60,759 research outputs found

    WIRELESS LINK AGGREGATION TO PROVIDE AN EFFICIENT AND SMOOTH MULTI-PROTOCOL DATA LINK

    Get PDF
    When connected to a cellular (e.g., 5G) network a device can receive/transmit Internet Protocol (IP) traffic via the packet data protocol (PDP). When connected to a Wi-Fi network a device can receive/transmit IP traffic via the Institute of Electrical and Electronics Engineers (IEEE) 802.11 protocol. This proposal provides for combining the capabilities of both cellular and Wi-Fi via a Wireless Link Aggregation (WLA) technique that allows for seamless roaming, no IP address change and no gateway change for a mobile device that is switched between access links, and enhanced experiences for users

    Boosting mobility performance with multi-path TCP

    Get PDF
    Proceeding of: Future Network & Mobile Summit 2010, 16 - 18 June 2010, Florence, ItalyFourth Generation mobile devices incorporate multiple interfaces with diverse access technologies. The current Mobile IP protocol fails to support the enhanced fault tolerance capabilities that are enabled by the availability of multiple interfaces. In particular, established Mobile IP communications cannot be preserved through outages affecting the Home Address. In this paper we describe an architecture for mobile host multihoming that enables transport layer survivability through multiple failure modes. The proposed approach relies on the cooperation between Mobile IP and Multi-Path TCP and aims to fully support multihoming and extend roaming capabilities of mobile devices.This research was supported by Trilogy (http://www.trilogy-project.org), a research project (ICT-216372) partially funded by the European Community under its Seventh Framework Programme.European Community's Seventh Framework ProgramNo publicad

    Secure bootstrapping and routing in an IPv6-based ad hoc network

    Get PDF
    The mobile ad hoc network (MANET), which is characterized by an infrastructureless architecture and multi-hop communication, has attracted a lot of attention recently. In the evolution of IP networks to version 6, adopting the same protocol would guarantee the success and portability of MANETs. In this paper, we propose a secure bootstrapping and routing protocol for MANETs. Mobile hosts can autoconfigure and even change their IP addresses based on the concept of CGA (cryptographically generated address), but they can not hide their identities easily. The protocol is modified from DSR (dynamic source routing) to support secure routing. The neighbor discovery and domain name registration in IPv6 are incorporated and enhanced with security functions. The protocol is characterized by the following features: (i) it is designed based on IPv6, (ii) relying on a DNS server, it allows bootstrapping a MANET with little pre-configuration overhead, so network formation is light-weight, and (iii) it is able to resist a variety of security attacks

    MOON: a New Overlay Network Architecture for Mobility and QoS Support

    Get PDF
    The continuously increasing diffusion of mobile devices such as laptops, PDAs and smartphones, all equipped with enhanced functionalities, has led to numerous studies about mobility and to the definition of new network architectures capable to support it. Problems related to mobility have been addressed mostly operating on the network or transport layers of the Internet protocol stack. As a result, most of these solutions generally require modifying the TCP and/or the IP protocol. Although this approach is well suited to handle mobility, it lacks in compatibility with the Internet Protocol Suite. This consideration led us to study a fully TCP compatible and flexible approach we dubbed MOON, for MObile Overlay Network. This network architecture is currently under design at LIPAR, the Internet, Protocols and Network Architecture Lab of Politecnico di Torino

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    Reliable Multicast Transport for Heterogeneous Mobile IP environment using Cross-Layer Information

    Get PDF
    Reliable multicast transport architecture designed for heterogeneous mobile IP environment using cross-layer information for enhanced Quality of Service (QoS) and seamless handover is discussed. In particular, application-specific reliable multicast retransmission schemes are proposed, which are aimed to minimize the protocol overhead taking into account behaviour of mobile receivers (loss of connectivity and handover) and the specific application requirements for reliable delivery (such as carousel, one-to-many download and streaming delivery combined with recording). The proposed localized retransmission strategies are flexible configured for tree-based multicast transport. Cross layer interactions in order to enhance reliable transport and support seamless handover is discussed considering IEEE 802.21 media independent handover mechanisms. The implementation is based on Linux IPv6 environment. Simulations in ns2 focusing on the benefits of the proposed multicast retransmission schemes for particular application scenarios are presented
    • …
    corecore