration in RFETs? If yes, what are the electrical repercussions of such
misconfiguration in a circuit?
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1.5 Research Questions
With CMOS device scaling reaching the physical and economic limits, emerging
reconfigurable nanotechnologies offer multiple flexibility-friendly options for circuit
designs. Based on the above discussions and challenges, this thesis aims to address
the following research objective:

Explore and devise approaches to complement contemporary
EDA tools for designing efficient yet secure circuits based on
emerging reconfigurable nanotechnology

As the contemporary EDA tools are catered specially for CMOS technology,
devising efficient EDA flows for RFETs-based circuit require looking at transistor-
level reconfigurability and abstracting it at every stage of a typical design flow as
shown in Figure 1.3. Hence, the above research objective can be broken down into
the following research questions:

1. What kind of design topologies should be employed for logic gates and
circuits based on RFETs? Can ambipolarity be abstracted for sequential or
metastable circuits?

2. Logic gates based on CMOS are governed by electrical characteristics of
distinct pull-up and pull-down networks. Is the same CMOS-styled circuit
design applicable for RFETs-based logic gates? Why can only certain logic
functions be implemented with RFETs as functionality-enhanced logic gates?
Is there a universal Boolean property that can be implemented efficiently
using RFETs?

3. As CMOS favors negative unate Boolean logic, AIGs are the natural ab-
straction for CMOS logic [Ama+15b]. However, are AIGs appropriate for
RFETs-based circuits as well?

4. Considering RFETs to be still in a nascent stage in terms of their maturity
compared to CMOS, how feasible is it to make actual physical circuits
based on RFETs? What are the research and engineering efforts required to
formalize a physical synthesis flow for an RFETs-based circuit?

5. How to design polymorphic logic gates by utilizing transistor-level recon-
figurability offered by RFETs to develop efficient and secure circuits? Is
the security offered by RFETs strong enough to tackle the state-of-the-art
security techniques? And is security the only gain, or do the RFETs-based
circuits have certain vulnerabilities?

These research questions are directed towards the main research objective
as mentioned before. If we look closely, the research questions are aimed at
investigating whether the CMOS-centric EDA approaches are “good enough” for
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RFETs. At the prima-facie, the CMOS-style flows and CMOS-style logic gates
do provide a good starting point for RFETs. However, the subsequent chapters
demonstrate that (i) RFET-centric flows can give remarkable improvements as
compared to the default CMOS-style flows (ii) Development of RFET-centric flows
is done in cognition with the contemporary CMOS flows so that it can be readily
adopted. This is also done to reduce the development cost by focusing on the
modeling of RFET’s specific properties within the EDA flow. The work done in
the thesis is aimed at providing synthesis flows available under an open-source
license that can benefit the research community.

1.6 Entire RFET-Centric EDA Flow

Figure 1.9 shows the overall EDA flow for RFETs-based circuits aimed at tackling
the research objective mentioned in the previous section. The blue arrows are
characteristic of a typical EDA flow. It shows how, through various stages in an
EDA flow, a hardware description is converted to the final physical layout based
on RFETs. The green arrows show how the reconfigurable property of RFETs can
be integrated or abstracted within the EDA flow. The close interaction between
the two flows describes the contribution of this thesis.

This close interaction starts at the lowest abstraction with transistor models
for RFETs. There are multiple device candidates demonstrating reconfigurable
properties. Indeed, various RFET models come with structural nuances that make
them distinct from each other. These models are introduced in Chapter 2. From
a logical perspective, they all demonstrate ambipolarity that can be manifested
as a transistor-level reconfiguration. Using the transistor-level reconfiguration,
functionality-enhanced logic gates are presented in Chapter 3. Efficient multi-
functional combinational and sequential logic gates and circuit implementations
are proposed. Particularly in sequential logic gates, ambipolarity can play a huge
role in increasing throughput for sequential circuits. Calculation of normalized
area and delay for these logic gates demonstrate better performance and reduced
area as compared to the CMOS technology. These functionality-enhanced logic
gates enable new design approaches for RFETs-based circuits.

These logic gates form the basic foundation to explore logical abstraction for
RFETs as it raises the question of what kind of logic functionality can gain from the
ambipolar device characteristics. These functionality-enhanced logic gates share
a specific Boolean property where they all demonstrate better logic realization
than the contemporary CMOS design in terms of the number of transistors,
and performance. The interchangeable pull-up and pull-down network as shown
in Figure 1.5b enabled by ambipolar RFETs allow efficient circuit designs based on
RFETs. This interchangeability is possible only with logic functionalities having
the Boolean property of self-duality. Thus, self-dual Boolean logic is recognized as
the natural abstraction for RFETs and logic functionalities. The formalization
of Boolean self-dual property as the logical abstraction for RFETs is covered
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in Chapter 4. With self-duality as the basic Boolean property, an algorithmic
approach has been proposed to distill all logic gates up to 5 inputs. These logic
gates can be utilized to make RFET-based standard cells for circuit designs.
Additionally, since RFETs-based logic gates can demonstrate more than one
functionality, the concept of Higher-Order Function (HOF) is proposed to abstract
functionality of logic gates. This has been embedded in the ABC technology
mapper [BM10b] to carry out an early evaluation over a benchmark suite to give
estimates in terms of area and delay overheads using functionality-enhanced logic
gates.

With the Boolean property of self-duality established as the natural logical
abstraction, a direct correlation can be established between the available self-duality
of the circuit and the area occupied after technology mapping. This is investigated
in Chapter 5 where it is shown that better area reduction for RFET-based circuits
is achieved if the self-duality of a given circuit is preserved during logic optimization
and technology mapping. This chapter demonstrates that Xor-Majority Graphs
(XMGs) as a graph representation during logic synthesis, can better abstract the
Boolean property of self-duality. Using XMGs as the logic graph representation, the
chapter proposes two strong Boolean optimizations of resubstitution and rewriting.
The work demonstrates that using XMGs achieves better post technology-mapping
area reduction as compared to the AIGs as demonstrated in Figure 1.10. This
is due to the fact that since CMOS favors negative unate logic, AIG has been
the natural choice of logic representation. Figure 1.10a shows how AIG favors
two 2-input XORs as that is preferred in CMOS technology. In contrast, XMG
favors mapping to a 3-input XOR which is preferred in RFET technology. This
correlation with the logic synthesis has been shown in Figure 1.9 via the green
arrow that goes through the self-dual Boolean abstraction.

The next stage which is shown by the blue arrows is how the technology mapping
connects with the physical synthesis flow. Physical synthesis uses standard cells
based on RFETs to develop the final layout of the circuit based on RFETs. For
this purpose, a technology model of SiNW RFET technology is considered and the
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overall flow of physical synthesis is presented in Chapter 6. The technology model is
further used to develop .lef and .lib files. Both open-source and industrial tool
flows are presented to carry out physical synthesis flow for RFETs-based circuits.
Further, two new approaches have been presented to get area improvements for a
logic locking scenario depicting a secure circuit based on RFETs.

Once the EDA flow is defined, it can be used to develop secure circuits which
is the main application scenario for RFETs-based circuits. Securing circuits based
on RFETs through IP protection measures have been designed and analyzed
in Chapter 7. While few of the prior works have focused on exploring security
schemes using RFETs, a detailed evaluation with respect to the state-of-the-art
security techniques has been missing. This chapter focuses on evaluating the
security promises offered by RFETs-based circuits. Not only security promises,
but a disruptive security vulnerability has also been demonstrated, whose novelty
and severity lie in the fact that they can be readily realized in an actual on-field
RFET-based chip, either as an adversarial or a fail-safe measure. Both the security
promises and vulnerabilities have been evaluated using a benchmark-level study
to measure security on the basis of accepted metrics. Additionally, overheads, as
compared to the CMOS technology, have been discussed and analyzed. Hardware
security is synonymous to RFETs-based circuits. That is why, in Figure 1.9,
hardware security is given in the background in red color as it encompasses the
entire EDA flow and functionality-enhanced logic gates.

1.7 Key Contributions And Thesis Organization

In line with the research challenges and the specific questions presented earlier,
the following are some of the major contributions that have been achieved during
the course of this research and have been disseminated in this dissertation. All
contributions have been made available under an open-source license, (the download
links are mentioned in the respective chapters) to foster research in this direction.

• Designs of combinational and sequential logic gates: The thesis presents
designs for both combinational and sequential logic gates. Both static and
reconfigurable logic gates have been proposed. These designs are proposed
in the work published in IEEE Transactions on Very Large Scale Integration
Systems (TVLSI)-2019 [Rai+19b], Proceedings of International Conference
on Computer-Aided Design (ICCAD)-2018 [Rai+18b] and International
Conference on Very Large Scale Integration (VLSI-SOC)-2021 [Bha+21] .

• Identifying self-duality as the Boolean abstraction: A Boolean abstraction is
imperative to define specific EDA approaches and achieve improvements over
the contemporary flows. The thesis identifies that the duality of functionality
at the transistor level can be suitably abstracted using the Boolean property
of self-duality. The methodology to distill standard cells using the property
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of self-duality is published in Proceedings of Design Automation and Test in
Europe conference (DATE)-2020 [Rai+20a].

• Technology mapping using the concept of HOF: The thesis presents the
concept of HOF to encapsulate reconfigurability at the logic level. This is
essential to carry out an early-level evaluation of technology mapping using
mutually-exclusive multi-function logic gates. This is based on the work
published in DATE-2018 [RRK18].

• XMG-based logic synthesis : Preserving self-duality at the circuit level is
essential so that the maximum available self-dual portions of the logic
network are mapped using self-dual logic gates. Hence, the thesis presents an
XMG-based logic synthesis scheme that can preserve and utilize the existing
self-duality to achieve better area reduction for RFETs-based circuits as
compared to the conventional logic synthesis flow. This is based on the work
published in DATE-2021 [Rai+21e] and at International Workshop on Logic
synthesis (IWLS) 2020 [Rai+20c]. An extension of the work [Rai+21e] is
under revision at IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD).

• Physical synthesis flow: The thesis presents an entire flow to carry out
physical synthesis flow from a technology mapped netlist to the final .GDSII
file. Library files such as the .lef and .lib files are developed to enable
both an open-source and an industrial flow. The flow is based on the work
published in DATE-2018 [Rai+18a] and ICCAD-2021 [Kri+21].

• Security promises and vulnerabilities : The thesis proposes both security
promises and vulnerabilities for circuits based on RFETs. Security promises
such as logic locking and split manufacturing have been proposed with RFETs-
based circuits. Evaluations demonstrate practical security with RFETs-based
circuits. Security vulnerabilities are demonstrated in sequential as well
as combinational circuits. This work is published in IEEE Transactions
on Emerging Topics in Computing (TETC)-2020 [Rai+20b] and DATE-
2021 [Rai+21a].

A summary of the contributions in the entire thesis is presented in Table 1.1.
It correlates the main title of the thesis and how it is broken down into topics that
are covered in various chapters. It also correlates with the publications associated
with individual chapters and also showcases which aforementioned challenges are
tackled in which chapter.

The rest of the thesis is organized as follows: Chapter 2 presents and explains the
relevant preliminaries for this thesis. It introduces different types of reconfigurable
technology such as the 1D and 2D devices. It further explains other terminologies
related to design automation techniques. Then, Chapter 3 presents the hand-
crafted designs of both combinational and sequential logic gates. Evaluation in
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Table 1.1: Correspondence between topics, chapters, publications and chal-
lenges.

Topics Chapters Reference Abstracting
Ambipolarity

Enabling
EDA

Hardware
Security

Design
Automation

Design Topologies
for RFETs-based
logic gates

Chapter 3
TCAD’19 [Rai+19b],
VLSI-SOC’21 [Bha+21]
ICCAD’18 [Rai+18b]

Standard cells and
enabling Technology
Mapping

Chapter 4 DATE’18 [RRK18],
DATE’20 [Rai+20a]

Logic Synthesis
Flow Chapter 5 DATE’21 [Rai+21e],

IWLS’20 [Rai+20c]

Physical Synthesis
Flow Chapter 6 DATE’18 [Rai+18a],

ICCAD’21 [Kri+21]

Application Hardware Security Chapter 7
TETC’20 [Rai+20b],
DSD’19 [RRK19],
DATE’21 [Rai+21a]

terms of area and delay has been shown in this chapter. It discusses how new design
paradigms are relevant for RFETs-based circuits as the conventional CMOS-based
styles are sub-optimal. The results of the Chapter 3 form the foundation for
the next chapter as Chapter 4 investigates why a particular design style of logic
gates can be efficiently built using RFETs. The chapter demonstrates how the
Boolean property of self-duality can be efficiently abstracted using RFETs-based
logic gates. Chapter 4 also proposes an algorithm to distill logic functionalities
that can be used in synthesis flow as standard cells by exploiting the property of
self-duality found in the circuit descriptions. The chapter also introduces a new
technology mapping that can utilize mutually-exclusive logic functionalities during
technology mapping. This is followed by Chapter 5 that proposes a logic synthesis
flow that aims to preserve the existing self-duality in a given circuit. It is based
on the premise of the previous chapter that self-dual logic gates can be efficiently
implemented using RFETs. Within the context of logic synthesis, the chapter
proposes various algorithms to further increase the existing self-duality to achieve
further area reductions during technology mapping. Next, we have Chapter 6
that presents the library support for reconfigurable technologies to carry out the
physical synthesis flow for RFETs-based circuits. Improved layouts for static as
well as reconfigurable logic gates are proposed with low pin-density to enable
better placement and routing. Chapter 7 demonstrates how the transistor-level
ambipolarity can be used to build efficient polymorphic logic gates based on RFETs.
This enables security schemes such as logic locking and split manufacturing to be
implemented with RFETs at lower overheads as compared to the contemporary
CMOS technologies. Finally, concluding remarks and future work directions are
given in Chapter 8.
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CHAPTER 2

Preliminaries

The Usual Suspects

The previous chapter presented an introduction to the emerging reconfigurable
nanotechnologies and the related challenges associated with enabling circuits based
on such technology. This chapter is dedicated to explaining the background and
preliminaries needed throughout the whole thesis. The chapter can be broadly
classified into two main parts. The first part covers different types of reconfigurable
nanotechnology such as 1D and 2D devices. Then, the device physics of nanowire-
based RFETs is described to explain transistor-level dynamic reconfiguration
in such technology. Feasibility aspects in terms of commercial adoption for
reconfigurable nanotechnology are also presented.

The second part covers the background of design automation techniques. Partic-
ularly, concepts such as monotone functions are explained. Important terminologies
such as graph representation to carry out logic synthesis and technology mapping
are explained.

2.1 Reconfigurable Nanotechnology

Reconfigurable technology refers to an emerging class of nanotechnologies in
which the devices (or transistors) exhibit electrical conduction for both types
of charge carries – electrons or holes, on the application of an external bias
potential [Mar+12; Hei+12]. These devices are referred as reconfigurable field-
effect transistors (RFETs) or Polarity-control devices. This duality in electrical
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Figure 2.1: (a) A schematic representation of an RFET showing two gate terminals:
The program (signal P) and the CG (signal A) [Rai+19b]. The PG controls the
type of charge carriers whereas the CG controls the flow of the charge carriers.
The adjacent curve shows the V-shaped curve representing electrical symmetry
for n- and p-type functionality. (b) From a logical abstraction point of view, RFET
comparison with CMOS.

conduction is independently (re)programmable and hence, the devices can exhibit
either p- or n-type functionality [Mik+17]. This reconfigurability is not enabled via
chemical doping due to material engineering or impurities but through electrostatic
doping i.e. the generation of charge carriers through the channel via an external
potential. This device-level1 reconfiguration is due to the phenomenon called
Ambipolarity or ambipolar conduction.

Ambipolarity is a phenomenon observed at 22nm or lower technology nodes
that allows conduction of both charge carriers through the transistor channel.
During device engineering for conventional transistors below 22nm, ambipolar-
ity is a potential limitation in circuit design and is often suppressed [Mar+14].
However, ambipolar conduction is enhanced using process techniques for several
nanoscale FET devices based on various low gap materials such as silicon or ger-
manium [Mar+12]. The enhancement of ambipolarity enables symmetric electric
conduction in both p- and n-type configurations. This reconfiguration of charge
carriers through the channel is also termed as Polarity-control [Mar+12].

In terms of the structure of the FET and the physical properties, reconfiguration
in an RFET can be broadly classified into two main types – Schottky-barrier Field-
Effect Transistor (SBFET) and band-to-band Tunneling Field-Effect Transistors
(TFETs). In case of SBFETs, the flow of charge-carriers is controlled through
a Schottky-Barrier (SB) at the metal-semiconductor junction. The type and
injection of the charge carriers are enabled by independent gating of each of the
two junctions. This can be done in two ways – direct control of the carrier injection
using a potential bias at the Schottky junctions [Hei+12] or through control of the
transport of previously injected charge carriers using a charge barrier [Mar+12]. In
the former case, the control is done through the potential over the Schottky barrier

1The term device-level and transistor-level are used interchangeably throughout this disserta-
tion.
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itself while in the latter case, the injection of the charge carrier is allowed through
two additional contacts above (or below) the Schottky junctions [Mik+21]. By
applying the potential at the two polarity gate contacts, the type of charge carriers
injected can be controlled while the conduction is modulated through a potential
applied at the middle of the channel. Both these scenarios lead to bending of
the energy bands in the semiconductor and the concept can be referred to as
electrostatic doping. However, as compared to the former case, the electrostatic
doping developed in the second case offers a higher electrical symmetry because
the two types of gate terminals do not compete with each other regarding the
control of a certain channel region. Within RFETs, the direct control of the
charge injection is demonstrated in Dual-independent gate Field-Effect Transistor
(DIGFET) as proposed in [Hei+12]. RFETs with two additional polarity control
is demonstrated in devices with Gate-all-around structures as shown in TIGFETs
[Mar+12; Gor+19; Tro+17b].

Similarly, reconfigurable properties in case of TFET [KM14; MR16], is demon-
strated using Band-to-Band Tunneling (BTBT) as the conduction mechanism.
Here, chemical doping is used to create two highly doped silicon regions separated
by the nearly intrinsic channel region. By applying potential at the two contact
regions, it is possible to induce enough band bending to allow charge carriers to
flow. However, due to a high doping intensity TFET devices are generally slow
and suffer through low on-currents.

The devices belonging to reconfigurable nanotechnologies are characterized by
two types of gate terminals – the Program Gate (PG) and the Control Gate (CG).
A representative RFET with all types of terminals is shown in Figure 2.1a. These
two gate terminals can be independently controlled and can alter the conduction
through the channel. Potential bias at the PG terminal can electrically block
a particular type of charge carrier flowing through the channel. Hence, the PG
controls the electrostatic behavior of the device to function either as a p- or n-type
device. The CG controls the flow of the charge carriers by allowing charge carriers
to accumulate within the channel. The CG is similar to the gate terminal in
typical CMOS technology.

The unique characteristic of reconfigurable nanotechnology is the ability to
demonstrate electrical symmetry in both p- and n-type configurations. The
current-voltage curve of these transistors is shown in Figure 2.1a. In terms of
logical abstraction with reference to the contemporary CMOS, an RFET can be
represented as shown in Figure 2.1b. It can be seen that the select line of the
multiplexer is connected to the PG terminal and that controls the functioning of
the device as a p- or an n-type device.

In terms of the available geometry, RFETs can be broadly classified into two
main types – 1D devices and 2D devices. Next, these concepts are explained in
detail.
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Figure 2.2: (a) A representation of a nanowire-based RFETs with three all-around
gate structure [Rai+17]. The right figure shows the I-V characteristics. (b) It shows
an all-around RFET, called Three-Independent Gate FETs (TIGFETs). The band
diagrams are shown from [Rai+18b].

2.1.1 1D Devices

1D devices refer to those RFETs that come in one-dimensional geometry such as Sili-
con Nanowire (SiNW) [Hei+12; Mar+12] or Germanium Nanowire (GeNW) [Tro+17a],
CNTFETs [Lin+05], or graphene nanoribbons [Har+10]. The main focus of this
dissertation is the nanowire-based RFETs.

Fig. 2.2a represents a 1-D dopant-free mono-crystalline nanowire structure
made of silicon as shown in [Rai+17]. The nickel silicide metal contacts form
Schottky junctions at the source and drain contacts. The gate overlapping with
the source is the Control Gate (CG) while the gate overlapping with the drain is
the Program Gate (PG). Steering these two gate terminals controls the polarity of
the device. Transfer characteristics represent fully symmetrical p-type and n-type
functionality [Hei+12]. The device can be steered either with three or two gates.
In the three gate configuration with the middle gate MidG as the CG, the dashed
transfer curves are obtained. The signal at the outer gates, DrnG and SrcG, control
the p-type or n-type nature of the transistor. In the dual gate configuration, the
middle gate is left out in the design and the solid transfer curves are obtained. In
the latter, DrnG acts as the PG selecting p-type or n-type configuration and SrcG
acts as the CG.

Just like silicon, germanium nanowire-based RFETs have also been demon-
strated. Germanium being a low bandgap material is a promising channel material
due to its integrability with the CMOS manufacturing process [Tro+14b]. Being a
low-band channel material, GeNW offers a higher static currents as compared to
SiNW-based RFETs. Hence, as compared to silicon, GeNW-based RFETs offer
better current drives. Conversely, they also suffer due to high leakage dissipation.
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Figure 2.3: Conceptual representation of a working principle for a nanowire-
based RFET. One can notice how the bands move on application of potential at
PG and CG. On-state is |VCG| = 2V and |VCG| = 0V for n and p-type operation,
respectively [Tro+15].

Working Principle Of A Nanowire-Based RFET

An RFET is a multi-gate structure containing two types of gate terminals. Here,
for the sake of understanding, a DIGFET is considered. The junction contacts
at the source and drain are Schottky contacts [Tro+15]. Figure 2.3 shows the
polarity control due to the bending of the energy band in RFETs. In the off-state,
the current is shut off, due to the barrier induced by the opposing potential at the
PG and the CG. In the on-state of the n-type (or the p-type), the CG enables
electron-tunneling (hole-tunneling) through the Schottky junctions by bending
down the silicon bands as shown in Figure 2.3. For Gate-All Around (GAA)-based
RFETs as proposed in [Mar+12; Zha+14b], the potential at the CG and the
all-around PGs bend the silicon band in a similar way, which allows tunneling
currents based on majority carriers through the Schottky junctions. However,
since they have two PG on either side of the control gate, they demonstrate a
wider range of operating stages. By changing the potential on either side of CG,
the range of operating stages can alter the performance of RFET. Further details
regarding the physics of such reconfigurable devices can be found in [Mik+17;
Zha+14b].
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Table 2.1: Programming RFETs [Tro+15].

Functionality Potential
at PG Vpg

Potential
at Source VS

Potential
at Drain VD

n-FET DD Low High
p-FET GND High Low

At the logical abstraction level, an RFET is a programmable device that can
be tuned to specific electrical behavior depending upon PG, source, and drain
potential. This is shown in Table 2.1. With the default configuration shown
in Table 2.1, the device is ON in n-FET (p-FET) configuration when CG is at
VDD (GND) and vice-versa. This runtime-reconfigurability, in turn, leads to
functional flexibility at the logic-gate level, where a single logic gate exhibits more
than one functionality [Rai+19b].

2.1.2 2D devices

Transistor-level reconfigurability has been demonstrated in many planar devices
made of channel materials, such as silicon [Reu+21], graphene [Tan+10] [Mir+13]
or other Transition Metal Dicalchogenide (TMD) materials like MoTe2 [Nak+15],
WSe2 [Res+16]. Following are the major 2D devices that have been under active
research:

1. Graphene p-n junction: A graphene p-n junction as shown in Figure 2.4a
consists of a graphene sheet with two metal-to-graphene contacts, A and Z
are the inputs and the outputs respectively. The two sheets are separated
using a thick oxide layer. Ambipolarity in case of graphene p-n junctions
(Figure 2.4a) is due to the use of co-planar split gates [Hua+07], which are
similar to different types of gate terminals (PG and CG) as present in SiNW
RFETs. Their extreme thinness offers superior electrostatic control and they
are conductive for low-power applications. Verilog-A model of graphene p-n
junction has also been proposed in [Mir+13]. Reconfigurable properties for
graphene p-n junctions can be seen in Figure 2.4b.

2. TMD devices: Tungsten diselenide (WSe2) is one of the stable 2D TMD
that can demonstrate high performance. The fabricated device is shown
in Figure 2.4c. Exemplary electrical symmetry can be seen for both p- and
n-type functionality. Experimental evaluations demonstrate that WSe2 can
be a promising candidate to develop planar TIGFETs that can realize high-
performance circuits. Another RFET material that has been demonstrated
is the molybdenum ditelluride(MoTe2).
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Figure 2.4: (a) It shows a graphene p-n junction where the back gates (S and
U) work as a control knob to control the ambipolarity. (b) Resistance variation vs
backgate potential [Ten+18]. (c) Cross-section of the WSe2 device [Res+16]. (d)
Demonstration of WSe2 TIGFET along with the transfer characteristics [Res+16].

2.1.3 Factors Favoring Circuit-Flexibility
Apart from transistor-level reconfigurability, RFETs offer exceptional properties
that allow higher flexibility for circuit design as compared to the conventional
CMOS technology.

Multiple-Independent Gate Terminals

Since the conduction in nanowire channels is due to tunneling of charge carriers, it
has been shown that within the channel, the on-current is only dependent upon the
injection at the Schottky barriers. Consequently, this allows the RFET to operate
with an ungated area in the middle of the channel. This has been demonstrated
through measurements [Hei+12], simulations [Tro+15]. This particular feature
has even been both theoretically proven and experimental shown by Trommer et
al. [Tro+16], and Zhang et al. [Zha+14a] respectively. This provides an opportunity
to add multiple independent gate terminals on the channel. Further, as the on-
resistance of the device is dominated by the resistance of the source-sided barrier
there is nearly no degradation in the current through the device by increasing the
channel length, as long as good electrostatic control over the channel potential
is maintained. With multiple, independent gate transistors, there is just a slight
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Figure 2.5: RFETs with multiple-independent gate terminals.
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are programmed to p- or n-functionality depending on the applied voltage scheme.
In addition, they virtually operate with an effective resistance of only 1

3 of the internal
resistance of the device [Rai+19b]

.

increase in the overall channel resistance of the multi-gated device, owing to the
Schottky barrier in the on-state of an RFET device [Tro+16]. This can be seen
in Figure 2.6 where the three inputs operate at a virtually lower resistance than
the internal resistance of the device.

The various schematic of different types of RFETs – TIGFETs, GAAs TIGFETs
and Multi-independent gate Field-Effect Transistors (MIGFETs) are shown in Fig-
ure 2.5a Figure 2.5b and Figure 2.5c respectively. Throughout the manuscript,
unless otherwise specified, an RFET with two gate terminals is used as a general
representation for all types of RFETs.

The presence of multi-independent gate terminals on a single channel of a
nanowire-based RFET eliminates the need for multi-level stacked transistors as
is the case in the CMOS paradigm, thereby doing away with the individual load
offered by the capacitance (e.g., gate-to-source capacitance) from individual transis-
tors cascaded in series [Zha+14b]. Such functionality has been exploited in works
like [Sim+18] to design a wired-AND transistor containing multiple independent
logical inputs requiring a single supply voltage. These multi-independent gate
terminals extend the device functionality because a single transistor can incorpo-
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rate many inputs thereby giving rise to higher functionality with less number of
transistors. These transistors facilitate the designing of logic gates with more than
3 inputs as shown in the next chapter( Figure 3.1). These logic gate designs show
better performance in terms of normalized delay as compared to CMOS designs.

Modifiable Performance

In a typical CMOS technology, the threshold voltage (Vt) defines the performance
of the device. Devices with low Vt are referred to as high-performance devices
while devices with high Vt are referred to as low-power devices. The general
convention is that at a particular technology node, both devices are available,
and depending upon the requirements of the circuit design, a cocktail of different
threshold voltage devices (multi-Vt) are used. In CMOS, various techniques such
as altering the dopant concentration [Mat+09], body biasing [Tsc+02] can be
utilized to alter the threshold potential.

In case of GAA TIGFETs, the two program gate terminal can be utilized
to alter the performance of a single device. This has been first demonstrated
in [Zha+14a] and is shown in Figure 2.7. If both the PG are biased to a single
potential which is also equal to the bias applied to the CG, then the device operate
in Low Vt (Threshold Voltage) (LVT) mode (shown in Figure 2.7a and 2.7b ).
The device operate either in the on-state or in the off-state. Conversely, if one PG
and CG are biased with the same potential, leaving the other PG to be biased
with the input, the device operates in High Vt (Threshold Voltage) (HVT) mode
(shown in Figure 2.7c and 2.7d). In this case, the device operates either in the
on-state or the low-leakage OFF state [Zha+14b].

By doing the connections as shown in Figure 2.7e, GAA TIGFET operate
similar as a DIGFET. This is possible due to combination of LVT and HVT
operating states. This is similar to cascading of multiple transistors, albeit with
different threshold voltages realizing a multi-Vt design.

2.2 Feasibility Aspects Of RFET Technology

While there are several apprehensions about the feasibility aspects of emerging
nanotechnologies, there are several reasons which motivate us to look at security
features for circuits based on reconfigurable nanotechnology.

• Works like [Mik+17; Sim+17] have shown that reconfigurable nanotechnolo-
gies follow the similar fabrication and manufacturing process as CMOS. Even
the proposed 2D devices such as graphene p-n junctions can be fabricated
with minimal patterning and hence are compatible with CMOS fabrication
schemes.

• In terms of geometries of these newer nanotechnologies, Si and Ge nanowire
geometries are the natural successor for FinFET-based transistors, which is
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Figure 2.8: Evolution of geometry for field-effect transistors [YEK19]. (a) Planar
FET designs were popular till 2011. (b) FinFET design were proposed to further
reduce the channel width. This covers the channel region from three sides. (c)
Stacked nanosheet designs where the gate completely surrounds the channel re-
gion to give better control than FinFET.
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the main fraction of modern CMOS technologies [Cou16]. Works from both
the industry and academia show that a FinFET can be replaced efficiently
by stacked nanowires [Chu+18; Lou+17]. This can be seen from Figure 2.8.
It can be seen from the figure that prior 2011, planar geometry was favored
which was replaced by FinFETs for even larger-scale integration. However,
to further push for the device performance, 1-D (as nanowire geometry) or
2-D (as sheet or planar geometry) are promising options.

• As we have seen for 1D and 2D devices, there is no dearth of reconfig-
urable nanotechnologies as they are realized with various materials like
carbon [Lin+05], graphene [Har+10; Tan+10], germanium [Tro17] and
WSE2 [Res+16]. This is a clear indication that reconfigurability at the
technology level has many contenders.

• Various works like [Gai+13a; Rai+18a; Rai+17] have demonstrated advanced
circuit-level designs and corresponding EDA flows using RFETs with de-
tailed evaluation. Further, RFETs allow multiple options for functional
flexibility– either in terms of the number of gate terminals on a single chan-
nel [Zha+14b] or configuring the performance of a device [Zha+14a]. As
we can see using HVT and LVT operations, both high performance, as well
as low power devices, can be manufactured. Technologies such as WSe2
have been demonstrated to be a suitable candidate for high-performance
applications [Yu+15].

• Polymorphism at the transistor level is an important criterion for hardware
security as it can inherently support both camouflaging and locking [Rai+20b].
Security applications using such reconfigurable nanotechnologies have already
been demonstrated in works like [Raj+15; Bi+16b; Che+16; RRK19] by
utilizing their unique I-V characteristic which is generally not possible with
conventional MOSFETs.

• Several reconfigurable computing fabric has been proposed using differ-
ent reconfigurable devices such as CNTFETs [Jab+11; CBO17] or SiN-
WFETs [Gai+15; DW04; Bob+12]. A summary of a reconfigurable fabric
using emerging technology [Rai+21c] shows multiple such architectures
that can benefit from transistor-level reconfigurability. This effort can be
further supported with interesting circuit designs of components such as
multiplexer [Rai+17] or crossbars.

2.3 Logic Synthesis Preliminaries

While a brief introduction about EDA and its various stages are given in section 1.3,
here are the preliminaries and terminologies relevant to understanding the logic
synthesis and technology mapping contributions of the thesis are explained. It is
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expected that the reader is familiar with the basic concepts of Boolean algebra.
For more details, the following references [Mic94; Sas12] can be referred to.

2.3.1 Circuit Model
A hardware description of a circuit is described using an abstraction i.e. a
representation that shows relevant features. A circuit is viewed through the lens
of an abstraction [Mic94]. In the present thesis, we consider the logic abstraction
to represent a given circuit, representing a Boolean function f defined by the rules
of Boolean algebra.

2.3.2 Boolean Algebra
A Boolean algebra is defined by the set B ⊇ B ≡ 0, 1 and by three operations ∧,
∨, ′ representing the conjunction (AND), disjunction (OR) and complementation
(INV). The standard Boolean algebra is a non-empty set of (B, 0, 1, ∧, ∨, ′)
(axiomatization offered by Huntington’s postulates [Hun04]). A Boolean function
is a mapping between Boolean spaces. An n-input, m-output completely specified
function is a mapping denoted by f : Bn → Bm.

2.3.3 Monotone Function And The Property Of Unateness
A monotone or a unate function is a function that can be easily represented by
AND or OR function only. A function f(x1, x2, . . . , xn) is monotonically increasing
if and only if

f(0, x2, . . . , xn) ≤ f(1, x2, . . . , xn), ∀(x2, . . . , xn) (2.1)

The monotonically increasing function is also called as positive unate func-
tion. Conversely, if f(0, x2, . . . , xn) ≥ f(1, x2, . . . , xn), ∀(x2, . . . , xn), then the
function f is called as monotonically decreasing or negative unate function. In a
Boolean expression written either as a Disjunctive Normal Form (DNF) or Con-
junctive Normal Form (CNF), the function is said to be unate in a variable where
the literal corresponding to that variable is present only in one phase. Similarly, if
the literal is present in both the phase, the function is said to be binate in that
variable. For example, a simple logic function AND of two variables (let’s say a
and b), (the logic function of f = a∨ b) is unate in both the variables. However, if
we have the logic function XOR, represented as f = a ⊕ b, then the function is
said to be binate in both the variables.

Understanding unateness is important within the context of emerging reconfig-
urable nanotechnology. Implementation of negative unate function is straightfor-
ward for CMOS technology where there exists a separate pull-up and pull-down
network. However, implementation of XOR in CMOS logic requires more number
of transistors. In contrast, emerging reconfigurable nanotechnology, by the virtue
of its device-level reconfigurability, can implement a binate function with less
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number of transistors [Ama+15b]. By using the PG, a binate function can be
implemented with less number of transistors as will be shown in Figure 3.1.

An EDA flow for RFETs-based circuits starts with a given circuit model and
then applies various algorithms to get the final physical layout of the starting
circuit. As discussed in section 1.3, a Boolean network undergoes three main
stages – Logic synthesis, technology-independent mapping, and physical synthesis.
Various notations and definitions required for these three steps are explained as
follows:

2.3.4 Logic Representations
Various data representations are used in logic synthesis and technology mapping
algorithms. Primarily two main representations are used for logic synthesis.

Two-Level Representations

Logic functions can be represented in DNF or CNF form. They are also referred
to as Sum-of-Products (SOP) (maxterms of function f) and Product-of-Sums
(POS)(minterms of function f) respectively. A logic function in DNF is represented
as a product of literals2

f = t1 ∨ t2 ∨ · · · ∨ tn (2.2)

where each term ti is a product of literals. In case of CNF representations, the
∨ is replaced by ∧. Two-level representations are compact and are useful for
representing small functions with few variables.

Multi-Level Representations

A multi-level graph network (also referred to as a Logic Network) is a Direct
Acyclic Graph (DAG) with nodes corresponding to logic gates and directed edges
corresponding to wires connecting the gates. The edges are directed from the
inputs to the outputs of the logic network. A logic network is homogeneous if each
node of the graph represents the same logic function. The edges can either be
normal or complemented. In a logic graph, for intermediate nodes, the number of
incoming edges defines the fan-in of that node. Similarly, the number of outgoing
edges defines the fan-out of that node. The terms logic network, Boolean network,
logic graph, and circuit are used interchangeably in this thesis.

In contemporary logic synthesis and technology-independent mapping, primarily
multi-level homogeneous networks are used for carrying out logic optimization and
mapping stages. It uses a combination of both Boolean and algebraic methods to
optimize a given logic network. Binary Decision Diagrams (BDDs) [Bry86] and
And-Inverter Graphs (AIGs) [BM10a] are the two popular homogeneous networks

2A literal is either the normal or the complement form of a given Boolean variable in a
Boolean space B.
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where the nodes are 2to1 multiplexer and 2-inputs AND logic respectively. While
the BDD representation is canonical [BRB90], the AIG representation is not
canonical. A representation is canonical, if for a particular Boolean function f ,
the representation is unique. Canonicity is an important property to have a single
functionally equivalent node for a given Boolean function. Using techniques such
as functional reduction, lead to semi-canonical AIGs [MCB07] so that no two
nodes in an AIG should have the same functionality but the same function can
have two different structural representation.

Recently a homogeneous network, Majority-Inverter Graph (MIG) has been
proposed where each node implements the logic function of MAJORITY [AGD14b;
AGM16]. A MAJORITY logic function is defined as:

f = ⟨x, y, z⟩ = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) (2.3)

MIG has a sound and complete axiomitization in Boolean space [Ama+16]. An
MIG node can be transformed to an AND or OR node by biasing the third input
to 0 or 1 respectively. As a consequence, MIGs provide better logic compaction as
compared to AIGs [AGM16]

Various mixed-functionality logic representations such as Xor-Inverter Graphs
(XAGs) [HFS17] or Xor-Majority Graphs (XMGs) [Haa+17; Chu+19] have
been demonstrated in contrast to otherwise popular primitives such as AIG
or MIG [AGM16]. These newer primitives offer more compact logic represen-
tations which enable better runtimes for logic optimization and minimization
flows [Haa+17]. XMGs or XAGs offer efficient representations of parity functions,
as the size of AIGs and MIGs does not scale well with higher n-input parity
functions [Chu+19].

With the advent of newer nanotechnology, there is a greater need for developing
more efficient logic and physical synthesis tools for these newer reconfigurable
technologies.



CHAPTER 3

Exploring Circuit Design Topologies for RFETs

The Pursuit of Happiness

Designing logic gates based on emerging technologies is necessary as they form
the building block for digital design. It lays the foundation to enable EDA for
the commercialization of such a technology. With the emergence of reconfigurable
nanotechnology as one of the viable technology for future electronics, a crucial task
is to formalize designs and topologies for various logic gates and circuits [Rai+18b].

The unique property of ambipolarity in RFETs opens up new design paradigms
for logic gates and circuits. The electrical symmetry offered by RFETs makes both
p and n-type functionality to be of equal drive strengths. This particular feature
tends to avoid the transistor sizing issue with CMOS. Apart from ambipolarity,
RFETs provide additional properties that should be utilized for building efficient
circuits. First, there are certain types of RFETs (RFETs with nanowire geometry)
with multiple gate terminals on a single channel to enable designs of logic gates
with two or more inputs. As explained in the previous chapter, having multiple
gate terminals on a single channel reduce the channel resistance. Reduction in
resistance allows more inputs to be connected to a single transistor exhibiting the
functionality of a wired-AND [Sim+18]. Hence, two or more input logic gates such
as XOR3, MINORITY, or MAJORITY that were generally avoided in CMOS
technology1 can be realized with RFETs.

Consideration of the above-mentioned transistor properties is integral for
designing efficient circuits based on RFETs. Contemporary CMOS-styled design of

1While such logic gates can be realized in CMOS, due to cascading of multiple transistors
between the output and Vdd, the larger logic gates are slower in CMOS implementation.

37
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logic gates can lead to sub-optimality in RFETs-based circuits in terms of physical
properties such as area, delay, or power. Due to the above features, logic gates
based on RFETs need to take special design consideration to efficiently utilize
RFET’s unique properties. Keeping this in mind, this chapter specifically targets
the following research questions:

Research Questions: Which circuit design topologies should be employed
for logic gates and circuits based on RFETs? Can ambipolarity be abstracted for
sequential or metastable circuits? This chapter introduces unique circuit designs
based on RFETs and explores various opportunities and challenges for such circuits.
It presents manually designed combinational and sequential circuit designs based
on RFETs that can exploit the inherent ambipolarity.

3.1 Contributions
The major contributions of this chapter are as follows –

• A list of functionality-enhanced logic gates (the term functionality-enhanced
was coined in [Tro+15]) based on RFETs is presented along with their
detailed evaluation to facilitate design flow for RFETs-based circuits.

• Functioning of an RFET-based metastable circuit using a Minority-based
SR latch that allows reconfiguration between a NAND and NOR-based SR
latch is demonstrated.

• Design of a reconfigurable dual edge-triggered D-flip flop using RFETs based
on True-Single Phase Clock (TSPC) logic is proposed which allows sampling
at both the edges of the clock.

• Novel 1-bit Arithemetic Logic unit (ALU) design is implemented with RFETs
and comparison to existing CMOS implementations has been shown to
demonstrate how RFETs-centric considerations during design time lead to
efficient circuits based on RFETs.

3.2 Organization
The present chapter is organized as follows: Section 3.3 presents the related work
done in exploring circuits based on RFETs. Section 3.4 presents design topologies
of exemplary 7 reconfigurable logic gates, presenting their Boolean expression.
Section 3.5 lists down logic gates that demonstrate structurally invariable logic
for both values of program gate input. This is followed by Section 3.6 that
shows an implementation of sequential circuits using RFETs. It also introduces
how metastability can exploit ambipolarity for efficient circuit design based on
RFETs. Section 3.7 presents a comparison of various circuit implementations based
on RFETs and CMOS in terms of their area and delay calculation (based on logical
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effort). It discusses how novel design topology is needed for circuit design using
an example of 1-bit ALU. Concluding remarks are given in Section 3.8.

3.3 Related Works

An important aspect is to use device-level (re-)programmability at the circuit
level to realize a runtime-reconfigurable circuit offering multiple functionalities.
DeMarchi et al. have shown that XOR functionality is embedded naturally within
dually-gated reconfigurable devices [Mar+12]. Efficient arithmetic logic gates
[AGM13; GAM14; OCo+07; OCo+12] and circuits [Gai+14b; Gai+13a; Tur+13]
based on RFETs have been demonstrated. Another important work, which first
introduced simple logic gates based on RFETs was [Tro+15]. They evaluated
various logic gate designs possible with logical effort theory. Raitza in [Rai+17] and
Gaillardon in [Gai+13b] showed good savings in area and delay for larger circuits
and ASICs respectively. By using carefully-designed circuits for conditional-carry-
adder, the authors showed savings in terms of number of transistors and delay
in terms of logical effort [Rai+17]. Quantitative analysis in terms of parameter
numbers clearly reveals that conventional circuit designs are sub-optimal for newer
nanotechnolgy and newer designs are essential for their true evaluation.

3.4 Exploring Design Topologies For Combinational
Circuits: Functionality-Enhanced Logic Gates

Interesting combinational logic gates using RFETs can be realized. Typical CMOS-
styled static logic gates are trivial to replicate in RFETs. All the PMOS transistors
in the pull-up network need to be substituted by RFETs with program gate input
connected to logic 0 (so that the RFETs function as a p-type transistor). Similarly,
all the NMOS transistors are to be replaced by RFETs in the n-type configuration.

3.4.1 List Of Combinational Functionality-Enhanced Logic
Gates Based On RFETs

However, ambipolarity enables designs of functionality-enhanced logic gates that
can exhibit runtime-reconfigurability. In this section, 7 such logic gates designs
are proposed followed by a discussion on estimation of their gate delays using the
logical effort theory.

The functionality-enhanced logic gates have been enumerated below:

1. 2-NAND-2NOR: Figure 3.1(a) shows a MIN logic gate that can be recon-
figured to 2NAND and 2NOR functionality. The value of P determines the
final functionality of the MIN logic gate. As shown in the figure, while logic
0 at the program gate input delivers 2-input NAND, logic 1 at the program
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Figure 3.1: Efficient combinational logic gates built from multi-independent-gate
RFET technology (a) 2NAND and 2NOR; (b) 3NAND and 3NOR; (c) 2XOR and 2XNOR;
(d) 2-to-1 AOI and OAI (e) 2-to-2 AOI and OAI and; (f) extended MUX functionality.
In the static case, the program signal P is set to GND (0) or VDD (1). A dynamic
switching between both functions can be achieved by altering the program signal.
In addition the gates (a) and (c) can be executed in a transmission gate style by
applying the program gate as additional input signal to map the 3MIN and 3XOR
function, respectively.
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gate input delivers 2-input NOR functionality. If a third input is connected
to P, the logic gate functions as a MIN gate. The technical implementation is
referred to as the pass-transistor logic [Tro+15], since an inverter or network
passes the rail voltages to the functional cell. The Boolean function, can be
represented as:

f = P ∗ (A+B)′ + P ′ ∗ (A ∗B)′ (3.1)

2. 2-AND-OR: A trivial extension of the 2NAND-2NOR gate is achieved by
adding an output inverter. Additionally, it can be written in POS form. The
resulting 2AND-2OR Boolean function is repesented by:

f = (P ∗ (A+B)′ + P ′ ∗ (A ∗B)′)′ = (P ′ + (A+B)(P + (AB) (3.2)

3. 3NAND-3NOR: Figure 3.1(b) shows a 3NAND-3NOR logic gate. The
structure shows three RFETs connected in parallel with one multi-independent-
gate (four-gate terminals) RFET connected at the bottom. Nanowire based
RFETs offer to place multiple gates on a single wire without penalty in
performance [Rai+17; Sim+18]. The Boolean function is represented as:

f = P ∗ (A+B + C)′ + P ′ ∗ (A ∗B ∗ C)′ (3.3)

4. 2XOR-2XNOR: Figure 3.1(c) represents the 3-XOR logic gate functionality.
The potential at P determines the actual function of logic gate. If P is fed
with the third input, then the logic gate function changes from a 2-input
XOR/XNOR to a 3-input XOR gate. The Boolean function is represented
as:

f = P ∗ (A ∗B +A′ ∗B′) + P ′ ∗ (A ∗B′ +A′ ∗B) (3.4)

5. 2-1 AOI-OAI: Figure 3.1(d) represents an 2-1 AOI-OAI. This logic gate
was first demonstrated in [Tro+15] but the representation was only based on
dual-gate RFETs. Here we have used a combination of RFETs with varying
number of gate terminals on the channel to provide additional area savings.
The Boolean function is represented as:

f = P ∗ (A ∗B + C)′ + P ′ ∗ ((A+B) ∗ C)′ (3.5)

6. 2-2 AOI-OAI: Figure 3.1(e) represents the 2-2 AOI-OAI logic gate. The
logic gate is similar to the 2-1 AOI-OAI version. The Boolean function is
represented as:

f = P ∗ (A ∗B + C ∗D)′ + P ′ ∗ ((A+B) ∗ (C +D))′ (3.6)

7. Extended MUX: This logic gate implementation on RFETs uses multi-
independent gate terminals to encapsulate more logic. Figure 3.1(g) repre-
sents the extended multiplexer as used in [Rai+17]. Raitza et al. used this
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extended MUX as a replacement for a 2-stage multiplexer with an additional
tristate enable signal En. The Boolean function is represented as:

f = En ∗ (A ∗ S′
1 +B ∗ (S1 + S′

2)) + E′
n ∗ (A ∗ S1 +B ∗ (S′

1 + S2)) (3.7)

3.4.2 Estimation Of Gate Delay Using The Logical Effort
Theory

In order to make use of the above list of logic gates, it is important to find a
measure for the performance of the above gates. Here, the delay of the proposed
circuits is analyzed using the logical effort theory [SSH99] as described in [Tro+15].
The huge advantage of this method is that it delivers technology independent
results, that are directly transferable from a micrometer-sized lab technology to
highly integrated circuits. By reformulation of a simple RC based model, the
propagation delay tPD through an arbitrary logic gate can be described by:

tPD = τ ∗D (3.8)

with

D = gh+ p, (3.9)

where τ is the intrinsic inverter delay, D is the structural delay of the circuit,
h is the fanout, p is called parasitic delay and g is called the logical effort, which
is a direct measure for the logic inputs topological complexity. A high logical
effort is thereby associated with a high amount of input capacitance (that have
to be charged) and thus a larger circuit delay till the logic gate has successfully
performed the output calculation.

However, for an overall delay comparison the intrinsic inverter delay τ , which
is a measure for the performance of the integrated technology, also has to be
accounted for. In a first-order approximation, the intrinsic delay is inversely
proportional to the on-currents ION of the individual device:

τ = VDD ∗ CG/ION (3.10)

where VDD is the supply voltage and CG the input capacitance of a single input
gate.

With fabricated demonstrator devices still lacking in terms of on-current,
the performance calculations done here can be easily transferred to a future
highly-scaled integrated technology. Recent simulation studies have shown that
scaling of device dimensions, as well as applying several stacked nanowires on
top of each other [Mar+14; Res+17] increases the device performance of RFETs
significantly. Moreover, promising performance projections are given for both
germanium nanowires as well as carbon nanotubes [Bla+17; Tro+17b; Tro17;
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Figure 3.2: Different design for inverters (a) static design – the drain, source
and program gate are fixed to Vdd and Vss respectively (b) One of the transistor’s
program terminal is connected to 0 (c) One of the transistor’s program terminal
is connected to 1 (d) Fully reconfigurable design (e) layout for fully polymorphic
inverter design as shown in Figure 3.2d.

Tro+17a; RG18] making it conceivable that similar delay values as state-of-the-
art low-operation-power CMOS technology can be achieved. It should be noted
that the real intrinsic delay value of an RFET technology is somewhere in the
middle of an inverter circuit utilizing only low-leakage-type Schottky gates or
high-performance channel gates (refer to Figure 2.1a). This is especially important
within the critical path of a circuit, where only fast inputs should be used. However,
utilizing the multigate technology, one can always add more gate terminals to the
channel and trade area for a better transient performance.

τ is treated as a technology-agnostic value for all analysis under the assumption,
that an intrinsic delay similar to that of a respective CMOS device can be achieved
by implementing the measures described above. Under this assumption, logical
effort and normalized delay can be used as a direct measure to compare the
performance of a certain circuit layout. In the first analysis step, the logic gates
shown in Figure 3.1 are assumed to be operating in a static mode. This means,
that all instances of P are directly connected to GND and all instances of P
are directly connected to the supply voltage delivering a fixed functionality. In
this configuration, the logic gates match their CMOS counterparts in terms of
functionality.



44 3.5. INVARIABLE DESIGN OF INVERTERS

3.5 Invariable Design Of Inverters

Due to the available transistor-level ambipolarity, RFETs allow designs of struc-
turally “invariable" logic. The term “invariable" refers to structural or schematic
invariance while designing logic gates. This further implies that the functionality
of logic gates remains the same when there is a change in the program gate input
terminal. Figure 3.2 shows an RFET based inverter, as inspired from designs in
[RRK18] and [Tro+15]. The design shown in Figure 3.2a is a static design. The P
and P terminals are pre-connected to Vdd and Vss respectively. Figure 3.2b shows
an inverter that is connected in a way that this cell only functions as an inverter
when the value of P is at logic 0. This is so because the bottom transistor is
already configured to be an n-type FET. Therefore, for this logic cell to function
as an inverter, the upper transistor has to be configured as a p-type FET which
requires P to be at logic 0. Similarly, the inverter design shown in Figure 3.2c
functions as an inverter only if the program gate input to this design is at logic
1. Figure 3.2d shows the completely invariant RFET based inverter. Its layout
is shown in Figure 3.2e. The layout shows two inverters where the left inverter
is driving the program gate inputs for the right inverter. This design functions
as an inverter irrespective of the potential at the program gate terminal. This
happens because depending on the value of the P input, the pull-up and pull-down
networks change in compliance with the power and ground terminals.

3.6 Sequential Circuits

The previous section covered designs of combinational logic gates. This section
covers the sequential circuit design of an RFET-based flip-flop and metastable
circuits.

3.6.1 Dual Edge-Triggered TSPC-Based D-Flip Flop

The authors in [Tan+14] proposed a design of a single edge-triggered True-Single
Phase Clock (TSPC)-based D-flip flop using RFETs that has a reduced transistor
count and area than its CMOS counterpart [YS89]. The design employed a
dual-threshold voltage configuration of the TIGFETs as shown in Figure 3.3a
for true single-phase operation. In this configuration, input G1 has a LVT and
input G2 has a HVT (corresponding to lower leakage current). Such freedom in
the configuration of the threshold voltage improves the speed of the flip flop by
reducing the parasitics, as each pull-up and pull-down path now consists of a
single transistor [Tan+14; Zha+14b]. It further leads to a reduced leakage power
dissipation.

The runtime reconfigurability feature of RFETs is used to make the TSPC-
based D-flip flop proposed in [Tan+14] dual-edge triggered. This can be done by
using a program signal (P ) instead of the power-rails as shown in Figure 3.3b. If P
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Figure 3.3: (a) N-MOS and P-MOS transistor level equivalent models for TIGFETs
in dual-threshold voltage configuration (b) A configurable dual edge-triggered D-flip
flop based on TSPC logic style.

= ‘1’, the upper four transistors encircled in red provide the pull-up path while the
lower four transistors encircled in blue provide the pull-down path. In this case,
the flip flop samples data at the rising edge of the clock and hence behaves as a
positive edge-triggered flip flop. Conversely, if P = ‘0’, the pull-up and pull-down
paths get interchanged, and the flip flop samples data at the falling clock edge.
This way it behaves as a negative edge-triggered flip flop.

3.6.2 Exploiting RFET’s Ambipolarity For Metastability

In this section, the ambipolarity of individual transistors is used in a metastable
circuit. Metastable circuits find huge applications in security as they are a crucial
component while designing Physically Unclonable functions (PUFs) or Random
Number Generators (RNGs).

MINORITY Logic Gate-Based SR Latch

A metastable state can be attained by using cross-coupled elements as a source
of randomness. Metastability-based circuits can be designed using reconfigurable
Minority (MIN) gate-based SR latch as shown in (Figure 3.4a). Figure 3.4b shows
a single SR latch unit consisting of two cross-coupled MIN gates and two buffers.
Two clock signals (clk_Program and clk_IN) with the same time period T are
fed into the unit, clk_IN being a time-delayed version of clk_Program, delayed
by td satisfying the condition td < T/2. In the first half-period of clk_Program
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Figure 3.4: (a) A configurable Minority (MIN) gate behaving as a NAND gate when
P = ‘1’ and NOR gate when P = ‘0’. (b) An SR latch unit based on minority based
NAND-NOR cell.

(clk_Program = ‘1’), the MIN gates behave as NAND gates and as the rising edge
of the clk_IN signal occurs; (when clk_IN = ‘0’), the outputs of both the gates
are ‘1’ (ground state). After, the transition in clk_IN signal, the outputs begin
to race and temporarily enter into metastability. However, owing to the noise, the
output ‘OUT’ stabilizes in order to generate a random bit (‘0’ or ‘1’). Similarly,
in the second half-period of clk_Program (clk_Program = ‘0’), the MIN gates
behave as NOR gates and the falling edge of the clk_IN signal occurs. This
time in the ground state the outputs of both the gates are ‘0’ and metastability
is attained at the ‘1’→ ‘0’ transition of clk_IN signal, which eventually results
in another random bit. Thus, in one complete clock cycle, two random bits are
generated implying that the throughput of the SR latch unit is twice the input
clock frequency.

The cross-coupled MIN gates (of same driving capability) in the SR latch
unit (Figure 3.4b) can be imagined as two cross-coupled inverters (such as in an
SRAM cell) powered-ON, when the input clock makes a ‘0’ → ’1’ transition for
clk_Program = ‘1’ or when it makes a ‘1’ → ‘0’ transition for clk_Program
= ‘0’. ‘B’ and ‘D’ are respectively the inputs to Gate-2 and Gate-1 while, ‘A’
and ‘C’ are respectively the outputs of Gate-1 and Gate-2. The corresponding
butterfly-curve in the Voltage-Transfer Characteristic (VTC) for the SR latch unit
is shown in Figure 3.5. This is done in Cadence Virtuoso where the simulation is
carried for the circuit shown in Figure 3.4b. It can be clearly seen that point ‘X’,
which is the point of metastability, lies on the identity line. This means that both
stable states demarcated by points ‘Y ’ and ‘Z’ are equally preferred. Eventually,
the latch attains either state ‘Y ’ or ‘Z’ due to noise, thereby producing a random
bit at the output (OUT).
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3.7 Evaluations

This section presents evaluation of logic gate designs shown till now.

3.7.1 Evaluation Of Combinational Logic Gates

Calculation of normalized delay first requires values of g and p to be computed for
the list of logic gates shown in Figure 3.12. Values of g and p for the respective
logic gates are shown in Table 3.1. It is evident, that due to their lower transistor
count, all proposed multi-independent-gate RFET gates exhibit a reduced logical
effort and less parasitic delay as compared to their CMOS counterparts. This
performance increase is a result of the virtually lower channel resistance per input.
In addition, there is always only a single transistor placed between the output
node and the supply potentials. This omits the need for having several nanowires
in parallel to speed up the serial branches. As a consequence, several changes in
circuit topology become evident here. First of all, NAND and NOR circuits can
be built with equal performance, simplifying timing constraints. Secondly, that
for the individual inputs all sorts of NAND, NOR and MUX gates have a logical
effort value equal to that of an inverter. This demonstrate that they all have
equal driving strength. As a result, multigate RFETs provide an increased design
flexibility as e.g. all of those gates can be used to buffer a subsequent transmission

2Done in collaboration with Michael Raitza of the group.



48 3.7. EVALUATIONS

gate, without an additional delay penalty. Moreover, it is evident, that especially
functions with a high number of inputs, such as AOI or EMUX, perform much
better, when built using an RFET technology.

Table 3.1: Comparison of transistor count #T, total logical effort gTot, logical
effort per input signal gS and parasitic delay p for static logic implementations of
the gates depicted in Figure 3.1.

Gate Variable CMOS MIGFET

#T 2 2
Inverter gTot 1 1

gIN 1 1
p 1 1

#T 4 3
2-NAND gTot 8/3 2

gA/B 4/3 1
p 2 3/2

#T 4 3
2-NOR gTot 10/3 2

gA/B 5/3 1
p 2 3/2

#T 8 4
2-X(N)OR gTot 8 4

gA*/B* 4 2
p 4 2

#T 6 4
3-NAND gTot 5 3

gA/B/C 5/3 1
p 3 2

#T 6 4
3-NOR gTot 7 3

gA/B/C 7/3 1
p 3 2

#T 6 5
gTot 17/3 9/2

2-1AOI gA 5/3 3/2
gB,C 2 3/2
p 10/3 2

#T 6 5
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Continued from previous page.

Gate Variable CMOS MIGFET

gTot 16/3 9/2
2-1OAI gA 4/3 3/2

gB,C 2 3/2
p 3 2

#T 8 6
gTot 24 6

2-2 AOI gA,B,C,D 6 3/2
p 6 2

#T 10 4
2-MUX gTot 8 4

gA*,B*,C* 2 1
p 4 2

#T 6
gTot 6
gA*,B*,S*,En N/A 1

2-EMUX gS*,En 2
p 2

Overhead For Runtime Reconfiguration

If the proposed logic gates are applied for actual runtime-reconfiguration, the
program signals P and P have to be switched dynamically. In the most simple
implementation, this can be executed by a single inverter routing the program
signals [Tro+14a]. For the sake of delay analysis, the whole gate including this
input inverter can be described as a new form of the transmission gate. Logical
effort for this type of gate is calculated using the methodology introduced in
Trommer et al. [Tro+15]. The resulting logical effort and delay values are given
in Table 3.2. It is obvious, that the program signal comprises the largest logical
effort (gP is much larger than gA/B/C) among all input signals. It implies that
the process of reconfiguration takes more time than the actual processing of the
input signals A and B. Further, as a trade-off for the increased functionality, the
logical effort values for the signals A and B are double as compared to the static
logic gate implementation, due to the fact that there is an additional transistor
placed between the supply potential and the output node.

Interestingly, some of the proposed gates enable additional functions when
used as pass-transistor logic [Tro+15], which means that a logic input is applied
at the outer source and drain contacts of the logic gate. As a result, for example,
the 2NAND/2NOR or the 2XOR/XNOR gate inherently supports the 3MIN and
3XOR function respectively if P is used as the third logical input signal. However,
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Table 3.2: Comparison of transistor count #T, total logical effort gTot, logical effort
per input signal gS and parasitic delay p for the 6 functionality-enhanced logic gates
depicted in Figure 3.1.

Gate Variable MIGFET

#T 5
2-NAND/2-NOR gTot 11
RESPECTIVE gA/B 2
3MIN TRANSMISSION gp 7

p 3

#T 7
2-AND/OR (Figure 3.1(a) + inv) gTot 11

gA/B 2
gp 7
p 4

#T 6
2-XOR / 2-XNOR gTot 16
RESPECTIVE gA*/B* 4
3-XOR TRANSMISSION gp 8

p 4

#T 7
2-1AOI / 2-1 OAI gTot 21

gA/B/C 3
gp 12
p 4

#T 8
2-2 AOI / 2-2 OAI gTot 22

gA/B/C/D 3
gp 10
p 6

#T 6
gTot 14

3-NAND / 3-NOR gA/B/C 2
gp 8
p 4
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Figure 3.6: (a) Gate level representation of generic 1-bit ALU based on CMOS (b)
Novel gate level representation of generic 1-bit ALU based on RFETs

it can be noted that reconfigurability is available at the cost of an increased number
of transistors and logical effort. This is because of the slow reconfiguration paths,
comprising of large capacitances which have to be addressed during operation.
Thus, it is important to have a closer look at individual circuit designs, to exploit
this added functionality. Next, an RFET-based ALU design is shown to exemplify
these findings.

3.7.2 Novel Design Of 1-Bit ALU

The authors in [RRK18] showed that ALU is also an example circuit that uses
runtime reconfigurability. The reconfigurable nature of an ALU is possible due to
the presence of 4-to-1 MUX which selects a specific functional output depending
on the assignment of the select lines. In this case, the circuit computes all
the functional outputs like AND, OR, XOR, and the full-adder. This is shown
in Figure 3.6a. It is to be noted that the ALU used here is a representative figure
containing major components.

An innovative design of the representative 1-bit ALU using reconfigurable
FETs-based logic gates is shown in Figure 3.6b. A comparative study with a
CMOS-based circuit in terms of delay, and area is carried out for the RFET-based
circuit.

For the representative CMOS circuit (as shown in Figure 3.6a), one can see
that the AND, OR, and the NOT logic gate can be replaced by a single MIN gate
(an additional inverter for AND and OR operation). With that approach, the
AND-OR functionality of the ALU is replaced using a 3-RFET MIN logic gate and
an inverter. This logic gate is used to calculate the Cout with Cin present. Hence,
with a single MIN logic gate, one can generate all of the above functionality. For
the full-adder implementation, the full adder circuit in the normal ALU circuit
can be removed and replaced with a 3-bit XOR-based on RFETs. Hence the basic
set of logic functions offered by the circuit of Figure 3.6a can be realized using
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only these two logic gates. This circuit is referred to as the ALU_reconf in our
calculations.

After this, a MUX is used to carefully connect the above two logic gates to
select the required functionality. By intelligent use of S0 and S2, one can toggle
between the various logic functionality. The selection of S0, S1 and S2 to achieve
different functionality is shown in Table 3.3. The MUX with select lines S1 selects
the output from the inputs from either the MIN or the 3-bit XOR. The first MUX
selects the AND/OR functionality from the MIN gate to calculate Cout. The value
of the select signal S0 needs to be 1 to select the Cin and to calculate the Cout.
In other cases, where S0 is zero, S2 is passed which enables the circuit to have
either the AND gate or the OR gate. For Cout calculation, MAJ logic function is
used and Cin is the third input as evident from Table 3.3.

The truth table as shown in Table 3.3 also shows that this novel ALU can
deliver other additional logic functions as well. The novel ALU design based on
reconfigurable FETs is capable of producing more functions which is a bonus as
compared to contemporary technologies. For example, 2-bit XNOR which is one of
the most important functionality for equality comparison, can easily be achieved
just by configuring the 3-bit XOR logic gate.

Results And Discussions

Table 3.4 shows the area, delay and activity calculation for the existing and the
novel 1-bit ALU circuit. Further, the original CMOS-based ALU design in terms
of RFET (termed as ALU_RFET in Table 3.4) and included parameters for this
version of circuit is considered as well. The CMOS circuit is the baseline reference
for all the calculations.

For the actual area (in µm2) comparison, the open-source library for CMOS
at the 45 nm technology from FreePDK45 [Sti+07] and the 22 nm SOI-based
silicon nanowire RFET library [Rai+18a] with technology scaling [SXB] are used.
Further, the area numbers for inverters in both the technologies are used to get
an estimate of the post-physical synthesis area for the above circuits as shown

Table 3.3: Novel ALU selection signals.

S0 S1 S2 Out

0 0 0 NOR
0 0 1 NAND
0 1 0 XOR
0 1 1 XNOR
1 0 n/a MAJ
1 0 n/a MAJ
1 1 n/a FA
1 1 n/a FA
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Table 3.4: Comparison in terms of area, normalized delay, activity and for the 1-bit
ALU designs as shown in Figure 3.6a and Figure 3.6b

Circuit Area (µm2) % area gain
w.r.t. CMOS

Total Normalized
Delay

% delay gain
w.r.t. CMOS

ALU_CMOS (Figure 3.6a) 5.54 Reference 36.47 Reference
ALU_RFETs (Figure 3.6a) 9.50 -71.48 20.18 44.67
ALU reconf (Figure 3.6b) 3.88 30.02 23.9 34.47

in [Rai+18a] as all the logic gates are not available for RFETs. The area of
inverter in RFET and CMOS technology (scaled to 22nm) is 0.296 and 0.12 µm2

respectively. To yield realistic area calculations, we use multiplication factors
of 7/5 and 9/5 for three-independent-gate (TIG) RFETs [Tro+16] and 4-gated
multi-independent gates (MIG) RFETs [Tro+16] with respect to the simple dual
gates RFETs. The numbers are consistent with the finite-element models used to
simulate the characteristics shown in Figure 2.1a.

The area for novel ALU based on RFETs (ALU_reconf ) is 30% smaller as
compared to the CMOS counterpart. If the generic ALU (shown in Figure 3.6a)
is built from RFET, the area is 70% larger than that of the CMOS counterpart.
That is coherent in terms of the sizes of individual transistors in RFET and CMOS
technology and also backs our starting claims.

The nominal circuit delay of the circuits has been estimated using the method
of logical effort. Thereto, the approximate minimal delay of each path through
the circuits is calculated using the following expression:

Dmin = N(h
∏

gibi)
1
N +

∑
pi (3.11)

where N is the number of stages within the path, gi and pi are the logical effort
and parasitic delay values of the individual stages, h is the fanout of the whole
path, and bi the branching effort of every stage. Each input is thereby considered
to be fed by an inverter. A general fanout of 4 is used for calculation. The delay
of the slowest individual path, the so-called critical path, is then considered the
nominal delay of the whole circuit. As stated earlier, all results are under the
assumption, that a similar individual device performance of RFETs and CMOS
devices can be achieved e.g. with the use of high performance germanium nanowire
channels or 2D materials such as WSe2.

In terms of delay, as calculated using the logic effort theory, it is to be noted,
that the RFET based circuits have higher performance as compared to the CMOS
circuit primarily because of the reduced critical path of the overall circuit which can
be attributed to the transistor-level reconfigurability. The ALU_RFETs is faster
than the ALU_reconf as the latter uses pass-transistor logic. The pass-transistor
logic is slower in performance but gains in higher functional expression. The RFET
based circuits are 44% and 34% respectively faster than the CMOS-based circuit.

It has to be taken into account, that multi-independent-gate RFETs comprise
the combination of fast inputs (low |V t|) as well as a slow input (high |V t|)
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Figure 3.7: A representative RNG schematic. The simulation model consisting
of two SR latch units, an XOR gate in DG configuration and the configurable dual
edge-triggered TSPC D-flip flop based on RFETs. The CMOS implementation shown
in Figure 3.4a is used as the equivalent circuit for comparison.

(compare with the characteristics given in Figure 2.1a as control gate terminal
IV characteristics have a steeper slope [Rai+17]). Hence, care has to be taken in
circuit design that the output from the first MUX is not connected to the input in
pass-transistor logic as that will add to circuit delay. Hence, a clever optimization
is to apply this input to one of the middle control gate inputs of the transistor. In
this case, one of the signals – A or B has to be connected in the pass-transistor
logic.

3.7.3 Comparison Of The Sequential Circuit With An Equiv-
alent CMOS-Based Design

The MIN-based SR-latch is employed in a representative Random Number Gener-
ator (RNG) design as shown in Figure 3.7. The SR-latch for both technologies are
considered for comparison.

The simulation of the RFET-based SR latch has been carried out in Cadence
Virtuoso. The Verilog-A model for the RFET in three-independent gate configura-
tion (TIGFET) from [Gor+19] has been used during the circuit-level simulations.
This model has been adapted to incorporate flicker and white noise parameters. In
the corresponding equivalent CMOS-based implementation (designed for double-
throughput) for the SR latch, operating at supply voltage of 1.0 V, the PTM
model of 16nm low power CMOS model is used for the simulation of the MOS-
FETs [WY06]. The SR latch unit in this case is shown in Figure 3.4a consisting of
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Table 3.5: A comparison between RFET-based SR latch unit and its CMOS equiv-
alent.

SR latch unit Delay (ps) µm2

RFET 206 4.67
CMOS 909 3.9

two cross-coupled NAND gates, two cross-coupled NOR gates, four buffers and
one 2× 1 MUX.

In case of RFET-based design, the same circuit of the flip flop can be reconfig-
ured into both positive and negative edge-triggered functionalities based on the
program signal during runtime. However, the same TSPC-based design of a D-flip
flop in CMOS technology [YS89] cannot be reconfigured as both positive and
negative edge-triggered and it also uses more number of transistors (11 transistors)
as compared to the proposed design using RFETs (8 transistors).

Table 3.5 presents a comparison between the SR latch units of the simulated
proposed design and its CMOS counterpart (both for double-throughput) on
the basis of transistor count, power consumption and delay operating at a clock
frequency of 100 MHz. It can be seen that there is a 60% saving in the number
of transistors by employing an RFET-based design. However, in terms of area
calculation (in µm2), RFET-based design has 19.91% overhead as compared to the
CMOS design. Furthermore, a 94.5% reduction in leakage power, 70.7% reduction
in dynamic power and 77.3% reduction in path delay is observed in case of the SR
latch unit based on RFETs with respect to its CMOS equivalent. This reduction
in delay and hence power can be ascertained due to the fact that RFETs have
lower parasitics as compared to series connection of transistors [Tro+15]. Note,
from Figure 3.4b, the path delay for the SR latch unit of proposed design includes
only clk_IN to ‘OUT’ delay (inclusive of buffer delay) while, for the equivalent
CMOS SR latch unit (Figure 3.4a), it includes clk_IN to output delay of the
NOR-based SR latch (including buffer delay) and delay of the MUX.

3.8 Concluding Remarks

This chapter presented new compact and efficient designs of combinational and
sequential logic gates. These are enabled by reconfigurable nanowire transistors
with multiple independent gates, that can be used to replace arrangements of
multiple transistors in series. This leads to several differences in circuit topology as
compared to CMOS technology, e.g. NAND, NOR and MUX all provide inverter
drive capability. It has been found that the logic gates based on reconfigurable
transistors are functionality-enhanced.

A novel design for a 1-bit ALU circuit based on RFET technology is presented.
As compared to the CMOS technology, using this novel design achieves an area
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reduction of 30% and circuit delay reduction of 34%. It has been shown how
efficient circuit design using reconfigurable transistors can lead to a range of
benefits over contemporary CMOS technologies. The circuit shown in Fig. 3.6b
gives a strong statement for the number of functions that can be achieved by using
RFETs. Further, the functional range is higher as compared to the traditional
ALU. Intelligent design approaches have to be taken in the case of circuits made
of novel emerging nanotechnologies to truly harness their benefits.

The technology albeit in its infancy has shown a lot of promise in showing better
numbers for area and delay. Various other works like [BM15], [ZGD13], [Gai+14b]
etc. have shown the efficacy of this technology in terms of area, power, and
delay respectively catering to static logic. Note that the disruptive reconfigurable
technology is not limited to silicon and is expandable to other semiconductor
materials, like germanium [Tro17] and carbon [OCo+12; Bla+17]. The exquisite
feature lies in the ease of extended functionality that RFET nanotechnology can
provide.



CHAPTER 4

Standard Cells and Technology Mapping

Good Will Hunting

The previous chapter focused on various kinds of logic gates and circuit-design
topologies based on reconfigurable emerging technologies. These logic gates and
circuits helped us to understand the logical properties of RFETs in circuit design.
However, to advance an emerging technology as a viable commercial technology,
it is imperative to devise automated techniques to build circuits based on such
technologies.

This chapter takes a step towards an automated EDA flow for emerging
reconfigurable nanotechnology. While most of the prior works in the literature
targeted the logic optimization and minimization of electronic circuits for RFETs-
based circuits [AGD14b; Ama+15b; AGD13; AGD14a], this chapter proposes
a technology mapping flow that utilizes the exceptional property of functional
reconfigurability exhibited by RFETs-based circuits. The technology mapping flow
allows defining a range of functionality for a single logic gate to be used during
mapping. This helps to provide an early evaluation for the circuit based on such
multi-functional RFET logic gates.

Another interesting perspective that this chapter deals with, is to understand
the relation between a specific type of Boolean truth-table and its RFET imple-
mentation. From the previous chapter, it was clear that while RFETs enable
runtime reconfiguration between p-type and n-type behavior, not all logic gates are
reconfigurable or exhibit multiple functionalities. There are logic gates that follow
CMOS-style gate design and exhibit a conventional single functionality. Then,

57
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why do only particular types of logic gates based on RFETs demonstrate extended
functionality? The chapter specifically targets the following research question:

Research Question: Logic gates based on CMOS are governed by elec-
trical characteristics of distinct pull-up and pull-down networks. Is the same
CMOS-styled circuit design applicable for RFETs-based logic gates? This chapter
investigates the reason why only certain logic functions can be implemented as
reconfigurable logic gates. Is there a universal Boolean property that can be
implemented efficiently using RFETs?

This chapter demonstrates that logic gates based on self-dual functions are a
preferred choice for standard-cell implementation based on RFETs. The chapter
explores how the duality in the electrical property expressed due to ambipolarity
at the transistor level transcends into duality at the logical level. In this regard,
self-duality is shown to be the natural abstraction for RFETs-based circuits.
The present chapter also lays the foundation for the next chapter where logic
representations are explored for efficient logic synthesis flows.

4.1 Contributions

The major contributions of this chapter are as follows –

1. A methodology is presented to identify Boolean logic that can exploit the
intrinsic property of transistor-level duality to demonstrate reconfigurable
functionality. These reconfigurable logic gates can be efficiently implemented
using reconfigurable nanotechnology devices and can lead to optimized circuit
implementation in terms of metrics like area, power, and delay.

2. An algorithm is proposed that can distill probable standard-cells from a
circuit’s logic network based on truth tables of individual cuts of a mapped
circuit. These probable standard-cells are a direct outcome of the require-
ments of the logic implementation of individual circuits and hence lead to
better mapping in terms of area, delay, and edge connections.

3. The concept of HOFs is introduced to encapsulate the functional reconfigura-
bility offered by RFETs-based logic gates. HOF-based mapping moves away
from the normal CMOS flow in which logic gates have a single immutable
function. This enables mapping one of the multiple yet mutually-exclusive
functions expressed by HOFs for reconfigurability-aware circuits.

4. Based on the transfer characteristics of RFETs, a heuristic to contribute to
area savings is proposed for the HOF-based mapping. The mapping uses
available inverted forms of fanins from the circuit for the family of XOR
logic gates.
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4.2 Organization

The present chapter is organized as follows: Section 4.3 presents the related works
in the direction of technology-independent mapping for RFETs-based circuits.
Section 4.4 explains the relation between Boolean truth-tables and logic gates that
can be efficiently implemented using RFETs. It shows how self-duality forms the
natural logical abstraction for RFETs-based logic gates. Then Section 4.5 discusses
the methodology to use the Boolean property of self-duality to find standard cells.
The section describes an algorithm that is applied over a benchmark suite to extract
self-dual standard cells. Section 4.6 introduces the mathematical foundation of
HOFs to abstract reconfigurable logic gates based on RFETs. The concept of
HOFs is used to define a new style of RFET-based generic library. The concept
of inverter adjustments for the XOR-family of logic gates based on RFETs is
also introduced in this section. This is followed by Section 4.7 that describes the
experiments carried out in this chapter. Concluding remarks and future work
directions are given in Section 4.8

4.3 Related Work

In [Tro+16], Trommer et. al. showed efficient and programmable combinational
logic gates based on RFETs. It was shown that because of this extended func-
tionality, a single transistor can replace logic by several transistors. Further, in
[Rai+17], the authors demonstrated the potential of reconfigurable transistors in
a conditional carry adder circuit by showing area and delay gains. These works
showed the benefits of RFETs at the circuit level. MIG[AGM16], MixSyn[AGD13]
explored data structures and algorithms to exploit logic minimization and op-
timization flow. In [AGM13], Amaru et. al. showed that majority functions
are natural functional representation for SiNW FETs. In MixSyn, the authors
tried to partition and employed different optimization for XOR intrinsic parts
of the circuits and AND/OR parts of the circuits. This tool explored the XOR
implementations offered inherently by ambipolar devices as mentioned in [Mar+12].
None of these works truly exploited reconfigurability offered by RFETs at the
technology-mapping level and undermine their benefits by using an analogous
CMOS flow. While [Tro+16] and [Rai+17] have demonstrated specific cases
of individual gates to simple manual designed circuits, no automated mapping
methodology has been proposed especially for RFETs.

In this work, a mapping flow is introduced for circuits based on RFETs by
utilizing the flexibility in terms of functional output of RFETs logic gates. The
technology-mapping flow helps to carry out early evaluation of the overheads when
using the functionality-enhanced logic gates as proposed in the previous chapter.
Further, a potential saving in the area by reusing inverter logic available in the
circuit for XOR-based logic gates is also presented.
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Figure 4.1: (a) Fixed pull-up and pull-down network in case of complimentary
MOS logic gates. (b) Interchangeable pull-up and pull-down network in case of
RFET-based logic gates. The reconf_input decides the logic functionality.

4.4 Standard Cells Based On RFETs

The present section explains the reason behind why only certain logic gates exploits
the ambipolarity offered by individual RFETs to exhibit reconfigurability and not
others.

4.4.1 Interchangeable Pull-Up And Pull-Down Networks

In conventional CMOS-based logic gates, both NMOS and PMOS devices are
fundamentally and physically different from each other. This results in CMOS-
based logic gates having a distinct Pull-up Network (PUN) made of PMOS
transistors which drives the output of the logic gate to logic 1. The inverse
is the Pull-down Network (PDN) consisting of NMOS transistors which drive
the output to logic 0. This is shown in Figure 4.1a. Since PMOS devices are
slower as compared to NMOS (due to lesser mobility of holes as compared to
electrons), designing logic gates based on CMOS often requires careful design of
channel widths to achieve similar drive strength of the Pull-up Network (PUN)
and Pull-down Network (PDN).

In contrast, RFETs do not have such imbalance between the p and n-type
behavior as they are functionally and electrically symmetric in both configura-
tions [Hei+12]. Physically, the p- and n-type behavior are two different renditions
of the same device. Hence, by changing the potential at the program gate (and
correspondingly at the control gate so that the device is in the on-state), both
p- and n-type behavior are realized from a single RFET. When this change of
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Figure 4.2: Reconfigurable logic gate MINORITY and XOR3 demonstrated
in [Hei+12; Rai+19b]. It shows how functionality changes with the value of P. With
the change in the value of P, pull-up and pull-down networks get interchanged.

potential at the program gate is done to the logic gate, the pull-up and pull-down
network can be interchanged, and hence more than one logical functionality can
be realized. In the Figure 4.1b, the potential change at reconf_input switches
the PUN and PDN. For the list of logic gates described in the previous chapter
(Figure 3.1), the reconfigurable logic gates demonstrate interchangeablePUN and
PDN based on a single reconfigurable input.

4.4.2 Reconfigurable Truth-Table

The truth-table of a logic gate represents the electrical characteristics of a given
circuit schematic in terms of logic 1 and logic 0. For reconfigurable logic gates
as shown in Figure 4.2, it is shown in this chapter, that the interchangeability
between pull-up and pull-down networks can be well encapsulated in self-dual
logic. The concept of self-duality is integral in understanding the reconfigurable
truth-table as it correctly abstracts interchangeable PUN and PDN of a logic gate.

Self-dual functions: In order to understand self-dual functions, it is necessary
to understand what a dual of a function in Boolean space implies. The dual of
any function f(x1, . . . , xn) is given by f̄(x̄1, . . . , x̄n) and is denoted by fd. The
function fd is obtained first by replacing each literal xi with x̄i and then by
complementing the function.
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A logic function f(x1, . . . , xn) is called self-dual [Sas12] if and only if

f(x1, . . . , xn) = f̄(x̄1, . . . , x̄n), (4.1)

or, equivalently, if
f̄(x1, . . . , xn) = f(x̄1, . . . , x̄n) (4.2)

for all x1, . . . , xn ∈ B.

Theorem 1. All self-dual functions can be implemented as a reconfigurable logic
gate using any single reconfiguration input.

Proof. From Equation 4.1, it is apparent that in the truth table of a self-dual
function, every maxterm has a dual in a minterm, such that the complete truth
table consists of only pairs of dual maxterm and minterm. Thus, every literal of
a maxterm has a corresponding dual in the minterm. Similarly, the output of
the maxterm is complemented to the output of the corresponding dual minterm.
When representing the truth table in terms of a logic gate, every variable of a truth
table corresponds to a signal in a static logic gate. Since the maxterm (minterm)
represents the pull-down network (pull-up network) of a static logic network, the
self-duality relation can only hold when the pull-up network (pull-down network)
is active for a particular set of signals that can activate the pull-down network
(pull-up network) in their complemented form. Ambipolarity of RFETs allows
dynamic reconfiguration between p-type and n-type behavior. This enables the
pull-up network to dynamically reconfigure to pull-down network thus realizing
self-duality.

For a network of transistors (pull-up and pull-down network) to work, all
the signals need to be flipped so that the pull-up and pull-down networks get
interchanged in a symmetrical way. Such a scenario is easily possible with RFETs
due to their inherent reconfigurability at the device level. It is to be noted
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that while self-dual logic gates are also realizable with CMOS technology, due
to dynamic reconfigurability, RFETs implement self-dual logic with less number
of transistors. For example, a MAJORITY logic function can be realized with
CMOS using 10 transistors [WH15] but in case of RFETs, it can be realized with
four transistors [AGM13].

Figure 4.3 shows an example of a truth-table for a self-dual function, Minority.
Here, when the truth-table is divided over the value of C (or any other arbitrary
literal per se), the two parts of the output’ truth table are dual to each other.
Similarly, it can also be seen from the truth-table that the minterms and maxterms
are dual to each other and exist in pairs.

Trivial And Nontrivial Self-Dual Functions

Among two-input functions, self-duality exists in those functions which are equiv-
alent to either the inputs or to their complements (for example, f(a, b) = a or
f(a, b) = a). Such functions are implemented in circuits as wires (or use an
inversion) and hence their implementation in RFETs is identical to that of CMOS.
Thus, two-input self-dual functions are referred to as trivial functions in this thesis.
For self-dual functions with more than two inputs, their implementation with
RFETs requires fewer transistors compared to their CMOS counterpart [Rai+19b;
Rai+20a]. These functions will have a direct impact on the area of the circuit.
Hence, self-dual functions with 3 or more inputs are referred to as nontrivial
functions.

4.5 Distilling Standard Cells

In this section, an approach is presented to extract possible standard-cells from
a given circuit. Algorithm 1 detects self-dual cuts that can be implemented
as reconfigurable logic gates. The algorithm traverses through a circuit and
observes the number of specific cuts in a logic network that are self-dual. The
algorithm is applied during technology mapping of a network of a circuit using
Mockturtle [Soe+18].

The input to the Algorithm 1 is a k-input cut list for a particular benchmark,
where k is the number of inputs in each cut. Each cut is then iterated to see
whether it is self-dual or not. If the condition is true, we maintain a hash table, H
for each such truth-table to count its occurrence in the circuit under test. This is
done over a benchmark suite. This helps in profiling a particular circuit in terms of
the Boolean functionality required at individual cuts. Additionally, we maintain a
hashtable, F which contains the smaller functions possible with the reconfigurable
logic gate. This is important to understand what kinds of reconfigurable functions
are possible.

Since non-trivial self-dual functions are required, only three or more inputs
logic gates are extracted since the CMOS-based implementation for such distilled
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Algorithm 1: Finding standard-cells which are reconfigurable
Data: k-input cut list for a benchmark G
Result: hashTable, H consisting of self-dual standard cells
Result: hashTable, F consisting of Shannon decomposition of functions in

H
1 cutList = cut_enumeration(G);
2 foreach cut, c ∈ cutList do
3 if (c.is_selfdual()) && (c.num_var() ≥ 3) then
4 pair{f1, f2} = c.compute_cofactors();
5 H.insert(c);
6 F.insert(f1, f2);
7 return H;

reconfigurable logic gates are not efficient in terms of the number of transistors
and performance [Rai+19b]. Hence, having these logic gates available in the
RFET-based generic library can potentially improve the technology mapping of
circuits. The count of each entry of the hash table is also maintained to get the
total number of functions used.

4.6 HOF-Based Technology Mapping Flow For RFETs-
Based Circuits

Reconfigurability is achieved in RFETs at runtime by changing the polarity of the
program gate terminals. In terms of mathematics, this functional-reconfigurability
can be encapsulated using a Higher-Order Function (HOF) as described in the
following equation:

f(x, y, z, w) = g(x, y, z), when w = 0

= h(x, y, z), when w = 1

Here f is an HOF of four variables. Functions g and h are two different
functions. In the above expression, f can be represented in terms of functions
g and h depending upon the values of w. Function f can be seen encapsulating
functions g and h. Analogous to the above mathematical function, RFET has
been shown to behave as a p-type or an n-type device, and that choice can be
made by changing the potential of the PG. The PG is the w of the above function.

Extending this transistor behavior, we have logic gates that can show multiple
functionalities from the same structure as mentioned in [Tro+16]. Such instances
of logic gates that show multiple functionalities can be termed as HOF logic gates.

An important point to add here is that these HOFs can only give certain
outputs depending upon a certain configuration of the inputs. Having an electrical
garbage value from misconfiguration of such logic gate is a valid possibility. Such
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Figure 4.4: HOF-based mapping. Three different AIGs using the same logic gate
during mapping, albeit with the addition of constant logics. The third input can be
const0, const1 or just another input for NAND, NOR or MINORITY logic respectively.

misconfiguration can lead to security vulnerabilities, which is discussed in Chapter 7.
HOF-based mapping can be explained as shown in Figure 4.4. There are three
different AIGs for different functions – NAND2, NOR2, or MINORITY. However,
in the case of HOF-based mapping, all three AIGs are mapped onto a single
HOF logic gate as shown in the figure. The concept of HOF-based mapping is
novel in the context of RFETs as reconfigurable logic gates implementing multiple
yet mutually-exclusive functionalities are possible with less number of RFET
transistors. Such expressive power of intrinsic reconfigurability can be very well
represented using HOF gates. Two kinds of mappings are possible with RFETs–

1. Static mapping : Here, static logic gates based on RFETs are used. The
logic gates used in this mapping contain only single function logic gates as
implemented by RFETs. These logic gates are similar to CMOS logic gates
with a distinct Vdd and Vss.

2. Reconfigurability-aware mapping : Here, RFETs-based reconfigurable logic
gates are used. The mapping results in a circuit where some or all logic
gates are reconfigurable. The mapping provides the area that considers the
overhead involved using reconfigurable logic gates. Inverter contributions
due to driving of signals to the Vdd and Vss are considered.

4.6.1 Area Adjustments Through Inverter Sharings
An important difference to note among the logic gates proposed in [Tro+16] is the
XOR family of logic gates. In both renditions of the XOR gate i.e. 2-bit XOR or
3-bit XOR, the complemented and actual forms of each input are required in the
logic gate. So to calculate the actual number of transistors involved in these logic
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Figure 4.5: Area optimization using inverter adjustment.

gates, an inverter must be included for getting the inverted phase of each input
within the logic gate boundary. Like in 2-input XOR_XNOR, both inputs – A
and B are required in both phases. Hence, overall area for the XOR-based logic
gates should increase by a factor of # of input_variables x 2 RFETs. This is an
overhead that must be taken into account.

However, if the XOR logic is used at multiple places in a logic circuit and if
some of the fan-ins are available in the inverted form within the logic circuit, then
that can lead to the redundant use of inverters. Hence, the feasibility of harnessing
such inverted forms of fan-ins available in the circuit needs to be explored. An
obvious problem arises as complemented forms of fan-ins available from other
parts of the logic circuit add to the fanout delay due to the longer length of metal
wires. This problem can be solved by utilizing the unique electrical properties
of multi-input RFETs. XOR family of logic gates uses interior gate terminals of
multi-input RFETs. Authors in [Rai+17], state that the gate terminals placed
above the Schottky barrier in RFETs are faster gate terminals. In Fig. 2.1a, I-V
characteristics of interior gate terminals exhibit a steeper slope for transitions. In
XOR both these inputs are fed to these faster gates terminals. Therefore, the faster
interior gate terminals compensate for the delay caused by the long length of metal
wires. Hence, in cases of logic circuits that have these inputs already available in
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inverted forms in other parts of the circuit, it is feasible to use such inverted forms
for these logic gates thereby reducing the overall number of transistors required in
the circuit.

Fig. 4.5 illustrates area optimization in logic network. The cloud-shaped parts
represent the combinational parts of a logic network. There are three XOR nodes
whose fan-ins are shown along with a bubble, signifying inverters required for
complemented input. Consider the XOR node 1 that has one fan-in coming from
the primary input (blue arrow) and the other coming from the left combinational
part(red arrow). However, it can be seen that inverted forms of both the fan-ins
are available in the circuit and hence a suitable scenario for area optimization is
possible here as shown through dotted lines. In this case, the algorithm gets away
with both the internal inverters in the XOR gate. Similarly, for XOR node 3, one
of the fan-ins are available in inverted form (green arrow) and that too contributes
to area saving. XOR node 2 has none of the fan-ins available from the circuit and
hence inverter contribution for both the fan-ins have to be added in the final area
calculation. Logic networks using XOR-based logic family can tap this kind of
optimization to reduce the overall area. Further, limiting the inverter sharing for
a certain number of fanins is required to prevent higher fanout delays, if a single
inverter output is shared by multiple XOR gates. Such logic sharing during the
technology mapping also eases out later stages of physical design.

Algorithm 2: Area Savings using already available inverted fanins
Data: Mapped Network G and Area
Result: Mapped Network G and updated Area Area

1 foreach node, n ∈ G do
2 if n.is_XORfamily() then
3 foreach fanin,f ∈ n do
4 if f.is_complemented() && G.is_node(f) then
5 f.mark_for_inv_adjustment();
6 return Area;

To calculate the number of such available inverted signals, the pseudo-code
shown in Algorithm 2 is used. The initial area during mapping is calculated in
Area. If a particular node matches with the XOR family, available inverted forms
of fan-ins are searched in the overall circuit. An area adjustment is required at
the same time for every available fan-in. The mapper finally gives that mapping,
which has the lowest area of the overall circuit. Instances of XOR logic gates that
do not find such available fan-ins, contribute to their default area.

4.6.2 Technology Mapping Flow

Fig. 4.6 shows the complete flow of our technology mapping for logic design based
on reconfigurable FETs. The output after the logic optimization is fed to our
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Figure 4.6: Entire technology flow suited for RFETs.

technology mapper. The Higher-Order Function encapsulate reconfigurable logic
gates based on RFETs. At first, the mapping is carried out using HOF followed
by typical area optimization flows in a technology mapper [Cha07]. The output of
HOF-based technology mapping is a netlist containing reconfigurable-aware logic
gates.

4.6.3 Realizing Parameters For The Generic Library

While populating the generic library, the number of transistors is considered for
area calculations as that is consistent with logic synthesis for CMOS technology
as well. For experiments, all types of RFETs contribute as a unit transistor to
the area. For the logic gates distilled using the method proposed in Section 4.5,
the area is computed using the following method. The Boolean expression for all
the logic gates is first represented in an Sum-of-Products form. For each minterm
consisting of literals that are AND-ed together, a single RFET is considered. This
is based on the fact that RFETs can support multiple independent gates on a
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Figure 4.7: Realizing parameters for a given function.

single channel due to their wired-AND property [Sim+18]. Hence, a single RFET
can have up to 4 control gate inputs with 1 program gate input. For the present
work, up to 5-input standard-cells are only considered since most of the technology
mapping algorithms [Cha07; Cal+22] consider cut-size of upto 5 inputs in their
default flow. Several works like [Zha+14b; Tro+16; Tro+15] have showcased 4 to 5
input logic gates but none of the other works showcased a 6-input logic gate based
on RFETs. Arguments can be made that RFETs support multiple independent
gates on a single channel, but for the present scope, ease of understanding and to
be consistent with the literature, 6-input logic gates are not considered. Hence,
parameters of up to 5-input reconfigurable logic gates can be easily calculated.
Further, for logic gates, which are binate (for example XOR3) in their literals, an
additional inverter is considered for every binate literal while calculating the total
number of transistors in a standard-cell.

Let us take an example of a 4-input function represented by truth-table
0000_1001_0110_1111. The Boolean expression can be represented as – f =
!d ∗ (!c ∗ (!a∗!b + a ∗ b)) + d ∗ (!c + (a∗!b+!a ∗ b)) Here, d is the reconfiguration
input. From logic gate schematic, it is a simple extension of 3-XOR logic gate as
shown in Figure 4.7. The first term consists of two minterms while the second
term consists of three minterms. So, the number of transistors is 5 (2 in pull-up
and 3 in pull-down) to implement these minterms. Additionally, since all the
variables are binate, this further requires four additional inverters. So, the total
number of RFETs for implementing the above function is 5 + 4 ∗ 2 = 13. Here,
contribution of all individual RFETs (irrespective whether they are TIGFET or
MIGFET) in terms of area is considered as 1 transistor. For delay calculation, the
number of logic-levels between the primary input to primary output is used. This
corresponds to the depth of a logic network.

4.6.4 Defining RFETs-Based Genlib For HOF-Based Map-
ping

To support multiple functionalities for RFETs logic gates, the generic library
(genlib) has to be modified to support the above mentioned changes. Since RFET
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has multiple functionalities, a logic gate entry in genlib has to be updated with
the number of outputs it can support and a description of those outputs. The
sample generic library is shown in Appendix A. In order not to interfere with the
normal flow of ABC, sinw identifier is used in the genlib. The area is considered
in terms of the number of transistors. Hence, an inverter has 2 RFETs and just
like the CMOS flow, the area of the inverter is normalized to 1. Area of all other
logic gates are normalized with respect to the area of the inverter. To enable the
area optimization due to inverter sharing in ABC tool, an additional inv_adj
identifier has been added in the genlib to the gate definition.

Let us to try to understand with an example from Table A.1 in Appendix A.
For the logic gate nand_nor_min the number 3 is the number of functions this
logic gate can offer which are defined by O1, O2, and O3. Then 2.5 is the area in
terms of number of transistors normalized to the area of an inverter. In [Rai+17],
the authors proposed an E-MUX to replace a two-stage MUX with a single logic
gate which further enabled reduced area and delay numbers. The E-MUX logic
gate has also been added in our genlib. This approach provides a simple mechanism
to include and analyze the benefits of such futuristic combinational logic gates
based on RFETs.

4.7 Experiments

The whole experiment section is divided into two major parts. In the first part
(4.7.1), Algorithm 1 is used to list out the major self-dual (reconfigurable) logic
gates present in a benchmark suite. For this analysis, the EPFL benchmark
suite [AGD15a] is used. However, the approach can be extended to any kind
of benchmark suite available. Cut-enumeration method implemented within
mockturtle [Soe+18] is used to enumerate the varying k-input cuts for individual
benchmarks where k is 3, 4, 5, 6 respectively.

In the second part, two mappings are evaluated. First, HOF-based mapping
is evaluated that indicates how mapping with RFETs-based logic gates gives
a clear advantage over CMOS-styled RFETs-based logic gates in terms of area
(number of transistors), delay, edge, and runtime. This empirically demonstrates
the findings of the previous chapter at a broader benchmark level. Both static
and reconfigurable flows are shown and the results are analyzed.

In the second mapping, the default standard-cell-based mapping is carried out
to analyze the effect of newly distilled standard-cells on the overall area, delay, and
edge connections of individual benchmarks. Here, the self-dual logic gates found
in the first experiment are used as standard-cells to constitute a generic library.
While the first HOF-based mapping is done to demonstrate the new mapping flow,
the second mapping is carried out to demonstrate the impact of the newly distilled
standard cells.
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4.7.1 Experiment 1: Distilling Standard-Cells From A Bench-
mark Suite

Table B.1 in Appendix B shows the overall occurrences of such reconfigurable logic
gates across all the benchmarks for 3-, 4-, 5-input cut mapping. This corresponds
to distillation of an equivalent number of input logic gates. 6-input cuts are not
considered. This is in coherence with the multi-input gate terminal feature as
explained in section 2.1.3. It is to be noted that the feature of multi-input gate
terminals in RFETs prevents cascading of transistors in a single path. Cascading of
transistors, in general, is not favorable for standard cells as it leads to slower logic
gates. Hence, more than 3-input logic gates are generally avoided in contemporary
CMOS technologies.

The Algorithm 1 returns in total of 132 self-dual function for EPFL benchmarks
as shown in Table B.1. Complemented form of the already distilled truth table
is ignored as the ABC mapper [BM10b] already takes care of complemented
forms during technology mapping. For example, logic gates denoted by truth-
tables 00010111 (Minority) and 11101000 (Majority) are equivalent as one can
be implemented by the other just by adding an inverter. However, looking at the
number of occurrences, it can be observed that 65 functions occurred more than
10 times for EPFL benchmarks. Appendix B also contains the self-dual functions
found and the two smaller functions that are dual to each other. Apart from
the popular functions such as XOR3, NAND3-NOR3, several other interesting
functions of 4 and 5 variables are also reported. This allows the user to specifically
select a list of RFETs-based standard cells.

In the next set of experiments, both mapping approaches are evaluated subse-
quently.

4.7.2 Experiment 2A: HOF-Based Mapping

Here, the HOF-based mapping along with inverter adjustment flow is evaluated.
The optimization for mapping with HOF-based logic gates is done in the ABC tool.
All the standard optimizations in ABC are intact and there is no interference with
the default flow. The ABC command of strash and balance are used before
calling the map command on a benchmark circuit. For runtime calculations, time
command after map command is invoked. It is to be noted that delay-oriented
mapping has been used for all experiments. The area, delay, and runtime values
for each benchmark are compared for the EPFL benchmark suite. Here, circuits
based only on RFETs are considered and comparison is carried among the three
flows which uses only RFETs-based logic gates. Three types of genlib are used:

1. For the baseline, genlib consisting of CMOS-styled logic gates based on
RFETs are used. Here, the number of transistors in each gate is similar to
the one available in CMOS-based generic library. One-to-one substitution of
CMOS transistors (both PMOS and NMOS) is done with RFETs.
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Figure 4.8: Runtime comparison. The reconfigurable and static flow has a higher
runtime as compared to the baseline flow due to inverter adjustments.

2. For static genlib, logic gates with just one functionality is used (Table 3.1).
From the layout point of view, logic gates maintain the Vdd and Vss instead
of using inverters for generating P and P . However, with this change, the
reconfigurability of the logic gate is lost.

3. For mapping, reconfigurable logic gates as described in the previous chapter
(Table 3.2) are used. Here, individual logic gates can have more than one
functionality. An additional inverter area has to be considered for the logic
gate to steer P and P in this mapping.

Runtime Comparison

The comparison in runtime for the three flows is shown in Figure 4.8. The runtimes
are measured in seconds. From the graph in Fig. 4.8 it is apparent that the baseline
flow is the fastest of three flows. This can be attributed to the time taken by the
inverter adjustments in static and reconfigurable flows. The runtime overhead
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Figure 4.9: Area comparison for various flows. Both static and reconfigurable
flow achieve lower area as compared to the baseline flow. The static flow is the best
in terms of area as average area improvement over the baseline is 24.43%.

for the two flows can be further correlated with Table 4.1. For example – in
the case of log2 benchmark, one can notice that the area savings due to inverter
adjustment in the static flow are more and hence the runtime is also more. For
large benchmarks with a higher possibility of inverter adjustments (Table 4.1), the
static flow on average has the largest runtime, followed by the reconfigurable flow
and then the baseline flow. This is due to the fact, as in the case of static flow,
the genlib contains more gates as compared to the reconfigurable flow. Hence, the
mapper has to iterate over more logic gates as compared to the reconfigurable
flow. The final runtime averages for the baseline, static and reconfigurable flows
are 0.47, 1.10, and 0.94 seconds respectively.
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Table 4.1: Comparison in the area savings due to inverter adjustments for static
and reconfigurable logic gates.

Benchmarks inv adj static inv_adj reconf

adder 191 128
arbiter 0 0
bar 0 0
cavlc 2 0
ctrl 0 0
dec 0 0
div 7 4
i2c 0 0
int2float 0 0
log2 2635 2355
max 0 0
mem_ctrl 166 169
multiplier 2935 2698
priority 0 0
router 19 17
sin 340 235
sqrt 0 0
square 1309 1245
voter 1346 113

Area Comparison

The comparison in area values is shown in Figure 4.9. Here, the area values for both
the static and the reconfigurable flows are normalized with respect to the baseline
area values. It is to be noted that the area savings due to inverter adjustments are
not deducted from the area values and is shown separately in Table 4.1. The first
thing that can be noticed is that both the static and reconfigurable flows using
RFET-styled gates achieve better area values as compared to the baseline flow.
However, few exceptions can be seen for reconfigurable flow particularly for small
benchmarks such as cavlc, dec and int2float. The area is even more than that of
the baseline flow. This is due to the fact that in reconfigurable flow, the smaller
logic gates are not available for mapping as an additional inverter is required for
reconfigurability. Hence, the area values for these benchmarks are worse across the
three flows. Further, the static flow achieves the least area number as compared to
the other two flows for all the benchmarks. The average improvements across static
and reconfigurable flows over the baseline flow are 24.43% and 13.67% respectively.

The area savings due to inverter adjustments for both static and reconfigurable
flows are shown in Table 4.1. It can be seen that not all circuits show inverter
adjustments as only circuits using the XOR-family of gates show better area
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Figure 4.10: Delay comparison for various flows. In terms of delay overhead, the
reconfigurable flow has the largest overhead. This is primarily because reconfig-
urable flow uses larger logic gates with more inputs as compared to the other two
flows.

savings with inverter adjustments. For example, in the case of voter benchmark,
the number of instances of XOR gate usages in static and reconfigurable flow are
2044 and 1101 respectively. Hence, there is such a large discrepancy in the area
savings due to inverter adjustments.

Delay Comparison

In this experiment, for every RFETs-based logic gates in the generic library, a unit
delay is considered. The delay comparison is shown in Figure 4.10. Here, also the
values are shown with respect to the baseline values. The delay value refers to
the number of logic levels between the primary input to the primary output as
all logic gates have unity delay in the generic library of all three flows. In terms
of delay, the reconfigurable flow has the largest delay with an average overhead



76 4.7. EXPERIMENTS

of around 17.44% over the baseline flow because the reconfigurable flow uses a
lot of reconfigurable logic gates which necessitates the use of constant logic such
as const0 or const1. This is particularly worse for benchmarks such as arbiter
as other flows just use only NANDs or NORs, while the reconfigurable flow uses
the bigger MINORITY logic gate. On the other hand, the static flow has a small
overhead of just 0.65% as compared to the baseline flow.

Edge Comparison

The number of edges refers to the total number of connections within the circuit and
correlates with the wirelength obtained post-physical synthesis. The comparison
in the number of edges for the three flows is shown in Figure 4.11. Both the static
and reconfigurable flow have on average more edges (0.60% and 3.65% respectively)
as compared to the baseline flow. As discussed before in delay comparison, this
increase in the number of edges is obvious as larger logic gates are being used for
smaller gates that require more number of constant logic 0 or constant logic 1. For
example, if a MINORITY is used in place of 2-NAND or 2-NOR, then constant
logics are required during mapping.

The HOF-based mapping aims to provide the complete spectrum in physical
parameters of area, delay, edges, and runtime for circuits in terms of RFETs-
based mapping. It presents both the improvements and overheads of RFETs-
based mapping where logic gates can be used either with static functionality or
reconfigurable functionality.

4.7.3 Experiment 2B: Using The Distilled Standard-Cells
During Mapping

The previous experiment as described in subsection 4.7.1 provides a list of recon-
figurable standard-cells based on the functional profiling of a benchmark suite. In
this mapping experiment, these newly distilled standard-cells are used to evaluate
the impact they have on the circuit’s parameters like area, delay, and the number
of edges.

Just like in the HOF-based mapping, three different generic libraries are also
used for this experiment. The first and second one are the same as used in the
previous experiment 2A i.e. the baseline flow (library-A) and the static flow
(library-B). The third generic library is the superset of the library-B with few of
the newly distilled standard-cells as found in the first set of experiment (listed
in Table B.1). Mostly reconfigurable logic gates such as impl-nonimpl, aoioai21,
aoioai22, nand3-nor3 and two 5-input logic gates (From Table B.1, logic gates
with high occurrence are added). However, this selection is arbitrary and is also
benchmark suite dependent.
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Figure 4.11: Edge comparison for various flows. As compared to the baseline,
there is a marginal increase in the number of edges for the other two flows.
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Figure 4.12: Area comparison for various flows. It can be seen that as compared
to the baseline, library-C achieves the best area improvement.

Mapping Using Standard Cells Through Circuit-Level Excavation

The absolute improvement over the baseline flow for area, delay and edge compar-
ison for EPFL benchmarks are shown in Figure 4.12 , Figure 4.13 and Figure 4.14
respectively. The runtime for all three flows is similar to the average runtime
across all the benchmarks falling in the range of [0.46, 0.48] seconds. In terms
of area improvement over the baseline, mapping with library-B achieves 25.47%
while library-C achieves 29.59% average area improvement respectively.

In terms of delay, all flows achieve similar results with the library-C achieving
the best delay results across all flows. All the benchmarks show a non-negative
delay improvement with library-C. Similarly, in terms of edges, Library-C again
delivers the best results with an average improvement of 6.37%. With this result,
it can be observed, that with appropriate RFET-based standard cells, the total
number of edges can be reduced. Except for the router benchmark, all other
benchmarks have achieved improvement in the number of edges.
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Figure 4.13: Delay comparison for various flows. With library-C, the delay im-
provement of 0.66 is achieved as compared to the baseline flow.

4.8 Concluding Remarks

This chapter presents an EDA-centric approach towards enabling RFETs-based
circuits. First, a logic abstraction for the RFETs-based logic gate is presented.
It has been shown that self-dual Boolean logic gates can efficiently encapsulate
duality offered by individual RFETs and are the natural logic abstraction for
RFETs-based logic gates. Then, an algorithmic approach is proposed that can
be used to distill RFETs-centric standard cells by analyzing self-dual cuts in a
benchmark suite. This approach is used to profile various standard cells and their
occurrence across a benchmark suite.

Further, mapping approaches that can exploit the reconfigurability offered
by RFETs during technology mapping have been demonstrated. The concept of
higher-order functions has been elucidated to represent RFETs-based logic gates
and to use them during technology mapping. Further, a mechanism to contribute
to area saving was presented for the XOR-based logic family using already available
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Figure 4.14: Edge comparison for various flows. Both library-B and library-C
show an average improvement of 0.89% and 6.37% respectively over the baseline.

inverted forms of fan-ins. Through experiments, a comparison between static
and reconfigurable-ready technology mapping was done in terms of area, delay,
edges, and runtime keeping the logic optimization and minimization steps intact.
While both the static and reconfigurable flows show better area numbers, the
reconfigurable flow shows overhead in terms of delay and number of edges. This
observation is obvious considering the reconfigurable flow uses larger logic gates
and also because of the use of more number of constant logic.

Last, through experiments over EPFL benchmark suites, using newly distilled
logic gates (or self-dual logic gates) as standard-cells, improvements in the area,
delay, and edge are shown for EPFL benchmarks suites. It was shown that using
such logic gates, best area, delay, and the number of edges can be achieved. This
experiment demonstrates the impact of using self-duality as a natural Boolean
abstraction for RFETs-based circuits. An important takeaway from these exper-
iments is that CMOS-styled logic gates may not be suitable for RFETs. Logic
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gate designs exploiting the duality of individual transistors can lead to efficient
standard cell designs based on RFETs.
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CHAPTER 5

Logic Synthesis with XOR-Majority Graphs

The Butterfly Effect

In the previous chapter, it was shown that RFETs allow efficient implementation
of self-dual logic functions with fewer transistors. The Boolean property of
self-duality was demonstrated to be the natural abstraction for reconfigurable
nanotechnologies. The availability of self-dual gates in the generic library also
leads to better area results during technology mapping. This chapter takes a step
further in the synthesis flow and explores logic representations that can natively
utilize the self-dual property during logic optimization to get further improvements.
This chapter focuses on improving the logic synthesis and the technology mapping
flow to achieve better area results for circuits based on emerging reconfigurable
nanotechnologies by preserving the self-duality of a given circuit.

Logic synthesis plays an important role in optimizing a logic representation for
a given circuit in terms of a cost function, typically focusing on the reduction of
area or delay. At the technology-independent level, multi-level logic representations
are used to represent and optimize circuits. Recently, novel representations have
been proposed that enhance And-Inverter Graphs (AIGs) [KGP01] and Majority-
Inverter Graphs (MIGs) [AGM16] with an additional XOR primitive. These new
logic representations, called Xor-And Graphs (XAGs) [HFS17] and Xor-Majority
Graphs (XMGs) [Haa+17; Chu+19], offer better compaction and, thus, often have
a positive effect on the performance of logic minimization techniques [Haa+17].
Technology mapping on the other hand, focuses on expressing the minimized
logic representation in terms of a network of logic gates chosen from a given
library [Cha07].

83
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XMG-based synthesis flow is explored for reconfigurable nanotechnologies to
preserve and utilize the existing self-duality of a circuit, as they are less prone
to disrupting self-duality as compared to AIGs. XMG’s gate primitives– 2-input
XORs and Majority offer a compact representation to abstract self-dual logics
because Majority and odd-input XORs are self-dual.

This chapter provides experimental evidence to demonstrate that a logic
representation that compactly abstracts self-duality can preserve more self-duality
in the circuit and achieve better area results for RFETs-based circuits. This is
motivated by the fact that synthesis approaches such as logic optimization and
technology mapping involve structural changes over a graph representation of a
circuit which can disrupt the existing self-duality of a circuit. Experiments show
that for circuits with a high percentage of self-dual logic (for ex. Majority and
odd-input XORs), AIGs are more prone to decompose self-dual logic.

Research Question: As CMOS favors negative unate Boolean logic, AIGs
are the natural abstraction for CMOS logic [Ama+15b]. However, are AIGs
appropriate for RFETs-based circuits as well? This chapter investigates this
question.

5.1 Contributions
The major contributions of this chapter are as follows –

• To preserve self-duality, an XMG-based synthesis flow is presented for circuits
based on reconfigurable nanotechnologies. Experimental evaluation demon-
strates that the XMG-based synthesis flow enables a better area reduction
for RFET-based circuits.

• A resubstitution and a rewriting algorithm for XMGs are proposed. The two
techniques play an important role in XMG optimization and also increase
the self-duality density of the circuits.

• The resubstitution algorithm uses a new filtering rule for 3-input XOR gates
(XOR3) that drastically reduces the runtime.

• Using an area-oriented mapping, it is demonstrated that XMGs enable
a higher percentage of self-dual cuts during mapping compared to AIGs.
The higher share of self-dual cuts subsequently leads to more mapping
opportunities on to self-dual logic gates.

The proposed XMG-based approach is compared with three different flows.
First, it is compared with the native flow of the state-of-the-art tool ABC [BM10b]
(baseline). Second, XMG-based logic synthesis is used as a starting point and
the area results calculated by the recently proposed logic-representation agnostic
mapper [Tem+21] are compared with those calculated by the ABC technology
mapper. Third, since the logic-representation agnostic mapper can support different
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logic representations, the proposed XMG-based approach is compared with the
AIG-based approach within the mockturtle framework [Soe+18].

The experiments are performed over two sets of benchmarks to evaluate the
approach. In the first set of experiments, synthetic benchmarks are enumerated
with varying degrees of self-duality to show that the XMG-based approach gives
the best results across these three different flows. In the second set of experiments,
cryptographic benchmarks [Alb+15; Cha+17] are used. First, it is demonstrated
that the XOR3 filtering rule leads to 59.48% improvement in runtime during
XMG-based resubstitution. In terms of improving the self-duality of a given
circuit, the two proposed techniques – resubstitution and rewriting in conjunction,
lead to a 23% average increment of self-duality over the cryptographic benchmark
suite. Second, the proposed XMG-based approach leads to an area savings of
up to 12.3% with respect to the baseline. Last, the relation between self-dual
cuts and the final share of the area by self-dual logic gates as a percentage of
the overall area is explored. On average, the XMG-based approach results in
8.68% more area occupied by self-dual gates compared to the AIG-based approach
within the mockturtle framework. These comparisons show that for circuits with
higher self-duality, the proposed XMG-based logic synthesis in conjunction with
the proposed mapper achieves superior results compared to other contemporary
flows.

5.2 Organization

The chapter is organized as follows: Section 5.3 presents a motivating example of a
simple circuit and compares the AIG and the XMG flow. Section 5.4 introduces the
necessary preliminaries and discusses earlier works based on XMGs. Section 5.5,
explain how self-duality can be preserved using XMG-based logic synthesis and
technology mapping. This is followed by Section 5.6, which explains the proposed
resubstitution and the rewriting algorithm for XMGs. Then, in Section 5.7, the
versatile mapper is explained. This is followed by Section 5.8, which presents
details about the algorithm to generate benchmarks with varying degrees of self-
duality. Section 5.9 contains details about experimental evaluations. Closing
remarks and future research directions can be found in Section 5.10.

5.3 Motivation

In order to understand the motivation behind this work, let us consider a circuit
that consists of a single 3-input XOR. Our objective is to carry out technology
mapping of this given circuit. Two straightforward mappings for the given circuit
are possible – one where the circuit is mapped to two 2-inputs XOR gates;
and the other directly to a 3-input XOR gate. From a CMOS perspective, the
mapper should prefer the first mapping as we know that that a 3-input XOR
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Figure 5.1: Edges and nodes representation in case of AIG and XMG represen-
tation for the function, f = x1 ⊕ x2 ⊕ x3 (3-input XOR). The AIG has 6 gates and 13
edges, while the XMG has 1 gate and 4 edges.

logic is avoided in CMOS as it requires multiple transistors and often has large
delay [Rai+19b]. Logic gates with many CMOS transistors require cascading
or branching of multiple transistors that hampers the performance of such logic
gates based on CMOS. Hence, circuits based on CMOS prefer logic gates with
few inputs as it is better in terms of performance and area. This is also one of
the considerations in contemporary logic representation of AIG as CMOS favours
negative unate logic [Ama17]. However, in the case of RFETs, a 3-input XOR
is a preferred mapping since it is a self-dual logic gate [Rai+20a]. From a logic
synthesis perspective, the contemporary logic representation of AIG uses 6 nodes
and 13 edges to represent the circuit. In contrast, XMG uses 1 nodes and 4 edges.
Both the AIG and XMG representations are shown in Figure 5.1. If we consider the
AIG representation, a simple 3-input cut-based technique during logic optimization
and technology mapping results in the first kind of mapping. However, in the case
of XMGs, with the same setting, the second mapping is achieved. The higher
number of edges and nodes in AIG compared to XMG explains this difference in
mapping results. This simple intuitive example motivates us to explore XMGs for
RFETs-based circuit. As CMOS favors negative unate logic gates, AIGs are the
natural abstraction for CMOS logic [Ama17]. However, are AIGs appropriate for
RFETs-based circuits as well?
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5.4 Background And Preliminaries
In the previous chapter, it was shown that self-dual functions are a logical abstrac-
tion for ambipolar nanotechnologies. The multiple functionalities exhibited by
RFET-based logic gates are due to the switchable pull-up and pull-down networks,
as shown in Figure 4.1b. The switching of polarities of individual transistors in
their respective pull-up and pull-down networks is caused by the change of the
potential at the program gate, as shown in Figure 4.2a and 4.2b. This change
of the potential causes the PFET to become an NFET and vice-versa, which
in-effect switches the pull-up and pull-down networks, as shown in Figure 4.1b.
This corresponding switch in electrical behavior is abstracted conveniently by a
self-dual Boolean function. Only with self-dual functions, the polarity switch in
individual transistors creates a conducting path between the output and the source
(or drain) leading to the realization of the dual of the original function.

5.4.1 Terminologies
Terminologies that are used throughout the rest of the chapter are introduced
here. A given circuit is represented as a directed acyclic graph (DAG) consisting
of nodes and edges. Nodes are data structures representing logic gates as defined
by a given logic representation (AIG, XMG,etc.). Edges denote the connections
between nodes. Without losing generality, the terms circuit, logic graph, logic
network are used interchangeably throughout this chapter. Next, we look at two
terminologies which will be used in the experiments section ( 5.9) of this chapter.

1. Self-duality density : Self-duality density for a circuit (or a logic network)
is defined as the ratio of the total number of self-dual nodes to the total
number of nodes.

2. Cut-enumeration techniques : In order to apply strong Boolean optimization
algorithms, k-feasible cuts per node are needed to be computed. In the
subsequent sections, we see that both rewriting approach and technology
mapping algorithm utilize methods involving k-feasible cuts per node more
commonly known as cut-enumeration techniques.

5.4.2 Self-Duality In NPN Classes
As stated in Theorem 4.1, self-dual functions are rare. Table 5.1 shows the
distribution of the self-dual functions over all Boolean functions up to 4 variables
and their NPN representatives. NPN canonization preserves the self-duality of
a Boolean function, i.e., if a Boolean function is self-dual, so are all Boolean
functions obtained by applying the NPN transformations to it. The numbers
in the table illustrate that self-dual functions are not only rare when compared
to the total number of Boolean functions, but also show that they reduce with
increasing number of variables. Whereas 25% of the NPN representatives in 2
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Table 5.1: Distribution of self-dual functions in NPN.

No of vars. Functions NPN Classes

Self-dual + norm. Total Self-dual + norm. Total

1 1 + 3 4 1 + 1 2
2 4 + 12 16 1 + 3 4
3 16 + 240 256 3 + 11 14
4 256 + 65280 65536 7 + 215 222

variables are self-dual, this percentage drops to 21.43% and 3.15% for 3 and 4
variables, respectively.

5.4.3 Majority Logic Synthesis
In this section, we review majority logic synthesis as explained in [Ama+16]. The
majority function ⟨x1, x2, x3⟩ of three Boolean variables x1, x2, x3 evaluates to true
if and only if at least two of the three variables have a value of true. The majority
function can be expressed in disjunctive normal form or conjunctive normal form,
i.e.,

⟨x1, x2, x3⟩ = x1x2 + x1x3 + x2x3

= (x1 + x2)(x1 + x3)(x2 + x3). (5.1)

By setting one of the three Boolean variables x1, x2, x3 in the majority function
⟨x1, x2, x3⟩ to a constant value 0 or 1, one obtains the logic functions AND and
OR, respectively, i.e.,

⟨0, x1, x2⟩ = x1x2 and ⟨1, x1, x2⟩ = x1 + x2, (5.2)

Equation 5.2 is often called the containment rule of majority.

5.4.4 Earlier Work On XMG
The authors of [Haa+17] proposed a logic representation, called XOR-MAJ
Graph (XMG), consisting of three-fanin majority (MAJ) gates, three-fanin XOR
gates, and inversion. The representation enables a size-proportional representation
of both, n-input unate and n-input binate logic functions. XMGs were first intro-
duced in [Haa+17] as a means for the underlying logic representation for exact
synthesis. Exact synthesis solves the problem of finding an optimum network for a
given function. Since exact synthesis uses SAT solving or enumeration, the runtime
of exact synthesis tools directly depends on the size of the logic representation.
Since XMGs have both binate (XOR) and unate (MAJ ) nodes, this results in a
size-proportional logic representation for both n-input unate and n-input binate
functions compared to the representation of binate logic (XOR-based logic) of
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MIGs or AIGs [Chu+19]. Algebraic optimizations for XMG-based logic synthesis
were proposed in [Chu+19]. The authors explored Boolean algebraic optimizations
for XOR and XOR-MAJ logic and were able to achieve depth optimizations.

5.4.5 Classification Of Boolean Functions

Two Boolean functions f(x) and g(x) over the variables x = x1, . . . , xn belong
to the same class C of functions if they are equivalent modulo some fixed set
T of function transformations. In other words, if f can be transformed into g
(or vice versa) by applying a sequence of Boolean transformations from T , then
f and g are T -equivalent. The three most common function classes are (1) P:
permutation of inputs; (2) NP: negation of inputs and permutation of inputs; (3)
NPN: negation of inputs, permutation of inputs, and negation of outputs. The
three function classes are related as follows: P ⊆ NP ⊆ NPN . These classes play
an important role in technology-independent logic synthesis since two functions
belonging to the same class can be represented with the same graph structure
modulo the respective input and output transformations [Hua+13]. For example,
the functions f1 = x1x2 + x3 and f2 = x1 + x2x3 are NPN-equivalent because by
swapping the variables x1 and x3 in f1 the function f2 is obtained. Hence, if a
node-minimum AIG for f1 is known, then a node-minimum AIG for f2 can be
derived by swapping the inputs x1 and x3.

In the following, function classification (or function canonization) is used to
perform Boolean matching in logic synthesis and technology mapping techniques.
Boolean rewriting requires a database of size-minimum circuits for all Boolean
functions. With the help of function classification [MCB06], the database can be
reduced to one size-minimum circuit per class. In technology mapping, the pre-
enumeration and hashing of the NP-equivalent functions of all cells in the technology
library enable us to match Boolean functions with cells more quickly [Cha07].

5.5 Preserving Self-Duality

5.5.1 During Logic Synthesis

Due to their reconfigurability at the device level, RFETs enable efficient im-
plementations of nontrivial self-dual logic functions in terms of the number of
transistors [Rai+20a] compared to CMOS. For example, a XOR logic gate with 3
inputs (shown in Figure 4.2b) requires 4 + 2 (for P and P′) transistors when using
RFETs as compared to 22 transistors when realized in CMOS technology [Rai+19b].
This implies that circuit implementations with RFETs lead to area reductions
if they have a high density of nontrivial (3 or more input functions) self-dual
gates. In order to use this property, it is therefore imperative that the self-duality
in a logic representation is preserved through logic optimizations. From a logic
representation perspective, if we consider AIGs (consisting of two-input AND gates
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Figure 5.2: Different logic representations of the function, f = ⟨x1, x2, (x3 ⊕ x4)⟩.
One can notice that the number of nodes and edges are the lowest in the XMG
representation.

with complement-edge attributes), a nontrivial self-dual function is decomposed
into multiple AIG nodes. Similarly, for MIGs, parity-based self-dual functions (odd
input XOR logic) cannot be represented in a compact manner using MAJ nodes
alone [Chu+19]. Various logic optimization techniques using cut-based techniques
on AIGs and MIGs can allocate different cuts for the decomposed self-dual logic,
thereby losing self-duality.

In contrast, XMGs use XOR and MAJ nodes as logic primitives. Each MAJ
and odd-input XOR function is self-dual, so using XMGs can better preserve
self-duality during logic optimization compared to other logic representations.
This can easily be seen in Figure 5.2. The figure shows three logic representations
of the same function f = ⟨x1, x2, (x3⊕x4)⟩. The AIG logic representation requires
7 gates, while the same function has 4 and 2 gates when represented as MIG and
XMG, respectively. In the example, there are more edges in the AIG and MIG
representations than in the XMG representation. This leads to an increase in the
number of competing structural cuts of the logic network in logic optimization and
technology mapping phase. With the above benefits in mind, we have developed
an XMG-based logic optimization flow that addresses these issues and helps to
achieve area reductions for RFET-based circuits.

5.5.2 During Versatile Technology Mapping

One of the limitations of the previous work [Rai+21e] is the absence of a tech-
nology mapper that can map with arbitrary logic representations. The authors
in [Rai+21e] used XMG as the graph representation and carried out logic opti-
mization intending to preserve self-duality. However, technology mapping was
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Algorithm 3: Boolean filtering and resubstitution
Data: Window W in a logic network with root node n
Result: Node resubstitute for n or ⊥ if no resubstitution has been found

1 Set M ←W.computeMFFC(n);
2 Set D ←W.collectDivisors(n)\M ;
3 Set TT ←W.simulate();
4 sortByDBP(D,TT, n);
5 for i← 0 to |D| do
6 if 3 ·DBP(D[i]) < DBP(n) then
7 return ⊥;
8 for j ← i+ 1 to |D| do
9 if DBP(D[i]) + 2 ·DBP(D[j]) < DBP(n) then

10 break;
11 for k ← j + 1 to |D| do
12 if f = TT [i]⊕ TT [j]⊕ TT [k] then
13 return W.xor3_resub(n,D[i], D[j], D[k]);
14 if f = ¬TT [i]⊕ TT [j]⊕ TT [k] then
15 return W.xor3_resub(n,D[i], D[j], D[k]);
16 return ⊥;

performed using ABC’s native technology mapper, where AIG is the default logic
representation. Thus, the XMG graph representation has to be converted to
an AIG graph representation. During this process, individual XMG nodes are
represented with multiple AIG nodes. This conversion leads to an increase in the
number of competing cuts for large self-dual logic nodes. This can be understood
from the Figure 5.2 where the self-dual nodes of MAJ are represented using multi-
ple AIG nodes. This increase in the number of competing cuts during mapping
can disrupt the self-duality density of the circuit leading to suboptimal results in
the context of area reduction for RFETs-based circuits. In our experiments, we
found that in comparison to the native AIG-based technology mapping in ABC,
this XMG-based logic graph leads to a tripling of the number of competing cuts
during technology mapping within ABC. As a result, several optimal cuts that
can preserve self-duality are lost during the technology mapping phase. Therefore,
a logic-representative agnostic technology mapping is essential for our work. We
have explored this observation and the explained it in Section 5.9.4.

5.6 Advanced Logic Synthesis Techniques

While the prior works [Haa+17; Chu+19] introduced XMGs and algebraic opti-
mizations for them, the repertoire of Boolean methods with a resubstitution and
NPN-based cut-rewriting technique is extended.
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5.6.1 XMG Resubstitution

Boolean resubstitution is a logic optimization method that re-expresses the function
of a node n in a logic network N using nodes, called divisors, already present
in N . Nodes that are exclusively used by n and are not required by any other
logic in the logic network become free and can be removed. A resubstitution leads
to a size reduction if the number k of newly added nodes to re-express a node’s
function is less than the number l of removed nodes in its maximum fanout-free
cone (MFFC, [MCB06]).

Resubstitution algorithms are available for different multi-level logic repre-
sentations including AIGs [MB06; MCB06], MIGs [Rie+18; Rie+19b], and logic
networks [KK04; Mis+11; Ama+18] focusing on two-input AND operations, three-
input MAJ operations, and combinations of two-input gates such as XOR-ANDs,
AND-XORs, or three and two-input gates such as MUX-XORs, respectively.

Computing three-input XOR (3-input XOR is a self-dual logic gate) resubstitu-
tions is particularly time-consuming because divisor filtering techniques developed
for AND and OR operations cannot be applied. To substitute a node n in a
network with logic function fn(x) by a three-input XOR operation, three divisor
nodes d1, d2, and d3 have to be found, such that

fn(x) = fd1
(x)⊕ fd2

(x)⊕ fd3
(x) (5.3)

for all assignments to the primary inputs x, where fd1 , fd2 , fd3 are the divisor
functions, respectively.

State-of-the-art Boolean resubstitution algorithms over-approximate the node
functions using windowing to apply scalable truth-table computations. The
algorithms have to iterate over all triples of nodes in a window of a root node n
(excluding the root node’s MFFC) to test if Eq. 5.3 holds. The first substitution
possible that reduces the network’s size is accepted. In the worst case, if no
resubstitution can be accepted, O(w3) tests are required for a window with w
nodes.

Filtering techniques help to reduce the number of tests required and significantly
speed-up the performance of resubstitution algorithms in practice. A new filtering
rule is developed for three-input XORs guiding the search for divisors using
distinguishing bit-pairs [CMB08]: a resubstitution of a target node n with function
f(x) and divisor nodes d1, d2, d3 with functions fd1

(x), fd2
(x), fd3

(x) over common
window inputs x exists if and only if for any pair x̂i ̸= x̂j of input assignments

f(x̂i) ̸= f(x̂j) =⇒
∨

1≤a,b≤3,a ̸=b

da(x̂i) ̸= db(x̂j). (5.4)

Example 5.6.1. Suppose that n is a node to be substituted and D = {d1, d2,
d3, d4} are divisors with the following truth tables:
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Node TT DBP

n 1001 0110 16

d1 0000 0100 4
d2 0111 1111 4
d3 1000 0000 4
d4 1111 1011 4

The absolute distinguishing bit power DBP(n) = 16, whereas the relative
distinguishing bit powers DBPn(di) = 4 for i ∈ {1, . . . , 4}. We use a counting
argument as a necessary condition to conclude that no Boolean operation using
three (or less) of the given divisor functions is sufficient to synthesize n. Assuming
that the given divisor functions distinguish different bit pairs, any subset of D
of size 3 can distinguish at most 12 bit pairs. However, n requires 16 bit pairs
to be distinguished. In other words, regardless of which three divisors one picks,
there is always at least one bit pair that cannot be distinguished. This can be
easily verified by looking at the truth tables of the divisor functions: the two
least-significant bits of all divisors functions are equal, but the two least-significant
bits of n are not.

Utilizing Eq. 5.4, all divisor nodes are sorted in a window by the number of
bit-pairs distinguished by the divisor with respect to the root node’s target function.
The absolute distinguishing bit power DBP(n) of the root node n is defined as the
number of pairs (x̂i, x̂j) of input assignments for which fn(xi) ̸= fn(xj). Similarly,
the relative distinguishing bit power DBPn(d) of a divisor d is defined as the
number of pairs (x̂i, x̂j) of input assignments for which fn(x̂i) ̸= fn(x̂j) and
fd(x̂i) ̸= fd(x̂j).

Algorithm 3 shows the Boolean filtering and resubstitution algorithm as pseudo
code. The divisors are sorted (line 4) by their relative distinguishing bit power—
higher relative distinguishing bit power will more likely lead to a possible re-
substitution. The relative distinguishing bit power is further leveraged to filter
insufficient divisor triples. Given a sorted list D = d1, ..., dw of divisors such that
DBPn(di) ≥ DBPn(dj) for all i < j, a single divisor d can never be completed to
a divisor triple that passes the test in Eq. 5.3 if 3 ·DBPn(d) < DBP(n) (line 6).
Since the list is sorted, no remaining divisor will pass this test either, such that
the algorithm can terminate (line 7). For a similar reason, no divisor pair di, dj ,
i < j, can be completed to a divisor triple that passes the test in Eq. 5.3 if
DBPn(di) + 2 · DBPn(dj) < DBP(n) (line 9). In this case, the algorithm can
proceed by selecting another candidate divisor di (line 10).

5.6.2 Exact XMG Rewriting
Boolean rewriting is a logic optimization method that selects small parts of
a logic network and replaces them with more compact implementations to re-
duce its number of nodes. State-of-the-art rewriting algorithms either rely on a
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database of precomputed size-optimum subnetworks for all Boolean functions up
to 5 inputs [MCB06] or compute size-optimum subnetworks on-the-fly using exact
synthesis [Rie+19a; RMS20]. DAG-aware rewriting [MCB06], fast cut enumeration
techniques [CWD99a], NPN canonization [Hua+13] of Boolean functions, and
efficient caching [RMS20] enable scalability.

Rewriting XMGs has been first proposed in [Haa+17] using a two-step approach
– (1) A logic network is mapped into a network of k-feasible lookup-tables (LUTs);
(2) the k-feasible LUTs are resynthesized into size-optimum XMGs. By repeating
the two steps until convergence, substantial size reduction can be achieved.

An improved XMG rewriting approach, called exact XMG rewriting, is proposed
that integrates both steps into a single algorithm. For each node, in the logic
network, the set of all k-feasible cuts is enumerated, each cut is simulated to
obtain its Boolean functions, and the functions are resynthesized using exact
synthesis. In contrast to the previous approach [Haa+17], the proposed algorithm
takes advantage of structural hashing to utilize the existing logic within the
network, such that a global size reduction can be achieved even if a locally smaller
subnetwork is replaced with a larger subnetwork.

The algorithm can be parameterized with a set of gate primitives and supports
synthesis of multiple candidates per cut function. A conflict limit in exact synthesis
allows us to limit the maximum synthesis effort per function. An exact XMG
rewriting for three different sets of gate primitives is considered:

1. Three-input MAJ gates with two-input XOR gates as originally proposed
by [Haa+17];

2. Three-input MAJ gates and three-input XOR gates to enable a more compact
representation of Boolean functions. Note that with constants the three-input
XOR gate can simulate the function of two-input XOR gates and, thus, is a
generalization of two-input XOR; and

3. Three-input MAJ gates without constants and three-input XOR gates to
improve the internal self-duality of a logic network during rewriting.

In practice, when mapped to RFETs, the best optimization in terms of area is
achieved with the first set of gate primitives. The MAJ gate and the three-input
XOR gates are large primitives and hence, fine granular optimizations can be lost.
This is an inverse scenario that is explained in Section 5.5.2. Since the individual
nodes are large, certain competing cuts (that could have been generated using
smaller logic representation) required for optimal area reduction are lost. Also,
for circuits, which do not have high self-duality density, the optimizations are
suboptimal as the obtained graph representation has a much higher number of
edges (due to the undue presence of constants) than that possible with smaller gate
primitives. The increase in these constant edges leads to poor area optimizations.
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5.7 Logic Representation-Agnostic Mapping

This section discusses the details of the versatile mapper used for mapping natively
on XMG-based logic representations.

5.7.1 Versatile Mapper

In design automation, mapping is the process of expressing a logic graph using
a set of primitives. Commonly, mapping either refers to a LUT mapping or a
standard-cell mapping [Mic94]. In this chapter, standard-cell mapping in the
context of emerging nanotechnologies is considered. Once all the logic optimiza-
tions are carried out over a logic graph during the logic synthesis phase, the
logic graph is converted to a k-bounded network, called subject graph. During
technology mapping, the subject graph needs to be expressed using the standard
cells present in a given cell library. This matching is often carried through Boolean
matching [MM90].

The versatile mapper supports arbitrary graph representations, such as AIG,
XMG, XAG or MIG, to represent the subject graph in standard cells (as given
in a technology library). In this work, the technology library is an RFET-centric
generic library consisting of logic gates as proposed in [Rai+19b]. The mapping
can be optimized for either area or delay. The mapper follows four main steps:

1. Library generation: In the library generation phase, the mapper generates a
hash table for the gate primitives listed in the technology library (.genlib).
The hash table consists of NP enumerations for each of the gate primitives
subject to filtering of enumerations that are functionally symmetric [Mic94].
A data structure is maintained that contains the delay and area values of
each gate configuration.

2. Cut enumeration: In this step, the logic network is traversed in topological
order and cuts are enumerated with up to k inputs. For each of the cuts, truth
tables are computed which are later used during Boolean matching to find a
match in the hash table of the gate primitives. The cut enumeration technique
used in the mapper is based on priority cuts as proposed in [CWD99b;
Mis+07].

3. Boolean matching: In this step, truth table for each cut of the subject graph
is looked up in the hash table (generated in the first step) to select gates that
can implement it. Both polarities of the cut are considered during mapping
to enable logic sharing of inverters and to avoid additional inverter delay.

4. Optimization objective: Once the matching is done for each of the cuts, a
cover is selected. A cover is a set of cuts so that all cuts in the set are either
rooted at the primary output or at the leaves of another cut. The cover is
selected so that an optimum area or delay for the circuit is achieved. During
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Figure 5.3: Supergate generation. Here, MUX is the root gate with NANDs and
NORs as the new input pins. The supergate thus generated has five inputs.

delay minimization, the primary objective is to have the smallest delay of the
largest path of the cover and during area minimization, the area of the cover
is minimized. Various heuristics [MBV06; CWD99b] are followed during this
step to attain the best possible mapping.

For more details on actual implementation of the mapper, readers are requested
to refer to [Tem+21].

5.7.2 Support Of Supergates
Using supergates is an efficient technique as suggested by Chatterjee et al. to
mitigate structural bias [Cha+05]. Structural bias arises from the fact that the
structure of the starting logic graph representation dictates the final mapping
quality to a large extent. By combining several gate primitives from the cell
library, a list of supergates is precomputed to be used later during the technology-
independent mapping step. Supergates aim to explore unique combinations of gate
primitives which otherwise cannot be used during technology mapping [Cha+05].
An example is shown in Figure 5.3. Here, MUX is the root gate, and its two inputs
are connected to outputs of two other logic gate. Consequently, a 5-input supergate
is realized. Similarly, various other combinational supergates are precomputed
and added to the hash table so that they are available for matching during
technology-independent mapping. From the previous section, an obvious outcome
is the increase in the size of the hashtable created during the library generation
stage. Supergates lead to improved quality of mapping at the expense of requiring
additional runtime [Cha07].

The implementation can read supergate libraries produced by the open-source
tool ABC [BM10b]. For each entry in a .super file, the implementation computes
the truth table, the area, and the delay. It is then added to the hash table generated
in the library generation step. Once added to the hash table, the supergates are
available to the mapper during the Boolean matching step.
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Algorithm 4: Generate self-dual XMG network
Data: num_pis, levels, nodes_per_level, index
Result: XMG network N

1 Set signalList ← [];
2 Set counter ← 0;
3 for k ← 0 to num_pis do
4 signalList.add(N .create_pi());
5 for i← 0 to levels do
6 for j ← 0 to nodes_per_levels do
7 fanins← signalList.randSubSet();
8 if counter < index then
9 node ← N .create_selfdual_gate(fanins);

10 else
11 node ← N .create_normal_gate(fanins);
12 signalList.add(node);
13 counter ← (counter + 1) mod 10;
14 for o ∈ signalList.not_used() do
15 N .create_po(o);
16 return N

5.8 Creating Self-Dual Benchmarks

To evaluate the efficacy of the approach compared to state-of-the-art logic synthesis
approaches for RFET-based standard-cell mapping, synthetic benchmark circuits
are generated with varying numbers of self-dual logic gates. A simple graph-based
technique is adopted to generate benchmark circuits with varying numbers of
self-dual logic gates. These benchmarks are built in a level-by-level fashion from
the primary inputs to primary outputs. There have been multiple previous works
targeting benchmark generation [Net+19; SVC00].

Algorithm 4 is used to generate benchmarks with different self-dual densities,
starting from an empty XMG network. The algorithm takes following four pa-
rameters as inputs: the number of Primary Inputs (PIs) (num_pis), the number
of levels (levels), the number of nodes per level (nodes_per_level) and the self-
duality index (index). For a given set of the above three parameters – num_pis,
levels, nodes_per_level, 10 different benchmarks are generated by assigning val-
ues {1→ 10} sequentially to the self-duality index (index). A self-duality index
value v implies that out of every 10 nodes added, v are self-dual nodes (MAJ
or 3-input XOR) and 10 − v are normal nodes (AND, OR, 2-input XOR) (line
8− 11). For example – let us consider where the values of the parameter given
to Algorithm 4 as num_pis = 12, levels = 512, nodes_per_level = 131. In this
case, the Algorithm 4 creates 10 different circuits, all with 12 primary inputs, 512
levels between the primary inputs and primary outputs, and 131 maximum nodes
in each level. Each benchmark is guided with the self-duality index value (index)
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chosen sequentially from {1→ 10} so that the 10 benchmarks have varying levels
of self-duality density. The algorithm maintains a list of signals to keep track of
all generated nodes (line 12). The algorithm first generates the primary inputs
of the XMG network and adds them to the list (line 3 − 4). It then adds new
gates in a level-by-level fashion by randomly selecting fanins from the updated
signal list (line 7). It is to be noted that self-duality index value of v (let’s say 5)
does not correspond to (10× v)% (50%) of self-duality density. This is primarily
because during the construction of the circuit, nodes are added only after checking
whether another node with the same fanins already exists in the graph or not. In
this way, XMG optimizes away some of the redundant nodes. Finally, those nodes
that are never referenced by any other node are marked as primary outputs (line
14− 15). The source code of the benchmark generator is available online1.

5.9 Experiments

In this section, experimental setup is described and the obtained results are
discussed. All algorithms have been implemented in the open-source logic synthesis
tool mockturtle from the EPFL logic synthesis libraries [Soe+18]. For technology
mapping, the RFET-based generic library consisting of logic gates as mentioned
in [Rai+19b] is used.

5.9.1 XMG-Based Flow

The proposed XMG-based flow comprises of a logic synthesis and a technology
mapping flow. XMGs are used as the graph representation for a given circuit
throughout these two steps. Following steps are carried out in this flow:

1. Starting with the graph representation of a given circuit (let’s say AIG), it
is first converted into a 4-input LUT-based logic graph. The LUT-based
representation, thus obtained is then resynthesized2, where each 4-input LUT
of the LUT graph is converted into an equivalent XMG using a pre-generated
4-input NPN class for XMGs.

2. The proposed two algorithms (resubstitution and 4-input NPN-based rewrit-
ing) are then applied iteratively to the obtained XMG until no size improve-
ment of more than 5% is possible

3. Finally, the versatile technology mapper is used with the obtained XMG
from step 2. The mapper uses the RFET-based generic library and compute
the supergates to achieve an area-oriented mapping.

1https://github.com/shubhamrai26/self-dual-experiments
2Calling node resynthesis technique as defined in mockturtle framework [Soe+18]

https://github.com/shubhamrai26/self-dual-experiments
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5.9.2 Experimental Setup
Experiments are carried out on two set of benchmarks. First, the synthetic bench-
marks are generated (as described in Section 5.8) and the post-mapping areas for
different flows (mentioned below) are compared. This gives an empirical evidence
of the proposed XMG-based synthesis flows. Then, the proposed approach is eval-
uated using real benchmarks in the form of cryptographic benchmarks [Alb+15;
Cha+17]. For post-mapping area, the following synthesis flows are used:

1. abc_rwrs: Native ABC flow is used to carry out both logic optimization
and technology mapping. Here, AIG is the used graph representation. This
flow is the baseline in the experiments.

2. mtl_AIG: AIG is the used graph representation. The versatile technology
mapper is used within the mockturtle framework to compute post-mapping
area.

3. abc_XMG: The flow as mentioned in [Rai+21e] is used. Here, mockturtle
is used for XMG-based logic optimizations. Technology mapping is, however,
carried out with ABC.

4. Proposed: This is the proposed XMG-based flow.

Then, the proposed approach is evaluated using real benchmarks in the form of
cryptographic benchmarks [Alb+15; Cha+17]. A detailed analysis is carrier out
for our individual contributions. The area comparison is carried out in terms of
number of transistors. Since we are comparing different logic synthesis flows, a
reduction in the number of transistors has a direct impact on reducing the overall
area of the RFET-based chip. This is the normalized area as mentioned in the
.genlib. The three flows (mtl_AIG, abc_XMG, and ours) are compared with
the baseline flow in terms of percentage. A negative percentage implies that the
baseline flow is better than the other flows while positive percentages imply these
flows are better than the baseline.

Throughout the experiments, for the flows that uses XMGs, the self-duality
density is calculated as follows:

sd-density =
number of XOR3 nodes + number of MAJ nodes

total number of nodes
(5.5)

The metric is used to indicate the amount of self-duality that exists in the
graph representation of the circuit.

5.9.3 Synthetic Self-Dual Benchmarks
The Algorithm 4 is used to generate 100 sets of benchmarks. For each set, the
self-duality index in Algorithm 4 is iterated from 1 to 10 to generate 10 benchmarks
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Table 5.2: Post-mapping area comparison for synthetic self-dual benchmarks
using different synthesis flows. It can be noticed that the proposed XMG-based
flow gives the best results. Additionally, it can be noted that the gain (%) is higher
for circuit with higher self-duality density. Hence, improvement increases with
higher SD-index.

SD-
index

SD-
density

baseline
abc_rwrs

mtl_AIG
(%)

abc_XMG
(%)

Proposed
(%)

1 6.63 29904.22 0.93 -0.13 1.15
2 14.97 34248.61 0.79 -0.06 1.07
3 14.97 37732.53 0.62 -0.07 0.92
4 29.61 41296.80 0.57 -0.02 0.94
5 29.85 44717.89 0.62 0.05 1.03
6 40.27 48058.86 0.59 0.08 1.07
7 53.30 51154.18 0.58 0.12 1.11
8 62.79 54031.58 0.57 0.20 1.14
9 73.58 56710.74 0.58 0.32 1.17
10 100.00 61111.34 0.50 0.52 1.13

for a particular set of parameters. Hence, in total, there are 1000 benchmarks to
evaluate. The values of other parameters are chosen randomly for the 100 sets as
mentioned in Section 5.8.

Once the benchmarks are generated, the post-mapping area is compared for
the above-mentioned synthesis flows. Table 5.2 shows the comparison of the
post-mapping area using synthetic benchmarks. The mean value is calculated
over the entire benchmark set in the following way. For a particular value of the
self-duality index, the mean is calculated over the 100 benchmarks generated. For
example, the second column shows the mean of self-duality density calculated
for each of the 100 benchmark sets corresponding to a given particular value of
the self-duality index. The first two columns show the benchmark’s self-duality
index (index ) and the corresponding self-duality density after logic optimizations
step of rewrite;resub. As mentioned in Algorithm 4, sd-index corresponds to
self-duality density. Hence, for sd-index = 10, the SD-density is 100%.

The next four columns in Table 5.2 show the mean of post-mapping area over
100 benchmarks for a particular value of self-duality index for four different flows.
The column baseline shows the mean post-mapping area for ABC native flow. The
next three columns show area comparison with respect to the baseline results in
percentage. It can be noticed that as compared to the baseline, the mtl_AIG
columns achieve better area results. This can be ascertained due to better mapping
results with the technology mapper within the mockturtle framework [Tem+21].

For the XMG-based flow using the ABC technology mapper, better results
are obtained only with higher self-duality ratios. This is consistent with the
assumption that with higher self-duality in circuits, the XMG-based flow achieves
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better area results. The last column shows area results with the proposed approach.
From the table, this flow achieves the best area results for circuits with higher
self-duality. The improvement with XMG-based flow, though consistent, is close
to ∼ 1% only and is not so significant. This can be ascertained due to the fact
that synthetic benchmarks generated using simple graph-based techniques are
devoid of irregularities which are present in an actual benchmark [SVC00]. Further,
the AIG-based flows are well-established flows and hence, they can also achieve
relatively good optimization. Synthetic benchmarks cannot be taken as the gold
standard for any logic synthesis applications, and hence the next set of experiments
are carried over a real benchmark suite. Due to these limitations, we focus our
evaluation on real cryptography benchmarks. It is to be noted, that synthetic
benchmarks are used just to show the impact of XMG-based optimization for
RFETs-based circuits as other traditional benchmark suites are mostly based on
NAND-centric (CMOS) logic.

5.9.4 Cryptographic Benchmark Suite

While the previous experiment was conducted on synthetic benchmarks, an evalu-
ation on cryptographic benchmarks is carried out in this section. These bench-
marks are taken from high-level cryptography protocols such as Fully Homomor-
phic Encryption (FHE) and secure Multy-Party Communication (MPC) [Alb+15;
Cha+17]3. This benchmark suite contains circuits ranging from block ciphers
(AES and DES) and hash functions such as (MDA-5 and SHA) to arithmetic
functions (adders and comparators). It is to be noted that the EPFL benchmark
suite [AGD15b] is not considered in our evaluation as the benchmarks are not
representative of the use case. Almost all the benchmarks have poor self-duality
density, except for a few benchmarks such as adder and square.

Runtime Improvement With Filtering In XMG Resubstitution

In order to measure the improvement in runtime using the XOR3-based filtering
rule, one iteration of resubstitution (with and without filtering) over cryptographic
benchmarks is performed using XMGs. The results are shown in Table 5.3. The
third and the fourth columns in Table 5.3 show the runtime for the proposed
resubsitution algorithm in both flows. Figure 5.4 shows the percentage improvement
in runtime for individual benchmarks. The horizontal line shows the average
runtime improvement across all benchmarks. One can see that an average runtime
improvement of 59.48% across all benchmarks can be achieved using the proposed
filtering rule.

3https://homes.esat.kuleuven.be/nsmart/MPC/
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Figure 5.4: Runtime improvement in XMG resubstitution using the proposed
filtering rule.

Improving Self-Duality Density

The impact of the proposed algorithms on the self-duality of the circuit is evaluated
with this experiment. A simple approach is followed here. As done in all the
experiments, the benchmarks are read in AIG and then converted to XMG using
the node resynthesis technique. Then, algorithm(s) are invoked iteratively until no
size improvement of more than 5% is possible. For each of the benchmarks, the
self-duality density for the XMG logic graph is calculated. The results are shown
in Figure 5.5. The bars show the self-duality density for the logic graphs using
different algorithms. The first bar initial sd-ratio shows the initial self-duality
density calculated on the obtained XMG logic graph of individual benchmarks
before invoking the algorithms. The self-duality density does not change when
invoking only the rewriting algorithm because the NPN-based rewriting retains
the number of MAJ and 2-input XOR nodes. However, as visible in the second
bar, resubstitution leads to a significant increase in the self-duality of individual
circuits. This can be ascertained due to the addition of extra self-dual nodes
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Table 5.3: Runtime for XMG resubstitution with and without the proposed filtering
rule.

Benchmarks size
before

runtime without
filter (seconds)

runtime with
filter (seconds)

AES-expanded 25435 20.19 5.30
AES-non-expanded 31642 26.16 6.79
DES-expanded 20199 447.56 37.85
DES-non-expanded 20177 443.11 35.03
adder_32bit 99 0.01 0.01
adder_64bit 203 0.03 0.02
comparator_32_s_lt 119 0.03 0.02
comparator_32_s_lt 129 0.05 0.02
comparator_32_uns_lt 119 0.04 0.01
comparator_32_uns_lt 129 0.06 0.02
md5 27867 11.31 4.34
mult_32x32 5378 4.30 0.84
sha-1 39426 8.96 4.78
sha-256 83381 22.84 12.48

(3-input MAJ and 3-input XORs) to the logic graph. The third bar shows the
self-duality density after calling the two algorithms sequentially. It can be seen
that self-duality almost remains the same for both these function calls – only
resubstitution, and rewriting followed by resubstitution. This can be observed
in the two average lines (49.45% for resub and 49.47% for rewrite followed by
resub) drawn in the graph. This experiment demonstrates that the proposed logic
synthesis algorithm helps to increase the self-duality of the circuit.

Area Comparison

Table 5.4 shows the post-mapping area comparison for cryptographic benchmarks
with4 and without supergates respectively. As in the case of synthetic benchmarks,
here also, the post-mapping area results obtained using the aforementioned four
flows are compared. For ease of readability, a column for sd-density value has been
added for individual benchmarks from the previous experiment. The improvements
are shown with respect to the baseline area results.

One can notice that most of the benchmarks from the cryptography domain
have a high density of self-dual gates (>50%), particularly parity functions as it is
an integral logic function in any cryptographic applications. In case of benchmarks,
where sd-ratio is lower (<50%) (DES, comparator), the AIG-based approach

4using ABC command to create supergate library: super -I 5 -L 3 -N 0 -T 1 -D 0.00
-A 0.00. The command in ABC generates 5 input supergates by combining 3 levels of primitive
gates. This command generates a total of ∼ 17000 supergates for mapping.
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Table 5.4: Comparison of the post-mapping area without the use of supergates.
The use of supergates leads to a better area across all the flows particularly with
the mockturtle framework (mtl_AIG and Proposed). High self-duality density leads
to higher improvement over baseline for XMG-based flows.

Without supergates With supergates

Benchmarks SD
density

Baseline
rwrs area

xmg
_rwrs %

mtl
_aig %

Prop.
(%)

Baseline
rwrs area

xmg
_rwrs %

mtl
_aig %

Prop.
(%)

AES-exp. 19.07 72231.00 -3.50 -4.98 -4.03 71568.00 -2.77 -1.34 -2.97
AES-non-exp. 17.7 92190.00 -1.29 -4.11 -1.26 90962.50 -1.32 -1.08 -1.26
DES-exp. 34.06 35419.00 -1.52 -8.44 -15.44 35322.00 -1.32 -2.03 -7.14
DES-non-exp. 34.11 35495.50 -0.94 -7.88 -15.75 35230.00 -1.27 -2.00 -7.72
adder_32bit 96.88 270.00 -10.74 0.00 0.00 270.00 0.00 0.00 0.00
adder_64bit 98.44 542.00 -11.25 0.00 0.00 542.00 0.00 0.00 0.00
comp._s_lt 41.03 246.00 2.44 -22.97 -7.93 235.00 6.81 0.64 6.17
comp._s_lteq 40.32 235.00 -4.47 -22.55 -27.23 225.50 -1.11 -8.87 -5.10
comp._uns_lt 41.03 246.00 0.81 -22.97 -7.72 235.00 5.11 0.64 6.60
comp._uns_lteq 40.32 235.00 -4.47 -22.55 -27.23 225.50 -1.11 -8.87 -5.10
md5 55.41 78489.00 2.20 5.81 8.24 79810.00 2.07 7.58 9.93
mult_32x32 41.33 9917.50 2.39 -7.34 -15.95 10208.00 0.74 -2.65 3.92
Sha-1 62.98 116425.00 1.17 7.72 9.19 118003.50 0.79 9.12 10.61
Sha-256 69.83 232028.50 -0.56 10.28 9.55 236238.00 0.84 12.08 12.36

gives better results. Hence, both AIG-based approaches (baseline and mtl_AIG)
achieve better area results for such benchmarks. This is due to the fact that AIG
representation consists of 2-input nodes and hence more number of smaller cuts are
available for mapping compared to XMGs which consist of bigger XOR and MAJ
nodes. Hence, the mapping achieves better optimization in terms of area-oriented
mapping for these circuits. However, for benchmarks, md5, SHA-1 and SHA-256,
the proposed XMG-based approach (Proposed) outshines other synthesis flows
and gives superior results. The higher self-duality in these circuits leads to better
preservation of self-dual logic using XMGs. This results in the mapping of more
self-dual logic gates leading to an improved area results for RFETs-based circuits
as explained in Section 5.5.

Consideration of supergates leads to even better results as it can mitigate
structural bias issues [Cha07]. However, in case of ABC-based flows (baseline
and abc_xmg), the mapper leads to poor area results for some benchmarks. This
can be ascertained as the mapper can get stuck in a local minimum as area-
oriented mapping is an intractable problem and is driven by heuristics. However,
mockturtle-based flows (mtl_AIG and Proposed) are more consistent here as using
supergates leads to more uniform area reduction (comparator, multiplier, SHA-1,
SHA-256 ). Using supergates with the proposed approach achieves best area results
of up to 12.36% for circuits with higher self-duality. This gives an experimental
evidence that for circuits with higher self-duality, XMG-based approach obtains
better area results for RFETs-based circuits.
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Table 5.5: Comparison of ratios of self-dual cuts between AIG and XMG-based
representation.

AIG XMG

Benchmark total cuts sd-cuts (%) sd3-cuts (%) total cuts sd-cuts (%) sd3-cuts (%)

AES-expanded 2906133 5.85 4.74 363829 24.50 18.92
AES-non-expanded 3754949 6.20 4.94 561621 29.12 23.40
DES-expanded 1109707 0.82 0.48 292045 8.07 4.92
DES-non-expanded 1117971 0.83 0.48 291256 8.08 4.92
adder_32bit 4591 3.81 1.31 127 96.06 47.24
adder_64bit 9576 3.76 1.29 255 98.04 48.63
comparator_32_s_lt 4084 1.15 0.44 564 14.54 4.96
comparator_32_s_lteq 3668 1.04 0.35 622 13.99 5.31
comparator_32_uns_lt 4084 1.15 0.44 556 14.93 5.04
comparator_32_uns_lteq 3668 1.04 0.35 622 13.99 5.31
md5 3395540 5.24 3.97 168548 37.75 27.01
mult_32x32 285268 3.01 2.12 39800 12.51 6.97
sha-1 5632714 6.62 5.38 174914 47.60 35.18
sha-256 11774568 6.22 5.02 370611 51.87 38.39

Average 2002056.33 3.31 2.16 151104.07 35.80 20.72

Exploring Why Higher Self-Duality Density Leads To Better Area
Results With XMG-Based Approach

In this set of experiments, exploration is done to reason why XMG-based approaches
lead to better area reduction as compared to AIG-based approaches for circuits
with higher self-duality density. The mockturtle-based synthesis flows are used for
this experiment (mtl_AIG and Proposed). Three important metrics are calculated
– the total number of cuts available during mapping, the number of total self-dual
cuts, and the number of non-trivial self-dual cuts. These metrics give an overall
idea regarding what kind of cuts are available during mapping. Additionally, from
post-mapping results, the ratio of the area of self-dual logic gates to the total
area of the circuit is computed. Table 5.5 show these values for both AIG and
XMG-based flows. For each benchmark, the following metrics are shown– the total
cuts, the ratio of self-dual cuts to the total cuts, the ratio of non-trivial self-dual
cuts to the total cuts, and finally the ratio of area contribution from self-dual logic
gates to the total post-mapping area.

From Table 5.5, the number of total cuts in AIG is more than that in XMG as
AIG uses a 2-input AND node compared to XMG that uses larger 2-input XOR
and 3-input MAJ nodes. However, the ratio of self-dual cuts is much higher in the
case of XMG as compared to AIG. An interesting observation is that this ratio is
also much higher in case of XMGs for circuits that have a higher self-duality density
(sha-1, sha-256, md5 ). It clearly indicates that XMGs offer more self-dual cuts
during mapping compared to AIGs. Similarly, for circuits with higher self-duality
density, XMG on average has a higher sd-area-ratio (54.38% vs 46.72%) compared
to AIGs as shown in Figure 5.6. It can be noticed that XMG-based approach
has higher sd-area-ratio for all the benchmarks. Due to the higher sd-area-ratio,
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XMGs lead to better area reduction for RFET-based implementation compared to
AIGs for circuits with higher self-duality.

Another practical benefit with the XMG-based flow, that can be correlated
with the results shown in Table 5.5 and was earlier demonstrated in [Haa+17], is
the improvement in the runtime for XMG-based flow. XMG-based flow has to
iterate over fewer cuts as compared to the AIG-based flow which leads to reduction
in the overall runtime of the synthesis flows. In terms of runtime to carry out
technology-independent mapping for all the cryptography benchmarks, XMG takes
in total 7.06 seconds as compared to AIG that takes 59.88 seconds.

5.10 Concluding Remarks And Future Research
Directions

The present chapter explores both logic synthesis and technology mapping from an
emerging technology perspective. With the particular aim of preserving self-duality
in circuits, an XMG-based logic synthesis solution for RFETs-based circuits is
investigated. XMGs are used for two reasons: (i) XMGs are a compact representa-
tion for both unate and binate logic; (ii) the logic primitives in XMGs (MAJs and
2-input XORs) can efficiently represent self-dual logic gates because both Majority
and odd-input XORs are self-dual. Additionally, with the logic-representation-
agnostic versatile mapper, the limitation of previous work [Rai+21e] of converting
XMGs into AIGs before technology mapping has been resolved. In comprehensive
experimental evaluations, the XMG-based flow is compared with three different
sets of experiments. It has been shown that for circuits with higher self-duality,
the XMG-based synthesis achieves better area results. Future work directions
include the development of more optimization algorithms for XMGs. Additionally,
measures to deal with the problem of structural bias within technology mapping
have to be also explored.
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CHAPTER 6

Physical synthesis flow and liberty generation

The Maze Runner

Physical synthesis is a crucial step in Electronic Design Automation (EDA)
to derive actual physical circuits from a technology-mapped netlist of a Boolean
logic network. It brings out important consideration of actual physical geometry
and the area of standard cells while finalizing a given circuit. Other factors
such as wirelengths, parasitics, capacitances, and other electrical effects are also
computed to give close estimates of the various physical parameters such as area,
delay, and power for a given circuit. Particularly, for emerging technologies, it
is an important step to analyze and compare the actual physical benefits of the
technology in comparison to an existing and established Complementary Metal
Oxide Semiconductor (CMOS) technology. While an emerging technology can
be promising at a transistor level, a benchmark-level evaluation in terms of post
physical-synthesis (area, power, and delay numbers) is necessary to understand
the feasibility aspects of such an emerging technology. It also provides feedback to
the technology model engineer to bring forth the limitations of the current models
and explore ways to improve existing technology models for emerging technologies.

This chapter proposes a physical synthesis flow for circuits based on reconfig-
urable technologies. Using a target Silicon Nanowire (SiNW)-based Reconfigurable
Field-Effect Transistor (RFET) technology, the chapter explores and evaluates
RFETs-based circuits in terms of multiple physical parameters. Further, the
chapter investigates innovative physical synthesis approaches that can benefit
RFETs-based circuits in terms of security evaluation. The chapter specifically
targets the following research question:

109
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Research Question: Considering RFETs to be still in a nascent stage in
terms of their maturity compared to CMOS, how feasible is it to make actual
physical circuits based on RFETs?

With the above research question in mind, the chapter discusses what are the
major challenges and opportunities, that need to be explored for enabling efficient
physical circuits based on RFETs. This chapter presents a tailor-made physical
synthesis flow by carrying out a benchmark-level evaluation of RFETs-based
circuits.

6.1 Contributions

The major contributions of this chapter are as follows –

1. Layouts for a set of logic gates based on SiNW have been proposed. A
reconfigurable ready layout for the Minority logic gate is also demonstrated.

2. A physical synthesis flow using both open-source tools as well as using
the industrial Cadence Encounter has been proposed. Particularly, .lef
and .lib files are made available using the 22nm technology model for
SiNW RFETs. Both the flows are available under open-source license at
(https://github.com/shubhamrai26/repopro)

3. Using logic locking as a target security application, two approaches for
placement and routing have been proposed for RFETs-based circuits. The
concept of driver cells is introduced to generate the P and P signals required
by the reconfigurable logic gates. Such an approach leads to localization of
reconfigurable components of the circuit that can reduce area overheads for
logic locking schemes in RFETs-based circuits [Rai+20b; Sin+21; Kne20a].

4. Since RFETs are used for reconfigurable logic gates and reconfigurable
circuits [Rai+19b], an investigation into how the ratio between reconfigurable
and conventional logic gates affects chip area, wirelength consumption, and
power consumption has been carried out.

In order to create a Verilog-A model and to extend it to generate .lef and .lib
files, a table model is created that uses the 22 nm technology model. The technology
model is proposed to pattern the individual nanowire width and to define the
half-pitch between parallel arranged nanowire channels [Bal+17]. The target
technology is the fully symmetrical RFET as proposed in [Hei+12] and adapted
to an Silicon-On-Insulator (SOI) platform. Both open-source and industrial flows
are demonstrated to show the comparison with an equivalent CMOS model.

https://github.com/shubhamrai26/repopro
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6.2 Organization

The present chapter is organized as follows – Section 6.3 discusses the related
work in the domain of physical synthesis for RFETs and the motivation behind
exploring different physical synthesis approaches for RFETs. Then, Section 6.4
introduces the SOI platform for SiNW-based RFETs. This is followed by section 6.5
which introduces the layouts for both static and reconfigurable logic gates based
on RFETs. Section 6.6 introduces the table model and the complete tool-flow
used to generate the .lef and .lib files for SiNW RFET technology. The
concept of driver cells and new techniques for physical synthesis is explained
in Section 6.7. Experiments are described in Section 6.8 which is followed by
discussions in Section 6.9. Concluding remarks are given in Section 6.10.

6.3 Background And Related Work

6.3.1 Related Works

As discussed in Chapter 2, RFETs by the virtue of their device-level reconfiguration,
provide an alternative path to increase the number of functions offered per unit
transistor. In spite of its great promise, most of the work in enabling EDA for
RFETs has been mainly at the logic level as discussed in [Tro+16], [Rai+17],
[Gai+14b] and [Gai+13a]. While [Tro+16] demonstrated efficient and exemplary
logic gates, [Rai+17] and [Gai+14b] showed the potential of these RFETs in
bigger circuits and Silicon-On-Chip (SOC) core components respectively. In
terms of the synthesis flow, most of the earlier works targeted either at logic
optimization [AGM16; Rai+18a; Rai+20a] or focused on manually designed circuit
elements [ZGD13; Gai+14b; AGM13]. A major research aspect that has been
missing until now is the support of these works from the physical synthesis point
of view, i.e., their compatibility with existing synthesis flows.

There have been relatively fewer attempts to target physical synthesis flows
for RFETs-based circuits [BM15; RRK18; Reu+21]. Earlier works like [Bob+12;
BM15] focused on physical synthesis for RFETs on a configurable sea-of-tiles
like fabric. The work done in [Bob+12; BM15] addresses the routing congestion
arising from the extra gate terminal in the SiNWs RFET [Bob+12]. However, their
approach was technology independent and they showed layouts for basic logic gates
only. Additionally, such a sea-of-tiles fabric is incompatible with conventional
physical synthesis flows. For RFETs, where a single device has more contact
terminals as compared to the traditional CMOS, placement and routing are more
challenging for conventional approaches. Although RFETs lose to CMOS in terms
of the number of contacts per transistor, they make up for this with their higher
functional expression, since the overall number of transistors per circuit is greatly
reduced. This has been demonstrated particularly in [Rai+19b; Rai+17].
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None of these works have tried to demystify the entire design flow – logic
synthesis up to physical synthesis for SiNW RFETs. Neither is there an evaluation
of SiNW through a parallel CMOS standard flow from a technology perspective.
This chapter is aimed at formalizing a complete physical synthesis flow along
with layouts for various logic gates based on SiNW RFETs. The chapter also
focuses on optimizing the post-placement area by exploring ways to improve the
physical synthesis for RFET-based circuits through the creative use of multiple
power domains and power shut-off (PSO). There has been no prior work on
the placement and routing of reconfigurable logic gates based on these emerging
technologies, which is a prerequisite for reconfigurable logic circuits. Hence, it
is required to design a complete EDA flow comprising both logic and physical
synthesis for RFET-based circuits.

6.3.2 Motivation

Due to the inherent ambipolarity offered by these emerging reconfigurable nanotech-
nologies, transistors and hence logic gates demonstrate runtime-reconfigurability
by applying different bias voltages to the program gate of a single or a group of
transistors [Rai+19b]. This runtime-reconfigurability can be exploited for develop-
ing polymorphic logic gates [Mac11] at low area, power, and delay overheads. Such
polymorphism allows achieving efficient solutions for hardware security, particularly
for logic locking schemes [Bi+16b; Rai+19a; Rai+20b].

However, earlier works from a hardware security perspective have overlooked
the physical design flow for circuits based on RFETs. Hence, the impact of
security measures over routing and placement has been missing which leads to
more abstract overheads in terms of area and power. This chapter looks at physical
synthesis to support such logic-locking-based hardware security schemes. Various
approaches have been explored in physical synthesis flow for RFETs-based circuits
and discuss concrete area and power numbers by carrying out a benchmark-level
evaluation. A discussion regarding the variability of reconfigurable logic and its
effects on the area and other parameters of the circuit has been done as this is
relevant from a security point of view. The present work deals with evaluations and
analysis in terms of exploring efficient physical synthesis flows for reconfigurable
FET-based circuits. The security analysis is avoided in this chapter as these
security evaluations for logic-level modeling have been carried over RFETs-based
circuits in the next chapter. The next chapter demonstrates that the practical
security can easily be achieved against seminal SAT-based attacks [SRM15] using
RFET-based circuits. This chapter thus, focuses on the the backend flow of circuit
design in terms of physical synthesis. The security evaluations using logic-level
modeling have been carried over RFETs-based circuits in Chapter 7.



6. PHYSICAL SYNTHESIS FLOW AND LIBERTY GENERATION 113

AZ

(a) Inverter

VDD

ABZ

VSS

(b) 2-NAND

VDD

VSS

A

B

P

Z

(c) MINORITY

Figure 6.1: Layouts of Logic Gates. The first two layouts are for static logic gates
while the third one is for the reconfigurable MIN logic gate.

6.4 Silicon Nanowire Reconfigurable Transistors

For this work1, an SOI-based 22nm technology is proposed to pattern the minimal
width of individual nanowire ribbons and to define the half-pitch between parallel
arranged nanowires. These features can be achieved with a conventional 45nm
technology node and a spacer pattern transfer technology as commonly done
for fin patterning in FinFETs. The top Si thickness is set to 6.0nm and the
Effective Gate Oxide Thickness (EOT) is set to 1.0nm. To accommodate the two
parallel gates per device, the technologically simplest route is chosen with a gate
pitch of ∼110nm and an active channel length of ∼100nm. This would imply
a gate composition and patterning flow as similar as possible to the commonly
employed MOSFET gates in CMOS. As only a single kind of transistor is needed
and no doping is required, at least one lithography step and four implantation
steps with associated dopant activation anneals are spared compared to a 45 nm
CMOS technology. Nevertheless, it can be noted that the transistor cells for the
RFETs can be defined in a much more compact way e.g. by self-alignment as
previously shown in [Mar+12]. However, this requires an additional lithographic
step compared to the mentioned approach but allows in a channel length shrinkage
from 100nm to ∼48nm or less. Since RFET devices exhibit Schottky junctions,
they introduce an energy barrier even in the on-state, therefore drive currents are
lower than in conventional MOSFETs for comparable dimensions. Accordingly,
they are slower as compared to CMOS-based devices but they have substantially
lower static leakage power consumption.

Germanium nanowires as implemented in RFETs [Tro+17a] offer a similar
structure but better electrical properties. Therefore, they are able to outperform
previous polarity-controllable device concepts on other material systems in terms
of minimized threshold voltages and higher normalized on-currents. The present
work lays the foundation for emerging reconfigurable technologies with different
channel materials.

1The model was developed in collaboration with NaMLaB.
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6.5 Layouts For Logic Gates

Fig. 6.1 shows the proposed layouts for logic gates – INV, 2-NAND and 3-MIN
based on SiNW dual-gate RFETs exclusively. For gate-level schematics of these
layouts, readers are advised to go through Chapter 3. It is to be noted that only
dual-gate RFETs (DIGFET) have been considered for developing these layouts.
While Verilog-A models for RFETs with three-input all-around gate-terminals
(TIGFETs) have been developed [Gor+19], at the time of writing this thesis,
efforts were still undergoing to design the most optimal layouts for these TIGFETs.
Pitch considerations between various gate terminals have to be taken care of so as
to have the correct pin-density for optimal place and route during the physical
synthesis process. RFETs with multi-input gate terminals (MIGFET) though
experimentally shown at the transistor level [Zha+14b] are still under active
research to develop trustworthy models that can produce reproducible results.
Multi-input gate FETs like TIGFETs and MIGFETs exhibit a higher potential for
minimizing the transistor count and saving the overall area as shown in Chapter 3.
Hence, technology models based on TIGFETs or MIGFETs are worth exploring as
they can potentially lead to further compaction and better performance results.

6.5.1 Layouts For Static Functional Logic Gates

Figure 6.1a and 6.1b show the layouts of a SiNW RFETs-based NAND and INV
logic gates respectively predefined in a static manner by the interconnect design.
The vertical brown lines in the layout are the gate terminals that are self-aligned
to the Schottky contacts below. The three green squares (two in INV) refer to the
active regions. A nanowire conducting channel is formed between two vertical gate
lines over the silicon well area. With the help of vias, the connections are made to
Vdd, Vss, output Z and inputs A and B. This particular layout is static, i.e. the
functionality is defined by the layout, and reconfigurability at runtime is not used.
One can notice in the NAND layout that the program gates are connected to VDD

or VSS internally through vias. This increases the area of the layout but it does
not create additional routing overhead.

6.5.2 Layout For Reconfigurable Logic Gate

The MINORITY gate layout, as shown in Figure 6.1c is a reconfigurable ready
layout. The dark brown horizontal lines are the input/output points. Depending
upon the value of S, this layout of the MINORITY gate can function as a NAND
gate (S = 0) or a NOR gate (S = 1). This particular layout possesses more number
of gate terminals. The additional gate terminals are required to realize inverters
within the gate boundary so that it can implement reconfigurable functions. This
particular layout integrates extended functionality of a 3-MIN, 2NAND, or 2-NOR
within a single logic gate layout. Such layouts can be extended for other logic
gates to utilize the runtime reconfigurability provided by RFETs. The choice lies
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in the hand of the circuit designer to choose among the layouts whether to use
them in a static design or a runtime reconfigurable design. This choice is modeled
as replacement-ratio in Section 6.9

6.6 Table Model For Silicon Nanowire RFETs

The creation of a table model using experimental data for RFETs is a necessary
starting step to create .lef and .lib files. To create a table model, the internal
structure and material properties of the SiNW transistor are modeled in a TCAD
simulator. This environment also contains an electrical simulator which can execute
transient analog simulations. But, the electrical simulator is highly constrained in
speed and capacity and, therefore, cannot be used for performance evaluations at
the digital circuit level. Based on the electrical characterization of SiNW RFETs, a
table model has been proposed using the I-V properties of scaled SiNW considering
stressors to adjust symmetry [Bal+17].

To enable a realistic estimation of SiNW logic gate timing and area, Liberty
models are required. Liberty models are a standard format containing a table
model for timing, power, and pin properties of digital standard cells and thereby
abstracting from the analog electrical behavior and offering the speed required
for large-scale system integration. To create this model, a SPICE simulation is
executed for each table entry.

There is no direct link from Technology Computer-Aided Design (TCAD)
simulations to transistor models for SPICE simulators. Usually, compact models
(based on equations) are used as transistor models. They offer the best simulation
speed and robustness but even though these equations are physics-based, they
require major efforts to fit the model to the real transistor behavior over the whole
operating range. While this compact modeling is necessary for final technology
development, in the early evaluation stages of an emerging technology a more
simple table model might offer a better compromise to link transistor design to
electrical simulators. Therefore, a table of current, voltage, and capacitances based
on DC simulations inside the TCAD environment is exported as a plain ASCII
file. For the electrical transistor model, this table is read inside a Verilog-A
module and thereby can be used by every analog SPICE simulator supporting the
required Verilog-A constructs. Although this approach cannot model dynamic
charge distributions inside the transistor channel, the simulation results of a small
circuit is comparable in both TCAD and SPICE. It can be verified that the
transient delay error between both simulations is within 20% and is thereby a
valid approximation for early technology development. The parasitic capacitances
for a typical transistor structure, up to Metal1, have been included in this model.

For library characterization, Synopsys SiliconSmart is used which integrates
all required functionality if a cell netlist and transistor model files are provided.
The complete library characterization flow is shown in Figure 6.2. Based on the
cell function, it generates all the timing and power arcs and a set of corresponding
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Figure 6.2: Tool Flow for liberty characterization for SiNW based RFETs.

HSPICE simulations for each table entry. It then extracts the results and writes
out a Liberty file (.lib) and a matching Verilog behaviour model. Based on
the SiNW RFET technology status, there has been only one operating condition
characterized, which is a typical one at a supply voltage of 1.8V. While these
simulations provide timing and power numbers, the area of the SiNW logic cells
needs to be extracted from real cell layouts. As shown in the previous section,
these layouts follow advanced node design rules, and the layout abstract file (.lef)
for Place & Route are created by the Cadence Abstract Generator. The .lef file
contains information like cell boundaries, metal blockages, and pin locations. The
area is written to the .lib files. The schematics of the cells are exported as SPICE
netlists and are used by the characterization tool. Appendix C and Appendix D
consist of a snippets from generated .lef and .lib files for SiNW-based RFETs
respectively.

6.7 Exploring Approaches For Physical Synthesis

This section covers various physical synthesis approaches for circuits based on
RFETs. First, the default flow of standard Placement & Route (P&R) is explained.
This flow is also used to compare RFETs-based implementation with the CMOS-
based implementation. Second, the concept of driver cells is introduced as that
is integral for the flows meant for area optimization. Last, the two approaches –
native and island approach are presented which use driver cells to have a better
packing to achieve area reduction. It is to be noted that presently these two
approaches are supported only for the industrial flow as the Power-shut Off (PSO)
support is matured in Cadence encounter tool-flow. These two approaches are
targeted towards hardware security ensuring affordable area overheads for RFETs-
based circuits. For the sake of the reader’s understandability, a trivial example of
logic-locking is assumed in which the starting RFET-based circuit is only mapped
with NAND and NOR logic gates. Then, a certain percentage of the static
logic gates (NAND or NOR) in a given circuit are replaced with polymorphic
MINORITY gate.
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Figure 6.3: Open-source physical Synthesis Flow Through Qflow [Edw17]
Yosys [Wol] ABC [BM10b] Graywolf [Gra17] Qrouter [Qro17] Klayout [Köf17].

6.7.1 Using The Standard Place & Route Flow

Using the library characterization flow as described in the previous section, the
.lef and .lib files are generated for standard cells such as INV, NAND, NOR,
MUX, XOR and MIN. These gates contain an inverter (within the gate bound-
ary) , so that both P and P are available for reconfiguration. A diagrammatic
representation is shown in Figure 6.6a. The MIN gate in Figure 6.1c is such a
layout [RRK18], in which the inverter is located on the left side, connected to Vdd

and Vss. In this case, M1 metal wires were used for Vdd and Vss, while the P and
P signals were routed together with all other signals using polysilicon, M1, and
M2. In this approach, the generated .lib and .lef are used for carrying out
physical synthesis for circuits exclusively based on RFETs. A physical synthesis
flow using using QFLOW [Edw17] has been shown in Figure 6.3. Similarly, a
flow using industrial tools Cadence Encounter has also been demonstrated. This
constitutes the standard P&R flow for circuits based on RFETs involving both
static and a reconfigurable gate (MIN).

6.7.2 Open-Source Flow

For the open-source tool-flow, Qflow [Edw17] is used. The toolchain uses other
open-source tools like Yosys [Wol], Graywolf [Gra17] and Qrouter [Qro17] for
logic synthesis, placement, and routing steps respectively. Yosys internally uses
the ABC tool [BM10b]. The Yosys tool reads the Verilog file and the Liberty
file based on the technology as inputs. The ABC tool carries out further logic
optimizations and technology-independent mapping. After the mapping stage,
the netlist is converted using the Blif2Cel tool to generate an input file for the
placement tool Graywolf [Gra17]. The tool takes the .lef file and the output
of the logic synthesis stage to generate a .cel file which acts as an input to the
Graywolf tool. A .par file is generated that uses the technology information from
the .lef. This file is used by Graywolf. This .par file contains the information
regarding the routing resources and their constraints. It also contains various
controllable parameters for placement. Both the .par file and the .lef files are
fed to the P&R tool. In our flow, the placements of standard cells are taken care
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of by the Graywolf, and the detailed routing of metal wires is handled by the
Qrouter (it is a part of the QFlow toolchain) [Qro17].

Graywolf completes the automatic floor planning and placement and generates
an un-routed .def file which is then used by Qrouter for further processing. This
.def file contains all the placement and netlist information. A second iteration
for Graywolf is done on the netlist to produce the final placement to weed out
minor issues if the placement fails in the first attempt. After the placement of
standard cells, the modified netlist is used by the Qrouter which carries out a
simple maze routing algorithm for detailed routing. Following this process, we can
obtain the area numbers after the placement and routing stage. The routed .def
file along with .lef file and the .GDSII file for the standard cells can be used to
view the final layout. For obtaining the final layout in the .GDSII format, the tool
Klayout [Köf17] is used to get the overview of the post-layout circuit.

6.7.3 Concept Of Driver Cells

In order to enable reconfigurable functionality using RFET-based logic gates, an
inverting logic is imperative to generate P from P [Rai+19b]. However, it can be
noticed that within a particular circuit, multiple reconfigurable logic gates can
share the same value for P . Additionally, since Vdd and Vss are only needed for the
operation of the internal inverter, their wiring wastes valuable routing resources
that cannot be used to connect P , P , and all other signals. This also leads to an
increased pin density and an area overhead for each reconfigurable logic gate in the
circuit. These issues can be mitigated by removing the inverter that drives the P
and P for a reconfigurable logic gate. This leads to a smaller cell area, decreased
pin density, and more available routing resources for the P&R tool.

Hence, for each group of reconfigurable logic gates sharing the same P and P ,
a driver cell is instantiated which particularly powers these two signals. These
driver cells comprise large inverters with high fan-out, which are usually included
in the Process Design Kits (PDKs). This allows us to introduce new layouts of
reconfigurable logic gates, as shown in Figure 6.4b, and Figure 6.4c, that do not
contain an inverter. They need to be connected to P and P of a driver cell instead.
These layouts further help in reducing the pin density so as to facilitate a better
place and route for large circuits. The driver cell is integral to the proposed native
as well as the island approach.

6.7.4 Native Approach

In this approach, reconfigurable logic cells are stripped of their internal inverter as
shown in Figure 6.4b for the MIN gate. This leads to a smaller gate area that
improves total area and power consumption. The Vdd and Vss contacts at the top
and bottom are not changed so that the gate can be placed on the default power
rails like any other standard cell. However, in these cells, the Vdd and Vss contacts
are not needed. Instead, the gates are powered by a driver cell using P and P .
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Figure 6.4: (a) Layout of the minority (MIN ) logic gate containing an inverter. (b)
Our newly proposed layout of a MIN gate with P, P as separate input signals. (c)
Our improved MIN gate layout for the PSO approach.
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Figure 6.5: Design flows for (a) the native approach and (b) the island-based
approach.

This leads to a waste of M1 routing resources, which increases pin density and
limits the possible area improvements.

The resulting design flow is shown in Figure 6.5a. It starts with a Verilog
netlist that includes reconfigurable gates. As shown in Figure 6.6b, a single driver
cell powers multiple reconfigurable logic gates using P and P . Depending on the
available drive strengths of the P/P drivers, groups with the correct number of
reconfigurable gates that share the same P/P are created. For each group, a driver
is added to the netlist and connected to the individual reconfigurable gates. The
driver’s input signal P can then be connected to the corresponding pin or signal.
Since the new reconfigurable logic gates can be placed and routed like any other
standard cell, standard P&R as mentioned in subsection 6.7.1 can be performed
to generate the layout.
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It can be argued that from a hardware security point of view, sharing of signals
can compromise the robustness of a circuit against security attacks. However, in
any logic-locked circuit, locking signals are limited by the size of tamper-proof
memory [Cha+20] and hence, all of them cannot be possibly made as primary
inputs. This promotion of signals from an intermediate signal to primary inputs
also adds to routing and area overheads. This particular decision can be left on
the hardware designer to explore the amount of sharing, a particular design can
afford for maintaining an acceptable level of security.

6.7.5 Island-Based Approach

The biggest limitation of the native approach is the unused Vdd and Vss contacts
on M1, as they only serve for the compatibility of the cells to carry out placements
with the default power rails. To circumvent this issue, the connections to Vdd and
Vss are removed and their metal contacts are reused for P and P . The improved
cell layout is shown in Figure 6.4c. This approach greatly reduces pin density on
M2 in areas with many reconfigurable logic cells. Due to the simpler routing, the
total area of the chip and the wirelength are also reduced considerably.

One drawback of this approach is that these new and improved cells can no
longer be placed on the Vdd and Vss power rails. To still carry out the placement
and routing of RFET-based circuits using these improved cell layouts, an island-
based approach is applied using multiple power domains and PSO mode, which is
supported by Cadence Encounter tool-flow for low power design. In the island-
based placement, groups of reconfigurable logic gates that share P and P is placed
in their own rectangular power domain. As shown in Figure 6.6c, the driver cells
are used as power switches that are automatically placed in the power domain
and automatically routed by the P&R tool using the PSO mode. Since P and P
use the power rails in the power domain, no additional resources are needed for
routing. By using the switching signal which was originally intended to switch
the power domain on and off, the driver cells can be controlled. The polarity of P
and P can also be reversed depending upon the placement opportunities. This
makes it possible to reconfigure all logic gates in the power domain simultaneously,
depending on the functionality required by the circuit.

The design flow for this island-based approach is shown in Figure 6.5b. It starts
with the same netlist as the native approach from the previous section. Groups of
reconfigurable gates are created that are connected to the same P and P signals.
This time, however, there is no limit for the size of these groups. For each group,
a separate power domain is set up with the appropriate number of driver cells.

As shown in Figure 6.7, these driver cells are automatically placed in a grid
and drive P/P using the M1 power rails (cf. Figure 6.4c). At last, the defualt
standard P&R is performed to generate the layout.
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Figure 6.6: Three different approaches for physical synthesis of RFETs-based
circuits. (a) Layout of reconfigurable logic gate proposed in [RRK18]. P and P
signals are driven by inverting logic embedded within the logic gate. (b) Out na-
tive approach which removes the inverting logic and uses separate driver cells for
generating P and P . (c) Our PSO-based approach that groups reconfigurable logic
gates in power domains which are driven by common P and P signals.

6.7.6 Utilization Factor

When placing and routing a netlist, adjusting the utilization factor has the greatest
influence on the chances of success and the quality of the layout. This factor
defines the ratio between the used and the unused area during placement. For
example, a utilization factor of 0.9 means that 90% of the core area is occupied by
macros and standard cells while 10% of the area remains empty. The smaller this
factor is, the larger the layout will be, resulting in lower cell and pin densities. As
a result, routing gets simplified with this modification.

In the experiments shown in this chapter, P&R is started with a core utilization
of 0.8 and a power domain utilization of 0.9. Reduced values for these parameters
are tried for each benchmark depending on the location of Design Rule Check
(DRC) errors until the resulting layout had no DRC violations.

6.7.7 Placement Of The Island On The Chip

For the island-based approach, the placement of the power domain in the core is an
important consideration. Figure 6.8 shows the three variants that we have examined
experimentally. It can be concluded that there is not a single configuration that is
the best for every test case. Instead, the choice depends on the circuit structure,
the amount of reconfigurable logic in a circuit, and whether the optimization
criteria is to minimize the area or the wirelength.

As shown in Figure 6.8, there is an empty row above and below of the power
domain. This is necessary because of the different power rail voltages in the power
domain and outside. As a result, the stand-style configuration (c) in Figure 6.8



122 6.8. EXPERIMENTS

Figure 6.7: Power domain for reconfigurable gates in an island-based approach
that share the same P/P . Driver cells are highlighted in red. In this example, we
added one driver cell for five reconfigurable gates.

(a) (b) (c)

Figure 6.8: Power domain configurations that we investigated in our experiments:
(a) square in the center, (b) square in the top center, and (c) rectangle covering the
whole width in the center (stand style).

has a larger unused area than configuration (a). The configuration in (b) has
the smallest unused area due to the placement of the power domain at the edge
of the circuit. This difference can have a significant influence on the achievable
area, especially with smaller circuits. There is no simple answer, as designs react
differently to the placement of the island, mainly depending on the circuit structure
and the amount of reconfigurable logic a circuit contains.

6.8 Experiments

The experimental evaluations of the physical synthesis for RFETs-based circuits are
shown in this section. First, a preliminary comparison with the CMOS technology
is shown for both academic and industrial tool-flow. This is followed by an
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Figure 6.9: Layouts of the EPFL bar benchmark with 10% reconfigurable logic
using the island-based approach. The three layouts correspond to the floorplans in
Figure 6.8.

exploration of physical synthesis flow where the three proposed approaches are
evaluated over EPFL benchmarks [AGD15b].

6.8.1 Preliminary Comparison With CMOS Technology

The table model as explained in the previous section (Section 6.6) is used as a base
model to generate the .lef and .lib using the tool-flow as shown in Figure 6.2.
The process of generating these files has been carried out with the following set
of gates – INV, NAND, NOR, XOR. MUX and MIN. Both the open-source (as
shown in Figure 6.3) and the industrial physical synthesis tool-flow are carried
over MCNC benchmarks [Yan91] using libraries for both SiNW RFETs as well as
the standard CMOS FETs for comparison. The industrial flow is straightforward
where we use the netlist generated by ABC and feed it to the Cadence encounter
tool.

For the experiments, a CMOS-based open source standard cell library is used
for comparison. The open-source library from FreePDK45 [Sti+07] is based on
45nm CMOS technology. We then use technology scaling as mentioned in [SXB]
to have a fair comparison with 22 nm SOI -based silicon nanowire library.

Table 6.1 shows the area obbtained using both open-source and industrial
physical synthesis tool-flows. This area is the post place and route area for both
CMOS and SiNW technology. From the table, it is clear that SiNW-based circuits
occupy more area than the CMOS-based circuit. This can be ascertained with both
the industrial as well as the open-source flow which shows an average overhead of
17.63% and 16.74% respectively over the CMOS-based circuits. However, since the
experiment uses a 45nm technology node followed with scaling, it can be expected
that at the same technology node, CMOS-based implementation of a given circuit
will be smaller by 1-2 units than the overhead observed in the current experiments.

Only a few of the benchmarks from MCNC have been shown here. Practically,
physical synthesis for large benchmarks is not possible with the current SiNW
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Table 6.1: Preliminary comparison of post-physical synthesis area between CMOS
and SiNW RFET technologies over MCNC benchmarks.

QFLOW Cadence Encounter

Benchmarks Area CMOS
(um2)

Area SiNW
(um2)

Increase
(%)

Area CMOS
(um2)

Area SiNW
(um2)

Increase
(%)

b1 5.34 5.56 4.10 5.87 5.72 -2.49
b9 49.55 60.60 22.31 51.86 61.20 18.01
C1355 156.17 202.00 29.35 190.39 246.46 29.45
C17 3.41 4.20 23.20 3.20 3.93 22.81
C1908 164.32 202.00 22.93 214.52 262.94 22.57
C432 82.27 89.30 8.54 126.66 151.16 19.34
cm138a 14.07 17.00 20.84 9.73 11.64 19.58
cm150a 13.98 15.90 13.76 28.53 33.98 19.09
cm151a 7.57 8.68 14.69 22.27 26.36 18.38
cm152a 9.18 10.80 17.62 12.40 14.90 20.16
cm162a 19.41 22.70 16.96 21.20 25.06 18.22
cm163a 18.66 22.20 18.98 20.27 24.02 18.51
cm42a 12.91 15.60 20.85 10.27 12.30 19.79
cm82a 9.39 11.20 19.32 11.20 12.96 15.71
cm85a 18.77 21.40 14.00 21.33 25.36 18.87
t481 336.36 401.00 19.22 344.92 419.73 21.69
tcon 18.77 21.00 11.86 24.94 21.38 -14.26
x1 199.55 239.00 19.77 166.39 189.88 14.12
x2 22.95 26.80 16.75 24.80 29.38 18.47

Average 17.63 16.74

library files. This is also observed with the EPFL benchmark suite (used in the
next set of experiments) where benchmarks like hyp and div can only be done with
very relaxed constraints of utilization ratio in Cadence Encounter. On the other
hand, the open-source flow is not even able to perform the P&R for large circuits.
In fact, two extra metal layers were also added in the SiNW .lef file to ease the
routing constraints. This was primarily done to tackle the high pin-density in
the case of layouts of SiNW-based standard cells. Apart from that, the Design
Rule Check (DRC) check in the open-source flow is not so robust as compared to
the industrial tool flow. Hence, there is a bit of discrepancy in the area of the
individual benchmarks for the two flows. For the industrial flow, a utilization ratio
of 0.8 is used for the SiNW and CMOS technology for all the benchmarks. Only
for cm82a, a utilization factor of 0.7 is used for the SiNW technology. This setting
of utilization ratio ensures no DRC violations. It can be seen that both the flows
achieve a similar average result of 17.64% and 16.74% for the open-source and
industrial flow respectively.
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6.8.2 Evaluating Different Physical Synthesis Approaches

In this section, experiments with the two new approaches are presented for
optimized physical synthesis for emerging reconfigurable nanotechnologies. For
the experiments, the same silicon nanowire-based RFET model is used. The P&R
is carried out using Cadence Encounter. The baseline flow is the default standard
P&R flow using the RFET model as shown with the industrial flow described
in Section 6.8.1. This is compared with the native and island-based approaches.

For the sake of simplicity, a trivial example of logic-locking is taken in which
the starting RFET-based circuit is only mapped with NAND and NOR logic
gates. Then, some portions of these gates are replaced with MINORITY gate (a
polymorphic gate which can be configured either as NAND or NOR) to carry out
the physical synthesis flow to demonstrate our approach and findings. This has
been done to show a practical use case for RFETs-based reconfigurable logic gates
in circuits for security applications. This is also driven by the limitations of not
having multigate RFETs to construct large logic gates such as the 3-XOR or the
reconfigurable 3-NAND_3-NOR.

The three approaches (baseline, native and island-based approaches) are applied
to the EPFL benchmark suite [AGD15a]. First, these circuits are mapped using
the ABC logic synthesis tool [BM10b] and a target library containing only NAND
and NOR gates. To create reconfigurable circuits for the two approaches (native
and island-based approaches), a part of these NAND and NOR gates are replaced
with reconfigurable MIN gates (cf. Figure 6.1c). These MIN gates represent
the reconfigurable logic gates used for hardware security applications [Rai+20b].
While the default P&R flow uses the MIN gate layouts from [RRK18] shown in
Figure 6.4a, the netlists of both the native approach and the island-based approach
use the new layouts shown in Figure 6.4b and Figure 6.4c, respectively.

The NAND and NOR gates to be replaced are selected evenly across the
entire netlist. This is modeled using a parameter called as replacement ratio. For
this purpose, all candidate gates are iterated over and a gate is only selected
if the current replacement ratio is below the desired replacement ratio. Since
reconfigurable gates are placed in separate power domains during the island-based
approach, this selection requires an additional optimization step. For this, the
Fiduccia-Mattheyses (FM) algorithm [FM82] is applied to reduce the number of
cut nets between the reconfigurable logic gates and the rest of the circuit. Starting
with the initial partitioning, two steps are performed repeatedly: (1) move a gate
out of the power domain, and (2) move another gate into the power domain. By
combining the two steps, the number of gates in the power domain and, therefore,
the replacement ratio remains constant. The gates are selected in the order of
their gain, i.e. the more a gate reduces the number of cut nets, the sooner it is
moved. Only if there is an improvement, the two moves are executed. After all
gates in the power domain have been considered and as long as the number of cut
nets has been reduced, the whole process starts again.

The entire process of
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1. partitioning and transforming the netlist,

2. template-based creation of the TCL scripts and CPF files to control Cadence
Encounter,

3. running P&R,

4. creating the layout images (cf. Figure 6.9), and

5. extracting the relevant parameters from the log files

is automated using Python.

6.9 Results And Discussions
Figure 6.10 shows the results of our experiment for a replacement ratio of 0.1.
Both approaches described in Section 6.7 (native and island-based approach) are
shown in comparison with the baseline. As we can see in Figure 6.10a, the core
area is reduced by 1.5% on average (2.3% when ignoring the outlier benchmark
div) for the native approach and by 0.2% for the island-based approach. These
values are quite low for two reasons. First, a large part of the area advantage is
lost—since the inverter is removed from the reconfigurable logic gates—by adding
one driver cell for each group of five2 reconfigurable logic gates. This shows that
the number of gates a driver cell can drive has a great impact on the area. Second,
the island-based approach has a high overhead due to the empty rows above and
below, which makes the area reduction even worse on average compared to the
native approach.

However, as shown in Figure 6.10b, the island-based approach has a much
smaller impact on HPWL. This is caused by the high pin density when using the
native approach because each reconfigurable logic gate has two additional pins,
P/P . With the island-based approach, these pins are connected using the power
rails, which reduces the pin density and, thereby, HPWL. This high pin density
of the standard cell layout is because the original layouts of the logic gates are
very CMOS-like, hence ignoring the structural differences with the RFETs. This
does not allow easy routing for metal layers M2 within the island. As a result, the
P and P routing is done either through metal layers M3 or M4 in order to make
the physical synthesis DRC free. This can be, however, mitigated with better
standard cell designs using a more advanced PDK. Specially RFET-based PDK
can alleviate these issues and can also enable further area reduction with better
standard cell designs.

The static power consumption as shown in Figure 6.10c, as reported by Ca-
dence Encounter, is reduced in both approaches. In contrast, the dynamic power
consumption as shown in Figure 6.10d is increased for most of the benchmarks.

2The driver cell can be designed with any drive strength. Here, the experiments have been
carried out with the drive strength assumed to be 5.
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(b) HPWL increase (%)
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(c) Static power reduction (%)
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Figure 6.10: Comparison of the native approach and the island-based approach
with the baseline for a replacement ratio of 0.1, i.e. 10% of the logic gates are
replaced by reconfigurable logic gates. For each EPFL benchmark, the changes
in (a) core area, (b) HPWL, (c) static power consumption, and (d) dynamic power
consumption from the baseline are shown. For the island-based approach we use
the best results of the three power domain configurations in Figure 6.8. Please
note that in (a) and (c) higher values are better, while in (b) and (d) lower values are
desired.
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This increase is far worse for the native approach, where it correlates with the
higher HPWL.

When looking at the influence of the power domain configuration discussed
in subsection 6.7.7, a square in the top center (Figure 6.8b) minimizes the core
area for all benchmark circuits. For HPWL, a square power domain at the top or
in the center is generally the best (Figure 6.8a or Figure 6.8b), except for some
very large circuits (benchmarks voter, square, log2 ) where the configuration in
Figure 6.8c (stand-style) produces the layout with the smallest HPWL.

In the second experiment, both approaches are applied to the benchmark bar
using a replacement ratio from 0.1 to 1.0. The results are shown in Fig. 6.11.
As we can see, the island-based approach is far superior for larger replacement
ratios. The area overhead decreases with more reconfigurable logic gates and larger
power domains. As a result, the area is reduced by up to 17.5% for a replacement
ratio of 0.9. Again, the wirelength increase is much lower for the island-based
approach, with a maximum of 13.0% for a replacement ratio of 0.6. The static
power reduction in Fig. 6.11c is proportional to the replacement ratio. The change
in dynamic power consumption varies between a decrease of 13.1% and an increase
of 5.9%.

For the island-based approach, the smallest area is achieved using the floorplan
in Figure 6.8b with the power domain centered at the top. The optimal configura-
tion for the smallest HPWL depends on the replacement ratio. For a replacement
ratio of 0.1 or 0.2, the floorplan in Figure 6.8b produces the smallest HPWL. For
a replacement ratio between 0.3 and 0.5, the centered square in Figure 6.8a is
the best configuration with regard to HPWL. If more than 50% of all gates are
reconfigurable, the stand-style configuration in Figure 6.8c is the best choice.

From our exploration study, we can see that there are a lot of parameters that
affect the physical synthesis of the circuits based on RFETs. One can see that
the island-based approach is more suitable and gives consistently better results in
terms of area and wirelength as compared to the native-based approach. Following
findings can be noted from our experiments:

• All three approaches—baseline, native, or island-based approach—can be
used depending upon the parameter to optimize. For example, the native
flow suffers through HPWL overhead but often gives better area reduction
as compared to the baseline flow.

• The factor of replacement ratio which is basically governed by the security
assurance has a huge impact in terms of area and wirelength.

• Placement of the power domains depends on factors such as the size of
the circuit, connections between the subcircuits, and also the layout of the
standard cells. Learning-based approaches seem suitable to effectively predict
optimized power domain placement. Alternatively, top-level power domain
position requirements and gate-level security requirements can be translated
into constraints that can be efficiently communicated through top-down
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Figure 6.11: Changes in (a) core area, (b) HPWL, (c) static power consumption,
and (d) dynamic power consumption from the baseline for the EPFL bar benchmark
with the amount of reconfigurable logic ranging from 10 to 100%. For the island-
based approach we used the best results of the three power domain configurations
in Figure 6.8. Please note that in (a) and (c) higher values are better, while in (b) and
(d) lower values are desired.
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and bottom-up propagation within the design hierarchy [KJL15]. These
propagated constraints can then support informed configuration of the power
domains [KLL17].

• Quality of liberty and lef files plays an important role in placement and
routing. Factors such as pitch between the gate terminals and pin density
need to be optimized for shorter total routed wirelength.

6.9.1 Parameters Which Affect The Area

The present chapter presents a complete feasibility study of the design route
by taking into account a simplified technology flow for the gate patterning and
manufacturing. Nevertheless, as stated in Section 6.4, it is technically possible
to substantially reduce the length of the transistor cells by the use of self-aligned
techniques for double gate patterning in combination with an additional lithography
step. This additional technological effort would bring a benefit in the circuit size.
The RFET could be realized with a total channel length of 48nm, compared to the
100nm used here. The electrical performance of such a scaled RFET device has
already been verified by TCAD simulation and benchmarked in terms of inverter
delay and power consumption in the work of [Tro+15]. The transistor cell length
could be reduced from a total length of ∼188nm down to 92nm. Consequently,
the layouts of Fig. 6.1 will substantially reduce in size, although not by the same
factor as the design rules have to be met. Another opportunity to actively reduce
the device area is vertical stacking of multiple nanowires ([Mer+16], [Ern+06])
as already demonstrated for polarity control devices with four stacked nanowires
by De Marchi et al. [Mar+12]. This will lead to a substantial reduction of device
width and accordingly to a reduced cell height of the layouts in Fig. 6.1. One can
anticipate that reduction in nanowire channel length will have a positive impact
in the reduction of capacitances and RC delay of the transistor [Tro+15]. For
stacked nanowires, methods on controlling RC delays explored in [Ber+09] can be
applied to RFET devices as well.

6.9.2 Use Of Germanium Nanowires Channels

In terms of circuit speed and power consumption, a promising solution is to use
germanium or silicon-germanium nanowire channel instead of silicon. Silicon
germanium and pure germanium channels are conventionally used for p-FETs.
Indeed it has been shown experimentally and by TCAD simulations [Tro+17b],
that the use of germanium nanowires for RFETs is feasible. Germanium brings
benefits in the performance and power consumption of RFETs both for p-type and
n-type characteristics. The lower band-gap of germanium together with the higher
tunneling probability is able to enhance the device drive currents by a factor of 10.
The expense for taking this route is a higher static current. However, the inherent
blocking nature of the RFET´s program gate is able to filter out a substantial
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level of source-drain leakage. The lower Ge bandgap also enables the reduction
of the supply voltage of RFETs from 1.8V to ∼ 0.8V, thereby reducing dynamic
power consumption of the transistors to less than one-fourth of the SiNW RFET
value.

6.10 Concluding Remarks
In this chapter, a physical synthesis flow for technology evaluation for Silicon
Nanowire reconfigurable FETs has been presented. RFETs offer a new paradigm
as compared to CMOS because of their reconfigurable properties where logic
gates can be either reconfigurable or static. Such reconfigurable components often
constitute the control segment of the circuit as such features are highly suited
for applications in hardware security. In this direction, both static as well as
reconfigurable layout designs have been presented for a few of the logic gates
based on RFETs. The present layout designs are inspired by CMOS layout designs
and that is why there are certain limitations in the physical synthesis flow. An
extensive evaluation of the physical synthesis flow for MCNC benchmarks in terms
of area is carried out using both academic and industrial tool flows. It has been
observed that both the flows achieve a similar result with an average overhead of
17.63% (open-source tool-flow) and 16.74% (industrial flow) for the SiNW-based
circuits over the CMOS-based circuits.

Keeping security application in mind, two strategies for physical synthesis have
been explored with different placement techniques to achieve further area reductions
by dedicating separate areas for reconfigurable logic gates and static logic gates in
the circuit. Using a PSO-inspired island-based approach, improvements in physical
parameters such as static power consumption and area have been shown. While
most benchmark circuits perform well when the island is a square in the center
of the die, a detailed study has to be carried out in order to find the underlying
reasons why a particular placement works for a circuit.
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CHAPTER 7

Polymporphic Primitives for Hardware Security

The Good, the Bad and the Ugly

While the previous chapters focused on enabling design automation techniques
for RFETs-based circuits, this chapter explores hardware security as an application
using RFETs-based primitives. This chapter presents efficient and affordable IP
protection measures that can be realized using the reconfigurable properties of
RFETs.

In the last decade, hardware security has become an important concern for
circuit designers along with the metrics of power, area, and delay. It is imperative
for circuit designers to consider security implications across different stages of
chip development to ensure that any kind of adversarial attacks can be thwarted.
The prime reason can be ascertained by the globalization of the semiconductor
industry. Globalization of the electronic industry supply-chain spread across
various continents makes it easier for adversaries to device new and vicious attacks.
This has led to frequent copyright infringements and illegal ownership claims on
IP. According to a report [SEM12], the IC industry, on average, loses about $4
billion annually due to design infringements. As a result, fake ICs or consumer
products using these fake ICs are common. This causes huge monetary losses to
the original IP designer.

Hardware security threats can manifest themselves in two major ways – firstly,
the adversary can embed certain malicious components within the die of the
circuit that can leak privacy-related information of the user or can even lead to
compromise in Quality of Service (QoS) and other performance-related issues in
the host circuit. Secondly, if the circuit is not secured or obfuscated enough, a
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counterfeit or a duplicate copy of the circuit can be produced which can hamper
the sale or image of a particular IC.

In recent years, there has been a great thrust in devising various security
measures across the EDA stack. This chapter particularly focuses on enabling
hardware security features from the device-level. RFET-based circuits possess
security-rich features owing to the device-level dynamic reconfiguration of electrical
properties. Ambipolarity in RFETs enables various efficient and cost-saving security
features that are available inherently in RFETs-based circuits.

Before getting into the details of how RFETs enable hardware security, it
is necessary to first understand what is hardware security and how it is differ-
ent compared to cyber security. Hardware security deals with the integrity of
the underlying hardware while cyber security primarily deals with the security
of the software solutions running on that hardware. While the two terms are
somewhat orthogonal to each other, recent attacks such as Meltdown [Lip+18],
Spectre [Koc+18], Rowhammer [Kim+14] have blurred the gap between the two.
The scope of this chapter is however restricted to hardware security. Both security
benefits (such as logic locking, split manufacturing) and vulnerability in RFETs-
based circuits are discussed in this chapter. The chapter specifically targets the
following research question:

Research Question: How to design polymorphic logic gates by utilizing
device-level reconfigurability offered by RFETs to develop efficient and secure
circuits? Does the security offered by RFETs strong enough to tackle the state-of-
the-art security techniques? And is the security the only gain, or are the RFETs-
based circuits have certain vulnerabilities. With the above research questions in
mind, the chapter discusses what are the major challenges and opportunities that
need to be explored for enabling security for circuits using RFETs.

7.1 Contributions

The primary contributions of this chapter are as follows –

1. Functional polymorphism in logic gates based on RFETs is demonstrated.
The functional polymorphism is leveraged for IP protection schemes such as
logic-locking and split manufacturing.

2. Security analysis is provided for the proposed IP protection schemes to demon-
strate efficient practical security for circuits based on RFETs. Experiments
using state-of-the-art attack schemes demonstrate security effectiveness.

3. The same functional polymorphism can be detrimental making circuits based
on RFETs vulnerable to security attacks. This is realized by misconfiguration
of one or more transistors to disrupt the current normal functionality.
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4. Evaluations show that the above-mentioned security vulnerabilities have
an adverse effect on current and voltage levels for both combinational and
sequential circuits.

7.2 Organization

In this chapter, we will first look in Section 7.3 at why and how the research
community started looking at solutions based on emerging or beyond CMOS
technologies to provide security guarantees. This is followed by the introduction
of various IP protection schemes realizable using RFETs in Section 7.4. After this
background about these security schemes, measures that have been specifically
proposed using RFETs are then discussed in Section 7.5. Then, scenarios related
to the security vulnerability in RFETs-based circuits are presented in Section 7.6 .
We study two important scenarios – short-circuit and open-circuit for RFET-based
inverters and then explore such scenarios that can be realized in combinational
and sequential circuits. This is followed by extensive evaluations for both security
benefits and vulnerabilities Section 7.7. Finally, the concluding remarks and
takeaways for future research directions are presented in Section 7.8.

7.3 The Shift To Explore Emerging Technologies
For Security

An important aspect to harness circuit-level hardware security is to exploit func-
tional polymorphism at the logic gate or at the circuit level. Polymorphism refers
to a property by which a single block of hardware can show multiple logical func-
tionalities. A hardware block or a unit demonstrating a range of functionalities is
able to thwart adversarial attacks that are primarily aimed at deciphering the logic-
in-use. In [McD+16], the concept of polymorphic gates have been demonstrated
for CMOS, where various gates in a netlist are randomly chosen and replaced
by polymorphic gates, which are activated for a particular function only when a
predefined key is provided. Another form of a polymorphic logic gate has been
defined in [SR14]. In this work, Simek et al. have devised a polymorphic gate
that can behave as a NAND gate or a NOR gate depending on the applied voltage
potential VDD. However, these polymorphic solutions often lead to huge overheads
in terms of area and power.

In [Che+16], various emerging technologies have been studied and were shown
to provide inherent security as IP protection schemes to hardware systems. Emerg-
ing nanotechnologies offer interesting transistor-level properties which can be
explored for harnessing hardware security. Emerging technologies such as memris-
tors [Raj+15], spin-based devices [Pat+18a] have been explored with security-based
features. Features like polymorphic gates and camouflaging in various emerging
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technologies [Kne20b] can be extensively used in providing extra security to the
IP at relatively less or no additional overhead.

Reconfigurable nanotechnologies discussed in this thesis, particularly, offer
functional polymorphism inherently at the device level. Exploiting the possibility
that a single device can be configured as a p-FET or n-FET at runtime, Bi et.al.
first suggested the concept of a key for RFET-based circuits that either activates
the IC or makes the IC perform a specific function [Bi+14]. Similarly, some
other works such as [Bi+16a; Che+16; RRK19] proposed exploiting emerging
reconfigurable nanotechnologies using RFETs. However, most of these earlier works
were ensemble works where various ideas were proposed using emerging technologies.
SiNW RFETs [Mar+12], tunnel FETs such as Graphene SymFets [Sed+14] are
successful in providing an IC with the added feature of camouflaging when used
with some specially designed structures. However, most of these works [Bi+14;
Bi+16b; Che+16] lacked extensive evaluations for the proposed schemes with
respect to the state-of-the-art defense or attack methods. This chapter focuses on
laying experimental evaluations and providing empirical guarantees for security
solutions with RFETs-based circuits.

7.4 Background

In this section, IP protection schemes towards hardware security are introduced.
Security measures such as logic locking, hardware watermarking, and split manu-
facturing along with their threat models are discussed.

7.4.1 IP Protection Schemes

Designers worldwide see the need to incorporate security measures in their de-
signs and verification; hence, adding security benefits is a cost. However, this
distributed setup of fabrication, foundry, and testing allows several points where
adversaries can attack the chip design or make illicit copies. With the growing
proliferation of electronic circuits owing to the demand for autonomous vehi-
cles and IoT applications, hardware security needs to be ensured at all levels of
abstraction [Yas+19].

Various attacks such as the inclusion of hardware Trojans, IP piracy, IC
overbuilding, reverse engineering, IC counterfeiting, and side-channel attacks
are prevalent which can be detrimental for both the design-houses as well as
the end-user. While the design-houses face the issue of infringement of their
intellectual properties (IP), the end-user faces the ultimate risk of losing secret
or private information. Researchers around the world have worked on various
countermeasures like logic locking, IP watermarking, IC camouflaging, etc. to cope
with such attacks [RKK14]. Within the context of RFETs, the present chapter
focuses on introducing the concepts of logic locking and split manufacturing.
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Figure 7.1: Illustration of logic locking. (a) Original circuit. (b) Circuit locked with
three XOR/XNOR key-gates labeled as K1, K2, and K3, respectively for traditional
CMOS technology. The key-bits K1, K2, and K3 are driven from an on-chip tamper-
proof memory.

In this section, background of logic locking and split manufacturing along with
their related threat models are introduced. This sets up the foundation required
to understand the security measures developed using RFETs.

Logic Locking

Logic locking has emerged as a viable and promising solution for protecting the
design IP throughout the IC supply chain [Cha+20]. The IP is protected by the
insertion of dedicated locks that are operated by a secret key. Therefore, a locked
circuit has additional inputs, which are referred to as key-inputs; these key-inputs
are driven by an on-chip tamper-proof memory. The additional logic gates inserted
to realize these locks are known as key-gates. Traditionally, these locks have been
realized by adding XOR/XNOR gates, AND/OR gates, or Look-Up Tables (LUTs).
A logic-locked IC functions correctly only when the correct key is applied, in the
event of a wrong key being fed to the circuit, the IC becomes non-functional. After
implementing a given locking scheme, the design house sends the chip to a foundry
for fabrication, potentially untrustworthy. Once the chip has been fabricated and
tested (but before deployment), the locked IC is activated by loading the secret
key onto the chip’s dedicated, tamper-proof memory by some trustworthy entity.
For in-depth coverage of logic locking and associated attacks, interested readers
are referred to [Cha+20].

Figure 7.1a shows an original (unprotected) circuit and Figure 7.1b shows its
locked version in traditional CMOS through three XOR/XNOR key-gates. One
of the inputs of each key-gate is driven by a wire from the original design, while
the other input, referred to as the key-input is driven by a key-bit stored in a
tamper-proof memory.

In general, a threat model quantifies the attackers’ capabilities and available
resources for launching attacks. The threat model for logic locking enumerated
next bears consonance with the academic community’s assumptions.
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1. The design house, designers, and Computer Aided Design (CAD) tools
are considered trustworthy, whereas the foundry, the test facility, and the
end-user(s) are all considered untrustworthy.

2. The attackers know the locking scheme implemented by the design house.

3. The attackers have access to the locked gate-level netlist (e.g., by reverse
engineering) and can identify the key inputs, key-gates but are oblivious to
the secret key.

4. The secret key which is stored in a tamper-proof memory cannot be tampered
with.

5. The attackers possess a functional chip that can be bought from the open
market. Only “black-box” usage of the chip is permitted, i.e., an attacker
can only evaluate input/output patterns. In recent terminologies, this kind
of security attack is called as the oracle-guided attack scheme [Cha+20].

Split Manufacturing

Split manufacturing helps in the protection of the design IP from untrustworthy
foundries during manufacturing time [Pat+18c; Pat+18b; Sen+19]. The split
manufacturing premise dictates splitting up the IC manufacturing flow, typically
into the Front-End-Of-Line (FEOL) and Back-End-Of-Line (BEOL). An attacker
in the FEOL foundry views the layout as a “sea of unconnected gates” where some of
the connections are complete and some of the connections are missing/incomplete.
The notion of splitting the IC manufacturing flow into FEOL and BEOL is practical
for multiple reasons: (i) outsourcing the FEOL is desired, since it necessitates
advanced, high-end, and costly fabs, (ii) BEOL fabrication on top of the incomplete
FEOL layout is significantly less complicated than FEOL fabrication, (iii) the sole
difference for the supply chain is the preparation and shipping of FEOL wafers to
the BEOL facility. Figure 7.2 illustrates the idea of classical split manufacturing
where the FEOL is outsourced to an advanced, off-shore, untrustworthy foundry
while the BEOL is fabricated at a trustworthy foundry. For the in-depth coverage
of split manufacturing and associated attacks, interested readers are referred
to [KPS19].

The most common threat model adopted for split manufacturing is summarized
as follows:

1. The design house, designers, CAD tools, and end-user are trustworthy, while
the FEOL foundry is considered untrustworthy. Split manufacturing dictates
the existence of a BEOL foundry, with assembly and testing facilities, also
considered as trustworthy.

2. The attackers cannot obtain a functional chip from the open market, as the
end-user is trusted. This scenario exists for military applications where the
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Figure 7.2: Concept of classical split manufacturing, i.e., the separation of a phys-
ical layout into (FEOL) and Back-end-of-line (BEOL). The different pitches across
the metal layers facilitates split manufacturing. © 2018 IEEE. Reprinted, with per-
mission, from [Pat+18c].

chips are deployed only for specific sensitive and mission-critical applications
and are not available in open markets. Also, the chip has not been fabricated
before and is unavailable for reverse engineering-based attacks.

3. The objective for an attacker (located in the FEOL foundry) is to infer the
missing BEOL connections from the incomplete FEOL layout. Towards this
end, the attacker is aware of the underlying protection schemes (if any) and
has access to the EDA tools, libraries, and other information available to a
trustworthy designer/design house.

RFET-Based Hardware Security

Runtime reconfiguration in RFETs enables the design of polymorphic logic gates,
which, unlike regular CMOS logic gates, can perform more than one fixed logic func-
tion. Such polymorphic gates are promising for security schemes like camouflaging,
logic locking, Physically-Unclonable Function (PUF), etc. The authors in [Bi+16b;
Che+16] laid the foundation for hardware security using RFET-based circuits.
Due to their inherent virtues of uniform physical layouts and post-manufacturing
reconfigurability, such logic gates enable a security-enforcing designer to carefully
obfuscate the circuitry from malicious foundries, test facilities, and/or end-users.
In turn, this hinders the theft of the chip’s IP by adversaries. They also showed
how a circuit layout composed with such RFET-based logic gates is difficult to
reverse-engineer. They demonstrated how a single tile layout could implement
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either a NAND or XOR using different pin configurations. However, these studies
lacked both circuit-level simulations and thorough security evaluations against
state-of-the-art attacks, e.g., the seminal SAT-based attack [SRM15]. Other hard-
ware security schemes, such as watermarking using RFETs-based circuits, have also
been proposed in [Rai+19a]. Similarly, RFET-based logic gates are less prone to
delay-side-channel attacks as their CMOS counterpart [GG18; Sha+20] because of
symmetrical electrical properties of an RFET in both n-type and p-type behavior.

7.4.2 Preliminaries

The section describes the terminologies used in the chapter.

Hamming Distance

Hamming Distance (HD)is a metric used to compare two bitstreams. For two
bitstreams of equal length, Hamming distance is the number of bit positions at
which the two bitstreams are different. In terms of hardware security, it quantifies
the average bit-level mismatch between two bitstreams obtained during attack or
defense schemes. HD refers to the degree of functional mismatch; an HD value of
50% is considered the best-case scenario [Cha+20].

Output Error Rate

The Output Error Rate (OER) indicates the probability for any bit per output
being different while applying an attack or defense scheme on a particular circuit
(or netlist).

7.5 Security Promises
In this section, the security promises offered by RFETs due to their transistor-level
reconfigurability are discussed. Detailed benchmark-level evaluations are presented
in Sec. 7.7.1.

7.5.1 RFETs For Logic Locking (Transistor-Level Locking)

Figure 7.3 illustrates logic locking using RFETs. It should be noted that realizing
logic locking in conventional CMOS necessitates the insertion of additional logic
gates (e.g., XOR/XNOR, look-up tables (LUTs), etc.). In contrast, the RFETs-
based circuits do not require the insertion of additional gates to realize locking.
This is because RFETs have program gate (PG) terminals, which act as an in-built
key, and hence this notion of leveraging RFETs for logic locking can also be viewed
as Transistor-Level Locking (TLL). In general, RFET-based logic locking offers
lower area overheads than traditional logic-locking schemes since it does not require
additional logic gates. Furthermore, since no additional logic gates are inserted,
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Figure 7.3: Logic locking using RFETs, where the program gate (PG) acts as the
key-input. Realizing logic locking in conventional CMOS necessitates insertion of
additional logic gates whereas in case of RFETs, the program gate can enable logic
locking without requiring insertion of additional logic gates. The PG signals are
driven from an on-chip tamper-proof memory.

the original circuit’s critical path continues to have the same number of stages as
in the original circuit, thereby having no performance penalty.

With regards to area estimation, let us take an example of a circuit to be logic
locked with k-bits. In the case of CMOS-based circuits, k logic gates (XOR/XNOR)
are added for logic locking [Cha+20]. For CMOS circuits, each XOR consists of
10 transistors. Hence, for k-bit locking, the circuit will require 10×ACMOS × k
number of more transistors, where ACMOS is the size of a CMOS transistor. For
RFET-based circuits, since they allow inherent reconfiguration, for k-bit logic
locking, it will require k inverters to have P (and P ′) as the extra input for each
reconfigurable logic gate [Rai+19b]. Each inverter consists of 2 transistors. Hence,
the area overhead for the same locking scheme is 2×ARFET × k, where ARFET

is the size of an individual RFET transistor. Between the technologies, the overall
area overhead is calculated as:

Overhead = (nCMOS ×ACMOS − nRFET ×ARFET )

+ (10×ACMOS × k − 2×ARFET × k) (7.1)

Here, nCMOS and nRFET are the number of transistors in CMOS and RFET-
based circuits, respectively. The first term in Eq. 7.1 is the difference in the
area of the same circuit in two technologies while the second term is the actual
overhead for ensuring k-bit locking. One can notice, that for k-bit locking, the
RFET overhead is less than that of CMOS by a factor of 5 (if ACMOS = ARFET ).
Hence, the overall area overhead depends upon two main factors – (i) the number
of transistors in a circuit, and (ii) the size of an individual transistor. Due to
higher functional expression, the number of transistors in case of RFET-based
circuits is much less as compared to CMOS-based circuits [Rai+19b; Zha+14b],
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Figure 7.4: Split manufacturing for RFETs; here, only the program gate (PG)
signals are lifted beyond the split layer (in this example, M3) to BEOL (M4). The inset
shows the internal transistor-level schematic of the underlying logic gate. These
lifted PG signals will be driven by constant 0/1 signals (generated by TIELO/TIEHI
cells placed in the FEOL), routed in the BEOL. The absence of placement- and
routing-related hints for the key-nets makes the key indecipherable for an FEOL-
centric attacker.

i.e., nRFET < nCMOS . Since RFETs models are still evolving, with better RFET
models, ARFET will get closer to ACMOS . For instance, for an early evaluation
model of RFET, it was demonstrated in [RRK18] that for the same circuit, the
actual area for RFET-based circuits is just 17% more than that of CMOS. Bringing
all these factors in consideration and when using the same technology node, an
RFET-based circuit has a lower area as compared to a CMOS circuit for the same
k-bit logic locking.

7.5.2 RFETs For Split Manufacturing
The applicability of split manufacturing in the context of RFETs is shown in
Fig. 7.4. Here, only the program gate signals must be wire lifted beyond the
split layer. In contrast, all the other i.e. regular signal nets can be routed freely
following the designer’s specifications and the CAD tool heuristics.

In this work, the concept of functional polymorphism enabled by RFETs is
leveraged for enhancing the security of split manufacturing. As indicated, the
application of various control signals to the PG of RFETs results in different logic
functionalities. However, without knowing the control signal, one cannot infer the
logic gate’s actual functionality. Moreover, the concept of logic locking is utilized
towards securing split manufacturing.
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Both concepts taken together, polymorphism and locking, allow us to assign
individual key-bits directly for any logic gate of choice, but it is also required to
lift the related wiring associated with the program gates above the split layer.
This way, the actual functionality is obfuscated of these gates from the foundry-
based adversaries. The essence of this approach is similar to a recently published
work [Sen+19] where the authors inserted key-gates to lock the FEOL layout and
then controlled the routing of the related key-nets through the BEOL. However,
there is one crucial difference between the approach [Sen+19] and the proposed
approach is that the approach in [Sen+19] relies on the insertion of additional logic
gates to achieve the required security guarantees, but our scheme benefits from
the inherent polymorphism of the RFETs, avoiding any additional modifications
while still imposing strong security.

7.6 Security Vulnerabilities

While the previous section focused on the security promises offered by RFETs, in
the present section, the security vulnerabilities are demonstrated for RFET-based
circuits. A detailed circuit-level simulations are conducted in this section followed
by further analytical studies in Section 7.7.2. It becomes interesting to note that
while the same feature of functional polymorphism contributes to making the
circuit secure, it can be exploited by an opportune attacker for circuit degradation
techniques.

7.6.1 Realization Of Short-Circuit And Open-Circuit Sce-
narios In An RFET-Based Inverter

Conventionally, for CMOS-based logic gates, the p-channel Metal Oxide Semicon-
ductor (PMOS) and n-channel Metal Oxide Semiconductor (NMOS) transistors
realize their specific functionality in pull-up and pull-down networks, respectively.
CMOS circuits require a separate pull-up and pull-down network for keeping the
output either at logic high (1) or low (0). When the pull-up network is switched
on (off), the output is pulled-up (pulled-down) to logic 1 (logic 0). Both networks
are simultaneously on and current flows through the transistors only during the
switching of the output from logic 0 to logic 1. However, in RFET-based logic
gates, the boundary between PUNs and PDNs is somewhat blurred. That is, the
same pull-up (pull-down) network can also work as a pull-down (pull-up) network
by merely changing the configuration of all the related transistors. The drive
strength for RFETs in both n-FET or p-FET configuration is identical [Tro+15],
which makes this switching between pull-up and pull-down possible, to begin with.
This specific property is the root cause of the security vulnerabilities discussed
here.

More specifically, the potential exploit in RFET-based circuits arises from the
fact that individual RFETs of a circuit can be individually programmed maliciously.
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Figure 7.5: Exemplifying security vulnerabilities in an RFET-based inverter: (a)
two short-circuit configurations, (b) two open-circuit configurations.

RFETs can be used as p-type or n-type transistors, irrespective of their presence
in the pull-up or pull-down network, as this behavior merely depends upon the
potential at the PG of individual RFETs, as shown in Table 2.1. In essence,
given this reconfigurability of individual RFETs, one can either switch ‘on’ certain
transistors in the pull-up or the pull-down network to induce a short-circuit path
from Vdd to Vss or switch ‘off’ certain transistors to induce an open-circuit between
Vdd and Vss, respectively.

This is explained by an example in Figure 7.5. The figure shows a normal
inverter, where particular “misconfigurations" lead to unfavorable conditions.
Figure 7.5a shows an inverter comprising of two RFETs where both the transistors
are configured as either p-type (I) or n-type (II). This is possible when both the
gate terminals, PG and CG, are assigned the same potential. In these cases, both
the transistors are switched-on, leading to a conducting path between the Vdd and
the Vss nodes. We refer to this configuration as the short-circuit configuration.
The reverse scenario, shown in Figure 7.5b, occurs when the potential at the PG
and CG is inverse of each other. In these cases, both the transistors are switched-
off, leading to an open-circuit configuration. The red dashed lines in Figure 7.5a
signifies a short-circuit path, while grey dashed lines in Figure 7.5b signifies an
open-circuit path.

To understand the behavior in the two conditions mentioned above, we study
an RFET-based inverter (shown in Figure 7.6a) and compare its normal operation
to the case when it is misconfigured. We explore scenarios when a potential bias
is swept across the gate terminal of an inverter. The simulations are performed
using Cadence Virtuoso with a simple table-based RFET model used in [Gor+19].

Figure 7.6b shows the amount of current drawn from the inverter in which
both the transistors are On and are either fixed as n-type or p-type (indicated by
blue and red curves respectively). The blue curve shows the condition in which
the control gate input to the inverter is fixed at logic 1 while the program gate
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Figure 7.6: a) Short-circuit operation possible in case of an inverter by switching
on both the transistor in either p-type or n-type at runtime b) Simulation results
showing current reaching 10−7A range for inverter in two configurations.

input of the lower transistor, Q, is changed from logic 0 to logic 1, signifying
reconfiguration from p-type to n-type. Similarly, the red curve exhibits the case
when the control gate input to the inverter is fixed at logic 0. Simultaneously, the
program gate input P is varied from logic 1 to logic 0, signifying reconfiguration
from n-type to p-type. Both the cases can create a short-circuit or open-circuit
path between Vdd and Vss depending upon the input at A.

1. Large Short-Circuit Currents : One can see from Figure 7.6b that the amount
of current flowing through the inverter during the short circuit condition is
of the order of 10−6A in both the cases, which is almost 105 times higher
than the static leakage current of 10−11A under normal operating conditions
for RFETs [Gor+19]. The unique property of RFETs is that any logic gate
can be similarly reconfigured at runtime, which gives rise to the possibility of
creating multiple short-circuits, resulting in a large amount of current being
drawn from the power source. Other unwanted effects include high power
dissipation and excessive localized heating near the affected portion of the
circuit. Such a scenario could lead to accelerated aging of the circuit and
critical reliability issues like the thermal shutdown of the system [Das14].
The increase in power dissipation will eventually lead to a reduction in the
battery lifetime, especially for portable devices like laptops, mobile phones,
etc.
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Figure 7.7: A sub-circuit consisting of NAND, inverter and NOR, where the middle
inverter is misconfigured. The red-dotted line shows the misconfiguration happen-
ing and realization of a short-circuit scenario through the inverter.

2. Fault in Logic Values : In the cases shown in Figure 7.5a and 7.5b, the output
of the inverter will be at an indeterminate voltage level. If this misconfigured
inverter drives a gate, it can have faulty inputs and evaluate wrong logic
outputs. This phenomenon can continue further in a combinational circuit
leading to a chain reaction where preceding nodes can lead to indeterminate
voltages at subsequent nodes. Eventually, this would lead to incorrect
functioning of the overall circuit.

7.6.2 Circuit Evaluation On Sub-Circuits

We notice the current and voltage repercussions in the case of an individual
inverter. This section discusses how such a misconfiguration in an inverter (or any
RFET-based logic gate) can disrupt the normal functioning of combinational or
sequential sub-circuit elements.

Combinational Sub-Circuits:

Here we evaluate the impact of the misconfigured inverter in a small circuit, as
shown in Figure 7.7. For simplicity, we study the effect on a small sub-circuit
consisting of NAND, INV, and NOR. Such behavior is triggered when the gate
inputs are in a steady-state and not switching1. The NAND gate on the left drives
the misconfigured inverter, which in turn drives the NOR gate. The program
input Q of the inverter (as discussed in the case study above) is fixed at logic ‘1’
(for n-type configuration) for it to work undetected as a regular inverter. When

1This is assumed considering the fact that once the scenario of short-circuit or open-circuit is
activated, irrespective of the previous state, the logic gate will be in one of the conditions as
mentioned in Table 7.1.
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Table 7.1: Simulation results showing current drawn and voltage values for dif-
ferent cases of inputs and configurations.

Overall Current
Drawn through INV At Node OUT-INV At final Output

Normal
Operation

Both
n-type

Both
p-type

Normal
Operation

Both
n-type

Both
p-type

Normal
Operation

Both
n-type

Both
p-type

INV-INV-INV
Output-1 = 0V 389pA 3.05uA 8.19pA 0V 31.13mV 686mV 0V 700mV 0V

Output-1 = 700mV 83pA 251pA 2.5uA 700mV 106.7mV 609mV 700mV 700mV 0V

XOR-INV-NAND
OUT-XOR = 0V 414 pA 251.8pA 2.5uA 700mV 31.06mV 610 mV 0V 700mV 0V

OUT-XOR = 700mV 11.58pA 3.0 uA 7.17pA 0V 100mV 688mV 700mV 700mV 0V

NAND-INV-NOR
OUT-NAND = 0V 414pA 251pA 2.5uA 700mV 31mV 609mV 0V 700mV 0V

OUT-NAND = 700mV 11.8pA 3.055uA 29.01pA 0V 106mV 688mV 700mV 700mV 0V

the inverter is misconfigured, the current and voltage values for all the possible
configurations and inputs are listed in Table 7.1. It can be observed from the
table that current values reach to orders as high as 10−6A, as opposed to 10−12A
under regular, static operation. This million times more current can potentially
damage the power source and cause thermal issues and affect the logical output
of the overall circuit. The implication of the security vulnerability in the case of
RFETs is somewhat similar to the issue of latchup, which was a serious problem
with CMOS integration in the early days of VLSI fabrication [Das14]. Latchup
was caused due to faulty transistors in either pull-up or pull-down network, which
caused current discharge from Vdd to Vss.

The activation of such a scenario also leads to the node OUT-INV in Figure 7.7
to be at an undefined state, that affects the input of the subsequent NOR gate. It
implies that the subsequent gates in the combinational path have the likelihood
of going into an indeterminate state (NOR’s output can affect subsequent logic
gates). This can cause unpredictable bit-flips along the way, affecting the functional
correctness of the circuit. Table 7.1 shows the voltage levels at various nodes of the
circuit in Figure 7.7 for all possibilities of inputs. Especially, it can be remarked
from the table, that the OUT-NOR node voltages for both p-type (both n-type)
configurations are held at logic high (low) when compared to the one under normal
operation. This further strengthens the point that such a malicious modification
can interfere with the functional correctness of the circuit.

It can be further observed that such a scenario is possible in other combinational
chains and is independent of the logic-gate used as shown in Table 7.1. The inverter
is a special case because here, we need only one input of an individual transistor
(Q, as shown in Figure 7.7) to be wrongly configured. Larger gates like XOR,
etc., can also be disrupted as it depends upon the number of transistors which are
wrongly configured to enable the realization of such short-circuit or open-circuit
paths.
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Figure 7.8: True Single Phase Clock (TSPC)-DFF based on RFETs as proposed
in [Zha+14b]. Just by changing the polarity of the lower transistor at the second
stage (Precharge stage when CLK = 0 and evaluation phase when CLK = 1).

Sequential Sub-Circuit:

We carry evaluations over sequential components as well since most of the real
circuits are sequential circuits. For this analysis, we have considered the RFET-
based True Single Phase Clock (TSPC) D-flip-flop as proposed in [Zha+14b],
which is based on the original CMOS-based TSPC DFF [JKS87]. It is shown
in Figure 7.8.

Unlike the original design [JKS87], the proposed design in [Zha+14b] contains
only a single transistor in both pull-up and pull-down network2. The TSPC-DFF
contains four stages of different inverter designs. While the first and the third-stage
inverters are clock enabled inverters (low and high-edge enabled respectively), the
second and the fourth inverter stages are dynamic (CLK is connected to the CG
of the transistor) and static inverters, respectively.

To observe the effects of RFET-based vulnerabilities, we evaluate by introducing
misconfigurations at the gate terminals of RFETs of the various stages of the
TSPC-DFF. In Figure 7.8, the transistors’ configuration (shown in red color) in the
second and third stage has been changed subsequently. When applied in isolation
(the configurations are changed either in the second stage or the third stage), both
conditions lead to abnormal outputs being observed at the output Q along with a
large amount of current flowing through the second and third stages. We study the
effects when the transistors of the second and the third stage are independently
configured in a wrong manner.

2This is because RFETs can have multi-independent terminals on a single channel as explained
in Chapter 2.
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Effect on voltage: Figure 7.9 shows voltages at the output Q in various
conditions. In Figure 7.9, the normal Q represents the condition when the TSPC-
DFF functions normally as the output Q follows D at the next positive edge of
clk. The next figure represented by 2-ab Q (ab = abnormal case) shows when
the transistor in the second stage is misconfigured, here as p-FET. The output
Q remains at logic high. Similarly, when both transistors at the third stage are
either configured as p-FET or n-FET, the output Q is represented in Figure 7.9
as 3-ab-P Q or 3-ab-N Q.

This corrupts the output Q, which is seen to be at logic 0 since the pull-up
network never conducts in the fourth-stage. Similarly, when both the transistors
in the third stage are configured as NMOS, we observe that output Q follows the
clock as a stable pull-up ceases to exist for the fourth stage. We can see that due
to the incorrect configurations, the TSPC-DFF fails to give the desired output.

Effect on current: Figure 7.10 shows the current through various paths of
TSPC-DFF. A corresponding correlation with the voltage can be established for
the currents I3 and I5. While the currents I3 and I5 in normal scenario show spikes
for the second rising edge of the clock, this is highly disrupted when the second or
third stage transistors are misconfigured. When the transistor in the second stage
is misconfigured, there are several spikes of currents (both I3 and I5), which leads
to useless dynamic power consumption and potential reliability concerns. Hence,
such RFET vulnerabilities can be exploited for both combinational and sequential
components of the circuit.

7.6.3 Reliability Concerns: A Consequence Of Short-Circuit
Scenario

We have seen that security vulnerabilities using RFETs can have a detrimental
impact on both the voltage at the output stage and the current in one or multiple
paths in the circuit. With devices based on emerging-nanotechnologies, where
individual transistors can be configured either as a p-type or an n-type behavior,
current-based implications can be detrimental, especially for reliability. We have
seen that the current surge of the order of 105 - 106 is possible with RFET-based
circuits. Such current surges in one or more of the circuit paths can induce reliability
issues that can manifest themselves leading to a reduced quality-of-service (QoS).
An increased current through the circuit paths for an extended time can further
lead to an increase in temperature. Higher current leads to a similar mechanical
stress which can cause a material degradation of the transistors. Since RFETs
are similar to CMOS in terms of geometry and material, they also have dielectric
separation (HfO2) between metal contacts [Mik+17]. Such current-related issues
directly impacts the dielectric and other metal-semiconductor contacts and, hence,
are also detrimental in case of RFET-based circuits.

Most of the reliability issues are dependent upon current and temperature.
Due to increased temperature and current, prominent reliability issues like electro-
migration, interconnect, and self-heating can surface, derailing the circuit’s normal
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functionality. This can further accelerate the aging of the underlying circuit. Aging
happens in circuits due to stress related to high voltages or temperatures [Das14].
These can cause unwanted power dissipation and can also contribute to reducing
the mean-time-to-failure (MTTF ), which is expressed as:

MTTF =
AEM

Jn
·10(EaEM

KT
) (7.2)

where AEM is a material-dependent constant, J is the current density, n is
empirically determined constant with a typical value of 2 for stress-related failures,
EaEM is the activation energy of electromigration, K is the Boltzmann’s constant,
and T is the temperature. It can be seen from expression 7.2, that MTTF is
inversely proportional to the square of current density (J2). Hence, even if we
assume temperature to be constant (which is the worst-case scenario), with a
current surge, the MTTF is accelerated by order of 1010 to 1012. Generally, as
a basic rule of thumb, MTTF is 10 years. In the case of RFET-induced current
surge, the MTTF reduces from 10 years to 0.3 seconds. This implies that in just
0.3 seconds, circuit’s functionality is corrupted.

An important thing to note here is that the current surge’s effect is more
detrimental and pervasive to the circuit compared to the voltage effects. Voltage
effects might be masked by other parts of the circuit and may not present itself
at the circuit’s output. But, in the scenario of the current surge, once triggered,
this can ruin the underlying circuit even if the circuit functions according to its
specifications. The silent nature of this effect is more adverse from a security point
of view.

7.6.4 Implication Of The Proposed Security Vulnerability

Normally, a current flowing higher than the rated current (the ON state current
in this regard) is capable of damaging the transistors. Moreover, it is possible
that by attacking a small portion of the actual chip, we may be able to ruin the
functionality and appearance of the chip as well. This technology may find intensive
application in fields where security of IP is of utmost importance. Military is one
such field. One of the major implications of the proposed security vulnerability is
the realization of Hardware Trojans. Given that the pull-up/pull-down network in
an RFET-based logic gate could be falsely configured, any gate could become a
Trojan in the field. Hardware Trojans present security concern in the outsourced IC
supply chain. Trojans are malicious modifications inserted by adversaries present
either in the design house or at the foundry which can cause the host circuit to
(i) deviate from their specified functionality, (ii) leak sensitive information, and/or
(iii) become unreliable or fail at some point in time [Xia+16]. The proposed
security vulnerability can thus be exploited to realize reliability Trojans which are
activated either by (i) aging effects such as electromigration, or (ii) internal or
external side-channel triggers. Such benign or reliability hardware Trojans have
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been explored before in the literature and can compromise the reliability of all or
selected chips in an SOC [Shi+10; Xia+16].

An integral part of such Trojans is to use triggering mechanisms that remain
inactive during the testing phase, triggered by some external or internal trigger
conditions at any given point in time. Within the context of RFET-based circuit,
it is important to note that Trojan realization in this case is different from
traditional Trojans, as it can evade detection during the testing phase. For
example, Iddq testing3 which can detect electrical faults, will not be able to
identify these scenarios (short-circuit/open-circuit) because, in the normal case,
when RFETs are not misconfigured, there will not be any such electrical faults.
The main contribution of this work, however, is the study of security vulnerability
in RFETs-based circuits, not the advancement of Trojan insertion or their defence
mechanisms.

Another potential use of such security vulnerability is in the development of a
kill-switch, which is any manipulation of the chip’s software or hardware that causes
the chip to shut down the intended functionality, for example, to shut down an
F-35’s missile-launching electronics [Ade08]. The above scenarios of short-circuit
and open-circuit represent an interesting opportunity for a security-enforcing
designer. The ability to configure the RFETs at run-time to seriously disrupt the
normal functioning can be highly favorable for safety-critical applications such as
for military use.

In order to tackle such security vulnerability, it is important to use RFETs’
functional polymorphism in a controlled way. Static connections to program gate
of individual transistors within a single logic gate should be avoided. Dynamic
connections using inverter(s) within the gate boundary to enable both P and P’
signals can be one of the ways to get away with security vulnerability. The use of
inverter(s) within the gate boundary implies that P’s additional input is fed as an
extra input to the enlarged standard cell. The inverter then converts the input P
to deliver two signals – P and P’, that drives the RFETs accordingly to ensure
that the respective pull-up and pull-down network are intact. This ensures that no
external signal can come into the gate to disrupt the complementary pull-up and
pull-down networks. However, this approach does have the drawback of higher
area overheads due to extra inverters necessary within the gate boundary.

Other measures include devising Guard rings [Dom18] or Voltage controllers [Svi+10]
to localize the vulnerability effect to a certain part of the circuit. Guard rings
simply help to localize the current drawn from Vdd and can be placed for few
RFETs together. They also help to provide a low resistance path for the current
to flow without harming other parts of the circuit. Similarly, voltage controllers
can be activated to cut-off certain sections of the circuits from the rest of the
circuits in case of excessive current drawn from the voltage source. However, these
methods are preventive orthogonal measures that help only after the attack has

3Iddq testing measures the supply current of a chip (or a given module) in the quiescent state
(i.e., when the circuit is not switching and inputs are held at static/constant values) to detect
manufacturing and/or electrical defects.
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been in effect so as to localize and prevent the damage to other parts of the circuits.
They also have additional area and power overheads. More importantly, they have
been designed primarily for signal correctness in conventional CMOS circuitry and
were generally designed separately for p- and n-type transistors. However, in case
of RFETs, where such a boundary is blurred, devising such mechanisms require
additional investigation.

7.7 Analytical Evaluation

7.7.1 Investigating The Security Promises

In this section, the findings of the evaluation security promises using RFETs are
discussed. We explore the security guarantees by leveraging RFETs in logic locking
and split manufacturing, respectively.

Setup for security evaluation: For the scenario of malicious end-users, the
locking approach is evaluated against powerful exact SAT-based attacks [SRM15]
and approximate SAT-based attacks [Sha+17]. Different transistor-level config-
urations for RFETs are assumed, which can work as NAND/NOR, AND/OR,
and XOR/XNOR, respectively. RFET-based locking is implemented as individual
2-to-1 MUXes as outlined in [Cha+20]. Since both the SAT-based attacks (exact
as well as approximate) require the netlists to be in BENCH format, custom
Python scripts are employed to implement the locking approach. The SAT-based
attacks [SRM15; Sha+17] are carried out on a server with five compute nodes;
each node has two 14-core Intel Broadwell processors, running at 2.4 GHz with 128
GB RAM. The time-out for the attacks (“t-o”) is set to 48 hours. Random logic
locking are implemented for experiments; ten different sets for each benchmark is
generated, ranging from 10% to 50% locking, in steps of 10%.

Metrics for security evaluation: The attacks’ average runtime is attributed
as an empirical, yet essential indicator for a design’s resilience. Two well-known
metrics are utilized – HD and OER to evaluate the quality of netlists inferred
by successful attack runs. HD and OERare computed using Synopsys VCS and
functional correctness of the key (dumped by the exact SAT-based attack [SRM15])
is ascertained by Synopsys Formality and Cadence LEC.

Results for logic locking: Table 7.2 illustrates the average runtime (in
seconds) required for SAT-based attacks [SRM15] to decipher the locking key for
randomly locked configurations on selected ITC-99 benchmarks4. It is observed
that as the number of locked gates is increased (50% locking), the SAT-based
attack cannot decipher the locking key within 48 hours. The resilience of the large-
scale locking approach is also examined against approximate key recovery attacks
like AppSAT [Sha+17]. More specifically, regarding resilience against AppSAT,

4It is to be noted that ITC-99 benchmark suite is more representative of the security
community particularly in works related to logic locking compared to lets say EPFL bench-
marks [AGD15b]
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Table 7.2: Average runtime (in seconds) for SAT-based attacks [SRM15] for dif-
ferent randomly locked configurations on selected ITC-99 benchmarks. Time-out
(t-o) is 48 hours. For each benchmark ten trials are used.

Benchmark 10% Locking 30% Locking 50% Locking

b14_C 18.43 6,183.84 t-o
b15_C 21.47 5,398.43 t-o
b17_C 312.32 21,324.76 t-o
b18_C 1,543.73 156,378.23 t-o
b19_C 4,678.79 t-o t-o
b22_C 143.21 9,762.74 t-o

the attack on the same locked benchmarks is executed. While AppSAT ran into
time-out after 48 hours, it is programmed to provide its latest, best-as-possible
inference as an approximate key before terminating. These keys are applied to
(approximately) unlock the netlists and then the HD is calculated between this
recovered and the original netlist. This provides the quantified insight into the
recovered key’s fidelity. The experiments are performed only for those cases where
the exact SAT-based attack [SRM15] runs into time-out, that is 50% locking for all
ITC-99 benchmarks. As expected, it is observed that the larger the locking scale,
the recovered key becomes less useful, in the sense that the HD values approach
50% closely, where the mismatch in functional behavior is the most difficult to
recover.

Security promises using RFETs for split manufacturing: Here, we
showcase the security promises where the unique properties of functional reconfig-
uration and functional polymorphism can be leveraged for protecting design IP
against untrusted foundries using the concept of split manufacturing. As elucidated
previously, a designer can protect the entire netlist by choosing RFETs that offer
“fixed-functionality” versus RFETs which provide “variable functionality” based on
the control signals provided on the program gates (PG) [RRK18]. The conceptual
difference with regards to logic locking is that, in the case of split manufacturing,
the secret key shall be implemented via connections only in the BEOL with the
help of TIE cells (as opposed to a tamper-proof memory). Toward that end, only
the program gates of selected RFETs have to be wire-lifted above the desired
split layer (see Fig. 7.4) and driven with constant ‘0’/‘1’ signals, which are routed
through the BEOL.

Why Proximity attacks will not be successful?: The success of conven-
tional proximity attacks is correlated with the type of FEOL-level information,
which can be harnessed to infer the missing BEOL connections. More specifically,
the state-of-the-art network-flow attack aims to reconstruct the missing routing of
a FEOL design leveraging the following informations like (i) physical proximity
between connected cells, (ii) routing patterns of nets, more specifically, the direc-
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Table 7.3: Hamming Distance (HD) and Output Error Rate (OER) in percentage on
selected ITC-99 benchmarks for 1 million test patterns as a function of lifting of
program gate signals.

Benchmark 10% Lifting 30% Lifting 50% Lifting
HD OER HD OER HD OER

b14_C 16 100 34 100 47 100
b15_C 22 100 38 100 49 100
b17_C 19 100 34 100 43 100
b18_C 11 100 24 100 41 100
b19_C 12 100 23 100 39 100
b22_C 21 100 34 100 47 100

Average 17 100 31 100 44 100

tion of dangling nets in the FEOL, (iii) constraints of load capacitance for drivers,
(iv) the non-formation of combinational loops, and (v) timing constraints.

None of the above informations apply to the TIE cells (which supply a fixed
‘0’ and ‘1’, respectively to the PG) in the construction of the experiments. This
is because physical proximity between the TIE cells and the corresponding PG
signals of the RFETs can be eliminated by randomizing the TIE cells’ placement.
The randomization of TIE cells’ placement does not impact the placement and/or
routing of the underlying design. The informations which emanate from the
routing patterns of the FEOL nets can be further obscured by lifting the whole
metal segment to the BEOL, note that the usage of stacked vias can be leveraged
toward this end. As wirelift is applied only with a fixed number of PG signals, it
would ensure minimal disturbance to the routing of the other regular nets in the
design. Once the percentage of wires which are lifted across higher metal layers
is increased, there would be an increase in congestion (due to scarcity of routing
resources), which can be mitigated by increasing the die outlines. The information
of load capacitance constraints does not apply to TIE cells as they are a source
for constant signals like ‘0’ and ‘1’. Since any other logic does not drive TIE cells,
the information of non-formation of combinational loops is also taken care of by
construction. Finally, the information for timing constraints does not apply to
TIE cells (and nets) as they provide a fixed/static path to the PG signals.

Results for split manufacturing: In general proximity attacks [Wan+18]
are executed to ascertain the strength of any defense pertaining to split man-
ufacturing [Pat+18c; Pat+18b; Sen+19]. However, the attack binary released
in [Wan+18] cannot be ported readily to RFETs. Hence, to showcase the efficacy
of RFETs for split manufacturing, a simple, yet effective experiment is conducted
as follows. An assumption is taken that all the regular nets have been correctly
inferred by an attacker (using some proximity attack of choice) and only the
program gate (PG) signals remain to be deciphered. Since the threat model of
split manufacturing dictates the non-availability of a working chip, SAT-based
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attacks like [SRM15] are not directly applicable. At most, an attacker can apply
“random guessing,” and this is imitated by using 1 million test patterns on the
netlists. Table 7.3 denotes the HD and OER obtained after an attack executed by
attackers present in an untrusted foundry on selected ITC-99 benchmarks as a
function of the percentage of lifted program gate (PG) signals. As can be noted
from Table 7.3, the HD value increases as program gate (PG) signals are lifted
to higher layers. It can also be observed that OER approaches the ideal value of
100% even when 10% wires are lifted to higher metal layers, thereby showcasing
the approach’s efficacy.

7.7.2 Investigating The Security Vulnerabilities

A benchmark-based evaluation of the impact of the voltage effects of the security
vulnerability on the functional correctness is carried out. Next, the experimentation
process and the obtained results are presented.

Experimental Setup: As it can be seen that with the creation of a short-
circuit or an open-circuit path (see Figure 7.5a, 7.5b, respectively), various nodes in
a circuit can have indeterministic and random voltage. These nodes are termed as
“misconfigured nodes." To model such indeterministic voltages in the experiments,
stuck-at-1 and stuck-at-0 faults are fixed randomly at these misconfigured nodes in
the gate-level netlist for MCNC, EPFL [AGD15b] and ITC-99 benchmark circuits.
We use the fault analysis tool HOPE [LH96] to analyze these misconfigured nodes
of a circuit.

Each benchmark is tested with 10, 000 input patterns and the number of test
patterns for which the outputs change is noted. To carry out analysis, 50 iterations
have been carried out on randomly selected nodes (logic gates) in the netlist for
MCNC, EPFL and ITC-99 benchmarks. The three benchmark suites are chosen
as they represent the different sizes of electronic circuits. Similarly, the type of
fault inserted at each node is also chosen arbitrarily.

Figure 7.11 shows OER and HD for 10,000 input test patterns for MCNC,
EPFL and ITC-99 benchmarks. The results presented represent an average of
the respective metrics over all 50 iterations. A more in-depth analysis of the
benchmark level evaluation is provided below.

Results: The fault created as a result of misconfiguring various nodes in the
circuit is said to create the maximum impact on the fidelity of the circuit’s output
response when exactly half of the output ports are affected, i.e., the HD is 50%.
This is clearly observable in the average trend of HD from MCNC to EPFL to
ITC-99 benchmarks. Overall, the average HD for the respective benchmark suites
is 36.5%, 40.02%, and 6.34%. For EPFL benchmarks presented in Figure 7.11b,
the HD numbers are less than those in the case of MCNC benchmarks. Among
these, though the HD for priority is around 80%, it is equivalent to be around
20% if the inverted faulty output is converted as discussed above. Similarly,
for the ITC-99 benchmarks as shown in Figure 7.11c, the average HD for the
benchmarks is decreased as compared to the both MCNC and EPFL benchmarks.
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Figure 7.11: Evaluation of OER and HD to study the impact of voltage effects
on the proposed security vulnerability (a) Average Hamming distance and Output
error rate for MCNC benchmarks (b) Average Hamming distance and Output error
rate for EPFL benchmarks (c) Average Hamming distance and Output error rate for
ITC-99 benchmarks.



7. POLYMPORPHIC PRIMITIVES FOR HARDWARE SECURITY 159

As far as the OER is considered, for all the three benchmark suites, i.e. MCNC,
EPFL and ITC-99 benchmarks, it mostly stabilizes at 99.99%, even with few
misconfigurations.

It can be notice that, as the size of the benchmarks increase, the HD stabilizes
at lower values. However, an observation here is that there are exceptions, and the
variations in the output bits suggest that fault-masking plays an important role.
Fault-masking implies that the impact of a given fault in one part of the circuit
may be masked due to another fault occurring at some other part of the circuit.
The second reason can be attributed to the fact that, as the faults are inserted
randomly, the distribution may not be uniform across the size of the benchmarks
and hence can end up affecting only a small fraction of the total number of output
ports. These are the reasons why MCNC benchmarks, especially duke2, a relatively
small benchmark, demonstrates low HD. On the other hand, frg2 and i10, which
are reasonably large, show low HD due to masking effects. It is to be noted that
this experiment only models the ambiguity in logic levels and demonstrates the
impact of voltage effects caused due to the aforementioned security vulnerability.
The model assumes that the incorrect configuration in RFET-based logic-gate has
already been introduced. As discussed earlier, current effects are stealthy and can
lead to a far-reaching detrimental impacts on the health of the host circuit.

7.8 Concluding Remarks And Future Research Di-
rections

This work has highlighted the security promises and potential vulnerabilities in
circuits based on emerging reconfigurable nanotechnologies. Design-for-security
schemes such as logic locking and split manufacturing have been evaluated for
RFETs-based circuits. Using benchmark-level evaluations, these schemes estab-
lished that transistor-level reconfigurability can provide effective security solutions
as 100% OER and 31% HD is achieved for split manufacturing over ITC-99
benchmarks.

Further, it has been demonstrated how security vulnerabilities could be ex-
ploited for RFETs-based circuits using the very same transistor-level reconfigura-
bility. Vulnerabilities occurring due to faults or misconfigurations of individual
transistors have been evaluated using circuit-level simulations. Impact of short-
circuit or open-circuit scenarios on representative circuits has been demonstrated.
Both the short-circuit and the open-circuit configurations impact the current and
the voltage levels and manifest in sequential as well as combinational circuits.
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CHAPTER 8

Conclusion

The Prestige

In this thesis, a custom bottom-up approach towards enabling Electronic Design
Automation (EDA) for circuits based on Reconfigurable Field-Effect Transistor
(RFET) has been proposed. Towards this end, this chapter presents the concluding
remarks, important takeaways, and directions for future work.

8.1 Concluding Remarks

The ability to reconfigure the most atomic entity in an electronic circuit, i.e.
the transistor, has opened up new possibilities in terms of circuit designs and
meeting application requirements. Emerging reconfigurable nanotechnology offers
(re)programming of the transistors to either behave as a p- or n-type device. The
(re)programmability is only possible since RFETs demonstrate near-to-full electrical
symmetry between the two configurations. Thus, reconfigurable nanotechnology
has blurred the very notion of separation between the two types of devices –
PFET and NFET which has been the characteristic of the contemporary CMOS
technology. Consequently, the two configurations of a single RFET exhibit equal
current drives. This, in turn, provides the flexibility to have a complementary
circuit design, with equal drive strengths for both pull-up and pull-down networks.
Exploiting this flexibility, the thesis presents a range of RFETs-based logic gates
and circuits capable of exhibiting enhanced functionality. This is necessary to
complement CMOS technology downscaling from a functional point of view.

161
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Figure 8.1: Thesis correlation and important contributions towards enabling EDA
flow for RFETs-based circuits.

Moreover, the reconfigurable properties are not only limited to displaying
electrical symmetry but, to also provide additional flexibility such as having
multiple-independent gate terminals and altering the performance of individual
FETs by steering potential at different gate terminals. The thesis proposes
various approaches to unlock these potential by offering contributions to the
whole EDA flow. These contributions include – developing both combinational
and sequential circuit design paradigms, proposing technology-mapping flows,
designing standard cells based on RFETs, developing first-ever technology models
for carrying out physical synthesis of RFET-based circuits and finally, exploiting
RFET’s polymorphic behavior to implement affordable security measures.

The thesis follows a close correlation with the various stages of an EDA flow.
Hence, each subsequent chapter (Chapter 3, 4, 5, and 6) caters to the stages of
an EDA flow as shown in Figure 8.1. The figure summarizes the thesis’ main
contribution to various stages of EDA as introduced in Chapter 1. For the ease
of understanding, the left portion of Figure 8.1 is same as in Chapter 1. The
contributions are aimed toward the main research objective mentioned in Chapter 1,
i.e. to develop an EDA flow to enable RFETs-based circuits. Additionally, it has
been shown in Chapter 7 that RFETs-based primitives can play a major role in
securing circuits. At the time of writing this thesis, the motivation to provide
secure circuits at low overheads, is one of the biggest drivers in enabling RFETs
integration into ICs. Targeted toward enabling an EDA flow, this thesis aims
to develop a custom-yet-CMOS compatible EDA flow for RFETs for designing
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efficient and secure circuits. The prime reason why CMOS-compatible flow was
targeted, so that RFETs can be readily adopted with minimal overheads in terms
of mainstream integration. The approaches and the flows presented in the thesis
are consistent with the typical CMOS-centric EDA flows, albeit with features
supporting RFET’s integration.

Interestingly, there are various contending technologies based on materials
such as silicon, germanium that can realize reconfigurable FETs. As we saw
in Chapter 2, devices for both 1D and 2D device geometry have been demonstrated
with reconfigurable properties. Most of these technologies are based on materials
that are predominantly used in conventional CMOS. Several of these technologies
share the manufacturing process stack of CMOS and are based on transistors’
geometries that are CMOS compatible.

Motivated by the flexibility offered by RFETs, circuit designs proposed in Chap-
ter 3 demonstrate that CMOS-styled circuit designs are sub-optimal for RFETs.
They do provide a good starting point to design circuits based on RFETs but
fail to capitalize on the reconfigurable properties of transistors. Both sequen-
tial and combinational circuit designs employed either the flexibility offered via
multi-independent gates or variable performance for efficient implementation based
on RFETs. Hence, various functionality-enhanced logic gate designs have been
demonstrated with better area and performance as compared to the CMOS de-
signs. One major takeaway from these circuit designs is that the NAND, NOR,
and multiplexer implementation all have the same current drive as an inverter.
This is truly disruptive as it facilitates the packing of more functionality with no
performance overhead. Further, the feature to support multi-independent gate
terminals enables logic gate designs for logic functions with more than 2 inputs
which were considered complex in CMOS due to cascading of multiple transistors
and due to sizing issues. Thus, efficient circuit designs for 3-XOR and MINORITY
are proposed which use the reconfigurability offered by individual transistors.
The same transistor-level reconfigurability is utilized to make the quintessential
True-Single Phase Clock (TSPC) D Flip-Flop (DFF) as dual-edge triggered.

Based on these functionality-enhanced logic gates, two major research directions
were explored in Chapter 4. First, the Boolean property of self-duality has been
proposed as the natural logical abstraction for reconfigurable nanotechnology. It
was shown that the self-dual Boolean logic functions can truly tap the duality of
functionality at the transistor level. Thus, self-dual Boolean logic functions can
be implemented with RFETs by switching between the pull-up and pull-down
networks. Using the property of self-duality, an algorithmic approach has been
presented to distill standard cells based on RFETs from a given benchmark suite.
The major takeaway is that efficient standard cells based on self-dual Boolean
logic can lead to area reduction for RFETs-based circuits. Additionally, Chapter 4
also proposed a technology mapping flow for mutually-exclusive functions based
on the concept of Higher-Order Function (HOF). The support for such technology
mapping has been integrated within the ABC tool [BM10b]. Using this technology
mapper, an early evaluation was presented to demonstrate the overheads in terms
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of the number of transistors, and the delay when using reconfigurable functionality-
enhanced logic gates.

The takeaway from Chapter 4 has been the biggest motivation to enable a
tailor-made logic synthesis flow for RFETs. Since self-dual logic functions are
implemented efficiently using RFETs, Chapter 5 presented a logic synthesis flow
with the aim to preserve the maximum available self-duality in a given circuit.
Preserving self-duality is important since logic synthesis and technology mapping
stages depend heavily on cut-based optimization which can disrupt the existing
self-duality of a circuit. Hence, XMG-based logic representation has been used
during the logic synthesis and technology mapping since they offer compact
representation for both unate and binate functions. Advanced Boolean methods
such as resubstitution and rewriting were proposed for XMGs to preserve and
increase the existing self-duality. Using a comprehensive analysis, it has been
demonstrated that the XMG-based approach offers better area results as compared
to AIGs. The contributions in this chapter again instantiate that CMOS-style
flows may be sub-optimal for RFETs-based circuits.

While the first three chapters focused on developing circuit designs and enabling
logic synthesis flows, Chapter 6 presented a physical synthesis flow for RFETs-
based circuits. An entire EDA flow has been presented that takes a given circuit
description as an input and outputs an actual physical layout for circuits based on
RFETs exclusively. Using the technology model for an established SiNW RFET
model [Bla+17], liberty characterization files and optimized layouts for both
static and functionality-enhanced logic gates have been proposed. Experimental
evaluations demonstrate that RFETs-based implementations have higher area
overheads as compared to CMOS-based implementations. Considering that the
liberty models were one of the first proposed models for RFETs, this evaluation
was significant and fostered research directions to improve the RFET models.

The RFET technology, albeit in its infancy has shown a lot of promise in
showing better numbers for area and delay for its functionality-enhanced logic gates.
These logic gates and circuit design paradigms naturally complement the demands
of hardware security. Owing to its inherent transistor-level reconfigurability, it
was demonstrated in Chapter 7, that security measures based on RFETs can be
implemented in an effective and cost-efficient manner. Both logic locking and
split-manufacturing schemes proposed using RFETs demonstrated low overheads
in terms of area and delay. As compared to CMOS-based schemes, that demand
insertion of extra logic gates for implementing these two security schemes, RFET’s
transistor-level reconfiguration realizes these schemes without the need for the
insertion of additional logic. However, it has also been demonstrated in Chapter 7
that the same transistor-level reconfiguration can lead to circuit vulnerabilities
in the case of malicious misconfiguration of an individual or group of RFETs
in a circuit. These vulnerabilities are detrimental as such misconfigurations can
manifest as a short-circuit or an open-circuit condition and can lead to partial or
complete impairment of the chip.
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8.2 Directions For Future Work

While this thesis presented an entire EDA flow for enabling RFETs-based circuits,
there are certain research directions that remain to be explored.

1. Exploration of newer technology-models for RFETs: The disruptive recon-
figurable technology is not limited to silicon and is expandable to other
semiconductor materials, like germanium [Tro17] and carbon [OCo+12;
Bla+17]. Several of these technologies share the manufacturing process stack
of CMOS. Newer technology solutions delivering a more compact structure
of RFETs, such as vertical or stacked technologies can play a major role
in further reducing the area for circuits based on RFETs. For example,
germanium is already used in p-channels in contemporary CMOS technology
to boost performance [Car+16]. Preliminary evaluations using Germanium
Nanowire (GeNW) show promising results in terms of better performance
as compared to the conventional silicon-based RFETs. The stacking of
nanowires or nanosheets can also play a major role in improving the device’s
drive strength.

2. Circuit Design: A majority of research in RFETs is focused from a digital
design perspective [Rai+17; Gai+14a]. Barring few works [Gai+16; NKS16],
custom circuit design based on RFETs is still, rather unexplored. The
unique properties of RFETs can be used for designing efficient analog circuit
designs. Similarly, sequential logic designs such as flip-flops and latches can
also benefit from the dynamic reconfiguration of electrical conduction of
individual transistors. Similarly, multi-Vt applications scenarios should be
explored because unlike CMOS, where transistors with variable threshold
voltages are fixed, RFETs allow independent reconfiguration of individual
transistors by steering the potential at the program and control gates.

3. Logic synthesis: The main limitation of the current logic synthesis flow is
that it gives inferior results as compared to AIGs for circuits with lower
self-duality. In this direction, better heuristics need to be proposed where
logic synthesis can utilize the benefits of both AIGs and XMGs within the
same logic graph. This will help in having a uniform flow for all kinds of
RFETs-based circuits. Exploring other Boolean methods such as Exclusive
Sum-of-Products (ESOP) balancing of the graph structure and refactoring
using XMGs are interesting research directions.

4. Standard cells and technology mapping: In Chapter 4, the algorithm for cal-
culating area savings due to inverter adjustments can be improved. Presently,
it is done as a step post mapping. However, it can be done during technology
mapping as well.
Better heuristics are required to preserve and optimize self-dual portions of
the circuit during the technology mapping stage since we have seen that more
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self-dual cuts are possible with XMGs than AIGs. Hence, exploring custom
heuristics can be an interesting research direction. Recently, model-checking-
based work [Rai+22], demonstrates that various designs of standard cells
can be implemented using RFETs for different parameters such as average
delay, maximum delay, etc. Integration of these designs into mainstream
technology mapping can be worth exploring.

5. Physical Synthesis: To further improve physical synthesis for reconfigurable
circuits, possibilities for more efficient generation of P/P signals should be
explored. However, such endeavors require better layouts and specialized
PDKs for logic gates based on RFETs. This, in turn, depends upon better
RFET technology models as mentioned in Point 1. Furthermore, measures
like all-around devices and stacking of nanowires [Mer+16; Ern+06] will
lead to a substantial reduction of device width and accordingly to a reduced
cell area of the layouts. This can impact the overall placement of individual
standard cells and hence the routing. A high number of metal layers and a
small pitch between gate terminals can further relax routing constraints in
order to facilitate physical synthesis for RFETs. Similarly, the development
of libraries for multi-independent gate RFETs (MIGFETs or TIGFETs) offers
the potential to improve the overall post-physical synthesis of RFET-based
circuits. The greatest promise that SiNWs hold is that they are compatible
with the current silicon technology. This opens up new avenues to explore
the feasibility of making SiNW-CMOS complementary hybrid layouts.

6. Exploring Security Schemes: This work aims to open up interesting future
research directions regarding prospects pertaining to hardware security
(in terms of both security promises and security vulnerabilities), which
can accelerate the commercial integration of RFETs in electronic circuits.
Particularly, security vulnerabilities are more detrimental as the electrical
repercussions caused by such a scenario are far more severe as they can
present themselves in the form of metastability, change of critical paths, and
higher dynamic and static power dissipation.
RFETs in general, have the potential to be a game-changer technology in
enabling hardware security. Future work directions include exploring diverse
applications such as tapping of metastability for physically unclonable func-
tions (PUFs) [Che+16] and random number generators [Bha+21]. Exploring
analog domains with RFETs can also be crucial in defining security implica-
tions at the IC level. While the preliminary investigation in RFETs-based
circuits demonstrates robustness against various side-channel attacks due
to its symmetric electrical characteristics in both p and n-type behavior,
detailed experimental evaluations involving differential analysis are needed
to provide security guarantees.

7. Exploration of other application: Apart from hardware security, RFET’s
unique properties can be utilized in various other applications. One promising
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direction of research is to explore reconfigurable computing fabrics based
on RFETs. There have been a few works in this direction where fine-
grained architectures based on RFETs have been proposed [Gai+15; CBO17].
RFET’s reconfigurable properties can be used in architectures such as Coarse-
Grained Reconfigurable Array (CGRA) or Field-programmable Gate Array
(FPGA). RFETs can also be used as a programming device for non-volatile
memories with possible co-integration of FeFETs with RFETs [Rai+21b].
This nanotechnology provides the opportunity to switch its conduction on-
the-fly from p-type to n-type in a non-volatile fashion. Interesting circuit
design opportunities can be explored with non-volatility in conjunction with
reconfiguration.

Overall, the thesis advances RFETs towards commercial feasibility by proposing
various approaches to enable design automation for efficient and secure RFETs-
based circuits. Besides, the contributions made in this thesis aim to foster new
research paths in enabling EDA flow and exploring various applications for emerging
reconfigurable technologies.
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APPENDIX A

RFETs-based Genlib

Table A.1: Contents of the generic library for RFETs

Name

of the

gate

identifiers. Nos. of fn. Area 1st fn. (HOF) 2nd fn., 3rd fn

inv1 1 O=!a

nand2_

nor2_

min3

sinw 3 2.625
O1=((!(a*b)) * !c)

+ ((!(a+b)) * c)

O2 =!(a*b),

O3 = !(a_b)

xor2_

xnor2_

xor3f

sinw inv_adj 3 5.5
O1=((a ⊕ b) * !p) +

(!(a ⊕ b) * p)

O2=a ⊕ b

O3= !(a⊕ b)

mux 4.5 O=(!s*a)+(b*s)

aoi_oai21 sinw 2 4 O1=!(a*b+c) O2=!((a+b)*c)

emux 8.5
O=((!(a*c + (!c)*b))*e) +

(!(a*d + (!d)*b)*(!e))

nand3_nor3 sinw 2 3.25 O1= !(a*b*c) O2 = !(a+b+c)

maj_min sinw 2 4.75
O1= ((a*b)+(b*c)

+(c*a))
O2=!((a*b)+(b*c)+(c*a))
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APPENDIX B

Distilling Standard-Cells

Table B.1: Occurrence of self-dual functions in EPFL benchmark suite

S.No. Number
of inputs Truth-Table Number of

Occurrences

1 3 01101001 138400
2 3 00010111 34011
3 5 10010110011010010110100110010110 29626
4 3 01110001 21380
5 3 11010100 10914
6 3 10110010 8672
7 5 00010111111010001110100000010111 1876
8 5 10101001100101010101011001101010 1388
9 5 11010100001010110010101111010100 1067
10 5 10001110011100010111000110001110 891
11 5 01001101101100101011001001001101 793
12 4 0000011010011111 470
13 5 00000000000101110001011111111111 364
14 5 11101000111111110000000011101000 321
15 4 0110000011111001 314
16 5 10010101101010010110101001010110 212
17 4 0011011100010011 212

(Cont’d on following page)
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Table B.1, cont’d

18 5 11001001100100110011011001101100 190
19 5 10011010010110010110010110100110 184
20 5 11111111000101110001011100000000 182
21 5 01011001100110101010011001100101 174
22 5 01101001111111110000000001101001 146
23 5 10010011011011001100100100110110 125
24 5 00010011011111110000000100110111 125
25 4 1011010011010010 120
26 4 0000100101101111 104
27 4 1001000011110110 104
28 5 11111110111010101010100010000000 94
29 5 11110111001100010111001100010000 80
30 5 11111111100101101001011000000000 67
31 4 0111111010000001 66
32 5 11000111001110001110001100011100 59
33 5 11101011100000101011111000101000 59
34 4 0110010101011001 58
35 5 00000111001111110000001100011111 58
36 4 1110110011001000 58
37 5 10111110001010001110101110000010 55
38 4 0101100101100101 50
39 4 0100001010111101 48
40 4 0110101010101001 42
41 5 11111111101100101011001000000000 38
42 5 11111111011010010110100100000000 35
43 5 00010111111111110000000000010111 34
44 5 10010110111111110000000010010110 32
45 5 11100001100001110001111001111000 31
46 5 10001110111111110000000010001110 30
47 4 1000000011111110 24
48 4 1101010101010100 24
49 5 10011001100101101001011001100110 24
50 5 01100101011010010110100101011001 22
51 5 00111001100111001100011001100011 17
52 5 11111111011100010111000100000000 17
53 4 0000110101001111 16
54 4 0110110011001001 16
55 4 0001100011100111 14
56 5 10110010111111110000000010110010 12
57 4 1110101010101000 12

(Cont’d on following page)
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Table B.1, cont’d

58 4 0011000101110011 12
59 5 11111111001010110010101100000000 12
60 5 11111111100011101000111000000000 11
61 5 01011010011010010110100110100101 11
62 5 10010011110010010110110000110110 10
63 4 0010010011011011 10
64 4 1011001100110010 10
65 4 0001101100100111 10
66 5 00111100011010010110100111000011 8
67 4 0001111100000111 8
68 4 0101011010010101 8
69 4 0101011100010101 8
70 5 10001110000000001111111110001110 8
71 5 11101111101011101000101000001000 8
72 5 10000010001010001110101110111110 8
73 4 1111100011100000 8
74 5 00000100010011001100110111011111 7
75 5 11111101110101010101010001000000 7
76 5 11101010111111101000000010101000 6
77 4 0101000101110101 6
78 5 10101110111011110000100010001010 6
79 5 01101001100110010110011001101001 6
80 4 0001001010110111 6
81 5 10110010000000001111111110110010 6
82 5 10111110111010110010100010000010 6
83 4 1100100101101100 6
84 5 10011100001110010110001111000110 5
85 5 10101011101111110000001000101010 5
86 5 11111111010011010100110100000000 4
87 5 10101000100000001111111011101010 4
88 5 10110010001010110010101110110010 4
89 5 11111111110101001101010000000000 4
90 5 10111111101010110010101000000010 4
91 5 11001001001101101001001101101100 4
92 4 0010110101001011 4
93 4 1100011010011100 4
94 4 1000111100001110 4
95 5 00101011000000001111111100101011 4
96 5 00101011111111110000000000101011 4
97 4 1000011100011110 4

(Cont’d on following page)
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Table B.1, cont’d

98 4 0111001100110001 4
99 4 0101010011010101 4
100 4 0011101100100011 4
101 5 01110011000100001111011100110001 4
102 5 10010000000010010110111111110110 3
103 5 11011101010011010100110101000100 3
104 4 0100111100001101 2
105 4 0010111100001011 2
106 4 1010001010111010 2
107 4 1011111100000010 2
108 5 10101001010101101001010101101010 2
109 4 1100110101001100 2
110 5 11110001111101110001000001110000 2
111 4 1101011100010100 2
112 4 1101110011000100 2
113 4 1111000101110000 2
114 5 11010101111111010100000001010100 2
115 5 01010010010010101010110110110101 2
116 5 10111010111110110010000010100010 2
117 5 11001101110111110000010001001100 2
118 5 00110110110000110011110010010011 2
119 5 00010101101010001110101001010111 2
120 5 00010011110010001110110000110111 1
121 5 10010110110000110011110010010110 1
122 5 10000000101010001110101011111110 1
123 5 01100000000001101001111111111001 1
124 5 01000110011000101011100110011101 1
125 5 00010111010111110000010100010111 1
126 5 00000001001101110001001101111111 1
127 5 11111001111101101001000001100000 1
128 5 00000111111000001111100000011111 1
129 5 11010100110111010100010011010100 1
130 5 11101011101111101000001000101000 1
131 5 11100001000111101000011101111000 1
132 5 00000110011000001111100110011111 1

1. Reconf function = a’b’c’ + abc’ + ab’c + a’bc
f1 = b’c’ + bc
f2 = bc’ + b’c
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2. Reconf function = b’c’ + a’c’ + a’b’
f1 = c’ + b’
f2 = b’c’

3. Reconf function = ab’c’d’e’ + a’bc’d’e’ + a’b’cd’e’ + abcd’e’ + a’b’c’de’ +
abc’de’ + ab’cde’ + a’bcde’ + a’b’c’d’e + abc’d’e + ab’cd’e + a’bcd’e +
ab’c’de + a’bc’de + a’b’cde + abcde
f1 = bc’d’e’ + b’cd’e’ + b’c’de’ + bcde’ + b’c’d’e + bcd’e + bc’de + b’cde
f2 = b’c’d’e’ + bcd’e’ + bc’de’ + b’cde’ + bc’d’e + b’cd’e + b’c’de + bcde

4. Reconf function = b’c + a’c + a’b’
f1 = c + b’
f2 = b’c

5. Reconf function = bc + a’c + a’b
f1 = c + b
f2 = bc

6. Reconf function = b’c + ac + ab’
f1 = b’c
f2 = c + b’

7. Reconf function = b’c’d’e’ + a’c’d’e’ + a’b’d’e’ + bcde’ + acde’ + abde’ +
bcd’e + acd’e + abd’e + b’c’de + a’c’de + a’b’de
f1 = c’d’e’ + b’d’e’ + bcde’ + bcd’e + c’de + b’de
f2 = b’c’d’e’ + cde’ + bde’ + cd’e + bd’e + b’c’de

8. Reconf function = ac’d’e’ + ab’d’e’ + a’cde’ + a’bde’ + ab’c’e’ + a’bce’ +
a’c’d’e + a’b’d’e + acde + abde + a’b’c’e + abce
f1 = cde’ + bde’ + bce’ + c’d’e + b’d’e + b’c’e
f2 = c’d’e’ + b’d’e’ + b’c’e’ + cde + bde + bce

9. Reconf function = bcd’e’ + a’cd’e’ + a’bd’e’ + b’c’de’ + ac’de’ + ab’de’ +
b’c’d’e + ac’d’e + ab’d’e + bcde + a’cde + a’bde
f1 = cd’e’ + bd’e’ + b’c’de’ + b’c’d’e + cde + bde
f2 = bcd’e’ + c’de’ + b’de’ + c’d’e + b’d’e + bcde

10. Reconf function = bc’d’e’ + ac’d’e’ + abd’e’ + b’cde’ + a’cde’ + a’b’de’ +
b’cd’e + a’cd’e + a’b’d’e + bc’de + ac’de + abde
f1 = bc’d’e’ + cde’ + b’de’ + cd’e + b’d’e + bc’de
f2 = c’d’e’ + bd’e’ + b’cde’ + b’cd’e + c’de + bde

11. Reconf function = bc’d’e’ + a’c’d’e’ + a’bd’e’ + b’cde’ + acde’ + ab’de’ +
b’cd’e + acd’e + ab’d’e + bc’de + a’c’de + a’bde
f1 = c’d’e’ + bd’e’ + b’cde’ + b’cd’e + c’de + bde
f2 = bc’d’e’ + cde’ + b’de’ + cd’e + b’d’e + bc’de
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12. Reconf function = a’b’d’ + abd’ + ab’c’ + a’bc’
f1 = b’d’ + bc’
f2 = bd’ + b’c’

13. Reconf function = d’e’ + b’c’e’ + a’c’e’ + a’b’e’ + b’c’d’ + a’c’d’ + a’b’d’
f1 = d’e’ + c’e’ + b’e’ + c’d’ + b’d’
f2 = d’e’ + b’c’e’ + b’c’d’

14. Reconf function = d’e + bce + ace + abe + bcd’ + acd’ + abd’
f1 = d’e + bce + bcd’
f2 = d’e + ce + be + cd’ + bd’

15. Reconf function = a’b’d’ + abd’ + ab’c + a’bc
f1 = b’d’ + bc
f2 = bd’ + b’c

16. Reconf function = a’cd’e’ + a’bd’e’ + ac’de’ + ab’de’ + ab’c’e’ + a’bce’ +
acd’e + abd’e + a’c’de + a’b’de + a’b’c’e + abce
f1 = cd’e’ + bd’e’ + bce’ + c’de + b’de + b’c’e
f2 = c’de’ + b’de’ + b’c’e’ + cd’e + bd’e + bce

17. Reconf function = a’c’d + b’d + b’c’ + a’b’
f1 = c’d + b’
f2 = b’d + b’c’

18. Reconf function = bc’d’e’ + a’bd’e’ + b’cde’ + ab’de’ + a’bc’e’ + ab’ce’ +
b’c’d’e + a’b’d’e + bcde + abde + a’b’c’e + abce
f1 = bd’e’ + b’cde’ + bc’e’ + b’d’e + bcde + b’c’e
f2 = bc’d’e’ + b’de’ + b’ce’ + b’c’d’e + bde + bce

19. Reconf function = acd’e’ + ab’d’e’ + a’c’de’ + a’bde’ + a’bc’e’ + ab’ce’ +
a’cd’e + a’b’d’e + ac’de + abde + abc’e + a’b’ce
f1 = c’de’ + bde’ + bc’e’ + cd’e + b’d’e + b’ce
f2 = cd’e’ + b’d’e’ + b’ce’ + c’de + bde + bc’e

20. Reconf function = de + b’c’e + a’c’e + a’b’e + b’c’d + a’c’d + a’b’d
f1 = de + c’e + b’e + c’d + b’d
f2 = de + b’c’e + b’c’d

21. Reconf function = a’c’d’e’ + a’bd’e’ + acde’ + ab’de’ + a’bc’e’ + ab’ce’ +
ac’d’e + abd’e + a’cde + a’b’de + abc’e + a’b’ce
f1 = c’d’e’ + bd’e’ + bc’e’ + cde + b’de + b’ce
f2 = cde’ + b’de’ + b’ce’ + c’d’e + bd’e + bc’e

22. Reconf function = d’e + a’b’c’e + abc’e + ab’ce + a’bce + a’b’c’d’ + abc’d’
+ ab’cd’ + a’bcd’
f1 = d’e + b’c’e + bce + b’c’d’ + bcd’
f2 = d’e + bc’e + b’ce + bc’d’ + b’cd’
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23. Reconf function = b’cd’e’ + ab’d’e’ + bcde’ + abde’ + bc’d’e + a’bd’e +
b’c’de + a’b’de + a’bc’d’ + ab’cd’ + a’b’c’d + abcd
f1 = b’cd’e’ + bcde’ + bd’e + b’de + bc’d’ + b’c’d
f2 = b’d’e’ + bde’ + bc’d’e + b’c’de + b’cd’ + bcd

24. Reconf function = c’d’e + a’d’e + b’c’e + a’b’e + a’c’d’ + b’d’ + a’b’c’
f1 = d’e + b’e + c’d’ + b’d’ + b’c’
f2 = c’d’e + b’c’e + b’d’

25. Reconf function = ab’c’d’ + a’cd’ + a’bc’d + acd + a’b’c + abc
f1 = cd’ + bc’d + b’c
f2 = b’c’d’ + cd + bc

26. Reconf function = ab’d’ + a’bd’ + a’b’c’ + abc’
f1 = bd’ + b’c’
f2 = b’d’ + bc’

27. Reconf function = ab’d’ + a’bd’ + a’b’c + abc
f1 = bd’ + b’c
f2 = b’d’ + bc

28. Reconf function = cde + bde + bce + ae + acd + abd + abc
f1 = cde + bde + bce
f2 = e + cd + bd + bc

29. Reconf function = cde + a’de + b’ce + a’b’e + a’cd + b’d + a’b’c
f1 = de + b’e + cd + b’d + b’c
f2 = cde + b’ce + b’d

30. Reconf function = de + ab’c’e + a’bc’e + a’b’ce + abce + ab’c’d + a’bc’d
+ a’b’cd + abcd
f1 = de + bc’e + b’ce + bc’d + b’cd
f2 = de + b’c’e + bce + b’c’d + bcd

31. Reconf function = a’b’c’d’ + abcd’ + ac’d + a’cd + ab’d + a’bd
f1 = b’c’d’ + cd + bd
f2 = bcd’ + c’d + b’d

32. Reconf function = bc’d’e’ + ab’de’ + b’cd’e + a’bde + abc’d’ + a’b’cd’ +
b’c’d + bcd
f1 = bc’d’e’ + bde + b’cd’ + b’c’d + bcd
f2 = b’de’ + b’cd’e + bc’d’ + b’c’d + bcd

33. Reconf function = bc’de’ + b’cde’ + abc’e’ + ab’ce’ + b’c’de + bcde +
ab’c’e + abce + ad
f1 = bc’de’ + b’cde’ + b’c’de + bcde
f2 = bc’e’ + b’ce’ + b’c’e + bce + d
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34. Reconf function = abc’d’ + a’b’d’ + ab’cd + a’bd + a’b’c’ + a’bc
f1 = b’d’ + bd + b’c’ + bc
f2 = bc’d’ + b’cd

35. Reconf function = b’d’e + a’c’e + c’d’ + a’b’d’ + b’c’
f1 = c’e + c’d’ + b’d’ + b’c’
f2 = b’d’e + c’d’ + b’c’

36. Reconf function = acd + bd + bc + ab
f1 = bd + bc
f2 = cd + b

37. Reconf function = b’c’de’ + bcde’ + ab’c’e’ + abce’ + bc’de + b’cde + abc’e
+ ab’ce + ad
f1 = b’c’de’ + bcde’ + bc’de + b’cde
f2 = b’c’e’ + bce’ + bc’e + b’ce + d

38. Reconf function = ab’cd’ + a’bd’ + abc’d + a’b’d + a’b’c’ + a’bc
f1 = bd’ + b’d + b’c’ + bc
f2 = b’cd’ + bc’d

39. Reconf function = a’c’d’ + acd’ + a’b’d’ + abd’ + ab’c’d + a’bcd
f1 = c’d’ + b’d’ + bcd
f2 = cd’ + bd’ + b’c’d

40. Reconf function = a’b’c’d’ + abd’ + a’bcd + ab’d + abc’ + ab’c
f1 = b’c’d’ + bcd
f2 = bd’ + b’d + bc’ + b’c

41. Reconf function = de + b’ce + ace + ab’e + b’cd + acd + ab’d
f1 = de + b’ce + b’cd
f2 = de + ce + b’e + cd + b’d

42. Reconf function = de + a’b’c’e + abc’e + ab’ce + a’bce + a’b’c’d + abc’d
+ ab’cd + a’bcd
f1 = de + b’c’e + bce + b’c’d + bcd
f2 = de + bc’e + b’ce + bc’d + b’cd

43. Reconf function = d’e + b’c’e + a’c’e + a’b’e + b’c’d’ + a’c’d’ + a’b’d’
f1 = d’e + c’e + b’e + c’d’ + b’d’
f2 = d’e + b’c’e + b’c’d’

44. Reconf function = d’e + ab’c’e + a’bc’e + a’b’ce + abce + ab’c’d’ + a’bc’d’
+ a’b’cd’ + abcd’
f1 = d’e + bc’e + b’ce + bc’d’ + b’cd’
f2 = d’e + b’c’e + bce + b’c’d’ + bcd’
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45. Reconf function = b’cd’e’ + a’cd’e’ + bc’de’ + ac’de’ + abc’e’ + a’b’ce’ +
b’c’d’e + a’c’d’e + bcde + acde + a’b’c’e + abce
f1 = cd’e’ + bc’de’ + b’ce’ + c’d’e + bcde + b’c’e
f2 = b’cd’e’ + c’de’ + bc’e’ + b’c’d’e + cde + bce

46. Reconf function = d’e + bc’e + ac’e + abe + bc’d’ + ac’d’ + abd’
f1 = d’e + bc’e + bc’d’
f2 = d’e + c’e + be + c’d’ + bd’

47. Reconf function = cd’ + bd’ + ad’ + abc
f1 = cd’ + bd’
f2 = d’ + bc

48. Reconf function = bcd + a’d + a’c + a’b
f1 = d + c + b
f2 = bcd

49. Reconf function = ab’d’e’ + a’bd’e’ + ab’c’e’ + a’bc’e’ + a’b’de + abde +
a’b’ce + abce + ab’c’d’ + a’bc’d’ + a’b’cd + abcd
f1 = bd’e’ + bc’e’ + b’de + b’ce + bc’d’ + b’cd
f2 = b’d’e’ + b’c’e’ + bde + bce + b’c’d’ + bcd

50. Reconf function = a’b’d’e’ + abc’e’ + a’bde + ab’ce + abc’d’ + ab’cd +
a’b’c’ + a’bc
f1 = b’d’e’ + bde + b’c’ + bc
f2 = bc’e’ + b’ce + bc’d’ + b’cd

51. Reconf function = b’c’d’e’ + ab’d’e’ + bcde’ + a’bde’ + ab’c’e’ + a’bce’ +
bc’d’e + abd’e + b’cde + a’b’de + abc’e + a’b’ce
f1 = b’c’d’e’ + bde’ + bce’ + bc’d’e + b’de + b’ce
f2 = b’d’e’ + bcde’ + b’c’e’ + bd’e + b’cde + bc’e

52. Reconf function = de + b’ce + a’ce + a’b’e + b’cd + a’cd + a’b’d
f1 = de + ce + b’e + cd + b’d
f2 = de + b’ce + b’cd

53. Reconf function = c’d’ + a’bd’ + bc’ + a’c’
f1 = bd’ + c’
f2 = c’d’ + bc’

54. Reconf function = a’b’c’d’ + abd’ + ab’cd + a’bd + abc’ + a’bc
f1 = b’c’d’ + bd + bc
f2 = bd’ + b’cd + bc’

55. Reconf function = a’c’d’ + acd’ + ab’d’ + a’bd’ + abc’d + a’b’cd
f1 = c’d’ + bd’ + b’cd
f2 = cd’ + b’d’ + bc’d
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56. Reconf function = d’e + b’ce + ace + ab’e + b’cd’ + acd’ + ab’d’
f1 = d’e + b’ce + b’cd’
f2 = d’e + ce + b’e + cd’ + b’d’

57. Reconf function = bcd + ad + ac + ab
f1 = bcd
f2 = d + c + b

58. Reconf function = a’cd’ + b’d’ + b’c + a’b’
f1 = cd’ + b’
f2 = b’d’ + b’c

59. Reconf function = de + b’c’e + ac’e + ab’e + b’c’d + ac’d + ab’d
f1 = de + b’c’e + b’c’d
f2 = de + c’e + b’e + c’d + b’d

60. Reconf function = de + bc’e + ac’e + abe + bc’d + ac’d + abd
f1 = de + bc’e + bc’d
f2 = de + c’e + be + c’d + bd

61. Reconf function = a’c’d’e’ + acd’e’ + a’b’c’e’ + ab’ce’ + ac’de + a’cde +
abc’e + a’bce + a’b’c’d’ + ab’cd’ + abc’d + a’bcd
f1 = c’d’e’ + b’c’e’ + cde + bce + b’c’d’ + bcd
f2 = cd’e’ + b’ce’ + c’de + bc’e + b’cd’ + bc’d

62. Reconf function = b’cd’e’ + ab’d’e’ + bc’de’ + a’bde’ + a’bc’e’ + ab’ce’ +
bcd’e + abd’e + b’c’de + a’b’de + a’b’c’e + abce
f1 = b’cd’e’ + bde’ + bc’e’ + bcd’e + b’de + b’c’e
f2 = b’d’e’ + bc’de’ + b’ce’ + bd’e + b’c’de + bce

63. Reconf function = ac’d’ + a’cd’ + a’b’d’ + abd’ + a’bc’d + ab’cd
f1 = cd’ + b’d’ + bc’d
f2 = c’d’ + bd’ + b’cd

64. Reconf function = acd + b’d + b’c + ab’
f1 = b’d + b’c
f2 = cd + b’

65. Reconf function = a’c’d’ + ab’d’ + ac’d + a’b’d
f1 = c’d’ + b’d
f2 = b’d’ + c’d

66. Reconf function = b’c’d’e’ + bcd’e’ + a’b’c’e’ + a’bce’ + bc’de + b’cde +
abc’e + ab’ce + a’b’c’d’ + a’bcd’ + abc’d + ab’cd
f1 = b’c’e’ + bce’ + bc’de + b’cde + b’c’d’ + bcd’
f2 = b’c’d’e’ + bcd’e’ + bc’e + b’ce + bc’d + b’cd
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67. Reconf function = c’d + a’b’d + b’c’ + a’c’
f1 = b’d + c’
f2 = c’d + b’c’

68. Reconf function = abcd’ + a’b’d’ + ab’c’d + a’bd + a’bc’ + a’b’c
f1 = b’d’ + bd + bc’ + b’c
f2 = bcd’ + b’c’d

69. Reconf function = b’c’d + a’d + a’c’ + a’b’
f1 = d + c’ + b’
f2 = b’c’d

70. Reconf function = de’ + bc’e’ + ac’e’ + abe’ + bc’d + ac’d + abd
f1 = de’ + bc’e’ + bc’d
f2 = de’ + c’e’ + be’ + c’d + bd

71. Reconf function = c’de + bde + bc’e + ae + ac’d + abd + abc’
f1 = c’de + bde + bc’e
f2 = e + c’d + bd + bc’

72. Reconf function = bc’d’e’ + b’cd’e’ + b’c’de’ + bcde’ + ae’ + abc’d’ + ab’cd’
+ ab’c’d + abcd
f1 = bc’d’e’ + b’cd’e’ + b’c’de’ + bcde’
f2 = e’ + bc’d’ + b’cd’ + b’c’d + bcd

73. Reconf function = cd + abd + bc + ac
f1 = cd + bc
f2 = bd + c

74. Reconf function = c’d’e’ + a’d’e’ + a’c’e’ + be’ + bc’d’ + a’bd’ + a’bc’
f1 = d’e’ + c’e’ + be’ + bd’ + bc’
f2 = c’d’e’ + be’ + bc’d’

75. Reconf function = cde + bde + bce + a’e + a’cd + a’bd + a’bc
f1 = e + cd + bd + bc
f2 = cde + bde + bce

76. Reconf function = cd’e + bd’e + bce + ae + acd’ + abd’ + abc
f1 = cd’e + bd’e + bce
f2 = e + cd’ + bd’ + bc

77. Reconf function = b’cd’ + a’d’ + a’c + a’b’
f1 = d’ + c + b’
f2 = b’cd’

78. Reconf function = c’d’e + bd’e + bc’e + ae + ac’d’ + abd’ + abc’
f1 = c’d’e + bd’e + bc’e
f2 = e + c’d’ + bd’ + bc’
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79. Reconf function = ab’de’ + a’bde’ + ab’ce’ + a’bce’ + a’b’d’e + abd’e +
a’b’c’e + abc’e + a’b’c’d’ + abc’d’ + ab’cd + a’bcd
f1 = bde’ + bce’ + b’d’e + b’c’e + b’c’d’ + bcd
f2 = b’de’ + b’ce’ + bd’e + bc’e + bc’d’ + b’cd

80. Reconf function = a’c’d’ + acd’ + ab’c’ + a’b’c
f1 = c’d’ + b’c
f2 = cd’ + b’c’

81. Reconf function = de’ + b’ce’ + ace’ + ab’e’ + b’cd + acd + ab’d
f1 = de’ + b’ce’ + b’cd
f2 = de’ + ce’ + b’e’ + cd + b’d

82. Reconf function = b’c’d’e + bcd’e + bc’de + b’cde + ae + ab’c’d’ + abcd’
+ abc’d + ab’cd
f1 = b’c’d’e + bcd’e + bc’de + b’cde
f2 = e + b’c’d’ + bcd’ + bc’d + b’cd

83. Reconf function = ab’cd’ + a’bd’ + a’b’c’d + abd + abc’ + a’bc
f1 = bd’ + b’c’d + bc
f2 = b’cd’ + bd + bc’

84. Reconf function = bcd’e’ + a’bd’e’ + b’c’de’ + ab’de’ + ab’c’e’ + a’bce’ +
b’cd’e + a’b’d’e + bc’de + abde + abc’e + a’b’ce
f1 = bd’e’ + b’c’de’ + bce’ + b’d’e + bc’de + b’ce
f2 = bcd’e’ + b’de’ + b’c’e’ + b’cd’e + bde + bc’e

85. Reconf function = c’d’e + b’d’e + b’c’e + ae + ac’d’ + ab’d’ + ab’c’
f1 = c’d’e + b’d’e + b’c’e
f2 = e + c’d’ + b’d’ + b’c’

86. Reconf function = de + bc’e + a’c’e + a’be + bc’d + a’c’d + a’bd
f1 = de + c’e + be + c’d + bd
f2 = de + bc’e + bc’d

87. Reconf function = cde’ + bde’ + bce’ + ae’ + acd + abd + abc
f1 = cde’ + bde’ + bce’
f2 = e’ + cd + bd + bc

88. Reconf function = b’cd’e’ + acd’e’ + b’c’de’ + ac’de’ + b’c’d’e + ac’d’e +
b’cde + acde + ab’
f1 = b’cd’e’ + b’c’de’ + b’c’d’e + b’cde
f2 = cd’e’ + c’de’ + c’d’e + cde + b’

89. Reconf function = de + bce + a’ce + a’be + bcd + a’cd + a’bd
f1 = de + ce + be + cd + bd
f2 = de + bce + bcd
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90. Reconf function = c’de + b’de + b’c’e + ae + ac’d + ab’d + ab’c’
f1 = c’de + b’de + b’c’e
f2 = e + c’d + b’d + b’c’

91. Reconf function = bc’d’e’ + a’bd’e’ + b’c’de’ + a’b’de’ + b’cd’e + ab’d’e +
bcde + abde + a’bc’d’ + ab’cd’ + a’b’c’d + abcd
f1 = bd’e’ + b’de’ + b’cd’e + bcde + bc’d’ + b’c’d
f2 = bc’d’e’ + b’c’de’ + b’d’e + bde + b’cd’ + bcd

92. Reconf function = ac’d’ + a’bcd’ + a’c’d + ab’cd + a’b’c’ + abc’
f1 = bcd’ + c’d + b’c’
f2 = c’d’ + b’cd + bc’

93. Reconf function = a’b’cd’ + abd’ + ab’c’d + a’bd + a’bc’ + abc
f1 = b’cd’ + bd + bc’
f2 = bd’ + b’c’d + bc

94. Reconf function = c’d + abd + bc’ + ac’
f1 = c’d + bc’
f2 = bd + c’

95. Reconf function = de’ + b’c’e’ + ac’e’ + ab’e’ + b’c’d + ac’d + ab’d
f1 = de’ + b’c’e’ + b’c’d
f2 = de’ + c’e’ + b’e’ + c’d + b’d

96. Reconf function = d’e + b’c’e + ac’e + ab’e + b’c’d’ + ac’d’ + ab’d’
f1 = d’e + b’c’e + b’c’d’
f2 = d’e + c’e + b’e + c’d’ + b’d’

97. Reconf function = ac’d’ + a’b’cd’ + a’c’d + abcd + ab’c’ + a’bc’
f1 = b’cd’ + c’d + bc’
f2 = c’d’ + bcd + b’c’

98. Reconf function = a’cd + b’d + b’c + a’b’
f1 = cd + b’
f2 = b’d + b’c

99. Reconf function = bcd’ + a’d’ + a’c + a’b
f1 = d’ + c + b
f2 = bcd’

100. Reconf function = ac’d + b’d + b’c’ + ab’
f1 = b’d + b’c’
f2 = c’d + b’

101. Reconf function = cde’ + a’de’ + b’ce’ + a’b’e’ + a’cd + b’d + a’b’c
f1 = de’ + b’e’ + cd + b’d + b’c
f2 = cde’ + b’ce’ + b’d
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102. Reconf function = cd’e’ + c’de’ + ab’e’ + a’be’ + a’b’c’d’e + abc’d’e +
a’b’cde + abcde
f1 = cd’e’ + c’de’ + be’ + b’c’d’e + b’cde
f2 = cd’e’ + c’de’ + b’e’ + bc’d’e + bcde

103. Reconf function = bde + a’de + bc’e + a’c’e + bc’d + a’c’d + a’b
f1 = de + c’e + c’d + b
f2 = bde + bc’e + bc’d

104. Reconf function = c’d + a’bd + bc’ + a’c’
f1 = bd + c’
f2 = c’d + bc’

105. Reconf function = c’d + ab’d + b’c’ + ac’
f1 = c’d + b’c’
f2 = b’d + c’

106. Reconf function = b’cd’ + ad’ + ac + ab’
f1 = b’cd’
f2 = d’ + c + b’

107. Reconf function = c’d + b’d + ad + ab’c’
f1 = c’d + b’d
f2 = d + b’c’

108. Reconf function = ac’d’e’ + ab’d’e’ + a’c’de’ + a’b’de’ + a’cd’e + a’bd’e +
acde + abde + ab’c’d’ + a’bcd’ + a’b’c’d + abcd
f1 = c’de’ + b’de’ + cd’e + bd’e + bcd’ + b’c’d
f2 = c’d’e’ + b’d’e’ + cde + bde + b’c’d’ + bcd

109. Reconf function = a’c’d + bd + bc’ + a’b
f1 = c’d + b
f2 = bd + bc’

110. Reconf function = b’d’e + a’d’e + ce + a’b’e + b’cd’ + a’cd’ + a’b’c
f1 = d’e + ce + b’e + cd’ + b’c
f2 = b’d’e + ce + b’cd’

111. Reconf function = b’c’d + bcd + a’bc’ + a’b’c
f1 = d + bc’ + b’c
f2 = b’c’d + bcd

112. Reconf function = a’cd + bd + bc + a’b
f1 = cd + b
f2 = bd + bc

113. Reconf function = cd + a’b’d + b’c + a’c
f1 = b’d + c
f2 = cd + b’c
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114. Reconf function = cd’e + bd’e + bce + a’e + a’cd’ + a’bd’ + a’bc
f1 = e + cd’ + bd’ + bc
f2 = cd’e + bd’e + bce

115. Reconf function = a’b’d’e’ + abde’ + a’c’e’ + ace’ + ac’d’e + a’cde + ab’c’e
+ a’bce
f1 = b’d’e’ + c’e’ + cde + bce
f2 = bde’ + ce’ + c’d’e + b’c’e

116. Reconf function = cd’e + b’d’e + b’ce + ae + acd’ + ab’d’ + ab’c
f1 = cd’e + b’d’e + b’ce
f2 = e + cd’ + b’d’ + b’c

117. Reconf function = c’d’e + a’d’e + a’c’e + be + bc’d’ + a’bd’ + a’bc’
f1 = d’e + c’e + be + bd’ + bc’
f2 = c’d’e + be + bc’d’

118. Reconf function = bc’de’ + a’b’ce’ + bcd’e + ab’c’e + b’c’d’ + abcd’ +
a’bc’d + b’cd
f1 = b’ce’ + bcd’e + b’c’d’ + bc’d + b’cd
f2 = bc’de’ + b’c’e + b’c’d’ + bcd’ + b’cd

119. Reconf function = a’d’e’ + ade’ + ab’c’e’ + a’bce’ + acd’e + abd’e + a’c’de
+ a’b’de
f1 = d’e’ + bce’ + c’de + b’de
f2 = de’ + b’c’e’ + cd’e + bd’e

120. Reconf function = b’d’e’ + bde’ + a’bc’e’ + ab’ce’ + bcd’e + abd’e + b’c’de
+ a’b’de
f1 = b’d’e’ + bde’ + bc’e’ + bcd’e + b’de
f2 = b’d’e’ + bde’ + b’ce’ + bd’e + b’c’de

121. Reconf function = bc’de’ + b’cde’ + a’bc’e’ + a’b’ce’ + b’c’d’e + bcd’e +
ab’c’e + abce + ab’c’d’ + abcd’ + a’bc’d + a’b’cd
f1 = bc’e’ + b’ce’ + b’c’d’e + bcd’e + bc’d + b’cd
f2 = bc’de’ + b’cde’ + b’c’e + bce + b’c’d’ + bcd’

122. Reconf function = cd’e’ + bd’e’ + bce’ + ae’ + acd’ + abd’ + abc
f1 = cd’e’ + bd’e’ + bce’
f2 = e’ + cd’ + bd’ + bc

123. Reconf function = cd’e’ + c’de’ + a’b’e’ + abe’ + ab’c’d’e + a’bc’d’e +
ab’cde + a’bcde
f1 = cd’e’ + c’de’ + b’e’ + bc’d’e + bcde
f2 = cd’e’ + c’de’ + be’ + b’c’d’e + b’cde
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124. Reconf function = a’c’d’e’ + acde’ + a’b’e’ + abe’ + ab’d’e + a’bde + ab’c’e
+ a’bce
f1 = c’d’e’ + b’e’ + bde + bce
f2 = cde’ + be’ + b’d’e + b’c’e

125. Reconf function = c’d’e + a’d’e + b’c’e + a’b’e + b’c’d’ + a’b’d’ + a’c’
f1 = d’e + b’e + b’d’ + c’
f2 = c’d’e + b’c’e + b’c’d’

126. Reconf function = c’d’e’ + a’d’e’ + b’c’e’ + a’b’e’ + a’c’d’ + b’d’ + a’b’c’
f1 = d’e’ + b’e’ + c’d’ + b’d’ + b’c’
f2 = c’d’e’ + b’c’e’ + b’d’

127. Reconf function = ab’d’e + a’bd’e + a’b’de + abde + ce + ab’cd’ + a’bcd’
+ a’b’cd + abcd
f1 = bd’e + b’de + ce + bcd’ + b’cd
f2 = b’d’e + bde + ce + b’cd’ + bcd

128. Reconf function = c’d’e’ + cde’ + abc’e’ + a’b’ce’ + bcd’e + acd’e + b’c’de
+ a’c’de
f1 = c’d’e’ + cde’ + b’ce’ + bcd’e + c’de
f2 = c’d’e’ + cde’ + bc’e’ + cd’e + b’c’de

129. Reconf function = bd’e + a’d’e + bce + a’ce + bcd’ + a’cd’ + a’b
f1 = d’e + ce + cd’ + b
f2 = bd’e + bce + bcd’

130. Reconf function = bc’d’e + b’cd’e + b’c’de + bcde + ae + abc’d’ + ab’cd’
+ ab’c’d + abcd
f1 = bc’d’e + b’cd’e + b’c’de + bcde
f2 = e + bc’d’ + b’cd’ + b’c’d + bcd

131. Reconf function = b’cd’e’ + a’cd’e’ + b’c’de’ + a’c’de’ + bc’d’e + ac’d’e +
bcde + acde + abc’d’ + a’b’cd’ + a’b’c’d + abcd
f1 = cd’e’ + c’de’ + bc’d’e + bcde + b’cd’ + b’c’d
f2 = b’cd’e’ + b’c’de’ + c’d’e + cde + bc’d’ + bcd

132. Reconf function = c’d’e’ + cde’ + a’b’e’ + abe’ + ab’cd’e + a’bcd’e + ab’c’de
+ a’bc’de
f1 = c’d’e’ + cde’ + b’e’ + bcd’e + bc’de
f2 = c’d’e’ + cde’ + be’ + b’cd’e + b’c’de



APPENDIX C

Layout Extraction file (.lef) for SiNW RFETs

VERSION 5.7;
BUSBITCHARS "[]";
DIVIDERCHAR "/";

# Metal layer Description.
LAYER metal1
TYPE ROUTING;
DIRECTION HORIZONTAL;
PITCH 0.104 ;
OFFSET 0.052 ;
WIDTH 0.040;
SPACING 0.040;
RESISTANCE RPERSQ 0.07;
CAPACITANCE CPERSQDIST 3e-05;
END metal1

LAYER via1
TYPE CUT;
SPACING 0.040;
END via1

VIARULE via1_array GENERATE
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LAYER metal1;
2*ENCLOSURE 0.01 = metal1 rect

ENCLOSURE 0.01 0.01;
LAYER metal2;
ENCLOSURE 0.01 0.01;
LAYER via1;
# bottom left point, top right point
RECT -0.0100 -0.0100 0.0100 0.0100;
# center-to-center spacing, X BY Y
SPACING 0.04 BY 0.04;
END via1_array

MACRO inv1
CLASS CORE;
ORIGIN 0 0;
FOREIGN inv1 0 0;
SIZE 0.416 BY 0.72;
SYMMETRY X Y;
SITE 104cpp_9t;
PIN VSS
DIRECTION INOUT;
USE GROUND;
SHAPE ABUTMENT;
PORT
LAYER metal1;
RECT 0 -0.02 0.416 0.02;
RECT 0.24 -0.02 0.3 0.125;
END
END VSS
PIN VDD
DIRECTION INOUT;
USE POWER;
SHAPE ABUTMENT;
PORT
LAYER metal1;
RECT 0 0.7 0.416 0.74;
RECT 0.116 0.595 0.176 0.74;
END
END VDD
PIN a
DIRECTION INPUT;
USE SIGNAL;
ANTENNAMODEL OXIDE1;
ANTENNAGATEAREA 0.008 LAYER metal1;
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PORT
LAYER metal1;
RECT 0.138 0.42 0.322 0.46;
RECT 0.138 0.23 0.198 0.46;
END
END a
PIN O
DIRECTION OUTPUT;
USE SIGNAL;
ANTENNADIFFAREA 0.0248 LAYER metal1;
PORT
LAYER metal1;
RECT 0.344 0.5 0.384 0.644;
RECT 0.032 0.5 0.384 0.54;
RECT 0.032 0.14 0.072 0.54;
END
END O
END inv1

END LIBRARY
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APPENDIX D

Liberty (.lib) file for SiNW RFETs

library(hpsnlib_rfet_tc_1d80V_25C) {
delay_model : table_lookup;
library_features(report_delay_calculation, report_power_calculation);
time_unit : 1ns;
voltage_unit : 1V;
current_unit : 1uA;
capacitive_load_unit(1, ff);
pulling_resistance_unit : 1kohm;
leakage_power_unit : 1pW;
input_threshold_pct_fall : 50;
input_threshold_pct_rise : 50;
output_threshold_pct_fall : 50;
output_threshold_pct_rise : 50;
slew_derate_from_library : 0.5;
slew_lower_threshold_pct_fall : 30;
slew_lower_threshold_pct_rise : 30;
slew_upper_threshold_pct_fall : 70;
slew_upper_threshold_pct_rise : 70;
nom_process : 1;
nom_temperature : 25;
nom_voltage : 1.8;
default_cell_leakage_power : 0;
default_fanout_load : 0;
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default_inout_pin_cap : 0;
default_input_pin_cap : 0;
default_leakage_power_density : 0;
default_output_pin_cap : 0;
voltage_map(VDD, 1.8);
voltage_map(VSS, 0);

operating_conditions(tc_1d80V_25C) {
process : 1;
temperature : 25;
voltage : 1.8;
}
default_operating_conditions : tc_1d80V_25C;

input_voltage(default) {
vil : 0;
vih : 1.8;
vimin : 0;
vimax : 1.8;
}

output_voltage(default) {
vol : 0;
voh : 1.8;
vomin : 0;
vomax : 1.8;
}

sensitization(sensitization_2pins) {
pin_names(pin_0, pin_1);
vector(0, "0 0");
vector(1, "0 1");
vector(2, "1 0");
vector(3, "1 1");
}

sensitization(sensitization_3pins) {
pin_names(pin_0, pin_1, pin_2);
vector(0, "0 0 0");
vector(1, "0 0 1");
vector(2, "0 1 0");
vector(3, "0 1 1");
vector(4, "1 0 0");
vector(5, "1 0 1");
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vector(6, "1 1 0");
}

sensitization(sensitization_4pins) {
pin_names(pin_0, pin_1, pin_2, pin_3);
vector(1, "0 0 0 1");
vector(3, "0 0 1 1");
vector(5, "0 1 0 1");
vector(6, "0 1 1 0");
vector(8, "1 0 0 0");
vector(10, "1 0 1 0");
vector(11, "1 0 1 1");
}

lu_table_template(ndw_ntin_nvolt_6x13) {
variable_1 : input_net_transition;
variable_2 : normalized_voltage;
index_1("1, 2, 3, 4, 5, 6");
index_2("1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13");
}

lu_table_template(tmg_ntin_oload_6x6) {
variable_1 : input_net_transition;
variable_2 : total_output_net_capacitance;
index_1("1, 2, 3, 4, 5, 6");
index_2("1, 2, 3, 4, 5, 6");
}

power_lut_template(pwr_tin_6) {
variable_1 : input_transition_time;
index_1("1, 2, 3, 4, 5, 6");
}

power_lut_template(pwr_tin_oload_6x6) {
variable_1 : input_transition_time;
variable_2 : total_output_net_capacitance;
index_1("1, 2, 3, 4, 5, 6");
index_2("1, 2, 3, 4, 5, 6");
}

}
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cell(inv1) {
sensitization_master : sensitization_2pins;
pin_name_map(a, O);
area : 0.29664;
cell_leakage_power : 39.0394395;

leakage_power() {
related_pg_pin : "VDD";
value : "39.0394395";
}

pg_pin(VDD) {
voltage_name : VDD;
pg_type : primary_power;
}

pg_pin(VSS) {
voltage_name : VSS;
pg_type : primary_ground;
}

pin(a) {
capacitance : 0.399375;
direction : input;
driver_waveform_rise : driver_waveform_default_rise;
driver_waveform_fall : driver_waveform_default_fall;
fall_capacitance : 0.399323;
fall_capacitance_range(0.394542, 0.403334);
input_voltage : default;
max_transition : 36.0;
related_ground_pin : VSS;
related_power_pin : VDD;
rise_capacitance : 0.399427;
rise_capacitance_range(0.394542, 0.403334);
}

pin(O) {
direction : output;
function : "!a";
max_capacitance : 24.3;
max_transition : 28.8;
output_voltage : default;
related_ground_pin : VSS;
related_power_pin : VDD;
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power_down_function : "!VDD+VSS";

internal_power() {
related_pg_pin : "VDD";
related_pin : "a";

rise_power(pwr_tin_oload_6x6) {
index_1("0.1, 0.4, 1.2, 4, 12, 36");
index_2("0.1, 0.4, 1, 3, 9, 27");
values("1.2986, 1.29712, 1.29539, 1.29339, 1.29835, 1.25778",\
"1.31769, 1.30484, 1.303, 1.29395, 1.28541, 1.27292",\
"1.30702, 1.32168, 1.36207, 1.33391, 1.29818, 1.24022",\
"1.29422, 1.29695, 1.30186, 1.38523, 1.41725, 1.27534",\
"1.37127, 1.30538, 1.3196, 1.3258, 1.40479, 1.52572",\
"1.47365, 1.46357, 1.4322, 1.44359, 1.39741, 2.22454");
}
}

timing() {
related_pin : "a";
timing_sense : negative_unate;
timing_type : combinational;

cell_fall(tmg_ntin_oload_6x6) {
index_1("0.1, 0.4, 1.2, 4, 12, 36");
index_2("0.1, 0.4, 1, 3, 9, 27");
values("0.167195, 0.243104, 0.382518, 0.872025, 2.32162, 6.58803",\
"0.308322, 0.380426, 0.522397, 1.02382, 2.48043, 6.77239",\
"0.456128, 0.643228, 0.82919, 1.32162, 2.80596, 7.10223",\
"1.04392, 1.36103, 1.78699, 2.61598, 4.09887, 8.4496",\
"1.42532, 2.15076, 3.13964, 4.8514, 7.52164, 12.1209",\
"4.06991, 4.78814, 6.38181, 8.12942, 14.8572, 22.7991");
}
wave_fall(1, 2);

cell_rise(tmg_ntin_oload_6x6) {
index_1("0.1, 0.4, 1.2, 4, 12, 36");
index_2("0.1, 0.4, 1, 3, 9, 27");
values("0.151786, 0.221898, 0.360403, 0.839933, 2.25578, 6.34873",\
"0.256233, 0.328478, 0.467311, 0.942082, 2.34323, 6.47274",\
"0.398507, 0.51469, 0.711545, 1.16766, 2.55962, 6.70035",\
"0.602373, 0.87441, 1.22842, 2.03108, 3.62982, 7.72331",\
"1.38653, 0.554688, 1.70894, 3.31935, 5.8124, 10.4466",\
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"1.60079, 2.22685, 3.50898, 6.54292, 10.6509, 17.7695");
}
wave_rise(2, 1);

fall_transition(tmg_ntin_oload_6x6) {
index_1("0.1, 0.4, 1.2, 4, 12, 36");
index_2("0.1, 0.4, 1, 3, 9, 27");
values("0.255504, 0.37472, 0.680413, 1.64343, 4.43972, 12.5613",\
"0.269282, 0.385135, 0.650846, 1.57275, 4.50571, 12.8883",\
"0.871151, 0.893921, 0.816229, 1.62398, 4.36444, 12.9361",\
"1.21568, 1.56826, 1.74721, 2.26646, 4.44653, 12.7098",\
"4.20328, 3.37664, 3.61834, 4.59383, 6.10891, 12.7317",\
"4.24503, 5.22933, 5.98887, 10.1779, 11.9861, 18.1581");
}

rise_transition(tmg_ntin_oload_6x6) {
index_1("0.1, 0.4, 1.2, 4, 12, 36");
index_2("0.1, 0.4, 1, 3, 9, 27");
values("0.239664, 0.357893, 0.6526, 1.57325, 4.28203, 12.1578",\
"0.277735, 0.376114, 0.688798, 1.52355, 4.33037, 12.3678",\
"0.803509, 0.910699, 0.951496, 1.57349, 4.17542, 12.3875",\
"1.49813, 1.37551, 1.63522, 2.23217, 4.38152, 12.3751",\
"2.07502, 4.59827, 4.11215, 4.1386, 6.29992, 12.7308",\
"6.08436, 6.09375, 6.96149, 6.48099, 9.88257, 17.5781");
}
}
}
}
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Acronyms

.GDSII Graphic Data Stream.

AIG And-Inverter Graph.

ALU Arithemetic Logic unit.

BDD Binary Decision Diagram.

BEOL Back-End-Of-Line.

BTBT Band-to-Band Tunneling.

CAD Computer Aided Design.

CG Control Gate.

CGRA Coarse-Grained Reconfigurable Array.

CMOS Complementary Metal Oxide Semiconductor.

CNF Conjunctive Normal Form.

CNTFET Carbon Nanotube Field-Effect Transistor.

DAG Direct Acyclic Graph.

DFF D Flip-Flop.

DIGFET Dual-independent gate Field-Effect Transistor.
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DNF Disjunctive Normal Form.

DRC Design Rule Check.

EDA Electronic Design Automation.

EOT Effective Gate Oxide Thickness.

ESOP Exclusive Sum-of-Products.

FEOL Front-End-Of-Line.

FET Field-Effect Transistor.

FPGA Field-programmable Gate Array.

GAA Gate-All Around.

GeNW Germanium Nanowire.

HD Hamming Distance.

HOF Higher-Order Function.

HPWL Half-Perimeter Wire Length.

HVT High Vt (Threshold Voltage).

IC Integrated Circuits.

IoT Internet-of-Things.

IP Intellectual Property.

LUT Look-Up Table.

LVT Low Vt (Threshold Voltage).

MIG Majority-Inverter Graph.

MIGFET Multi-independent gate Field-Effect Transistor.

NFET n-channel Field-Effect Transistor.

NMOS n-channel Metal Oxide Semiconductor.

OER Output Error Rate.
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P&R Placement & Route.

PDK Process Design Kit.

PDN Pull-down Network.

PFET p-channel Field-Effect Transistor.

PG Program Gate.

PMOS p-channel Metal Oxide Semiconductor.

POS Product-of-Sums.

PSO Power-shut Off.

PUF Physically-Unclonable Function.

PUN Pull-up Network.

QoS Quality of Service.

RFET Reconfigurable Field-Effect Transistor.

SB Schottky-Barrier.

SBFET Schottky-barrier Field-Effect Transistor.

SiNW Silicon Nanowire.

SOC Silicon-On-Chip.

SOI Silicon-On-Insulator.

SOP Sum-of-Products.

TCAD Technology Computer-Aided Design.

TFET Tunneling Field-Effect Transistor.

TIGFET Three-independent gate Field-Effect Transistor.

TLL Transistor-Level Locking.

TMD Transition Metal Dicalchogenide.

TSPC True-Single Phase Clock.

XAG Xor-Inverter Graph.

XMG Xor-Majority Graph.
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