17,840 research outputs found

    Dispersion of cardiac action potential duration and the initiation of re-entry: A computational study

    Get PDF
    BACKGROUND: The initiation of re-entrant cardiac arrhythmias is associated with increased dispersion of repolarisation, but the details are difficult to investigate either experimentally or clinically. We used a computational model of cardiac tissue to study systematically the association between action potential duration (APD) dispersion and susceptibility to re-entry. METHODS: We simulated a 60 Ɨ 60 mm 2 D sheet of cardiac ventricular tissue using the Luo-Rudy phase 1 model, with maximal conductance of the K+ channel gKmax set to 0.004 mS mm-2. Within the central 40 Ɨ 40 mm region we introduced square regions with prolonged APD by reducing gKmax to between 0.001 and 0.003 mS mm-2. We varied (i) the spatial scale of these regions, (ii) the magnitude of gKmax in these regions, and (iii) cell-to-cell coupling. RESULTS: Changing spatial scale from 5 to 20 mm increased APD dispersion from 49 to 102 ms, and the susceptible window from 31 to 86 ms. Decreasing gKmax in regions with prolonged APD from 0.003 to 0.001 mS mm-2 increased APD dispersion from 22 to 70 ms, and the susceptible window from <1 to 56 ms. Decreasing cell-to-cell coupling by changing the diffusion coefficient from 0.2 to 0.05 mm2 ms-1 increased APD dispersion from 57 to 88 ms, and increased the susceptible window from 41 to 74 ms. CONCLUSION: We found a close association between increased APD dispersion and susceptibility to re-entrant arrhythmias, when APD dispersion is increased by larger spatial scale of heterogeneity, greater electrophysiological heterogeneity, and weaker cell-to-cell coupling

    Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study

    Get PDF
    Background Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood. Methods We simulated a 150 Ɨ 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution. Results Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms). Conclusion Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve

    Incorporating Inductances in Tissue-Scale Models of Cardiac Electrophysiology

    Get PDF
    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and [...].Comment: 20 pages, 12 figure

    A multiscale model for collagen alignment in wound healing

    Get PDF
    It is thought that collagen alignment plays a significant part in scar tissue formation during dermal wound healing. We present a multiscale model for collagen deposition and alignment during this process. We consider fibroblasts as discrete units moving within an extracellular matrix of collagen and fibrin modelled as continua. Our model includes flux induced alignment of collagen by fibroblasts, and contact guidance of fibroblasts by collagen fibres. We can use the model to predict the effects of certain manipulations, such as varying fibroblast speed, or placing an aligned piece of tissue in the wound. We also simulate experiments which alter the TGF-Ī² concentrations in a healing dermal wound and use the model to offer an explanation of the observed influence of this growth factor on scarring

    Stability and energy budget of pressure-driven collapsible channel flows

    Get PDF
    Although self-excited oscillations in collapsible channel flows have been extensively studied, our understanding of their origins and mechanisms is still far from complete. In the present paper, we focus on the stability and energy budget of collapsible channel flows using a fluidā€“beam model with the pressure-driven (inlet pressure specified) condition, and highlight its differences to the flow-driven (i.e. inlet flow specified) system. The numerical finite element scheme used is a spine-based arbitrary Lagrangianā€“Eulerian method, which is shown to satisfy the geometric conservation law exactly. We find that the stability structure for the pressure-driven system is not a cascade as in the flow-driven case, and the mode-2 instability is no longer the primary onset of the self-excited oscillations. Instead, mode-1 instability becomes the dominating unstable mode. The mode-2 neutral curve is found to be completely enclosed by the mode-1 neutral curve in the pressure drop and wall stiffness space; hence no purely mode-2 unstable solutions exist in the parameter space investigated. By analysing the energy budgets at the neutrally stable points, we can confirm that in the high-wall-tension region (on the upper branch of the mode-1 neutral curve), the stability mechanism is the same as proposed by Jensen and Heil. Namely, self-excited oscillations can grow by extracting kinetic energy from the mean flow, with exactly two-thirds of the net kinetic energy flux dissipated by the oscillations and the remainder balanced by increased dissipation in the mean flow. However, this mechanism cannot explain the energy budget for solutions along the lower branch of the mode-1 neutral curve where greater wall deformation occurs. Nor can it explain the energy budget for the mode-2 neutral oscillations, where the unsteady pressure drop is strongly influenced by the severely collapsed wall, with stronger Bernoulli effects and flow separations. It is clear that more work is required to understand the physical mechanisms operating in different regions of the parameter space, and for different boundary conditions

    Virtual cardiac monolayers for electrical wave propagation

    Get PDF
    The complex structure of cardiac tissue is considered to be one of the main determinants of an arrhythmogenic substrate. This study is aimed at developing the first mathematical model to describe the formation of cardiac tissue, using a joint in silico-in vitro approach. First, we performed experiments under various conditions to carefully characterise the morphology of cardiac tissue in a culture of neonatal rat ventricular cells. We considered two cell types, namely, cardiomyocytes and fibroblasts. Next, we proposed a mathematical model, based on the Glazier-Graner-Hogeweg model, which is widely used in tissue growth studies. The resultant tissue morphology was coupled to the detailed electrophysiological Korhonen-Majumder model for neonatal rat ventricular cardiomyocytes, in order to study wave propagation. The simulated waves had the same anisotropy ratio and wavefront complexity as those in the experiment. Thus, we conclude that our approach allows us to reproduce the morphological and physiological properties of cardiac tissue

    Structure-based finite strain modelling of the human left ventricle in diastole

    Get PDF
    Finite strain analyses of the left ventricle provide important information on heart function and have the potential to provide insights into the biomechanics of myocardial contractility in health and disease. Systolic dysfunction is the most common cause of heart failure; however, abnormalities of diastolic function also contribute to heart failure, and are associated with conditions including left ventricular hypertrophy and diabetes. The clinical significance of diastolic abnormalities is less well understood than systolic dysfunction, and specific treatments are presently lacking. To obtain qualitative and quantitative information on heart function in diastole, we develop a three-dimensional computational model of the human left ventricle that is derived from noninvasive imaging data. This anatomically realistic model has a rule-based fibre structure and a structure-based constitutive model. We investigate the sensitivity of this comprehensive model to small changes in the constitutive parameters and to changes in the fibre distribution. We make extensive comparisons between this model and similar models that employ different constitutive models, and we demonstrate qualitative and quantitative differences in stress and strain distributions for the different constitutive models. We also provide an initial validation of our model through comparisons to experimental data on stress and strain distributions in the left ventricle

    Cancer modelling: Getting to the heart of the problem

    Get PDF
    Paradoxically, improvements in healthcare that have enhanced the life expectancy of humans in the Western world have, indirectly, increased the prevalence of certain types of cancer such as prostate and breast. It remains unclear whether this phenomenon should be attributed to the ageing process itself or the cumulative effect of prolonged exposure to harmful environmental stimuli such as ultraviolet light, radiation and carcinogens (Franks and Teich, 1988). Equally, there is also compelling evidence that certain genetic abnormalities can predispose individuals to specific cancers (Ilyas et al., 1999). The variety of factors that have been implicated in the development of solid tumours stems, to a large extent, from the fact that ā€˜cancerā€™ is a generic term, often used to characterize a series of disorders that share common features. At this generic level of description, cancer may be viewed as a cellular disease in which controls that usually regulate growth and maintain homeostasis are disrupted. Cancer is typically initiated by genetic mutations that lead to enhanced mitosis of a cell lineage and the formation of an avascular tumour. Since it receives nutrients by diffusion from the surrounding tissue, the size of an avascular tumour is limited to several millimeters in diameter. Further growth relies on the tumour acquiring the ability to stimulate the ingrowth of a new, circulating blood supply from the host vasculature via a process termed angiogenesis (Folkman, 1974). Once vascularised, the tumour has access to a vast nutrient source and rapid growth ensues. Further, tumour fragments that break away from the primary tumour, on entering the vasculature, may be transported to other organs in which they may establish secondary tumours or metastases that further compromise the host. Invasion is another key feature of solid tumours whereby contact with the tissue stimulates the production of enzymes that digest the tissue, liberating space into which the tumour cells migrate. Thus, cancer is a complex, multiscale process. The spatial scales of interest range from the subcellular level, to the cellular and macroscopic (or tissue) levels while the timescales may vary from seconds (or less) for signal transduction pathways to months for tumour doubling times The variety of phenomena involved, the range of spatial and temporal scales over which they act and the complex way in which they are inter-related mean that the development of realistic theoretical models of solid tumour growth is extremely challenging. While there is now a large literature focused on modelling solid tumour growth (for a review, see, for example, Preziosi, 2003), existing models typically focus on a single spatial scale and, as a result, are unable to address the fundamental problem of how phenomena at different scales are coupled or to combine, in a systematic manner, data from the various scales. In this article, a theoretical framework will be presented that is capable of integrating a hierarchy of processes occurring at different scales into a detailed model of solid tumour growth (Alarcon et al., 2004). The model is formulated as a hybrid cellular automaton and contains interlinked elements that describe processes at each spatial scale: progress through the cell cycle and the production of proteins that stimulate angiogenesis are accounted for at the subcellular level; cell-cell interactions are treated at the cellular level; and, at the tissue scale, attention focuses on the vascular network whose structure adapts in response to blood flow and angiogenic factors produced at the subcellular level. Further coupling between the different spatial scales arises from the transport of blood-borne oxygen into the tissue and its uptake at the cellular level. Model simulations will be presented to illustrate the effect that spatial heterogeneity induced by blood flow through the vascular network has on the tumourā€™s growth dynamics and explain how the model may be used to compare the efficacy of different anti-cancer treatment protocols
    • ā€¦
    corecore