1,485 research outputs found

    Enforcement of dynamic HTTP policies on resource-constrained residential gateways

    Get PDF
    Given that nowadays users access content mostly through mobile apps and web services, both based on HTTP, several filtering applications, such as parental control, malware detection, and corporate policy enforcement, require inspecting Universal Resource Locators (URLs) contained in HTTP requests. Currently, such filtering is most commonly performed in end devices or in middleboxes. Filtering applications running on end devices are less resource intensive because they operate only on traffic from a single user and possibly leverage a hook at the HTTP level to access protocol data, but it is left to the user whether to execute them. On the other hand, middleboxes present the challenge of ensuring that they lay on the path of all the traffic from any relevant device. Residential gateways seem to be the ideal place where to implement traffic filtering because they forward all traffic generated by the hosts on home(-office) networks. However, these devices usually have very limited computation and memory resources, while URL-based filtering is quite demanding. In fact existing approaches rely on a large database of rules coupled with either deep packet inspection or transparent proxying for URL extraction. This paper introduces U-Filter, a URL filtering solution based on a distributed architecture where a lightweight, efficient URL extraction and policy enforcement component runs on residential gateways, delegating to a remote policy server the resource intensive task of verifying policy compliance. Thanks to the lightweight communication between the two components and the very limited resource requirements of the local module, U-Filter (i) can be deployed on resource-limited devices such as residential gateways, and (ii) has almost no impact on the performance of the device, as well as on the users’ browsing experience, as demonstrated by the experiments presented in the paper

    Distributed services across the network from edge to core

    Get PDF
    The current internet architecture is evolving from a simple carrier of bits to a platform able to provide multiple complex services running across the entire Network Service Provider (NSP) infrastructure. This calls for increased flexibility in resource management and allocation to provide dedicated, on-demand network services, leveraging a distributed infrastructure consisting of heterogeneous devices. More specifically, NSPs rely on a plethora of low-cost Customer Premise Equipment (CPE), as well as more powerful appliances at the edge of the network and in dedicated data-centers. Currently a great research effort is spent to provide this flexibility through Fog computing, Network Functions Virtualization (NFV), and data plane programmability. Fog computing or Edge computing extends the compute and storage capabilities to the edge of the network, closer to the rapidly growing number of connected devices and applications that consume cloud services and generate massive amounts of data. A complementary technology is NFV, a network architecture concept targeting the execution of software Network Functions (NFs) in isolated Virtual Machines (VMs), potentially sharing a pool of general-purpose hosts, rather than running on dedicated hardware (i.e., appliances). Such a solution enables virtual network appliances (i.e., VMs executing network functions) to be provisioned, allocated a different amount of resources, and possibly moved across data centers in little time, which is key in ensuring that the network can keep up with the flexibility in the provisioning and deployment of virtual hosts in today’s virtualized data centers. Moreover, recent advances in networking hardware have introduced new programmable network devices that can efficiently execute complex operations at line rate. As a result, NFs can be (partially or entirely) folded into the network, speeding up the execution of distributed services. The work described in this Ph.D. thesis aims at showing how various network services can be deployed throughout the NSP infrastructure, accommodating to the different hardware capabilities of various appliances, by applying and extending the above-mentioned solutions. First, we consider a data center environment and the deployment of (virtualized) NFs. In this scenario, we introduce a novel methodology for the modelization of different NFs aimed at estimating their performance on different execution platforms. Moreover, we propose to extend the traditional NFV deployment outside of the data center to leverage the entire NSP infrastructure. This can be achieved by integrating native NFs, commonly available in low-cost CPEs, with an existing NFV framework. This facilitates the provision of services that require NFs close to the end user (e.g., IPsec terminator). On the other hand, resource-hungry virtualized NFs are run in the NSP data center, where they can take advantage of the superior computing and storage capabilities. As an application, we also present a novel technique to deploy a distributed service, specifically a web filter, to leverage both the low latency of a CPE and the computational power of a data center. We then show that also the core network, today dedicated solely to packet routing, can be exploited to provide useful services. In particular, we propose a novel method to provide distributed network services in core network devices by means of task distribution and a seamless coordination among the peers involved. The aim is to transform existing network nodes (e.g., routers, switches, access points) into a highly distributed data acquisition and processing platform, which will significantly reduce the storage requirements at the Network Operations Center and the packet duplication overhead. Finally, we propose to use new programmable network devices in data center networks to provide much needed services to distributed applications. By offloading part of the computation directly to the networking hardware, we show that it is possible to reduce both the network traffic and the overall job completion time

    XSACd—Cross-domain resource sharing & access control for smart environments

    Get PDF
    Computing devices permeate working and living environments, affecting all aspects of modern everyday lives; a trend which is expected to intensify in the coming years. In the residential setting, the enhanced features and services provided by said computing devices constitute what is typically referred to as a “smart home”. However, the direct interaction smart devices often have with the physical world, along with the processing, storage and communication of data pertaining to users’ lives, i.e. private sensitive in nature, bring security concerns into the limelight. The resource-constraints of the platforms being integrated into a smart home environment, and their heterogeneity in hardware, network and overlaying technologies, only exacerbate the above issues. This paper presents XSACd, a cross-domain resource sharing & access control framework for smart environments, combining the well-studied fine-grained access control provided by the eXtensible Access Control Markup Language (XACML) with the benefits of Service Oriented Architectures, through the use of the Devices Profile for Web Services (DPWS). Based on standardized technologies, it enables seamless interactions and fine-grained policy-based management of heterogeneous smart devices, including support for communication between distributed networks, via the associated MQ Telemetry Transport protocol (MQTT)–based proxies. The framework is implemented in full, and its performance is evaluated on a test bed featuring relatively resource-constrained smart platforms and embedded devices, verifying the feasibility of the proposed approac

    Improving the performance of Virtualized Network Services based on NFV and SDN

    Get PDF
    Network Functions Virtualisation (NFV) proposes to move all the traditional network appliances, which require dedicated physical machine, onto virtualised environment (e.g,. Virtual Machine). In this way, many of the current physical devices present in the infrastructure are replaced with standard high volume servers, which could be located in Datacenters, at the edge of the network and in the end user premises. This enables a reduction of the required physical resources thanks to the use of virtualization technologies, already used in cloud computing, and allows services to be more dynamic and scalable. However, differently from traditional cloud applications which are rather demanding in terms of CPU power, network applications are mostly I/O bound, hence the virtualization technologies in use (either standard VM-based or lightweight ones) need to be improved to maximize the network performance. A series of Virtual Network Functions (VNFs) can be connected to each other thanks to Software-Defined Networks (SDN) technologies (e.g., OpenFlow) to create a Network Function Forwarding Graph (NF-FG) that processes the network traffic in the configured order of the graph. Using NF-FGs it is possible to create arbitrary chains of services, and transparently configure different virtualized network services, which can be dynamically instantiated and rearranges depending on the requested service and its requirements. However, the above virtualized technologies are rather demanding in terms of hardware resources (mainly CPU and memory), which may have a non-negligible impact on the cost of providing the services according to this paradigm. This thesis will investigate this problem, proposing a set of solutions that enable the novel NFV paradigm to be efficiently used, hence being able to guarantee both flexibility and efficiency in future network services

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application

    Understanding Home Networks with Lightweight Privacy-Preserving Passive Measurement

    Get PDF
    Homes are involved in a significant fraction of Internet traffic. However, meaningful and comprehensive information on the structure and use of home networks is still hard to obtain. The two main challenges in collecting such information are the lack of measurement infrastructure in the home network environment and individuals’ concerns about information privacy. To tackle these challenges, the dissertation introduces Home Network Flow Logger (HNFL) to bring lightweight privacy-preserving passive measurement to home networks. The core of HNFL is a Linux kernel module that runs on resource-constrained commodity home routers to collect network traffic data from raw packets. Unlike prior passive measurement tools, HNFL is shown to work without harming either data accuracy or router performance. This dissertation also includes a months-long field study to collect passive measurement data from home network gateways where network traffic is not mixed by NAT (Network Address Translation) in a non-intrusive way. The comprehensive data collected from over fifty households are analyzed to learn the characteristics of home networks such as number and distribution of connected devices, traffic distribution among internal devices, network availability, downlink/uplink bandwidth, data usage patterns, and application traffic distribution

    Coordinated autonomic loops for target identification, load and error-aware Device Management for the IoT

    Get PDF
    International audienceWith the expansion of Internet of Things (IoT) that relies on heterogeneous, dynamic, and massively deployed devices, device management (DM) (i.e., remote administration such as firmware update, configuration, troubleshooting and tracking) is required for proper quality of service and user experience, deployment of new functions, bug corrections and security patches distribution. Existing industrial DM platforms and approaches do not suit IoT devices and are already showing their limits with a few static home devices (e.g., routers, TV Decoders). Indeed, undetected buggy firmware deployment and manual target device identification are common issues in existing systems. Besides, these platforms are manually operated by experts (e.g., system administrators) and require extensive knowledge and skills. Such approaches cannot be applied on massive and diverse devices forming the IoT. To tackle these issues, our work in an industrial research context proposes to apply autonomic computing to DM platforms operation and impact tracking. Specifically, our contribution relies on of automated device targeting (i.e., aiming only suitable devices) and impact-aware DM (i.e., error and anomalies detection preceding patch generalization on all suitable devices of a given fleet). Our solution is composed of three coordinated autonomic loops and allows more accurate and faster irregularity diagnosis, vertical scaling along with simpler IoT DM platform administration. For experimental validation, we developed a prototype that demonstrates encouraging results compared to simulated legacy telecommunication operator approaches (namely Orange)

    Smart Growth: From Rhetoric to Reality in Irish Urban Planning 1997-2007

    Get PDF
    This research examines ‘Smart Growth’, a planning and governance concept with an alternative philosophical and methodological approach towards urban planning. The concept calls for greater integration between the economic, environmental and social aspects of planning and development. The principles of smart growth must be viewed as long-term objectives that take into account the well being of both present and future generations. Current planning policy and strategy in Ireland implicitly if not explicitly supports the concept of smart growth. The principal research question asks: Within the context of Irish planning policy and strategy: how can Ireland move from rhetoric to reality in the delivery of more smart growth development? Allied to this is how the long-term goals of smart growth can be reconciled with the short-term political goals of present-day systems of governance. The main aims of the research were to gain a clear understanding of the forces of influence in planning and development processes, how those processes have evolved over time, the important role of theory and how globalisation has shaped an increasingly complex and uncertain society. A multi-method approach was adopted to include quantitative and qualitative data. Key outcomes from the research include: (i) urban development scenarios for the Greater Dublin Area (GDA) in 2025, (ii) an Irish smart growth toolkit to facilitate the implementation of policy and strategy and (iii) a candidate list of indicators to monitor, track and evaluate progress towards more sustainable urban development. Evidence indicates that policy and strategy supports the principles of smart growth as a means to more even and environmentally responsible development, more so in theory than in practice. The need for a GDA regional authority which emerged as a theme throughout the study has been mooted at government level but not realised. This thesis demonstrates that sustainable solutions are possible. In addition, evidence presented suggests that there now exists sophisticated planning legislation that can be used as the This research examines ‘Smart Growth’, a planning and governance concept with an alternative philosophical and methodological approach towards urban planning. The concept calls for greater integration between the economic, environmental and social aspects of planning and development. The principles of smart growth must be viewed as long-term objectives that take into account the well being of both present and future generations. Current planning policy and strategy in Ireland implicitly if not explicitly supports the concept of smart growth. The principal research question asks: Within the context of Irish planning policy and strategy: how can Ireland move from rhetoric to reality in the delivery of more smart growth development? Allied to this is how the long-term goals of smart growth can be reconciled with the short-term political goals of present-day systems of governance. The main aims of the research were to gain a clear understanding of the forces of influence in planning and development processes, how those processes have evolved over time, the important role of theory and how globalisation has shaped an increasingly complex and uncertain society. A multi-method approach was adopted to include quantitative and qualitative data. Key outcomes from the research include: (i) urban development scenarios for the Greater Dublin Area (GDA) in 2025, (ii) an Irish smart growth toolkit to facilitate the implementation of policy and strategy and (iii) a candidate list of indicators to monitor, track and evaluate progress towards more sustainable urban development. Evidence indicates that policy and strategy supports the principles of smart growth as a means to more even and environmentally responsible development, more so in theory than in practice. The need for a GDA regional authority which emerged as a theme throughout the study has been mooted at government level but not realised. This thesis demonstrates that sustainable solutions are possible. In addition, evidence presented suggests that there now exists sophisticated planning legislation that can be used as the vehicle to effect implementation of policy and strategy in Ireland now and in the future alongside governance structures that are more conducive to participatory democracy
    • …
    corecore