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� Analysis of brain connectivity from the neonatal EEG is strongly enhanced by adding the number of
electrodes.

� Sensitivity and specificity of cortical synchrony estimates depend on the analysis montage; average
and Laplacian montage have the best performance.

� The number of electrodes defines the optimal montage and it also sets the limits for the level of ana-
lytic details.

a b s t r a c t

Objective: To assess how the recording montage in the neonatal EEG influences the detection of cortical
source signals and their phase interactions.
Methods: Scalp EEG was simulated by forward modeling 20–200 simultaneously active sources covering
the cortical surface of a realistic neonatal head model. We assessed systematically how the number of
scalp electrodes (11–85), analysis montage, or the size of cortical sources affect the detection of cortical
phase synchrony. Statistical metrics were developed for quantifying the resolution and reliability of the
montages.
Results: The findings converge to show that an increase in the number of recording electrodes leads to a
systematic improvement in the detection of true cortical phase synchrony. While there is always a ceiling
effect with respect to discernible cortical details, we show that the average and Laplacian montages exhi-
bit superior specificity and sensitivity as compared to other conventional montages.
Conclusions: Reliability in assessing true neonatal cortical synchrony is directly related to the choice of
EEG recording and analysis configurations. Because of the high conductivity of the neonatal skull, the con-
ventional neonatal EEG recordings are spatially far too sparse for pertinent studies, and this loss of infor-
mation cannot be recovered by re-montaging during analysis.
Significance: Future neonatal EEG studies will need prospective planning of recording configuration to allow
analysis of spatial details required by each study question. Our findings also advice about the level of details
in brain synchrony that can be studied with existing datasets or by using conventional EEG recordings.
� 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Interactions between brain areas are fundamental for most
brain functions. These interactions may be observed with both
invasive and non-invasive electrophysiological methods and
appear to support neuronal communication, integration, and
functional binding via spatiotemporal constellations of
phase-correlated cortical oscillations (Stam and van Straaten,
2012). Several levels of evidence, ranging from simulations to
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experimental models and studies on human infants, support the
idea that early neuronal network activities are crucial for the mat-
uration of lifetime brain functions (Colonnese and Khazipov, 2012;
Kilb et al., 2011). This has increased the interest in understanding
how brain areas interact during early development (Grieve et al.,
2008; Omidvarnia et al., 2014) and how the neurocognitive abnor-
malities arise from early adversities via altering early neuronal net-
work activity (Krüger et al., 2012).

The introduction of novel dense array EEG recording methods
(30–130 electrodes) into neonatal work has opened the possibility
to study spatial details in neonatal brain activity in both hospital
and laboratory settings (Grieve et al., 2008; Odabaee et al., 2013;
Omidvarnia et al., 2014; Tokariev et al., 2012; Wallois et al.,
2009). The recent theoretical work has shown that the information
content, or spatial richness, of EEG signal that can be recorded from
the neonatal scalp is dramatically higher than what is convention-
ally thought (Grieve et al., 2003, 2004; Odabaee et al., 2013).
Pragmatically, this implies that conventional EEG recordings with
eight to twenty electrodes (André et al., 2010) provide a signifi-
cantly deficient representation of brain activity, because much if
not most EEG activity available at scalp is ignored.

While the need for an increased number of recording electrodes
has been established, there is no information about how the num-
ber of electrodes translates to the ability to study details of individ-
ual cortical activities, or how the neuronal interactions between
brain areas are seen in the EEG when using different numbers of
recording electrodes or analysis montages. Such information
would be instrumental for several aspects of an appropriate study
design on early brain network activity. First, it would be important
to understand the level of neuroanatomical detail in brain function
that can be plausibly studied using a limited number of scalp elec-
trodes as is the case in most clinical recordings of sick infants.
Second, it would be important to know how the recording montage
affects the brain activity and interaction estimates, and how this
depends on the number of recording electrodes. Third, defining
the optimal recording and analysis settings, as well as estimating
the trade-offs related to compromises, will be necessary in the sci-
entific search of understanding early brain network function.
While some of these issues have been studied in adults, the
substantially different head geometry, much smaller dimensions
and higher skull conductivity in infants lead to significant
differences in the information yielded by EEG between infants
and adults, and preclude the extrapolation of adult literature into
the neonatal context. Notably, adult literature has focused on the
effects of reference choice on amplitude-dependent measures of
EEG (Essl and Rappelsberger, 1998; Nunez et al., 1997, 1999;
Pascual-Marqui and Lehmann, 1993; Wolpaw and Wood, 1982;
Yao et al., 2005, 2007), while the effects on phase synchrony have
not been studied before.
2. Methods and materials

2.1. Overview of the methodological approach

We assessed here the accuracy with which local cortical
dynamics and inter-areal interactions can be detected in human
babies with variable numbers of scalp EEG electrodes and different
re-referencing, i.e. montage options. This assessment was split into
two parts: First, we used two complementary ‘montage perfor-
mance metrics’ to index the performance of different montages
and electrode numbers in detecting the cortical activity with vari-
able parcellation resolutions. Second, we used two other ‘coupling
detection metrics’ to see how well each montage and electrode
number can detect coupling between signals from different cortical
parcels, i.e. areas with coherent activity.
To quantify rigorously the relationship between scalp EEG sig-
nals and the underlying cortical (i.e. ‘true’ neuronal) signals, we
obtained virtual EEG recordings by forward modeling simulated
time series in cortical parcellations of variable resolutions (20–
200 parcels fully covering the cortical surface). As the basis for
the forward model we used boundary element method (BEM;
Geselowitz, 1967; Kybic et al., 2005) applied to 3D model based
on an anatomical MRI of a healthy neonate.

An overview of the protocol is presented in Fig. 1, the genera-
tion of the head model is shown in Fig. 2, and the methods used
to assess performance metrics for the different electrode numbers
and montages are illustrated in Figs. 3 and 4.

2.2. Head model generation

Anatomical model: We used a magnetic resonance image (MRI,
Philips 3T scanner, Helsinki University Central Hospital) of a
healthy fullterm baby. Raw MRI slices (pixel size 0.9 mm) were
segmented manually (Fig. 1A, Fig. 2B) by a clinician using the FSL
software (Jenkinson et al., 2012; Smith et al., 2004). 3D surfaces
of the brain, inner skull, outer skull and scalp were reconstructed
with Brainstorm software (Tadel et al., 2011). To improve compu-
tational performance, the scalp, inner skull, and outer skull sur-
faces were downsampled to 2562 vertices (5120 faces) and the
brain surface to 4322 vertices (8640 faces). Fixed orientation
dipoles normal to the vertices of the brain surface then comprised
the source space with �3 mm separation between sources.
Forward operator (Fig. 1B) for the resulting three-shell head model
(Fig. 2C) was computed using symmetric boundary element
method (BEM) in the OpenMEEG software (Gramfort et al., 2010;
Kybic et al., 2005). To validate the results obtained with this source
model as well as to examine the impact that a fully gyrated cortical
surface would have on the output results, a ‘gyrated model’ was
also used. In this model the original baby brain source model
was replaced with a cortical surface source model with fixed
surface-normal dipoles obtained from an adult subject, rescaled
to the size of the baby brain and downsampled to have the same
number of source vertices. The adult cortical surface (cortex-CSF
border) was taken from ‘Colin27’ adult head model (Holmes
et al., 1998) that is available in Brainstorm software.

Tissue conductivities: Following the recent study of Despotovic
et al. (2013), we used the conductivity values 0.43 S/m and
1.79 S/m for the scalp and intracranial layer, respectively. Due to
variability in the estimates of neonatal skull conductivities, we
ran our simulations using two values, one that is near the tradi-
tional estimates (0.033 S/m) and another that is closer to recent
suggestions that neonatal skull layer is highly conductive
(0.2 S/m) (Despotovic et al., 2013; Grieve et al., 2004; Odabaee
et al., 2013; Roche-Labarbe et al., 2008). In the gyrated model only
skull conductivity of 0.2 S/m was tested.

2.3. Signal simulations

2.3.1. Simulation of cortical parcel signals
To simulate cortical neuronal activity that is locally coherent,

source dipoles oriented normally to the cortical surface were clus-
tered (Figs. 1C and 2C) with closest neighbors using K-means
approach (Baumgartner et al., 2000; Hanson et al., 2007) to give
20 to 200 cortical parcels (Np = 20, 40, 60, 80, 100, 120, 140, 160,
180 and 200). Increase in Np results in a decrease in the parcel size
(see Fig. 2D for the parcel diameters) and the corresponding scalp
potentials. We created a new cortical parcellation for each iteration
of the simulations in order to eliminate the possibility of any given
realization of the source parcellation introducing systematic dis-
tortions into the results. For each parcel, a unique parcel signal
Sp(t) was generated (white noise; nominal sampling frequency
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Fs = 100 Hz, length 48000 samples; Fig. 1D) and convoluted with a
Morlet wavelet:

wðt; f 0Þ ¼ A � e�t2=2r2
t � e2jpf 0t ; ð1Þ

where A is a normalization factor, f0 is a nominal frequency, j is an
imaginary unit and rt ¼ m0=2pf 0. We used the following settings:
f0 = 10 Hz and m0 = 5. Further, time series were downsampled with
a factor of 48 to yield 1000 independent (separated by six wavelet
time-domain standard deviations) complex-valued samples for
later estimation of phase correlation. It should be noted that
because all analyses in this study are focused on simulated
narrow-band signals, neither the nature of noise (white or 1/f) nor
the nominal wavelet frequency used in their generation play any
significant role in the narrow-band amplitude or phase dynamics.
Simulations for estimating ‘montage performance metrics’
(pathway D–E–F–G–H on Fig. 1), were carried out by setting all
Sp(t) independent, while simulations for computing ‘coupling
detection metrics’ (pathway D–E–F–K–L–M on Fig. 1) were done
by imposing perfect phase coupling with 3/10 cycle phase differ-
ence in one random pair of parcels while maintaining uncorrelated
activity with equal amplitude in all other parcels (Fig. 2C). In all
forward simulations, all source dipoles in each parcel were given
identical time series to represent locally coherent cortical activity
(Fig. 1E).

2.3.2. Generation of scalp EEG signals and electrode sets
Simulated cortical source signals (Ss(t)) were transformed to

scalp potentials (Se(t)) with a forward operator F (Fig. 1F;
Hämäläinen and Ilmoniemi, 1994; Lin et al., 2006):
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SeðtÞ ¼ F � SsðtÞ; ð2Þ

We modeled up to 85 EEG electrodes placed on the scalp surface
by using electrode coordinates from digitized 64-channel EEG cap
on a doll head (Waveguard, ANT B.V., Enschede, The Netherlands,
www.ant-neuro.com; see also Odabaee et al., 2013). The remaining
21 electrodes were placed manually on the model scalp according
to the standard 10–10 system. The other electrode sets (with 66,
32, 19 and 11 electrodes) were created as subsets of these 85 elec-
trodes (Supplementary Figure S1). Notably, the higher electrode
numbers (Ne) are associated with both an improved spatial resolu-
tion and also a greater coverage of the scalp especially in the lower
temporo-occipital region (for details, see Supplementary Material).
Average interelectrode distances for each electrode set are shown in
Fig. 2D. The scalp potentials were obtained with the forward oper-
ator in each electrode location in a Reference-free form that can be
considered to be the least biased form of scalp EEG. Albeit available
only in simulations, we used Reference-free EEG as a benchmark for
the other montages available for real EEG recordings as well.
2.3.3. Montaging
Based on the Reference-free scalp potentials, we derived

EEG using different sets of standard electrode locations
(Supplementary Figure S1) comparable to actual EEG recordings
with corresponding numbers of electrodes. Subsequently, these
sets of EEG signals were used to compute the following data trans-
formations (hereafter called montages) that are routinely used in
the research and clinical practice. First, the average montage was
calculated by subtracting the average of all electrode signals from
each signal in the given electrode set. Second, the monopolar mon-
tage was computed by using Cz as the reference. Third, the current
source density (CSD, also known as the surface Laplacian) montage
was computed using spline spherical interpolation method as
implemented in CSD Toolbox (Kayser and Tenke, 2006a,b; Tenke
and Kayser, 2012; http://psychophysiology.cpmc.columbia.edu/
Software/CSDtoolbox; spline flexibility set to default value m = 4)
and can be seen as a scalp-level proxy for intracortical current den-
sity estimates (Tenke and Kayser, 2012). Since the CSD estimates
are sensitive to the number of electrodes and a smoothing factor
(k), we tested three levels of smoothing for each electrode set: (i)
no smoothing (k = 0, CSD), (ii) typical smoothing used in the imple-
mentation of e.g. BESA software (MEGIS GmbH, Gräfelfing,
Germany; see Scherg et al., 2002) that depends on the number of
scalp electrodes (see below, CSD default), as well as strong smooth-
ing with the typical
(as in ii) smoothing factor multiplied by 10 (CSD strong). To the best
of our knowledge, no studies have suggested optimal smoothing
values for baby EEG. The following smoothing values are used in
the adult EEG implementation of BESA software: k = 10�5 for sets
with 11, 19 and 32 electrodes, and k = 2�10�6 for 66 and 85
electrodes. Fourth, common clinically used bipolar montages;
banana, transverse, and linked mastoids montages were calculated
from the conventional set of 19 electrodes placed according to
the International 10–20 system.

http://www.ant-neuro.com
http://psychophysiology.cpmc.columbia.edu/Software/CSDtoolbox
http://psychophysiology.cpmc.columbia.edu/Software/CSDtoolbox
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2.4. Montage performance metrics

The overall correlation of scalp EEG with the true underlying
local cortical dynamics was evaluated with two approaches: the
Number of discernible parcels (M) and the Montage Fidelity
Coefficient (MFC). Both measures were computed for all cortical
parcellation resolutions (Np = 20–200), all numbers of scalp chan-
nels (Ne = 11–85), and all montages. Both M and MFC were
extracted from estimates of phase correlation between cortical
source (parcel) signals Sp(t) and forward-modeled scalp EEG (elec-
trode) signals Se(t) (Fig. 1G). As a synchrony measure, we used the
real part (rPLV) of the complex phase-locking value (PLV, Aydore
et al., 2013; Jervis et al., 1983) because volume conduction and
the mixing of uncorrelated signals from many sources at each elec-
trode do not introduce systematic phase lags between the source
and electrode signals.

rPLV ¼ Re
1
N

XN

k¼1

ejDuðkÞ

( )�����
�����; ð3Þ
where Du denotes phase difference between two data series, N
is a time window length, k is the sample number, j is an imaginary
unit and |�| indicates the absolute value.

PLV measures the uniformity of the distribution of Du so that
for uncorrelated phases and hence uniformly distributed Du, PLV
approaches 0, when N ?1. For perfectly correlated phases and
delta-function distributed Du, PLV = 1.

Both M and MFC were estimated in 1000 iterations, each with
1000 independent samples, and the results are here reported as
the averages of these iterations for each montage, Np and Ne.
2.4.1. Number of discernible parcels (M)
From the Np � Ne sized matrix of pair-wise rPLVs between all

pairs of Sp and Se, maximal rPLVs for each parcel signal versus all
electrode signals were taken (Fig. 3A). M was defined to be the
number of rPLV values exceeding a significance threshold
(Fig. 3B). M hence denotes the number of independent cortical par-
cels for each parcellation resolution with which the electrode sig-
nals of a given montage are highly correlated with. The threshold,



Cz
Average

cFNPCz = 1.35
cFNPAv = 0.7  

99.999 99.9999.999.59995
Threshold, % 

FN
P

0

0.2

0.4

0.6

0.8
Cz
Average

cDSCz = 0.21  
cDSAv = 0.12

DS = N0.99/Ntotal

99.99999.9999.9 99.59995
Threshold, % 

D
S

0

0.04

0.08

0.12

99.5% 99.9%
Cz 
Average

Number of couplings 
101 1020

N0.99

1

0.5

0

p

0.2

0.1

0

p

Number of couplings 
101 1020

99.5% 99.9%
Cz 
Average

0.04

0
102

DC

A B

Fig. 4. Computation of coupling detection metrics. Example estimation of FNP and DS with 200 parcels and 85 electrodes. (A) Probability density histogram (PDH) of the
number of significant couplings through N iterations (N = 1000) at the electrode level for montages with Cz (blue) and average (red) referencing. Thick lines indicate the
surrogate-estimated 99.5% significance threshold and thin lines the 99.9% threshold. Note that the distributions of interaction data with Cz reference have long tails to the
right indicating that true cortical correlations are heavily smeared at the electrode level. In contrast, for the average reference, albeit PDH peaks are shifted to the right from
the number of real couplings, their right-side tails are shorter than those with Cz reference. Probabilities that correspond to zero couplings (shown with arrows) were taken as
false negative probability (FNP) values. (B) Corresponding cumulative density histograms (CDH). The 99th percentile (shown with a green line) was taken for each case (N0.99,
shown with arrows). Degree of smearing (DS) was computed as a portion of N0.99 from the total number of all possible pair wise electrode combinations (Ntotal = Ne�(Ne � 1)/2).
(C) FNP values computed at different significance thresholds are shown for both references. Cumulative FNP (cFNP) is a sum of FNP values at all thresholds. For this particular
case, cFNP for Cz reference (cFNPCz) was equal to 1.35 and for average reference (cFNPAv) to 0.7. Lower cFNP value corresponds to montage that is potentially able to capture
parcel coupling better. (D) DS values are shown for different thresholds. Analogically to cFNP, cumulative DS (cDS) is a sum of DS values at all thresholds. Here Cz reference had
cDSCz = 0.21 and average reference cDSAv = 0.12. Lower cDS value means that montage smears existing parcel coupling in a less degree.

A. Tokariev et al. / Clinical Neurophysiology 127 (2016) 310–323 315
0.61, was taken as a three standard deviations of all
parcel-electrode rPLVs computed for all montage and Np combina-
tions (1000 iterations for each) and then kept fixed in all estimates
of M. The threshold value was the same for the head models with
different skull conductivities. We also tested thresholds of 0.5 and
0.7 and found that the relations between montages remained
stable (Supplementary Figure S2).

2.4.2. Montage fidelity coefficient (MFC)
To compute MFC, rPLVs for each electrode versus all existing

parcels in current parcellation were sorted in a descending order
and averaged for all electrodes present in the set (for graphical
explanation, Fig. 3C). Such average curves were computed in
1000 iterations and averaged again. We refer to resultant curve
as to montage characteristic curve (Fig. 3D). MFC was calculated
as a mean of the first maximal rPLV (rPLV1) and the difference
between the first and the second maximal rPLVs (D) on the mon-
tage characteristic curve:

MFC ¼ rPLV1 þ D
2

; ð4Þ

The metric shows how well the electrodes in certain montage
are ‘focused’ on as few as possible cortical parcels as opposed to
picking up the mixed signal from many parcels. In the theoretical
case of an ‘ideal’ montage (green characteristic curve in Fig. 3D)
rPLV1 would be 1, which indicates that each electrode is perfectly
sensitive to a single parcel signal, and D would be 1 indicating that
no correlations with other parcels take place (perfect specificity).
MFC hence quantifies the extent to which volume conduction
and anatomical proximity of the cortical sources limit the
real-life montage fidelity.

2.5. Coupling detection metrics

The ability of scalp level electrodes to measure cortical level
coupling was assessed with coupling detection metrics that were
designed to evaluate the two key challenges. First, a scalp record-
ing may miss true parcel coupling because of incomplete scalp
electrode coverage relative to the location or anatomical extent
of cortical activities. We used false negative probability (FNP) to
assess how sensitive the given scalp recording is in detecting cor-
tical coupling. Second, cortical coupling is smeared at the scalp
level because of volume conduction and mixing of signals from
neighboring sources (Tognoli and Kelso, 2009) and hence each
one correlated pair of cortical areas will be picked up as correla-
tions between many scalp electrodes. The susceptibility of a given
montage to signal mixing was estimated by Degree of smearing
(DS).
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To quantify the phase correlations between two electrode time
series, we used as an interaction metric the imaginary PLV (iPLV;
Vinck et al., 2011) that reveals true phase-lagged interactions
and is insensitive to the direct (zero-phase lag) effects linear mix-
ing and volume conduction (or lead field overlap) at the expense of
also being insensitive to true zero-phase lag neuronal interactions:

iPLV ¼ Im
1
N

XN

k¼1

ejDuðkÞ

( )�����
�����: ð5Þ
2.5.1. Computation of thresholds
We estimated the statistical iPLV thresholds in the null-

hypothesis condition so that independent parcel time series were
simulated, forward modeled, and then all-to-all cross-electrode
iPLVs were computed for 1000 iterations, for each combination of
Ne versus Np, and for all montages (Fig. 1I). The size of this surrogate
set was about 4�108 iPLVs. Significance thresholds were computed
as n percentiles of the surrogate set (Fig. 1J). We used n = 0.95,
0.99, 0.995, 0.999, 0.9999 and 0.99999 in coupling detection analy-
ses (corresponding to iPLVs 0.042, 0.056, 0.061, 0.071, 0.085 and
0.096 respectively). Multiple thresholds were used to corroborate
the robustness of the findings. Values of the thresholds obtained
with both head models were essentially the same.

2.5.2. False negative probability (FNP)
First, all pairwise inter-electrode iPLVs were calculated (Fig. 1K).

Second, the numbers iPLVs exceeding each given significance
threshold were counted (Nsig). This was repeated for 1000 itera-
tions with a new cortical parcellation and new inter-parcel connec-
tivity matrix in each iteration. These 1000 numbers of significant
couplings were pooled to a probability density histogram (PDH;
Fig. 1L, Fig. 4A). The first bin of PDH (Nsig = 0) was taken as FNP.
This metric shows the probability of missing existing parcel cou-
pling by montage. Lower FNP value means that the montage
catches brain signal couplings more reliably. Such FNP values were
calculated at different significance thresholds (examples of FNP
curves are shown on Fig. 4C). As far as FNP curves for different ref-
erences at fixed Np and Ne were separable, we used cumulative FNP
(cFNP; sum of FNP values at all thresholds) to characterize and
compare montages:

cFNP ¼
Xn

i¼1

FNPi; ð6Þ

where n is an overall number of tested significance thresholds and i
its current number.

2.5.3. Degree of smearing (DS)
DS was estimated from the data containing random-pairwise

interactions, and it was computed from the cumulative density his-
togram (CDH; Fig. 4B) of the corresponding PDH (Fig. 4A). DS was
taken as the ratio of couplings exceeding the 99th percentile of sur-
rogate data (N0.99) to the total number of possible pairwise electrode
combinations in a montage (Ntotal; see also Fig. 4D for examples):

DS ¼ N0:99=Ntotal; ð7Þ

whereas, Ntotal = Ne�(Ne � 1)/2.
Like FNP (see above), DS was estimated at the same significance

thresholds. In the analyses, we used cumulative DS (cDS) to obtain
a robust and threshold-independent measure of DS:

cDS ¼
Xn

i¼1

DSi; ð8Þ

where n is an overall number of tested significance thresholds and i
its current number. Low values of cDS indicate that the linear
mixing characteristic to a given montage smears true parcel–parcel
coupling less than the mixing in a montage with high cDS.

3. Results

3.1. Analyses of EEG signal sensitivity with the number of discernible
parcels, M

To estimate how well EEG electrode signals represent only a few
well delineated underlying sources as opposed to yielding mixtures
of many underlying sources, we introduce here the M analysis
where M denotes the number of independent cortical parcels with
which the electrode signals are highly correlated with. Exploring
the M values for different montages, parcellation resolutions, and
EEG electrode numbers, we found M to strongly depend on the rela-
tionship between inter-electrode distance (IED) and the diameter of
cortical parcel (PD, respectively; Fig. 2D). When the IED is less than
PD, signals from most if not all cortical parcels may be picked up by
electrodes at scalp (i.e. when M approaches the number of simulated
parcels (Np) see Fig. 5A and Supplementary Figure S3). Conversely,
IED greater than the PD leads to rapid decrease in M. The maximum
M with each number of recording electrodes (marked with green cir-
cles on Fig. 5A) was found when IED and PD were roughly equal.
When the resolution of the cortical parcellation increases to >100
parcels, however, the parcels become so small that the M decreases
irrespective of the number of electrodes (Ne). This indicates that
there is a clear upper limit to the level of neuroanatomical detail
in cortical activity that is accessible with scalp EEG.

Increases of the skull conductivity is known to lead to higher
spatial resolution in scalp potentials. We studied here conductivi-
ties 0.033 S/m and 0.2 S/m and found, expectedly, that the higher
skull conductivity was associated with a greater M albeit the over-
all patterns of M as a function of montage, number of electrodes
(Ne), and number of parcels (Np) were similar (Fig. 5A). Among all
tested montages, CSD without smoothing (‘CSD’) was least affected
by the change in skull conductivity and yielded the greatest M.
Comparison against the Reference-free (benchmark) montage
showed that the CSD montage without smoothing introduced sig-
nificant spatial filtering that made it spatially even more selective
than the Reference-free and average montages that were mutually
comparable (Fig. 5A).

Taken together, increasing the number of electrodes improved
spatial precision and the ability to track multiple brain signals as
indexed by M. M values also depended on the choice of reference
with CSD (k = 0, Ne = 85) yielding best M values at all Np for record-
ings with 66 or 85 electrodes. However, with 32 or less electrodes,
Reference-free and average montages were better.

3.2. Quantification of EEG signal specificity with the montage fidelity
coefficient, MFC

To complement the EEG sensitivity estimation performed with
M, we developed a measure, montage fidelity coefficient (MFC) to
address the specificity of the electrode signals. MFC was estimated
by quantifying for each electrode signal the correlation with each
parcel time series and then measuring the ratio of the strongest
and the second strongest correlation and averaging these ratios
across electrodes (Fig. 3C, D). We found MFC to be largely
determined by the resolution of the cortical parcellation so that
an increasing number of parcels (Np) and thereby the increasing
degree of signal mixing was paralleled by decreasing MFC in all
tested montages (Fig. 5B). For electrode numbers < 66, average
and Reference-free montages yielded superior MFC values
whereas with 66 or 85 electrodes and cortical parcellations with
60 or more parcels, the CSD montage had the greatest specificity
as indexed by MFC.
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Fig. 5. Dependence of montage performance metrics on the number of recording electrodes, analysis montage and skull conductivity. (A) Maps for the number of discernible
parcels (M) computed using higher (0.033 S/m; left column) and lower (0.2 S/m; right column) skull conductivities. To aid interpretation of the findings, the green circles
depict the maximal M values with each electrode number. The overarching observation is that detection of signals from larger numbers of cortical parcels (i.e. higher M)
becomes possible only with large numbers of recording electrodes. Conversely, increasing skull conductivity leads to increased number of detectable parcels. The colored
boxes in the M maps (for 0.2 S/m) depict those montages that are shown as curves in the Fig. 9. (B) Maps for the montage fidelity coefficients (MFC) computed using higher
(0.033 S/m; left column) and lower (0.2 S/m; right column) skull conductivities.
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Skull conductivity had a clear effect on MFC (Supplementary
Figure S4). With a lower skull conductivity (0.033 S/m), the MFC
values for Reference-free, average and Cz montages were smaller
than those observed using higher conductivity (0.2 S/m). On the
other hand, CSD (k = 0, Ne = 66, 85) with Np 6 60, model with lower
skull conductivity was associated with greater MFC and with
Np > 60, the skull conductivity had little effect on MFC.

3.3. Estimation of interaction mapping (in)sensitivity with the
cumulative false negative probability (cFNP)

The analyses of M and MFC quantified how accurately EEG elec-
trode signals capture the underlying local cortical dynamics. To
estimate how informative these electrode signals are in the mea-
surement of inter-areal cortical interactions, we used the cFNP that
measures the fraction of cortical interactions that a given montage
fails to observe. cFNP hence parallels M in yielding an (inverse)
measure of sensitivity in interaction mapping. Unsurprisingly, with
all montages, cFNP increased with increasing Np (and decreasing
parcel size, left column of Fig. 6). This increase was more promi-
nent with low electrode counts. Both skull conductivities yielded
similar results (Supplementary Figure S5). These trends indicate
that in identification of neuronal interactions, it is always benefi-
cial to record EEG with as high as possible density of electrodes.
Higher electrode numbers will also allow increase in accuracy via
using source level analysis. For highest densities of EEG tested in
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our study (Ne = 66 or 85), CSD without smoothing gave the lowest
cFNP values and hence the best performance across all parcellation
resolutions. With low to medium numbers of electrodes, (Ne = 11,
19 or 32), the best performance was, again, obtained with
Reference-free and average montages.

3.4. Quantification of the effects of volume-conduction related signal
mixing with cumulative degree of smearing (cDS)

To complement the local specificity estimates (MFC) at the
network level comparisons of montages, we approximated the
cFNP
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Fig. 6. Dependence of coupling detection metrics on the number of recording electr
probability (cFNP; left), cumulative degree of smearing (cDS; middle) as well as cumulat
overarching observation here is that the amount of false negatives is increased with h
electrodes. Conversely, the spatial smearing does affect detection of coupling more wi
montages that are shown as curves in the Fig. 9.
volume-conduction related smearing with cDS, cDS is a
threshold-independent measure of the fraction of significant
interactions and is, inversely like cFNP, related to goodness of the
montage so that ‘good’ montages are expected to spread the
discovered true cortical interactions to a smaller number of
electrode–electrode couplings than ‘poor’ montages.

Expectedly, cDS decreased with increasing parcellation
resolution (Np) for all montages (Fig. 6, middle column).
Absolute number of electrode pairs showing significant
synchronization rose when the Ne increased (Fig. 6, right
column), however this was paralleled with a decrease in cDS
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this article.)
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values. The overall pattern of cDS findings was not affected by
skull conductivity.

An overarching observation from all pairs of Ne and Np was that
the montage has a crucial effect on the accuracy of estimates of
neuronal interactions. The higher density EEG recording (Ne = 66,
85) was expectedly most accurate with the un-smoothed (k = 0)
CSD montage that showed the smallest cDS values even with the
coarsest parcellations (large parcels and low Np, see also
Supplementary Figure S6). When the electrode density was
decreased (Ne = 19–32), Reference-free and average montages
appeared to be better than any CSD option. Taken together findings
of all metrics (cFNP, cDS, M and MFC), it appears that the ability of a
given montage to detect a cortical interaction depends both on the
sensitivity in picking up the cortical signals and specificity with
which they are extracted.

3.5. Gyrated source model yields qualitatively and quantitatively
similar results

To corroborate the observations made with the baby cortex
source model, we also used a fully gyrated surface source model
(Fig. 7A) obtained from an adult subject and rescaled to the baby
brain size. In the gyrated model M values (Fig. 7B, left column)
were lower (35% lower with the CSD montage) compared to the
original model (Fig. 5A, right column). This is expectable because
deep sulcal sources give overall weaker signals and some sulcal
parcels may exhibit partial signal cancelation by having sources
with opposite polarities, and also because greater dipole orienta-
tion diversity and the dipolar scalp field potentials from sulcal
sources are inherently associated with a greater extent of field
spread. Accordingly, smearing (cDS) for the gyrated model
(Fig. 7B, right column) was somewhat greater (2% greater with
the CSD montage) than with the original model (Fig. 6, middle col-
umn). However, the relationships between different montages as
well as M and cDS behavior through different Ne vs. Np combina-
tions remain the same as in original baby model, which confirms
that the choice of the source model per se does not grossly distort
the results found in this study.

3.6. Bipolar montages

In clinical practice, small electrode numbers (e.g. Ne = 19) and
bipolar montages are routinely used (Fig. 8A). We assessed the per-
formance of standard banana, transverse, and linked mastoids
montages. The overall best performance was given by the linked
mastoids reference that yielded higher values of M and MFC
(Fig. 8B) and lower values of cFNP than the banana and transverse
montages (Fig. 8C). cDS values, on the other hand, were slightly
better for banana and transverse (especially for Np < 60).
Comparison of the linked mastoids montage at Ne = 19 electrodes
showed that only the average montage gave systematically better
results. In the light of each performance metric used in this study,
the ‘monopolar’ montage with Cz reference was found to yield
poorest results.
4. Discussion

Our study shows that the neonatal scalp EEG can be effectively
used to study cortical synchrony. Synchrony estimates are, how-
ever, markedly affected by the number of recording electrodes as
well as by the analysis montage. In addition, the size of interacting
cortical areas and the conductivity of skull tissue both have a nota-
ble effect on the assessment of synchrony. These findings are qual-
itatively compatible with the prior work on adult EEG simulations
(Ryynanen et al., 2004, 2006) but our work extends the prior
knowledge by showing that the considerably different dimensions
and geometry of the neonatal head imply a need for specific neona-
tal head models in future studies on brain synchrony.

4.1. Effects of increasing electrode numbers

It is well established that the accuracy of EEG study can be
improved by increasing spatial sampling with higher number of
EEG electrodes (Lantz et al., 2003; Yamazaki et al., 2013). In sup-
port of this, we observed no ‘ceiling effect’ with respect to the elec-
trode count (Figs. 5 and 6), which suggests that most of our metrics
would continue to change with greater numbers of scalp electrodes
than assessed here (Welch et al., 2014). Moreover, neonatal scalp
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EEG was recently shown to have very high spatial resolution,
which implies that non-redundant information can be recorded
with significantly denser spatial sampling than with the adult scalp
EEG (Odabaee et al., 2013, 2014). However, analysis of synchrony
from high number of signals is challenged by two types of con-
founders. First, higher number of sensors will lead to more smear-
ing of true cortical synchronies between recorded electrodes, and
needs attention in the methods used for spatial separation of sig-
nals or in computing synchrony (Palva and Palva, 2012, review).
Second, increasing numbers of pair-wise synchrony estimates
poses a statistical challenge due to multiple comparisons, and
needs solutions akin to those used in neuroimaging (McIntosh
and Mišic, 2013; Singh et al., 2011; Singh and Phillips, 2010).
Recently introduced graph measures, especially those based on
weighted and surrogate-normalized matrices (Boersma et al.,
2011; Rubinov and Sporns, 2010), may effectively mitigate the
challenge associated with massive pairwise comparisons and the
underlying assumptions of temporal stationarity and
inter-individual similarity (Sporns, 2013).

Our present study was designed to assess the ability of
sensor-level scalp EEG to pick up correlation relationships in signals
generated by numerous cortical parcels. An increase in parcel num-
ber is associated with a decrease in the parcel size (Fig. 2D), which,
consequently, implies greater degree of signal mixing at scalp level.
This mixing will set the upper limit to synchrony detection at scalp
level, which is clearly seen as a ‘ceiling effect’ with respect to parcel
number in our results (Fig. 5A). Both adult and neonatal EEG exhibit
diminishing returns on increasing electrode count, but because of
the greater conductivity of the neonatal skull, the relevant upper
limit for electrode density in neonatal EEG is much higher than in
adult EEG, and probably even higher than what is practically feasi-
ble to measure at present. To enhance spatial resolution beyond this
level, one would need the combination of denser EEG sampling with
source reconstruction methods to disentangle the source signals
(Palva and Palva, 2012; Schoffelen and Gross, 2009).

4.2. Effects of analysis montage

Montage selection is one of the necessary steps in all EEG anal-
ysis, so we compared the different montages both quantitatively
and qualitatively (Fig. 9). The conventional EEG analysis often relies
on using variations of bipolar, linked mastoid reference or average
reference montages, while the more recent, academically oriented
studies (cf. Grieve et al., 2008; Omidvarnia et al., 2014;
Roche-Labarbe et al., 2008; Tokariev et al., 2012) commonly rely
on average and CSD montages. Our results show clearly that mixing
signals results in a significant loss of specificity and sensitivity
about spatial interactions, as in bipolar derivations, including com-
mon Cz reference. Our simulation did also show how the traditional
mastoid reference may yield results that are comparable to average
or CSD montage. In real life situation with human infants, however,
use of mastoid reference is severely compromised if not fully pre-
cluded by the presence of frequent artefacts coming from move-
ments, muscle artefacts (e.g. sucking) and cardiac artefacts. These
considerations leave average and CSD montages only for studying
brain interactions when one wishes to optimize both sensitivity
and specificity. Our present findings slightly favored using average
reference, which is also conceptually straightforward and simple to
generate. Its practical utility is, however, compromised by higher
amplitude artefacts in any of the signals. The practical advantages
of CSD montage, in turn, include local specificity that reduces ‘com-
putational spread’ of artefacts (e.g. muscle or movement) that occur
in one or few channels only (Tenke and Kayser, 2012), as well as the
possibility to interpolate bad channels. However, CSD becomes
unreliable with lower electrode numbers because of its sensitivity
to edge effects (Hjorth, 1975; Mackay, 1983), and CSD does also
require operator input to define the parameters related to flexibility
in spatial contours of scalp potential (Tenke and Kayser, 2012).
These parameters have not been systematically studied in infants,
but our present simulation results and recent empiric findings
(Odabaee et al., 2013) suggest unsmoothed CSD to give the most
reliable estimates. An alternative solution, reference electrode stan-
dardization technique (REST; Yao, 2001), has been developed to
avoid the issues with reference electrodes, and it might provide a
practical, comparable solution that merits further assessment.

4.3. Spatial blurring of scalp EEG signals due to positioning inaccuracy

An interesting, though indirect implication of our present find-
ings is the confounder that arises from the narrow cortical ‘field of
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Fig. 9. Summary of the study findings in the context of 19 channel vs. 85
channel recordings. This illustrates how the findings of the present study can be
used to aid analysis of datasets that are recorded with the standard (19 channel)
or hdEEG (85 channel) settings. The upper graphs compare the ability of
different montages (color code is shown in the bottom right corner of the figure)
to detect local dynamics as estimated with M. Note the dramatically increased
number of discernible cortical parcels (M) with higher number of recording
electrodes. The lower graphs compare the amount of spatial smearing with each
montage. Note how spatial smearing is clearly lower with higher electrode
count, however there are also clear differences between the montages. These
graphs are generated from the more extensive analysis shown in the right
column of Fig. 5A (M) and the middle column of Fig. 6 (cDS) where cases shown
on this figure are highlighted with corresponding colors on 2D maps. Taken
altogether, the results suggest that average reference is generally better with low
number of recording electrodes while CSD montage becomes better when the
recorded electrode count is higher.
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view’ of scalp electrodes combined to their localization inaccuracy.
Due to the neonatal head dimensions and high skull conductivity,
each scalp EEG electrode mainly sees just a few centimeters of cor-
tical activity. Using anatomical landmarks leads to a centimeter
level inaccuracy in electrode positioning relative to the functional
cortical areas (Hellstrom et al., 1963; Kabdebon et al., 2014). This
implies considerable spatial variability in the relationships
between standard electrode positions and functional cortical loci
between different subjects, or between different recording sessions
or gestational ages in the same subject. The practical outcome of
this consideration is that, for instance, synchrony estimate
between central (C3 or C4) and parietal (P3 and P4) EEG signals
may in one baby come from pre- and postcentral gyri, respectively,
while in another baby they measure relationship between signals
that are both coming from postcentral gyri. It is obvious that the
brain interactions between these two signal pairs are different,
resulting in poor comparability between such two EEG recordings.
To overcome this challenge, we can envision two approaches. First,
it is theoretically possible to improve spatial accuracy with very
high electrode numbers, followed by spatially re-sampled EEG sig-
nals based on individualized MRI imaging. Second, it may often be
more practical, especially in clinical populations, to study the net-
work properties at more global level rather than to maximize spa-
tial accuracy of signals themselves (Rubinov and Sporns, 2010).
Recent studies have provided very useful tools to measure graph
based network properties where spatial features may be extracted
with post hoc, data-driven analysis of connectivity clusters. The
latter approach has recently gained wide interest in neurophysio-
logical studies of all age groups and in various neurocognitive dis-
orders (Boersma et al., 2013; de Haan et al., 2009; Kim et al., 2013;
Omidvarnia et al., 2014; Reijneveld et al., 2007).
4.4. Limitations

Our present study design includes multiple simplifications that
do not qualitatively influence the overall conclusions but do affect
the exact numerical values presented here: First, we used a BEM
head model with a relatively smooth cortical source surface and
mainly superficial, radial source orientations. The true brain source
geometry is obviously more complex with both deeper sources and
sulcal sources with tangential or variable orientations relative to
the scalp surface. Sources in these areas would produce weaker
signals with more complex scalp topographies, which would fur-
ther increase the spatial mixing of source signals. These effects
both limit the yield of sensor-level (scalp EEG) analyses and
emphasize the need for source reconstruction approaches with
realistic cortical models (Palva et al., 2013; Schoffelen and Gross,
2009). It is hence likely that the simplified source space used here
overestimates to some extent the spatial resolution and the ability
of any given number of electrodes to discern cortical activity.
However, the attempts to generate realistically contoured cortical
sources are significantly hampered by the lack of sufficiently reli-
able and accurate cortical segmentation of the neonate MRI, as well
as by the so far poorly understood cortical activity mechanisms
that in neonates are different from the adults (Brockmann et al.,
2011; Colonnese and Khazipov, 2012; Kilb et al., 2011; Vanhatalo
and Kaila, 2006). Second, our BEM model was only based on few
tissue compartments, while recent studies in adults have shown
added benefits from as many as eleven (Ramon et al., 2006) or
25 compartments (Irimia et al., 2013). Further segmentation of
the neonatal MRI is, however, limited by the dimensions of each
tissue type relative to the size of MRI voxels. Our present work
showed that the total thickness of skull tissue in the neonate
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was often below 2 mm, which makes its segmentation challenging
with the currently available 0.9 mm voxel resolution. Third, the
present study only assessed pair-wise synchronies although corti-
cal activity in vivo always involves phase correlations among
numerous cortical areas (Bressler and Menon, 2010; Palva et al.,
2013). Such a realistic multivariate synchrony cannot, however,
be addressed here directly, because there is no way of rigorously
dissociating true from false positives in scalp EEG sensor–sensor
correlations. Such work would require source modeling to have
the truth matrix and the recorded matrix with the same axes
(Korhonen et al., 2014).

4.5. Future directions

The overarching methodological implication from our study is
that there are no unified optima in methodology for studying func-
tional brain synchrony in neonates. For purely scientific purposes, it
is easy to envisage near future increases in the use of high density
EEG methods, however most studies on neonates remain driven
by clinical questions that include recordings from sick patients.
Such recording are usually carried out in the neonatal intensive care
environment, and the EEG devices available for such a place will
likely be technically suboptimal regarding their spatial sampling.
Moreover, neonatal subjects in many disease groups are so rare, that
studies on their pathophysiology will need to exploit clinical
archives consisting of technically suboptimal recordings, in addition
to limited prospective data collection with better recording settings.

The multidirectional effects between recording and analysis
parameters studied in our work show that future work on brain
synchrony can use either a bottom-up or a top-down approach:
A bottom-up approach will first need to assume the hypothetical
size of interacting cortical areas, which will define the needed
number of electrodes, optimal analysis montage, as well as the
associated sensitivity and specificity of synchrony estimates. A
top-down approach will start from the given set of recording elec-
trodes, which may be dictated by practical constraints (e.g. use of
historical datasets), and that in turn dictates the analysis montages
as well as defines the practical limits of detectable spatial accuracy
in cortical synchrony.
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