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ABSTRACT 

 

Finite strain analyses of the left ventricle provide important information on heart 

function and have the potential to provide insights into the biomechanics of 

myocardial contractility in health and disease. Systolic dysfunction is the most 

common cause of heart failure; however, abnormalities of diastolic function also 

contribute to heart failure, and are associated with conditions including left ventricular 

hypertrophy and diabetes. The clinical significance of diastolic abnormalities is less 

well understood than systolic dysfunction, and specific treatments are presently 

lacking. To obtain qualitative and quantitative information on heart function in 

diastole, we develop a three-dimensional computational model of the human left 

ventricle that is derived from non-invasive imaging data. This anatomically realistic 

model has a rule-based fibre structure and a structure-based constitutive model. We 

investigate the sensitivity of this comprehensive model to small changes in the 

constitutive parameters and to changes in the fibre distribution. We make extensive 
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comparisons between this model and similar models that employ different constitutive 

models, and we demonstrate qualitative and quantitative differences in stress and 

strain distributions for the different constitutive models. We also provide an initial 

validation of our model through comparisons to experimental data on stress and 

strain distributions in the left ventricle. 

 

 

1. Introduction 

 

Cardiac diseases remain a major public health burden. For instance, in 2009 and 2010 

there were 98,506 hospitalisations for acute coronary syndrome in the United 

Kingdom, and these were associated with a £9.6 billion societal loss (2011). 

Paradoxically, because of improvements in early survival post-myocardial infarction, 

an increasing number of people are living with injured hearts, and these patients are 

subject to an increased risk of subsequent heart failure and premature death 

(Velagaleti et al. 2008). Improvements in risk assessment are urgently needed to 

identify high-risk patients and to stratify therapeutic approaches. Epidemiological 

studies have shown that at least 50% of heart failure patients have normal systolic 

pump function and left ventricular ejection fraction; these patients are said to suffer 

from left ventricular diastolic dysfunction (Paulus et al. 2007; Wang and Nagueh 2009; 

Wang et al. 2009). Theoretical, computational, and experimental analyses of the 

diastolic mechanics of the left ventricle (LV) can be used to develop an improved 

understanding of the physiology and pathophysiology of such patients, and could be 

used to predict their responses to medical and surgical interventions. However, such 

analyses are complicated by large tissue deformations and by the anisotropy and 

inhomogeneity of the left ventricular myocardium. Moreover, performing such 

analyses using in vivo human anatomy, as required to maximize impact on patient 

care, requires high-quality non-invasive imaging data that can be difficult to obtain.  

 

The heart wall consists of three distinct layers: thin inner and outer layers (the 
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endocardium and epicardium, respectively), and a thick middle layer (the 

myocardium). The myocardium is primarily composed of cardiomyocytes that are 

arranged in bundles of muscle fibres. The fibre orientation changes with position 

within the wall. In the equatorial region of the LV, the predominant fibre direction 

(with respect to the circumferential direction along the left ventricular wall) rotates 

from approximately -50° to -70° in the subepicardium, to nearly 0° in the mid-wall, to 

approximately +50° to +70° in the subendocardium (Holzapfel and Ogden 2009). 

Extensive histological studies (LeGrice et al. 1995; LeGrice et al. 1997; Sands et al. 

2005) have suggested that the fibres of the left ventricular myocardium are organized 

as laminar sheets that are tightly bound by endomysial collagen and loosely bound by 

perimysial collagen. Although it is possible to determine the actual fibre and sheet 

orientations in ex vivo hearts, obtaining such data in situ remains challenging.  

Previous work has developed models of a mean fibre distribution using rule-based 

reconstructions (Potse et al. 2006; Bishop et al. 2009). Although rule-based 

reconstructions can yield fibre structures that are reasonably close to those derived 

from diffusion tensor magnetic resonance imaging (DTMRI) data, discrepancies exist 

between rule-based and DTMRI-based fibre structures (Bishop et al. 2009). An 

important issue that we consider herein is the sensitivity of the LV model predictions 

to the details of the prescribed fibre structure.  

 

Most experimental data available for the material properties of the LV come from 

animal models. For instance, biaxial tests on the passive elasticity of canine and 

porcine myocardium have been performed (Demer and Yin 1983; Yin et al. 1987; 

Smaill and Hunter 1991; Novak et al. 1994). Results from a complete set of simple 

shear tests for porcine myocardium have also been described (Dokos et al. 2002), and 

these experiments clearly demonstrate the strong anisotropic behaviour of the 

myocardium. Although some aspects of the passive mechanical response of 

myocardial tissue are well characterized, a careful literature survey shows that there 

are insufficient experimental data available for detailed parameter estimation for 

many constitutive laws used to model the LV. This is especially true of human 
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myocardium, for which experimental data are largely lacking. 

 

Experiments by Vossoughi et al. (1980) showed that myocardial tissues are 

incompressible and can be considered to be hyperelastic. Initial constitutive models of 

ventricular myocardium used isotropic material descriptions (Demiray 1976). 

Subsequent work developed transversely isotropic models to account for the 

anisotropy of the myocardium (Humphrey et al. 1990; Humphrey et al. 1990; 

Guccione et al. 1991; Costa et al. 1996a; Costa et al. 1996b). These constitutive 

models describe some of the key mechanical properties of myocardial tissues, but 

they do not account for the orthotropic character of soft tissues. One of the first 

orthotropic constitutive models of ventricular myocardium was the 18-parameter 

“pole-zero” model of Hunter et al. (1997). Other orthotropic models were developed 

by Costa et al. (2001) and by Schmid et al. (2006), in which Fung-type (exponential) 

strain-energy functionals were used. These models, which are based on earlier 

transversely isotropic models, are partly structure-based and partly phenomenological. 

For an in-depth discussion of constitutive models for the passive elasticity of 

myocardial tissues, see Schmid et al. (2006), Schmid et al. (2008), and Holzapfel and 

Ogden (2009). 

 

Overall, although various constitutive laws for cardiac muscle have been developed, 

most of these models rely on phenomenological descriptions of the complex fibre 

structure of the myocardium. Additionally, the material parameters of many of these 

models lack a clear physical meaning, and some of these parameters are highly 

correlated.   Constitutive models that are entirely structure-based have also been 

developed, such as the model of Horowitz et al. (1988), which considers changes in 

the waviness of the fibres induced by the tissue strain.  This model is not well-suited 

for numerical implementation, however, and it is also effectively transversely 

isotropic.  Recently, Holzapfel and Ogden proposed a new structure-based 

constitutive model of ventricular myocardium that accounts for the locally orthotropic 

tissue microstructure by expressing the strain energy functional using fibre-based 
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material invariants (Holzapfel and Ogden 2009). In the incompressible case, their 

strain-energy functional has eight material parameters with relatively clear physical 

meanings. Moreover, this model satisfies convexity and strong ellipticity properties 

that are important both mathematically and physically. 

 

Once the constitutive model is specified, the equilibrium equations are closed by 

choosing suitable boundary conditions, and these equations can be solved numerically 

to assess the strain and stress distributions in the left ventricular wall. Among the 

various numerical approaches currently used for such problems, the finite element (FE) 

method is arguably the most appropriate. There have been numerous earlier FE-based 

simulation studies of cardiac mechanics.  Costa et al. (1996b) used prolate spheroidal 

coordinates and cubic Hermite elements to build a thick-walled ellipsoidal model of 

the passive mechanics of the LV. Vetter and McCulloch (2000) studied the rabbit LV 

in diastole using a three-dimensional FE method. Nash and Hunter (2000) developed 

a FE framework for large-deformation heart simulation using the pole-zero 

constitutive law. Stevens et al. (2003) developed a three-dimensional heart model 

based on anatomic data from the porcine heart and performed numerical simulations 

using that model. They also evaluated the sensitivity of material parameters of the 

pole-zero constitutive law and found that the parameters of this model are coupled, 

primarily through the incompressibility constraint. These observations suggested that 

the pole-zero law might need to be reformulated to achieve a better separation of 

material parameters associated with deviatoric stresses. 

 

In this work, we model left ventricular diastolic mechanics using a structure-based 

constitutive model of the LV in conjunction with human anatomical geometry 

obtained from non-invasive imaging studies. Following the framework of Holzapfel 

and Ogden (2009), we treat the left ventricular myocardium as an inhomogeneous, 

thick-walled, nonlinearly elastic, incompressible material. We use cardiac magnetic 

resonance imaging (MRI) to determine the geometry of the LV, which can be 

reasonably reconstructed from routine clinical imaging studies. In principle, the 
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cardiac fibre structure and other material parameters of the heart can be determined by 

advanced imaging methods; however, in the current model, we use a rule-based fibre 

structure along with material parameters derived from experimental data from the 

porcine heart. Discrete versions of the governing equations are solved using the 

nonlinear finite element software ABAQUS FEA (Simulia, Providence, RI USA). 

 

Using this computational model, we consider the sensitivity of the LV model to curve 

fitting errors that can occur when parameterizing the constitutive law using 

experimental data, and we find that the predictions of the LV model are relatively 

insensitive to such errors. We also identify the effects of changes in the underlying 

fibre structure on the stress or strain distributions within the LV wall. Our results 

show that the model results are sensitive to such changes, thereby suggesting that 

realistic patient-specific fibre structures should be used in future clinical applications 

of this or similar models. Model predictions obtained using the structure-based 

constitutive law are also compared to predictions obtained with Fung-type constitutive 

models, and large differences are observed between the two constitutive modelling 

approaches. Comparisons are also made between the model results and earlier 

experimental results. These experimental data are primarily for the canine heart, 

however, and only a general qualitative agreement is demonstrated. 

 

2. Constitutive law for the passive myocardium  

 

Consider a continuum body with reference configuration ℬ0 ⊂ ℝ3  and current 

configuration ℬt ⊂ ℝ3.  These configurations are related by a time-dependent 

mapping 𝛘 ∶  ℬ0 × [0, T] → ℬt. Letting 𝐗 ∈ ℬ0 denote coordinates in the reference 

configuration and 𝐱 ∈ ℬt  denote coordinates in the current configuration, the 

deformation gradient tensor associated with the motion 𝐱 = 𝛘(𝐗, 𝑡) is 𝐅 = ∂𝛘/ ∂𝐗. 

 

The constitutive model is described in terms of invariants of the right Cauchy-Green 

deformation tensor 𝐂 = 𝐅𝑻𝐅. The principal invariants of 𝐂 are  
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Because we model the ventricular myocardium as an incompressible material, we 

require that  𝐽 = det(𝐅) = 1; hence, 3I 1= . The LV fibre structure is described by 

the fibre axis f0, the sheet (cross-fibre) axis s0,  and the sheet-normal axis 0 0 0;= ×n s f  

see Figure 1. 

Figure 1 

Using these material axes, additional quasi-invariants can be defined to characterize 

the material response in these preferred directions. In this work, we shall use the fibre, 

sheet, and fibre-sheet invariants 

( ) ( ) ( )4f 4s 8fsI  , I  , I= ⋅ = ⋅ = ⋅0 0 0 0 0 0f Cf s Cs f Cs .      (2) 

Following Holzapfel and Ogden (2009), the structure-based strain energy function is  
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in which a, b, a , bi i  (i=f, s, fs) are eight nonnegative material parameters. The first 

term is a Fung-type expression that corresponds to the contributions to the strain 

energy of an isotropic ground matrix material. The remaining terms correspond to the 

contributions of families of collagen fibres embedded within the tissue. Because we 

assume that the collagen fibres support only extension and not compression, the terms 

involving I4i for i=f, s are included in the total energy only if I4i > 1. 

 

From Equation (3), the Cauchy stress tensor is determined by 
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in which p is a Lagrange multiplier introduced to enforce the incompressibility 

constraint, I is the identity tensor, 𝐁 = 𝐅𝐅𝑻 is the left Cauchy-Green deformation 

tensor, and 𝐟 = 𝐅𝐟0 and 𝐬 = 𝐅𝐬0 are respectively the fibre and sheet axes in the 

current (i.e., deformed) configuration. 

 

3. Left ventricular anatomical geometry 

 

A cardiac MR imaging study was performed on a healthy volunteer (male, age: 28) at 

the British Heart Foundation Glasgow Cardiovascular Research Centre using a 

Siemens Magnetom Avanto (Erlangen, Germany) 3.0 Tesla scanner with an 

eight-element phased array cardiac surface coil. The study protocol was approved by 

the local ethics committee, and written informed consent was obtained prior to the 

scan. A conventional cine MRI sequence was used. Study parameters for the short 

axis left ventricular slices were: flip angle=50°; echo time=1.51 ms; bandwidth=977 

Hz/pixel; field of view=216 mm x 340 mm with matrix size of 216 x 256; and slice 

thickness =10 mm. A four-chamber view long axis slice was also acquired to provide 

the structure of the apex. 

 

Endocardial and epicardial boundaries were determined for seven short-axis slices at 

the end of diastole, which was identified by the the peak of the R-wave in the 

subject’s ECG. The resulting surfaces, which extend from the base of the LV to the 

apex, were manually delineated by a custom MATLAB (The MathWorks, Inc., Natick, 

MA USA) script. Results from the segmentation are shown in Figure 2(a), and are 
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superimposed on the long axis slice. The location of the apex was identified from the 

four-chamber view long axis slice. Following manual segmentation, the LV boundary 

points were imported into the SolidWorks (SolidWorks Corp., Waltham, MA USA) 

software, which was used to reconstruct the LV geometry via B-spline surface fitting. 

The endocardial and epicardial boundaries are shown in Figure 2(b). 

Figure 2 

Data at the beginning of diastole were not available because the standard clinical MRI 

study does not cover the entire diastolic phase of the cardiac cycle. Because data were 

not available at the beginning of diastole, when myocardial stresses are presumably 

minimized, we use this end-diastolic configuration as our initial configuration to 

model the passive response of the LV to diastolic pressure loads. 

 

4. Rule-based myocardial fibre generation 

 

The anisotropic properties of myocardium play an important role in cardiac 

mechanics, and a physiologically accurate reconstruction of the myocardial fibre 

structure is an essential component of a realistic model of the heart. In the present 

study, in vivo data to determine the myocardial fibre orientation were not available. 

Hence, a rule-based myocardial fibre generation algorithm, based on the work of 

Potse et al. (2006) was adopted.  At each node of the FE LV mesh, two intramural 

distances are determined: endod  and epid , the distances from the node to the 

endocardial and epicardial surfaces, respectively, along straight lines passing through 

the node that are normal to those surfaces.  A normalized thickness parameter e is 

then defined for each node of the FE mesh by 

                           

endo

endo epi

.de
d d

=
+

                               

 (5)  

Notice that by construction, e=0 along the endocardial surface, and e=1 along the 

epicardial surface. 
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Figure 3  

 

The local cardiac coordinate system c l r( , , )w w w  is defined so that cw  is the 

circumferential direction (circumferential with respect to the global apex-to-base axis 

of the chamber); rw  is the radial direction, which is oriented to point transmurally 

from the endocardial surface towards the epicardial surface; and l r cw w w= × ; see 

Figure 1.  To account for transmural rotation in the fibre direction, a spatially 

varying helix angle α , which is the angle between the fibre axis 𝐟0  and the 

circumferential axis cw  in the plane spanned by cw  and lw  (see Figure 1), is 

defined for each element in the mesh via 

                                av(1 2 ) ,nR eα = −                                    

in which R is the maximum fibre angle on the endocardial surface, ave  is the average 

value of e at the nodes of the element in question, and n is an empirically determined 

constant. Notice that so long as n is an odd integer, α  takes the value -R on the 

epicardial surface. Unless specified otherwise, R is set to be 60o, which we take to 

correspond to a normal fibre structure. The study of Bishop et al. (2009) demonstrated 

that a rule-based linear method with n=1 provides a closer match to DTMRI data than 

the value n=3 used by Potse et al. (2006). Hence, in our study, n is set to equal 1.  

 

The sheet angle β , which is the angle between the sheet axis 𝐬0 and the radial axis  

rw  in the plane spanned by rw  and lw  (see Figure 1), is determined similarly via 

av(1 2 ),T eβ = −   

in which T is the maximum sheet angle on the endocardial surface. Following LeGrice 

et al. (1997), T is set so that the sheet angle varies from 45o on the endocardial surface 

to -45o on the epicardial surface. 

 

Figure 3(a) shows myocardial fibres for each element at the endocardial and 
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epicardial surfaces. Fibre paths shown in Figure 3(b) clearly illustrate the transmural 

change in fibre orientation. 

  

5. Finite element model of passive left ventricular mechanics  

 

The computational approach that we adopt to model the passive mechanics of the LV 

is based on the classical pressure-dilatation-displacement three-field formulation 

commonly used to overcome locking problems exhibited by purely 

displacement-based finite element formulations of incompressible elasticity. Here we 

briefly introduce the decoupled volumetric-isochoric formulation of finite elasticity. 

 

Following Miehe (1994) and Göktepe et al. (2011), among many others, we 

decompose the deformation gradient F into volumetric ( volF ) and isochoric ( F ) parts, 

i.e., 

 1/3
vol vol

1/3J  ,, ,  JF F F F F F I  −= = =    (6)  

in which J det( ) and det( ) 1.F   F= =  The principle of virtual work is stated in the 

classical form as 

 
           0

0
V V S V

δ   : δ  dV J : δ dV δ  dS  δ dV,σ D σ D  v t v f = = = +∫ ∫ ∫ ∫ IW
           

(7) 

in which V and V0 indicate volumes in the current and reference configurations, 

respectively, S is the surface of V, δD  is the virtual rate of deformation, t is the 

stress vector, f is the body force, and δv is the virtual displacement. The internal 

virtual work per unit volume in the reference configuration, IδW , can be written as  

              
0 0

vol
0 0

V V

δ δ  dV [J(( p ) : δ pδ (J 1)δp] dV) ,σ I e εIW W= = + − − −∫ ∫  (8)  

in which :volε I Dδ δ=  is the virtual volumetric strain rate, δ δ= −e D vol1  δ  
3

ε I is 

the virtual deviatoric strain rate, and  δ and δp  W are variations of W  and p, which 

are defined in Equations (3) and (4), respectively. This formulation is implemented in 
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the general-purpose finite element program ABAQUS via a user-defined 

UANISOHYPER_INV subroutine. 

 

To constrain the motion of the model, the longitudinal displacement of the base and 

the circumferential displacement of the epicardial wall at the base are set to zero. The 

remainder of the left ventricular wall, including the apex, is left free. A pressure load, 

generally varying from 0 to 8 mmHg, is applied on the endocardial surface. Such 

loads are typical physiological end-diastolic pressures. We assume the reference 

configuration, which is derived from imaging data obtained at end-diastole, to be a 

stress free configuration. Because of the presence of in vivo pressure loads and 

residual stresses, however, this configuration would not actually be stress free in a real 

heart. The impact of initial strains and residual stresses on the mechanical behaviour 

of the LV in diastole will be addressed in future work.  

 

We compare results produced by the model when using a tetrahedral mesh composed 

of 322,827 elements and 62,559 nodes to results obtained on a hexahedral mesh 

composed of 48,050 elements and 53,548 nodes. These meshes are shown in Figure 2 

panels (c) and (d), respectively. Differences in the results are small; the maximum 

displacements are almost identical, and the maximum stresses in the fibre direction 

have a relative difference of less than 3%. Because hexahedral elements generally 

offer superior stability and accuracy for problems of incompressible elasticity, we 

employ the hexahedral mesh in all subsequent computations.   

 

We use the three-dimensional hybrid C3D8H isoparametric element implemented in 

ABAQUS, which yields trilinear displacements and piecewise-constant pressures 

(Q1P0). Numerical quadrature is performed using a 2x2x2 Gauss rule. The discretised 

form of Equation (8) is solved iteratively using Newton's method. 
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6. Simulation results 

 

6.1 Sensitivity to the material parameters in the constitutive law 

 

Following Holzapfel and Ogden (2009) and Göktepe et al. (2011), we estimate the 

eight material parameters a, b, a , bi i (i=f, s, fs) in the constitutive model stated in 

Equation (3) using data from simple shear tests on porcine ventricular myocardium 

reported by (Dokos et al. 2002). Because Holzapfel and Ogden (2009) and Göktepe et 

al. (2011) obtained somewhat different constitutive parameters using the same 

experimental data, we decided to construct our own parameter fit, which yields yet 

another set of model parameters from this same dataset. 

 

To estimate the material parameters of the model, we minimize the objective function 

 
( )

( )

( )( )
expN 2

1

φ κ
ij

k

i k
j

j
i ijσ σ

=

= −∑∑ .   (9) 

with respect to the material parameters, in which f f s s fs fs{a,b,a ,b ,a ,b ,a ,b }κ = , ijσ  

and ( )k
ijσ  are the computed and measured stress components, respectively, and ( )exp

N ij  

is the total number of data points extracted from the shear test data.  Here, (ij) refers 

to shear in the jth direction in the i-j plane, with , {f=1,s=2,n=3}.i j∈  With this 

notation, we subsequently shall identify 11σ  as the stress in the fibre direction. For 

the planes containing the fibre axis, the shear responses in the sheet (fs) and sheet 

normal (fn) directions are different, and for the planes containing the sheet axis, the 

responses in the fibre (sf) and sheet normal (sn) directions are also different. The 

shear responses in the planes containing the sheet normal axis are the same for the 

specimen considered (Holzapfel and Ogden 2009). 

 

We solve the optimization problem via the Levenberg-Marquardt method. The 

material parameters identified from the experimental data are compared to those of 
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previous studies in Table 1.  

 
Table 1. Different fits of material parameters to data of Dokos et al. (2002). 

a (kPa) b af (kPa) bf as (kPa) bs afs (kPa) bfs source  

0.059 8.023  18.472 16.026 2.481 11.120 0.216 11.436 Holzapfel and Ogden (2009) 

0.496 7.209 15.193 20.417 3.283 11.176 0.662 9.466 Göktepe et al. (2011) 

0.2362 10.810 20.037 14.154 3.7245 5.1645 0.4108 11.300 Present 

 

Notice that, apart from the value of the parameter a, the three parameter sets are 

generally fairly similar. Because the constitutive law is defined so that the I4f and I4s 

terms have the major contributions to the stress, and because the parameters that 

influence these terms in the constitutive law are relatively close in all cases, we expect 

that the three parameter sets will yield similar results, as we indeed demonstrate below. 

The experimentally measured stress-strain curves of the six shear tests, along with the 

comparable stresses produced by the constitutive model, are shown in Figure 4. 

 

Figure 4 

 

The LV stress distributions and deformations using these three parameter sets are 

shown in Figures 5 and 6, respectively, for a loading pressure of 8 mmHg.  

Figures 5 and 6 

These results indicate that the general stress distributions and displacements obtained 

when using the three sets of parameters are similar. The agreement is especially close 

between results obtained with the parameters of Göktepe et al. (2011) (hereafter, G-K)  

and the results obtained using the parameters determined herein. 

 

To facilitate a closer inspection of the results, we construct transmural paths across the 

LV free wall, as shown in Figure 7.  

Figure 7 
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In Figure 8, we compare the distributions of the first principal stress 1σ  across the 

LV wall along paths 1, 4, and 7 for the three different parameter fittings at a loading 

pressure of 8 mmHg.  

Figure 8 

Again, all three parameter sets yield similar trends, with the closest agreement 

between results obtained using the G-K parameters and the parameter values 

determined herein. Hence, the differences between the parameter sets do not appear to 

have a major impact on the results of the three-dimensional model. 

 

6.2 Transmural stress and strain distributions 

 

Using the constitutive parameters determined in the present work, we investigate the 

mechanical behaviour of the LV in diastole. The transmural distributions of the stress 

in fibre direction 11σ  and the logarithmic strain 1ln( )λ , in which 1λ  is the stretch 

ratio in the fibre direction, along all eight paths (1-8) are shown in Figure 9. Notice 

that the stress and strain distributions are essentially uniform throughout most of the 

interior of the LV wall, and that the details of the stress and strain levels and 

distribution trends are strongly path dependent.  We remark that the distribution of 

the first principal stress  is very similar to that of the stress in fibre direction  

(data not shown). This indicates that the principal stress is dominated by the fibre 

stress and is largely determined by the fibre orientation.  

 

Figure 9 

 

6.3 Effect of variations in fibre distribution  

 

The structure of ventricular myocardium is highly inhomogeneous as a consequence 

of transmural fibre rotation and other regional differences. Although fibre angle 

distributions are qualitatively similar between healthy individuals, there are 

1σ
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differences in fibre distributions between subjects. Fibre orientation may change in 

disease, including heart failure and myocardial infarction, as a consequence of 

pathological tissue remodelling (Buckberg et al. 2004). Accurately determining the in 

vivo fibre orientation is difficult, however. Hence, it is important to quantify the 

sensitivity of left ventricular stress and strain distributions to changes in the fibre 

orientations. To this end, we consider eight different fibre structures:  

(a) 60 ,  45o oR T= =  (normal fibre structure)  

(b) 60 ,  30o oR T= =  

(c) 60 ,  60o oR T= =   

(d) 30 ,  45o oR T= =  

(e) 40 ,  45o oR T= =   

(f) 50 ,  45o oR T= =  

(g) 70 ,  45o oR T= =   

(h) 80 ,  45o oR T= =  

The transmural distributions of 11σ , the stress in the fibre direction, along paths 1, 4, 

and 7 are shown in Figure 10 for these different fibre structures at a pressure load of 8 

mmHg.  

Figure 10 

These results show that the transmural stress distribution is most sensitive to changes 

in maximal fibre angle near the base and equator (path 1), and least sensitive to such 

changes near the apex (path 7). Interestingly, changes in the maximal sheet orientation 

have virtually no impact on the transmural stress distributions, nor on the strain 

distributions (data not shown). This is in contrast to variations of the maximal fibre 

angle, which have large effects on the stress and strain distributions. This is because in 

diastole, the LV is expanding and the wall is thinning. Because the sheet axis is 

mostly aligned with the transmural direction, expansion reduces the effects of the 

invariant I4s in the constitutive law, thereby minimizing contributions from coupling 
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in the sheet direction on the overall stress state. As the result, the transmural 

distributions of stress and strain are essentially unchanged in cases (a)–(c).  

 

6.4 End-diastolic pressure-volume relationship  

 

As an initial validation of our model, we compare the end-diastolic pressure-volume 

relationship (EDPVR) generated by our model to experimental measurements from 

both human and canine hearts.  Figure 11(a) compares the EDPVR of our model to 

EDPVR measurements from ex vivo human hearts (Klotz et al. 2006) for both healthy 

tissue and for cases of ischemic cardiomyopathy. These curves are normalized as in 

Klotz et al. (2006) as EDVn=(EDV-V0)/(V30-V0), in which V0 is the volume when 

EDP is approximately 0 mmHg, which is 121 ml in the model, and V30  is the volume 

when EDP is approximately 30 mmHg, which is 194 ml in the model. As shown in 

Figure 11(a), there is good agreement between the model predictions and the human 

experimental data.  

Figure 11 

By contrast, comparisons to canine experimental data are less favourable. Figure 11(b) 

compares our results to the EDPVR experimentally measured in canine hearts 

(McCulloch et al. 1989; Omens et al. 1991; McCulloch et al. 1992), but here scaling 

the relationship to indicate percentage increase in volume. The EDPVR generated by 

our model has a similar trend as these experimental measurements, but our model 

yields a somewhat stiffer pressure-volume response.  

 

Given the good agreement in Figure 11(a), the differences between the model 

prediction and the experimental data in Figure 11(b) are likely a consequence of 

differences between the human and canine cardiac geometries. In fact, significant 

differences in the transmural stresses between human and canine hearts have been 

observed in experimental and simulation studies of Guccione and colleagues (private 

communication).  
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6.5 Comparison to Fung-type models 

Several commonly used Fung-type models treat the fibrous structure of the 

myocardium using an exponential strain energy functional of the form 

  C(exp(Q) )1 -1 ,
2

W =       (10) 

in which C is a constant and Q=Q(F) is a function of various strain measures. For the 

canine LV, Guccione et al. (1991) used a transversely isotropic model with 

       2 2 2
1 ff 2 cc rr cr rc 3 fc cf fr rfQ ( 2 ) 2 ( )b E b E E E E b E E E E= + + + + + ,            (11)  

in which bi (i=1,2,3) are material parameters fit to experimental data, and ijE  are 

strain components referred to a system of local fibre, cross-fibre, and radial 

coordinates (f,c, r).  Equations (10) and (11) specify a four-parameter Fung model 

referred to as the Guccione model.  The popularity of this model is a consequence of 

its simplicity.  Moreover, its four parameters may be uniquely determined and are 

relatively insensitive to experimental noise (Xi et al. 2011).   

 

This constitutive law was extended to account for the orthotropic behaviour of 

ventricular myocardium by Costa et al. (2001), who determine Q via 

           2 2 2 2 2 2
ff ff ss ss nn nn fs fs fn fn sn snQ 2 2 2b E b E b E b E b E b E= + + + + + ,  (12) 

in which the strain components ijE  are defined in a local Cartesian system with 

fibre-sheet-normal coordinates.  

 

The parameters of the Costa model have been fit by Schmid et al. (2008) to the same 

experimental data used herein (Dokos et al. 2002). The resulting values are: C = 0.26 

kPa, bff = 37.2, bfn = 12.0, bfs = 12.0, bnn = 9.11, bns = 10.9, and bss = 18.9.  The 

corresponding four parameters of the Guccione model, which were determined by Xi 

et al. (2011) from the reparametrization of the Costa model by Schmidt et al. (2008), 

are C = 0.189 kPa, b1 = 29.9, b2 = 13.5, b3 = 13.3.  Results obtained using these 

parameterizations of the Costa and Guccione constitutive models along with our LV 

geometry and fibre structure are shown in Figure 12.  A comparison between results 
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obtained with these Fung-type models and results obtained using the structure-based 

constitutive model is shown in Figure 13. 

Figure 12 

Figure 13 

 

Figures 12 and 13 show that the two Fung-type models yield very similar results when 

used with the present LV geometry and fibre structure.  However, there are large 

quantitiative differences between the stress and strain distributions obtained by the 

Fung-type models and the structure-based constitutive model.  In particular, the 

stress levels predicted by the Fung-type models are generally lower than those of the 

structure-based constitutive model, and the strains produced by both Fung-type 

models are much larger. These results suggest that overall stiffness of the LV model is 

higher using the Fung-type models.  

 

6.6 Comparison to experimental data and computational models of canine 

hearts 

 

Given the lack of published data on transmural strain distributions in the human LV, 

we compare the results of our model to published strain distributions from 

experimental studies of the canine heart (McCulloch et al. 1989; Omens et al. 1991; 

May-Newman et al. 1994).  To this end, in Figure 14, we display transmural strain 

data in the circumferential, radial, and longitudinal directions (see Figure 1 for 

definitions of the material coordinate system) using both the structure-based 

constitutive model and also the four-parameter Guccione model (Guccione et al. 1991) 

using parameters of Xi et al. (2011).  Results from corresponding canine models by 

Guccione et al. (1995) and by Nash (1998) are also shown. We remark that the study 

of Guccione et al. (1995) also uses the Guccione constitutive model, although with 

different constitutive parameters.  Although the geometry and fibre distributions of 

the canine heart are likely to be quite different from the present human model, there is 

an overall qualitative agreement between our model predictions and these canine 
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results, especially for Ecc, Ecl, Ell, and Err.  In addition, the predictions obtained using 

the present LV geometry and fibre structure but with the Guccione constitutive model  

seem to be in good agreement with the experimental observations for some strain 

components (e.g. Ecr, and Elr) but fail to reflect the radial changes for others (e.g. Ecl 

and Err).    More detailed quantitative comparisons do not seem merited given the 

differences in geometry and constitutive parameters used in these simulations. 

 

Figure 14 

 

6.7 Discussion 

 

Our results indicate that the fibre angle distribution can have a large impact on the 

stress distribution inside the left ventricular wall during diastole. In contrast, the sheet 

orientation has relatively minor effects on stress and strain distributions, at least 

during diastole. Close inspection of the results reveals that if the transmural range of 

fibre angles is relatively small (e.g. R ≈  30o - 40o), the LV model has greater 

deformation in the longitudinal direction, whereas for a larger amount of transmural 

fibre rotation (e.g. R ≈   70o - 80o), the LV becomes much stiffer in the longitudinal 

direction. This observation may be useful when developing procedures to estimate 

fibre distributions from in vivo observations of LV motion. We also find that if the 

fibre angle is further away from the normal case (e.g. away from R=60o and T=45o), 

both the first principal stress and the stress in the fibre direction increase, thereby 

increasing the LV workload. This suggests that any pathological remodelling of the 

fibre distribution that reduces the amount of transmural fibre rotation may have a 

negative effect on heart function.  

 

It is important to note that because our model is reconstructed from human cardiac 

MRI data, the geometry of the LV used in this work is not as regular as some models 

used previously (Guccione et al. 1995; Nash and Hunter 2000). This, in turn, will 

affect the stress and strain distributions. For example, in regions where the curvature 
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change is greatest (e.g. path 4), the local fibre structure will change accordingly, and 

the stress distribution can differ markedly from that of neighbouring regions.  

 

One limitation of our study is that we use porcine experimental data to determine the 

parameters of the constitutive model. The fibre structure is also rule based, and may 

not reflect the fibre structure of the particular human LV used to construct the 

geometrical model. We also have not considered the roles of initial strains and 

residual stresses in our model, which both have the potential to alter the resultant 

stress and strain distributions. Finally, the current model treats the LV as a 

hyperelastic structure, without accounting for fluid-structure interactions, and the 

boundary conditions are therefore necessarily simplified. Further work is required to 

develop patient-specific fibre structure estimated from in vivo DTMR datasets, to 

evaluate the impact of initial strains and residual stresses, and to account for 

fluid-structure interaction. It is clear that closely matched experimental data is needed 

for more in-depth LV modelling.  

 

7. Conclusions 

 

In this work, we developed an anatomically realistic model of the human left ventricle 

that employs a structure-based constitutive model and a rule-based cardiac fibre 

distribution, and we used this model to simulate the diastolic mechanics of the heart. 

We treated the left ventricular myocardium as an inhomogeneous, thick-walled, 

nonlinearly elastic, incompressible material, following the modelling framework of 

Holzapfel and Ogden (2009), which takes into account the fibre-reinforced 

microstructure of ventricular myocardium. By employing three independently 

developed sets of constitutive parameters, we found that the structure-based 

constitutive law employed here is relatively insensitive to small parameterization 

errors. The end-diastolic pressure-volume relationship of the model prediction agrees 

well with published ex vivo human heart measurements, but less well with 

measurements from canine hearts. We also found that changes in the sheet orientation 
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had relatively little impact to the model results, whereas changes in the fibre angle 

distribution change the distributions of stress and strain dramatically. This highlights 

the importance of using realistic fibre structures, especially in pathological conditions 

that involve pathophysiological remodelling of fibre orientation. Finally, the 

transmural distributions of the stress and strain were compared to results obtained 

using other constitutive models, as well as with experimental measurements from 

canine hearts.  We found large differences in the stress and strain predictions 

generated by the different constitutive models, even in cases in which the material 

parameters were fit to the same experimental data. In addition, although similar trends 

can be identified, our results are also different from published results from animal LV 

models. This highlights the significance of patient-specific modelling using in vivo 

imaging techniques to obtain an improved understanding of the physiology and 

pathophysiology of human hearts.  
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Figure 1. The fibre-aligned material axes and the local coordinate axes of the left ventricle, in which ( )0 0 0f ,s ,n  are 
the fibre, sheet, and sheet-normal axes, as described in the text, and in which (wc, wl ,wr) are coordinate axes that 
indicate the local circumferential, longitudinal, and radial axes. The helix angle α  is defined to be the angle 
between f0 and wc in the plane spanned by wc and wl, and the sheet angle β  is defined to be the angle between s0 
and wr in the plane spanned by wl and wr. 

 

 

 

 



  

 (a)                                                             (b)  

  

          (c)                                                         (d) 

Figure 2. (a) LV boundary segmentation superimposed on a four-chamber view of the heart obtained from MRI 
imaging data; (b) the reconstructed LV geometry; (c) the tetrahedral mesh; and (d) the hexahedral mesh.  
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                   Figure 3. (a) Myocardial fibre axis vectors; and (b) examples of fibre traces. 
 



 

 

 
 

Figure 4. Experimental data of (Dokos et al. 2002) in the six simple shear directions (as indicated by the insert) 
and results from the parameterized structure-based constitutive law. The symbols are from the experimental data, 
and the red solid curves correspond to results obtained using the parameterization determined herein. The thicker 
solid line (red) is the present fitting for the (fs) curve, and the blue (dashed) and black (dashdot) curves are the (fs) 
curves by (Holzapfel and Ogden 2009) (H-O) and by (Göktepe et al. 2011) (G-K), respectively.  For clarity, 
comparisons of other curves from the H-O and G-K parameterizations are not shown.  
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Figure 5. Distributions of displacement at a pressure load of 8 mmHg determined using parameters obtained by 
(Holzapfel and Ogden 2009) (top), for which Umax=12.58 mm; by (Göktepe et al. 2011) (middle), for which 
Umax=9.87 mm; and in the present work (bottom), for which Umax=10.17 mm.  



 

 

 

Figure 6. Distributions of stress in fibre direction 11σ  at a pressure load of 8 mmHg determined using the 

parameters obtained by (Holzapfel and Ogden 2009) (top), for which max
11σ =44.07 kPa; by (Göktepe et al. 2011) 

(middle), for which  max
11σ =32.57 kPa; and in the present work (bottom), for which max

11σ =31.68 kPa. 



  

  

 

 

 

 

 

 

 

Figure 7. Locations of the eight paths across the LV free wall considered herein.  

 

 

 

 

 

 

 

 

 

 



               

 

 

Figure 8. Transmural distribution of the first principle stress 1σ  along paths 1, 4, and 7, computed using the three 
parameter sets. Similar trends are predicted by all three sets of parameters. Agreement is especially close between 
results obtained using the parameterization determined herein and results obtained with the G-K parameter set. 

  

 

 

 



 

 

 

Figure 9. Transmural distributions of (a) stress in fibre drection 11σ  and (b) logarithmic strain 1ln( )λ  along paths 
1–8, for the normal fibre structure.  



  

 

 

 

 

 

 

 

 

 

Figure 10. Transmural distributions of  11σ ,  the stress in 
fibre direction, along paths 1, 4 , and 7 for different fibre 
and sheet angle combinations (a)–(h).   Notice that the 
three curves corresponding to cases (a)--(c) nearly overlap. 
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                                                        (b)  

Figure 11. Comparisons of end-diastole pressure-volume relations (EDPVRs) computed by our model and other 
experimental or computational models. (a) Comparisons to measurements from ex vivo human hearts (Klotz et al. 
2006). Normal: healthy heart; ICM: ischemic cardiomyopathy; DCM: diopathic dilated cardiomyopathy; and 
LVAD: hearts supported by a left ventricular assist device. (b) Comparison to measurements for dog hearts from 
three experimental studies and one computational study.  
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Figure 12.   (a) Distributions of deformations (left panel) and fibre stresses (right panel) generated by the model 
for a pressure load of 8 mmHg when using the Costa constitutive model with parameters determined by Schmidt et 
al. (2008) from the experimental data of Dokos et al. (2002); and (b) similar to (a), but here using the Guccione 
constitutive model with parameters determined by Xi et al. (2011) from the reparameterization of the Costa model 
by Schmidt et al. (2008).  
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Figure 13. Comparison of transmural (a) stress and (b) logarithmic strain distributions obtained with the present 
LV geometry and fibre structure using the structure-based constitutive model (solid), the Guccione model (dash-
dot-dot), and the Costa model (dotted) along paths 1, 4, and 7.  

   



 

 



 

 
Figure 14. Transmural distributions of strain at a pressure load of 7.5 mmHg for the equatorial region of the 
anterior wall. Normal strain components are shown in the left column; shear strains are shown in the right column. 
The predictions of the present model along path 1 (solid) are compared to experimental observations of Omens et 
al. (1991) (star; n=7) and May-Newman et al. (1995) (square; n=8).  Numerical predictions of the canine LV 
models of Guccione et al. (1995) (dashed) and Nash (1998) (dash-dot) are also shown.  Finally, numerical results 
using the present LV geometry and fibre structure with the Guccione constitutive model along path 1 are shown 
(dash-dot-dot).  
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