863 research outputs found

    Specification and Construction of Control Flow Semantics

    Get PDF
    In this paper we propose a visual language CFSL for specifying control flow semantics of programming languages. We also present a translation from CFSL to graph production systems (GPS) for flow graph construction; that is, any CFSL specification, say for a language L, gives rise to a GPS that constructs from any L-program (represented as an abstract syntax graph) the corresponding flow graph. The specification language is rich enough to capture complex language constructs, including all of Java

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    The speed of parietal theta frequency drives visuospatial working memory capacity

    Get PDF
    The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta–gamma phase coupling theory of WM capacity

    ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast

    No full text
    ER-phagy, the selective autophagy of endoplasmic reticulum (ER), safeguards organelle homeostasis by eliminating misfolded proteins and regulating ER size. ER-phagy can occur by macroautophagic and microautophagic mechanisms. While dedicated machinery for macro-ER-phagy has been discovered, the molecules and mechanisms mediating micro-ER-phagy remain unknown. Here, we first show that micro-ER-phagy in yeast involves the conversion of stacked cisternal ER into multilamellar ER whorls during microautophagic uptake into lysosomes. Second, we identify the conserved Nem1-Spo7 phosphatase complex and the ESCRT machinery as key components for micro-ER-phagy. Third, we demonstrate that macro- and micro-ER-phagy are parallel pathways with distinct molecular requirements. Finally, we provide evidence that the ESCRT machinery directly functions in scission of the lysosomal membrane to complete the microautophagic uptake of ER. These findings establish a framework for a mechanistic understanding of micro-ER-phagy and, thus, a comprehensive appreciation of the role of autophagy in ER homeostasis

    Comparing the effects of focal and conventional tDCS on motor skill learning: A proof of principle study

    Get PDF
    Transcranial direct current stimulation (tDCS) has emerged as a promising intervention in clinical and behavioral neuroscience; however, the response variability to this technique has limited its impact, partly due to the widespread of current flow with conventional methods. Here, we investigate whether a more targeted, focal approach over the primary motor cortex (M1) is advantageous for motor learning and targeting specific neuronal populations. Our preliminary results show that focal stimulation leads to enhanced skill learning and differentially recruits distinct pathways to M1. This finding suggests that focal tDCS approaches may improve the outcomes of future studies aiming to enhance behavior

    Analysis of infant cortical synchrony is constrained by the number of recording electrodes and the recording montage

    Get PDF
    Objective: To assess how the recording montage in the neonatal EEG influences the detection of cortical source signals and their phase interactions. Methods: Scalp EEG was simulated by forward modeling 20-200 simultaneously active sources covering the cortical surface of a realistic neonatal head model. We assessed systematically how the number of scalp electrodes (11-85), analysis montage, or the size of cortical sources affect the detection of cortical phase synchrony. Statistical metrics were developed for quantifying the resolution and reliability of the montages. Results: The findings converge to show that an increase in the number of recording electrodes leads to a systematic improvement in the detection of true cortical phase synchrony. While there is always a ceiling effect with respect to discernible cortical details, we show that the average and Laplacian montages exhibit superior specificity and sensitivity as compared to other conventional montages. Conclusions: Reliability in assessing true neonatal cortical synchrony is directly related to the choice of EEG recording and analysis configurations. Because of the high conductivity of the neonatal skull, the conventional neonatal EEG recordings are spatially far too sparse for pertinent studies, and this loss of information cannot be recovered by re-montaging during analysis. Significance: Future neonatal EEG studies will need prospective planning of recording configuration to allow analysis of spatial details required by each study question. Our findings also advice about the level of details in brain synchrony that can be studied with existing datasets or by using conventional EEG recordings. (C) 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.Peer reviewe

    An improved layer-by-layer self-assembly technique to generate biointerfaces for platelet adhesion studies: Dynamic LbL

    Get PDF
    Layer-by-layer self-assembly (LbL) is a technique that generates engineered nano-scale films, coatings, and particles. These nanoscale films have recently been used in multiple biomedical applications. Concurrently, microfabrication methods and advances in microfluidics are being developed and combined to create Lab-on-a-Chip technologies. The potential to perform complex biological assays in vitro as a first-line screening technique before moving on to animal models has made the concept of lab on a chip a valuable research tool. Prior studies in the Biofluids Laboratory at Louisiana Tech have used layer-by-layer and in vitro biological assays to study thrombogenesis in a controlled, repeatable, engineered environment. The reliability of these previously established techniques was unsatisfactory for more complex cases such as chemical and shear stress interactions. The work presented in this dissertation was performed to test the principal assumptions behind the established laboratory methodologies, suggest improvements where needed, and test the impact of these improvements on accuracy and repeatability. The assumptions to be tested were: (1) The fluorescence microscopy (FM) images of acridine orange-tagged platelets accurately provide a measure of percent area of surface covered by platelets; (2) fibrinogen coatings can be accurately controlled, interact with platelets, and do not interfere with the ability to quantify platelet adhesion; and (3) the dependence of platelet adhesion on chemical agents, as measured with the modified methods, generally agrees with results obtained from our previous methods and with known responses of platelets that have been documented in the literature. The distribution of fibrinogen on the final LbL surface generated with the standard, static process (s-LbL) was imaged by tagging the fibrinogen with an anti-fibrinogen antibody bound to fluorescein isothiocyanate (FITC). FITC FM images and acridine orange FM images were taken sequentially at selected surface locations to generate a composite overlap of presumed platelet adhesion as a function of fibrinogen distribution. The method was unable to distinguish the surface from the adhered cells. The surface inhomogeneity and porosity retained a large amount of acridine orange stain, even in the absence of platelets, and components in the platelet-rich plasma (PRP) were found to fix acridine orange in a mode that fluoresced in the FITC imaging FM. Both of these problems obfuscated the platelet adhesion FM results when using s-LbL surfaces and acridine orange staining of platelets. A dynamic process (d-LbL) was developed in which a solution of the molecule to be layered was constantly washed over the surface, and was constantly mixed to maintain a more homogeneous distribution of solute relative to the surface during the layering process. The d-LbL surfaces were tested as described above, and found to reduce the size and number of regions of anomalous acridine orange pooling trapped by the surface, providing a greater consistency and reliability in identifying platelets. The improved surface was then used in a series of platelet adhesion experiments under static and dynamic flow conditions, and with and without the chemical additive L-arginine. The complex microcharmel system used in prior studies was replaced with a simpler system involving fewer nuisance variables for these tests. The tests were performed on both collagen and fibrinogen surfaces. Collagen has been used as a thrombogenic surface in multiple studies in the literature, but produces additional variables in thrombogenesis control that are avoided when fibrinogen is used. In these tests, fibrinogen was found to be as thrombogenic as collagen, and platelet coverage of both biointerfaces was reduced by L-arginine in a manner similar to previously reported work. The simpler system differed from the previous microchannel system in important factors: (1) It exposed the platelets to much lower shear stresses; (2) It introduced an oscillatory flow, which introduced a higher degree of variability in the adhesion than previously reported; (3) the previous work had not removed the acridine orange surface problems. Therefore, a direct comparison between results was not possible. The new d-LbL surface process was successful in testing the basic assumptions. Testing showed that the new process eliminated the anomalous acridine orange retention problem during fluorescence imaging. This improvement in fluorescence response meant that the FM results matched the platelet adhesion on plain glass slides and adhesion reported by others in microfluidic flows. The chemical additive responses behaved as expected, with an increase in L-arginine contributing to a decrease in thrombogenesis under dynamic conditions, but not under static conditions
    corecore