
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Improving the performance of Virtualized Network Services based on NFV and SDN / Bonafiglia, Roberto. - (2018 May
14).

Original

Improving the performance of Virtualized Network Services based on NFV and SDN

Publisher:

Published
DOI:10.6092/polito/porto/2707078

Terms of use:
Altro tipo di accesso

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2707078 since: 2018-05-15T21:43:26Z

Politecnico di Torino

Doctoral Dissertation

Doctoral Program in Computer Engineering (30thcycle)

Improving the Performance of
Virtualized Network Services Based

on NFV and SDN

By

Roberto Bonafiglia

Supervisor(s):
Prof. Fulvio Risso, Politecnico di Torino

Doctoral Examination Committee:
Prof. Enzo Mingozzi, Referee, Università di Pisa
Prof. Lorenzo De Carli, Referee, Colorado State University
Dr. Domenico Siracusa, Create-Net
Prof. Mario Nemirovsky, Barcelona Supercomputing Center
Prof. Mario Baldi, Politecnico di Torino

Politecnico di Torino

2018

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Roberto Bonafiglia
2018

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my parents that always support me

Acknowledgements

I would like to thank my supervisor Fulvio Risso for the help that he gives me during
my PhD career from the point of view of my research and also on a personal level.
I would like to thank also the wonderful people that I met during this three years
especially the other PhD students Ivano, Matteo, Serena, Fulvio, Francesco, Amedeo,
Sebastiano, Gabriele and Jalol.

Abstract

Network Functions Virtualisation (NFV) proposes to move all the traditional network
appliances, which require dedicated physical machine, onto virtualised environment
(e.g,. Virtual Machine). In this way, many of the current physical devices present
in the infrastructure are replaced with standard high volume servers, which could
be located in Datacenters, at the edge of the network and in the end user premises.
This enables a reduction of the required physical resources thanks to the use of virtu-
alization technologies, already used in cloud computing, and allows services to be
more dynamic and scalable. However, differently from traditional cloud applications
which are rather demanding in terms of CPU power, network applications are mostly
I/O bound, hence the virtualization technologies in use (either standard VM-based or
lightweight ones) need to be improved to maximize the network performance.

A series of Virtual Network Functions (VNFs) can be connected to each other
thanks to Software-Defined Networks (SDN) technologies (e.g., OpenFlow) to create
a Network Function Forwarding Graph (NF-FG) that processes the network traffic in
the configured order of the graph. Using NF-FGs it is possible to create arbitrary
chains of services, and transparently configure different virtualized network services,
which can be dynamically instantiated and rearranges depending on the requested
service and its requirements.

However, the above virtualized technologies are rather demanding in terms of
hardware resources (mainly CPU and memory), which may have a non-negligible
impact on the cost of providing the services according to this paradigm. This thesis
will investigate this problem, proposing a set of solutions that enable the novel NFV
paradigm to be efficiently used, hence being able to guarantee both flexibility and
efficiency in future network services.

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

2 Assessing the performance of virtualization technologies for NFV 5

2.1 Overview . 5

2.2 Related work . 6

2.3 Background . 7

2.3.1 KVM-based virtual machines and networking 7

2.3.2 Docker containers and networking 9

2.3.3 Open vSwitch I/O model 10

2.3.4 OvS with DPDK I/O model 11

2.4 Performance characterization . 11

2.4.1 Hardware and software setup 12

2.4.2 OvS-based chains: virtual machines vs Docker containers . 13

2.4.3 KVM-based virtual machines: OvS with DPDK enabled and
not . 16

2.4.4 Latency . 18

2.5 Conclusion . 19

Contents vii

3 Designing an efficient data exchange algorithm 20

3.1 Overview . 20

3.2 Related work . 21

3.3 The data exchange algorithm . 22

3.3.1 Algorithm overview . 22

3.3.2 Execution model . 24

3.3.3 Basic algorithm: handling pass-through data 25

3.3.4 Extended algorithm: handling worker-generated data 32

3.4 Implementation choices . 34

3.5 Experimental results . 36

3.5.1 Single chain - Throughput 37

3.5.2 Single chain - Latency . 40

3.5.3 Single chain - Comparison with other algorithms 40

3.5.4 Single chain - Other tests 43

3.5.5 Multiple chains . 46

3.5.6 Network tests . 48

3.6 Conclusion . 49

4 Prototyping a dedicated network function for resource-constrained de-
vices 50

4.1 Overview . 50

4.2 Overall architecture . 52

4.2.1 Operating principles . 52

4.2.2 Architecture overview and design principles 52

4.3 Implementation details . 55

4.3.1 Key data structures . 55

4.3.2 Online module . 57

viii Contents

4.3.3 Offline module . 60

4.3.4 Communication with the policy server 62

4.4 Experimental validation . 63

4.4.1 Testbed setup . 63

4.4.2 Interaction with TCP . 65

4.4.3 Browsing experience . 67

4.4.4 Residential gateway aggregated throughput 71

4.4.5 Memory footprint . 74

4.5 Related work . 74

4.6 Conclusion . 77

5 Designing a platform for NFV 79

5.1 Overview . 79

5.2 Design objectives . 80

5.2.1 Domain-oriented orchestration 80

5.2.2 Network abstraction . 81

5.2.3 Compute abstraction . 81

5.2.4 Joint network and compute service graph optimization . . . 82

5.2.5 Small footprint . 82

5.2.6 Support for Native Network Functions 82

5.3 COMPOSER architecture . 84

5.3.1 Northbound interface . 86

5.3.2 Traffic steering model . 90

5.3.3 Node resource manager . 91

5.3.4 Network manager . 91

5.3.5 Compute manager . 96

5.3.6 NF resolver . 98

Contents ix

5.3.7 Internal message bus . 99

5.3.8 Monitoring manager . 99

5.4 Experimental evaluation . 99

5.4.1 Hardware platforms . 100

5.4.2 Empirical evaluation of resource consumption 101

5.4.3 Service deployment time 102

5.4.4 Native network functions 104

5.5 Related work . 106

5.6 Conclusion . 109

6 An orchestration architecture supporting multiple heterogeneous do-
mains 111

6.1 Introduction . 111

6.2 Related work . 113

6.3 Capability-based domain abstraction 113

6.3.1 Modeling functional capabilities 114

6.3.2 Modeling connection capabilities 115

6.4 Capability-based orchestration . 116

6.4.1 Service chain . 116

6.4.2 Virtual topology . 117

6.4.3 Service chain placement and subgraphs generation 118

6.4.4 Inter-domain traffic steering 121

6.5 Validation . 123

6.6 Conclusion . 125

7 Conclusions 127

References 129

x Contents

Appendix A Publications list 137

A.1 Journals . 137

A.2 Conferences . 137

List of Figures

1.1 Service graph expansion. 2

1.2 Graph deploying on a NFV distributed architecture. 3

2.1 Networking of a KVM-based virtual machine. 8

2.2 Networking of a Docker container. 9

2.3 Open vSwitch data-plane architecture. 10

2.4 Physical set up used for the tests. 12

2.5 Throughput of a single chain (of growing length) with VNFs de-
ployed. 14

2.6 Throughput with several chains implemented with VMs and OvS. . 16

2.7 Throughput with VMs chained through OvS with DPDK. 17

2.8 Latency introduced by service chains implemented through different
technologies. 18

3.1 Deployment of the algorithm within a middlebox. 23

3.2 Run-time behavior and indexes of the algorithm. 31

3.3 Binding primary buffer - auxiliary buffer. 33

3.4 Throughput of a single function chain. 39

3.5 Latency introduced by the function chain with a growing number of
cascading Workers. 41

3.6 Internal throughput of the function chain, with real Workers and a
1M packets in memory. 43

xii List of Figures

3.7 Throughput of a single function chain when other data exchange
algorithms are used. 44

3.8 Results with a growing number of function chains running in parallel,
each one spotting two Workers in cascade. 47

3.9 Results with a function chain of growing length, with the Master
accessing to the network. 48

4.1 U-Filter workflow. 52

4.2 U-Filter architecture. 53

4.3 HTTP session table, shared between online and offline modules. . . 55

4.4 URL queue, shared between the online module and the offline mod-
ule user space process. 56

4.5 Verdict queue, shared between the offline module kernel thread and
user space process. 56

4.6 Summarized workflow of the online module. 59

4.7 Offline module user space process. 60

4.8 Summarized workflow of the offline module kernel thread. 61

4.9 Testbed setup. 64

4.10 Progress of a TCP session. 66

4.11 Waiting time for a single HTTP resource - Cumulative distribution
function. 69

4.12 Resource waiting time considering the 90th percentile of the process-
ing time and RTT with the policy server in a data center. 70

4.13 Complete page loading time cumulative distribution. 71

4.14 Complete page loading time considering the 90th percentile policy
server processing time with the policy server in a data center. 72

4.15 Application-level throughput when downloading files of different
sizes. 73

4.16 Download time when requesting files of different sizes. 73

List of Figures xiii

4.17 U-Filter load. 75

5.1 Detailed architecture of COMPOSER. 85

5.2 Excerpt of Network Functions - Forwarding Graph (NF-FG). 87

5.3 Examples of SAPs in the NF-FG. 88

5.4 Using GRE SAPs to set up traffic steering between subgraphs. . . . 89

5.5 c-orch new NF-FG deployment message sequence diagram. 92

5.6 Example of transformation of NF-FG flowrules in traffic steering
rules. 97

5.7 Service deployment time: (a) used service graph; (b) results with
COMPOSER; (c) results with OpenStack. 103

5.8 Testbed to validate the COMPOSER when running NNFs. 105

6.1 Service graph deployment in a multi-domain environment. 112

6.2 Domain abstraction based on functional and connection capabilities. 114

6.3 Service chain deployment involving two domains directly connected. 117

6.4 Service chain deployment involving three domains: domain-A

and domain-C execute NFs, while domain-B just implements
network connections. 120

6.5 Inter-domain traffic steering based on information associated with
SAPs. 121

6.6 Validation scenario: (a) service chain split across three domains; (b)
service chain deployed in two domains. 124

List of Tables

2.1 Bare-metal throughput of the applications used in our measurements. 13

4.1 Inferred RTT values with the policy server in different locations
(RT T P). 68

4.2 Inferred policy server latency values (T P
proc). 68

5.1 Management interface. 93

5.2 Control interface. 93

5.3 LSIs involved in implementing flow rules with specific match/action. 94

5.4 Compute interface. 97

5.5 Machines used in the validation. 100

5.6 Resources consumed by COMPOSER and OpenStack. 102

5.7 Different implementations of the IPSec client NF. 105

Chapter 1

Introduction

Network Function Virtualization (NFV) is a recent network paradigm with the goal
of transforming in software images those network functions that for decades have
been implemented in proprietary hardware and/or dedicated appliances, such as NAT,
firewall, and so on. These software implementations of network functions, called
Virtual Network Functions (VNFs) in the NFV terminology, can be executed on
high-volume standard servers, such as Intel-based blades. Moreover, many VNFs
can be consolidated together on the same server, with a consequent reduction of both
fixed (CAPEX) and operational (OPEX) costs for network operators.

The European Telecommunication Standard Institute (ETSI) started the Industry
Specification Group for NFV [1], with the aim of standardizing the main components
of the NFV architecture. Instead, the IETF Service Function Chain [2] working
group takes into account the creation of paths among VNFs; in particular, they
introduce the concept of Service Function Chain (SFC), defined as the sequence of
VNFs processing the same traffic in order to implement a specific service (e.g., a
comprehensive security suite). Hence, a packet entering in a server executing VNFs
may need to be processed in several VNFs (of the same chain) before leaving such a
server. Moreover, several chains are allowed on a single server, which can process
different packet flows in parallel.

Within this context, the Software Defined Networking (SDN) technology is used
mainly to create logical connections between multiple VNFs. The main idea of SDN
is to centralize all the control logic of the network on a dedicated server (a.k.a. SDN
controller), while the devices are in charge of performing only the packet forwarding

2 Introduction

Firewall

Adv. blocker

Non-web traffic

Private
storage

Security NATL2 switch

Required service

Service “security”

Private
storage

L2 switch NAT

Fig. 1.1 Service graph expansion.

based on the rules configured by this controller. An example and enabler of the SDN
concepts is the OpenFlow protocol [3]; in such a scenario, an OpenFlow switch
can be used to distinguish the various types of traffic and steer them to the correct
network function.

Using these concepts we can define a virtualized network service graph that is
a set of functions suitably interconnected to implement a specific service, such as,
for example a comprehensive security solution. As illustrated in Figure 1.1, links
between functions can be potentially marked with the traffic that has to cross such
connections, thus enabling the differentiation of various types of traffic. In addition,
according to the recursive functional blocks concept proposed by ETSI [4], each
function may, in turn, be defined as a service graph. As an example, the NF security
block (e.g., a service) in Figure 1.1 is in fact a service graph comprising a firewall and
an advertisement blocker (adv-blocker). Therefore, a service graph covers aspects of
both the ETSI network service and the ETSI NF forwarding graph.

The idea of deploying a virtualized network service introduces some issues.
Network applications are mostly I/O-intensive, differently from traditional cloud ones
which are usually CPU-bounded, hence the the virtualised technologies need to be
improved to maximize the network performance. Virtualization techniques may not
be appropriate to execute services on edge nodes (e.g., home gateways) that feature
limited hardware (e.g., CPU, memory) capabilities; moreover, a complex service
may require the cooperation of the edge device and the cloud, with components

3

Private
storage

Adv-
blocker

Firewall Service graph

Overarching orchestrator

Local orchestrator

Virtual switch

NF1

NF2

Orchestrator

NF3

NF4

Residential
gateway

Network operator

Local orchestrator

Virtual switch

NF1

NF2

Orchestrator

NF3

Enterprise
customer

Data center
(e.g., OpenStack)

Domestic
customer

Standard
server

Fig. 1.2 Graph deploying on a NFV distributed architecture.

instantiated on both sides. This may require an overarching layer of orchestration
that decides the service location; in this distributed scenario, the service has to be
split in several sub-components, instantiated on different nodes, which need to be
properly interconnected through logical links. Figure 1.2 provides an high-level view
of the overall operations.

The aim of the dissertation is to address the problems that can be encountered
on an orchestration layer to optimize the path that the user traffic has to flow on
the required network functions. The technologies supported by the different nodes
introduces penalties in terms of performance and the orchestration layer has to choose
the right implementation. The thesis also addresses how to leverage on resource
constrained devices as NFV node that can run types of NF and can be used during
the placement decisions of the orhchestrator.

This dissertation addressed the described issues starting from Chapter 2, which
provides with an analysis of exiting virtualization technologies for an NFV platform
in term of performance with respect to network traffic; subsequently Chapter 3
describes an efficient algorithm for the data forwarding inside a single server.

4 Introduction

Chapter 4 describes a native network application that can be deployed on a
resource constrained device and leverages the presence of a distributed infrastructure.
A lightweight NFV node, on-purpose designed to operate on resource constrained
devices exploiting their native capabilities (software that runs on the bare hardware)
as VNF, is presented in Chapter 5. However, more complex services can exceed the
capabilities of a single node and require a distributed scenario, as VNFs are deployed
over the whole network infrastructure, even on different technological domains; to
tackle this challenge, Chapter 6 presents the concept of a multi domain orchestration
for the deployment of network service graphs. Finally, Chapter 7 concludes the
thesis.

Chapter 2

Assessing the performance of
virtualization technologies for NFV

Part of the work described in this chapter has been previously published in [5].

2.1 Overview

NFV is heavily based on cloud computing technologies; in fact, VNFs are typically
executed inside Virtual Machines (VMs) or in more lightweight virtualized environ-
ments (e.g., Linux containers), while the paths among VNFs deployed on a server
are created through virtual switches (vSwitches). While these technologies have
been well tested/evaluated for the cloud computing environment, such a study is still
missing in case of NFV services. The rationale is that cloud computing and NFV
services differ both in the amount and in the type of traffic that has to be handled
by applications and vSwitches, due to the following reasons. First, traditional vir-
tualization has to deal most with compute-bounded tasks, while network I/O is the
dominant factor in NFV (the main operation of a VNF is in fact to process passing
traffic). Second, a packet may need to be handled by several VNFs before leaving
the server; this adds further load to the vSwitch, which has to process the same
packet multiple times. Finally, common techniques to improve network I/O such as
Generic Receive Offload (GRO) and TCP Segmentation Offload (TSO) may not be
appropriate for NFV, since some VNFs (e.g., L2 bridge, NAT) need to work on each
single Ethernet frame, and not on TCP/UDP segments.

6 Assessing the performance of virtualization technologies for NFV

This chapter describes a preliminary benchmarking of VNFs chains deployed on a
single server and based on the most common virtualization components. Particularly,
KVM [6] and Docker [7] as execution environments, and Open vSwitch (OvS) [8]
without and with DPDK enabled as vSwitches to steer the traffic among them in
order to implement the chain(s).

This chapter is organized as follows. Section 2.2 provides an overview of
the related works, while Section 2.3 details the technologies considered in our
benchmarking. Tests are detailed in Section 2.4, while Section 2.5 concludes the
chapter.

2.2 Related work

Several works available in literature evaluate the performance of virtualization
components, both in the computing virtualization side (i.e., VMs, containers) and in
the network virtualization side (i.e., vSwitches).

From the virtual networking side, [9] and [10] provide a deep evaluation of the
behavior of OvS, analyzing how several factors, such as CPU frequency, packets
size, number of rules and more, influence the performance of the vSwitch itself.
Moreover, [9] measures the throughput obtained when OvS is exploited to intercon-
nect a single VM both with the physical network and with a second VM executed
on the same server. However, both the papers do not evaluate OvS when used to
cascade several VNFs, as well as they do not consider Docker containers and OvS
with DPDK enabled.

In [11], Casoni et al. measure the performance of chains of Linux containers
(LXC) [12] interconnected through different technologies: the VALE vSwitch [13],
the Linux bridge and the Virtual Ethernet interfaces (veth), missing some other
widespread technologies such as OvS.

From the computing virtualization side, [14] studies the overhead introduced by
the KVM hypervisor [6] when accessing to the disk and to the network. However,
it does not evaluate such overhead in a VNF scenario, in which a packet has to
potentially traverse several VNFs before leaving a server. This scenario is again
not considered in [15], although it provides a comparison between LXC containers
and KVM-based VMs. Xavier et al. [16] evaluates networking performance of

2.3 Background 7

several virtualization technologies: the Xen hypervisor [17], LXC, OpenVZ [18]
and Linux-VServer [19]. However, the tests provided in the paper focus on High
Performance Computing workloads, which can be consistently different from those
experienced on a server running chains of VNFs.

2.3 Background

This section provides an initial evaluation of the overhead introduced by VNF chains
deployed on a single server. Different technologies are considered for what regards
both the virtual environment running the VNFs, and the vSwitch interconnecting
such functions together and with the physical network, in order to identify their
performance and compare such technologies among each other.

VMs are the main virtualization technology used to execute VNFs, since they
provide strong isolation among VNFs themselves. However, lightweight containers
are gaining momentum, since they still provide a form of isolation while having
lower resources demand. As environment to execute VNFs, the section considers
KVM-based VMs [6] and Docker [7] containers.

Interconnections among VNFs are implemented through a vSwitch, exploiting
its capabilities to perform traffic steering based on multiple criteria such as the port
ID and L2-L7 protocol fields. Although several vSwitches are available, the analysis
is focused on the most widespread ones, namely Open vSwitch (OvS) [8] and OvS
based on the Intel Data Plane Development Kit (DPDK) technology [20].

The remainder of this section provides an overview of the OvS I/O model, as
well as it gives some insights on KVM-based VMs and Docker containers, mainly
focusing on the way in which they connect to the vSwitch.

2.3.1 KVM-based virtual machines and networking

Figure 2.1 provides an overview of the components involved in the network I/O of
VMs running in the KVM hypervisor.

Before detailing how VMs send/receive network packets, it is worth mentioning
that KVM is just a kernel module that transforms the Linux kernel into an hypervisor,
i.e., it provides to the Linux kernel the capability of running VMs. A VM is then

8 Assessing the performance of virtualization technologies for NFV

����������	

��������

�������

������

����	�
������

�����

�����������

������

����

���

���	����	�
������

��	����

��	����

������

�	�
	� �����������

����

����	�
������

�	�
�������

�����������

������

Fig. 2.1 Networking of a KVM-based virtual machine.

executed within QEMU, which is a Linux user-space process that exploits KVM to
execute VMs. For instance, the VM memory is part of the memory assigned to the
QEMU process, while each virtual CPU (vCPU) assigned to the VM corresponds to
a different QEMU thread in the hypervisor.

As shown in Figure 2.1, the guest operating system (i.e., the operating system
executed in the VM) accesses to the virtual NICs (vNICs) through the virtio-net
driver [21], which is a driver optimized for the virtualization context. Each vNIC is
associated with two virtio queues (used to transmit and receive packets) and a
process running in the Linux kernel, namely the vhost module in the picture. As
shown, vhost is connected to the virtio queues on one side, and to a tap
interface on the other side, which is in turn attached to a vSwitch. vhost works in
interrupt mode; particularly, it waits for notifications from both the VM and the tap
and then, when such an interrupt arrives, it forwards packets from one side to the
other.

As a final remark, the transmission of a batch of packets from a VM causes a VM
exit; this means that the CPU stops to execute the guest (i.e., the vCPU thread), and
runs a piece of code in the hypervisor, which performs the I/O operation on behalf of
the guest. The same happens when an interrupt has to be “injected” in the VM, e.g.,
because vhost has to inform the guest that there are packets to be received. These

2.3 Background 9

Container Container

Container network
namespace

Veth interface

Host network
namespace

Container network
namespace

vSwitch

Fig. 2.2 Networking of a Docker container.

VM exits (and the subsequent VM entries) are one of the main causes of overhead in
network I/O of VMs.

2.3.2 Docker containers and networking

Docker containers are a lightweight virtualization mechanism that, unlike VMs, do
not run a complete operating system: all the containers share the host’s kernel1.
Containers represent a way to limit the resources visible by a running userland
process; hence, if no process is running in the container, such a container is not
associated with any thread in the host. Such this limitation of resources (e.g., CPU,
memory) is achieved through the cgroups feature of the Linux kernel, while
isolation is provided through the Linux namespaces, which give to processes running
in the container a limited view of the process trees, networking, file system and more.

As shown in Figure 2.2, each container corresponds to a different network
namespace; this means that it is only aware of those interfaces inserted into its
own namespace, as well as it has a private network stack. According to the picture,
packets can traverse the namespace boundary by means of veth pairs, which are in
fact a pair of interfaces connected through a pipe: packets inserted in one end are
received on the other end. Hence, by putting the two ends of the veth in different
namespaces, it is possible to move packets from one network namespace to another.
According to the picture, a vSwitch connects all the veth interfaces in the host
namespace among each other and with the physical network.

1In other words, on the physical machine there is a single kernel, with a single scheduler, a single
memory manager and so on.

10 Assessing the performance of virtualization technologies for NFV

ovs-vswitchd

ovs_mod.ko

User-space

Kernel-space

Slow path

Fast path

Fig. 2.3 Open vSwitch data-plane architecture.

2.3.3 Open vSwitch I/O model

OvS is a widespread vSwitch, whose data plane architecture is depicted in Figure 2.3;
as shown, it consists of a user-space daemon and a kernel-space module, respectively
referred as ovs-vswitchd and ovs-mod.ko in the picture.

The kernel module implements the fast path; it acts in fact as a cache for the user-
space component, and includes all the last matched rules for increasing forwarding
efficiency. In particular, when a packet enters into the vSwitch, it is first processed in
the kernel module, which looks for a cached rule matching such a packet. In case of
positive result, the corresponding action is executed, otherwise the packet is provided
to the user-space.

The user-space daemon (that implements the slow path) contains in fact the full
forwarding table of the vSwitch. By default, it implements the traditional MAC
learning algorithm, although it can also be “programmed” by an external controller
through the Openflow protocol2. Then, after that the first packet of a flow has been
handled in user-space, the corresponding rule is offloaded to the kernel module,
which will be able to handle all the subsequent packets of the same flow, thus
significantly increasing the performance.

Interesting, there are no threads associated with the ovs-mod.ko kernel mod-
ule; the in-kernel code of OvS consists in fact of a callback invoked by the software
interrupt raised when a packet is available on a network interface. For instance, the
OvS code (in the hypervisor) is executed in the context of the ksoftirq kernel
thread in case of packets coming from the physical NIC, while it is executed in the
context of the vhost associated with the “sender” vNIC in case of packets coming

2The capability to program the switching table of OvS from an external entity is exploited in NFV
to create chains of VNFs.

2.4 Performance characterization 11

from the VM (Figure 2.1). In case of packets coming from Docker (Figure 2.2), OvS
runs in the context of the process executed in the container. This is possible because
a single kernel exists, which is shared among the host and the containers.

2.3.4 OvS with DPDK I/O model

DPDK is a framework proposed by Intel that offers efficient implementations for a
wide set of common functions, such as NIC packet input/output, memory allocation
and queuing.

Unlike the standard OvS, enabling DPDK simply consists of a user-space process
(with a variable number of threads) that continuously iterates over the physical NICs
and the virtio queues. The vhost module shown in Figure 2.1 is in fact
integrated in the vSwitch, so that the tap interface, which introduces overhead in
the data path of packets to/from VMs, is removed. Furthermore, thanks to DPDK: (i)
the vSwitch accesses to the physical NICs without the intervention of the operating
system; (ii) packet transfer between the physical NICs and the vSwitch is done with
zero-copy.

As a final remark, OvS with DPDK can also exchange packets with the VMs
through shared memory: this solution removes the vhost at all, and does not
require the virtio-net driver in the VMs. Although this configuration allows
the vSwitch to move packets in a zero-copy fashion among VMs, we decided of not
using it in our preliminary benchmarking of service chains. In fact, due to a design
choice of DPDK, the same memory would be shared among all the VMs deployed,
thus weakening the isolation among VMs themselves.

2.4 Performance characterization

This sections details our benchmarking of VNFs chains implemented on a single
server. As already mentioned, we carried out several tests using different technologies
for what regards both the virtualization environment used to run VNFs (KVM and
Docker), and the vSwitch that properly steers the traffic among them in order to
create the chain(s) (OvS and OvS with DPDK enabled).

12 Assessing the performance of virtualization technologies for NFV

Sender

Server with VNFs

Receiver

VNF VNF VNF…

vSwitch

Fig. 2.4 Physical set up used for the tests.

Particularly, the tests focus on measuring the throughput and latency obtained
when packets (of different size) flow through a server hosting one or more chains of
different length. Each measurement lasted 100 seconds and was repeated 10 times;
results are then averaged and reported in the graphs shown in the following of this
section. Some graphs are provided with a bars view and a points-based representation
of the maximum throughput. The former representation is referred to the left y axis,
which provides the throughput in Mpps, while the latter is referred to the right y axis,
where the throughput is measured in Gbps.

2.4.1 Hardware and software setup

As shown in Figure 2.4, the test environment includes a server that runs a vSwitch and
a variable number of VNFs; the server is connected to a sender and to a receiver ma-
chine through two point-to-point 10Gbps Ethernet links. All the physical machines
are equipped with an Intel Core i7-4770 @3.40GHz (4 physical cores plus hyper-
threading), 32GB of memory, and run Fedora 20 with kernel 3.18.7-100.fc20.x86_64.
The physical network interfaces are instead Intel X540-AT2.

As already mentioned, VNFs are executed either in KVM-based VMs3, or in
Docker containers. According to Figure 2.4, each VNF is equipped with two vNICs
connected to the vSwitch. In order to steer the traffic among VNFs, the vSwitch is
configured with Openflow rules matching the input port of packets, while the action
is always the forwarding of packets through a specific port. In case of multiple
service chains deployed on the server, the traffic entering from the physical port is
split so that some packets enter in one chain, other packets in another chain and so on.

3In this case, each VM is associated with a single vCPU, i.e., the whole VM corresponds to a single
thread in the hypervisor. Moreover, the guest operating is Ubuntu 14.04 with kernel 3.13.0-49-generic,
64 bit.

2.4 Performance characterization 13

Table 2.1 Bare-metal throughput of the applications used in our measurements.

Linux bridge libpcap-based bridge DPDK-L2fw
64B

2.39 (1,14) 1.29 (0.66) 8.78 (4.39)[Mpps (Gbps)]

Traffic splitting is based on the source MAC address of packets, which are properly
generated so that they are equally distributed among all the available chains.

Particularly, our VNFs simply receive packets from one interface and forward
them on the other; such applications, in a non-virtualized environment (i.e., when
used to directly connect two physical interfaces), provide the throughput shown in
Table 2.1.

The throughput is measured using unidirectional traffic flowing from the sender
to the receiver machine, respectively running a packet generator and a packet receiver
based on the pfring/dna [22] library, which allows to transmit/receive packets at
10Gbps.

2.4.2 OvS-based chains: virtual machines vs Docker containers

This section evaluates the throughput achieved when a single chain of VNFs is
deployed on a server running OvS as vSwitch4. Measurements have been repeated
with VMs and Docker containers, chains of growing length and packets of different
size; results are reported in Figure 2.5. Those graphs have been obtained by executing
the Linux bridge within VMs, while each container runs a simple user-space bridge
based on libpcap [23]. In fact, with the Linux bridge inside containers, we got an
unacceptable throughput of 3Mbps with 8 chained VNFs.

This poor result is a consequence of two factors: (i) the Linux bridge data plane
is in fact a kernel-level callback executed in the context of the thread that provides
packets to the vSwitch (similarly to OvS); (ii) all Docker containers share the kernel
with the host (as detailed in Section 2.3.2). As a consequence, the ksoftirq kernel
thread that processes the packet received from the physical NIC is also in charge of
executing (i) the OvS code that forwards the packet in the first container; (ii) the data
plane part of the Linux bridge launched in the first container (but running, in fact, in

4Note that, due to the small number of rules inserted in the vSwitch, the packet processing is
entirely done in the kernel module (Section 2.3.3).

14 Assessing the performance of virtualization technologies for NFV

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

0 1 2 3 5 8 10
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

T
h

ro
u

g
h

p
u

t
[M

p
p

s
]

T
h

ro
u

g
h

p
u

t
[G

b
p

s
]

#VMs in the chain

64B
700B

1514B

(a) KVM-based virtual machines

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

0 1 2 3 5 8 10
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

T
h

ro
u

g
h

p
u

t
[M

p
p

s
]

T
h

ro
u

g
h

p
u

t
[G

b
p

s
]

#Docker containers in the chain

64B
700B

1514B

(b) Docker containers

Fig. 2.5 Throughput of a single chain (of growing length) with VNFs deployed.

2.4 Performance characterization 15

the host kernel); (iii) again OvS, and so on, until the packet leaves the server through
the physical NIC. In other words a single kernel thread executes all the operations
associated with the packet, resulting in no parallelization at all and hence in really
poor performance, especially in case of long chains.

Instead, in case of VMs, the vCPU thread (Section 2.3.1) executes the guest kernel
and hence the Linux bridge, while vhost executes the OvS code, thus providing
high parallelization in packets processing and then acceptable performance. In case
of Docker, such a parallelization can be achieved by running a VNF that is actually a
process (e.g, our simple libpcap-based bridge). This way, the OvS code between
VNFs is executed in the context of this process, and the ksoftirq is just involved
at the beginning of the service chain.

A comparison between Figure 2.5a and Figure 2.5b shows that chains imple-
mented with the two virtualization technologies (when executing the proper applica-
tion) present different throughput only when there is a single VNF per chain (and 64B
packets), while they are almost equivalent in the other cases. However, according to
Table 2.1, the Linux bridge provides nearly twice the throughput of the libpcap-
based bridge, when executed in a non-virtualized environment. The fact that we got
almost the same throughput by running these two applications respectively in VMs
and containers, shows how the overhead introduced by full virtualization is higher
than the overhead due to lightweight virtualization mechanisms.

Figure 2.5 also shows that the throughput is inversely proportional to the number
of chained functions, regardless of the virtualization environment. In fact, more
VNFs executed on the same server results in more contention on the CPU resource,
as well as on the cache(s) and the Translation Lookaside Buffer (TLB). Furthermore,
with longer chains, the probability that a packet is processed on different physical
cores is higher, with a consequent increasing in the number of experienced cache
misses. Moreover, although OvS is executed on several threads, there is just one
instance of the forwarding table, which requires synchronization for example to
increment the counters associated with the matched rules.

Figure 2.6 reports instead the throughput obtained when 64B packets are equally
distributed among multiple chains of VMs. As evident, more chains result in lower
throughput measured on the receiver machine, for the same reasons stated above in
case of a single chains of different lengths (i.e., more CPU contention, more cache
misses, etc.). Similar results have been achieved with containers.

16 Assessing the performance of virtualization technologies for NFV

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 5 8 10
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

T
h

ro
u

g
h

p
u

t
[M

p
p

s
]

T
h

ro
u

g
h

p
u

t
[G

b
p

s
]

#VMs in the chain

1Chain
2Chains
3Chains

Fig. 2.6 Throughput with several chains implemented with VMs and OvS.

We can then conclude that Docker containers are well suited to run VNFs only
in case of applications associated with a specific thread/process. In this case, they
provide almost the same performance of KVM-based VMs, with the advantage of
requiring less resources (e.g., memory), but with the drawback of providing less
isolation.

2.4.3 KVM-based virtual machines: OvS with DPDK enabled
and not

This section evaluates the performance of a chain of VNFs interconnected through
OvS with DPDK, and compares such results with those achieved in case of OvS
without DPDK. Particularly, in order to compare the two switching technologies,
we consider VNFs executed in KVM-based VMs. Before analyzing the results, it
is worth remembering that , unlike the standard OvS, DPDK is entirely executed
in user-space and works in polling, i.e., it continuously iterates over the available
NICs. Moreover, the vhost module (Figure 2.1) is replaced with a software layer
integrated in DPDK, so that VMs directly communicate with the vSwitch.

As a first test, we consider again the Linux bridge as VNFs, obtaining a through-
put that is just slightly better than those achieved with OvS and depicted in Fig-
ure 2.5a; e.g., 1.66Mpps (0.85Gbps) with 64B packets traversing a singe VNF. In

2.4 Performance characterization 17

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

0 1 2 3 5 8 10
 0

 1

 2

 3

 4

 5

 6

 7

T
h

ro
u

g
h

p
u

t
[M

p
p

s
]

T
h

ro
u

g
h

p
u

t
[G

b
p

s
]

#VMs in the chain

1Core
2Cores
3Cores
4Cores

Fig. 2.7 Throughput with VMs chained through OvS with DPDK.

fact, although DPDK provides several enhancements with respect to OvS standard,
such improvements are mitigated by the high overhead introduced by VMs.

Then, we installed DPDK in VMs as well, in order to execute DPDK-based
VNFs and exploits the DPDK acceleration both in the guest and in the hypervisor.
In particular, results shown in Figure 2.7 are gathered using the L2-forwarded
application provided with the DPDK library (and 64B packets). The test has then
been repeated by changing the number of polling threads (and hence CPU cores)
associated with the vSwitch, in order to evaluate its effect on the performance of
the chain. Note that, since the L2-forwarder , as any other DPDK-based process,
works in polling, during this test we always have to dedicate a CPU core to the vCPU
thread associated with each VM.

According to the picture, assigning more cores to the vSwitch results in better
performance in case the number of cores required by the whole chain (VMs +
vSwitch) does not exceed the number of cores of the server. When this happens,
performance degrades until becoming unsustainable with 8 chained VMs. In fact, at
this point some cores are shared among many polling threads and, for instance, it
may happen that the operating system assigns the CPU to a VNF with no traffic to
be processed, penalizing others that would actually have work to do.

For the sake of clarity, Figure 2.7 only reports the throughput obtained with 64B
packets. However, our measurements also reveal that a chain implemented with OvS
and the DPDK L2-forwarder within VMs, provides a throughput of 10Gbps in case

18 Assessing the performance of virtualization technologies for NFV

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9 10

lo
g

 R
T

T
 [

m
s
]

#VNFs in the chain

OVS-VM

OVS-Docker

OVDPDK-VM (1 core)

OVDPDK-VM (2 cores)

OVDPDK-VM (3 cores)

OVDPDK-VM (4 cores)

Fig. 2.8 Latency introduced by service chains implemented through different technologies.

of 700B and 1514B packets. Of course, such results are obtained only in case the
chain does not require more cores than those available on the server.

A comparison between Figure 2.7 and Figure 2.5a reveals how chains imple-
mented through DPDK-based components (i.e., OvS and VMs running DPDK
applications) outperform chains not based on the DPDK library. In fact, DPDK-
based modules works in polling and optimize the data transfer among each others,
exploiting zero-copy as much as possible. However, as already stated above, the
polling working model has the drawback of providing unacceptable throughput when
the cores required exceed the number of cores available on the server.

2.4.4 Latency

In networking, the latency introduced by the system is as important as the throughput
achieved. Hence, this section reports the latency measured with a single chain
implemented with the technologies discussed above. In particular, for each scenario,
we executed 100 ping between the sender and the receiver machines; results have
been averaged and reported in Figure 2.8.

As expected, DPDK-based chains (OvS + DPDK-L2forwarder in VMs) provide
better results, provided that the number of cores required does not exceed the number
of cores of the physical machine on which such a chain is deployed. At this point,

2.5 Conclusion 19

similarly to what already discussed in case of throughput, latency becomes definitely
unacceptable.

Figure 2.8 also shows how Docker containers running a user-space process
(i.e., the simple libpcap-based bridge) introduce smaller latency than VMs. This
difference in performance is again a consequence of the higher overhead introduced
by full virtualization with respect to lightweight containers.

2.5 Conclusion

This chapter provides a performance analysis of service chains implemented through
different virtualization technologies, selected among those representing the state of
the art in the NFV domain.

From the several tests carried out, we can draw the following conclusions. First,
Docker containers provide acceptable results only in case of VNFs associated with
a specific process, while they are definitively unsuitable for VNFs implemented as
callbacks to be executed in the kernel. However, due to the low overhead introduced
by lightweight virtualization, a user-space program in Docker provides better latency
and almost the same throughput of callback-based VNFs (e.g., Linux bridge) run
within VMs kernel. Second, OvS with DPDK enabled (when used with VMs running
DPDK-based applications) provides much better performance than standard OvS.
For instance, this is due to the exploitation of zero-copy when transferring packets
to/from physical NICs, and to the polling model implemented by DPDK-based
processes. However, the polling model requires at least a dedicated core per VM,
hence limiting the usage of DPDK in servers with a reduced number of VNFs.

Given that a single-technology-fits-all recipe is not available in this domain,
future NFV services need to heavily rely on a smart orchestration system, which
should be able to select the implementation to use for the different NFs required to
get advantages from them, depending on the specific service required.

Chapter 3

Designing an efficient data exchange
algorithm

Part of the work described in this chapter has been previously published in [24].

3.1 Overview

As analyzed on Chapter 2 when VNFs are deployed on a single server, an incoming
packet could possibly traverse an arbitrary number of VNFs before leaving the
middlebox and this requires each server to include a module (usually referred as
virtual switch or vSwitch) that classifies each packet to determine the path that has to
traversed. All this operations cause a drop of performance as shown in Chapter 2.

This chapter proposes and evaluates an efficient algorithm to improve the for-
warding of network packets between VNFs consolidated on the same server and
the vSwitch, which is based on circular lock-free First-In-First-Out (FIFO) buffers
managed by ad-hoc algorithms.

Existing solutions adopted to move packets between VNFs and the vSwitch are
usually based on the producer-consumer paradigm. However, since in NFV it is
likely that a packet goes from the vSwitch to the VNF and then back to the vSwitch,
those approaches require the VNF to copy (almost) each packet from a first receiving
queue into a second queue used for sending it back. Instead, the model shown on

3.2 Related work 21

this chapter has the advantage of allowing VNFs to return back packets without any
(expensive) packet copy, with consequent performance improvements.

Particularly, the proposed mechanism is designed to: (i) guarantee traffic isolation
between functions, so that a function can only access the portion of traffic that is
expected to flow through it, to limit the potential hazards that a malicious applications
could cause providing an effective support to multitenancy; (ii) provide excellent
scalability by allowing to consolidate a huge number of VNFs on the same server; (iii)
achieve high performance in terms of data movement speed among different VNFs.
Scalability and performance are obtained also by taking care of implementation
details such as exploiting cache locality as much as possible and limiting the number
of context switches.

The Chapter is organized as follows. Section 3.2 describes related other solutions
able to exchange data among different software components. Section 3.3 details
the main operations of the designed algorithm and how it communicates with the
different modules. Section 3.4 shows some implementation choices used to increase
the performance of the algorithm. Section 3.5 contains a validation of the algorithm
both in ideal conditions and in real scenarios. Finally, Section 3.6 concludes the
chapter.

3.2 Related work

The efficiency of FIFO queues implemented as lock-free has been already analyzed
in the past. For instance, [25] and [26] propose different type of lock-free algorithms
for FIFO queues that are managed as non-circular linked-lists. Other proposals can
be found in [27] and [28], that also require to create a pool of pre-allocated memory
slots. However, the related solutions are usually based on uni-directional flows of
data according to the producer-consumer paradigm, which is not the best solution
for managing the bi-directional data flows that is strongly present on the case of
virtualized environments. In fact, in these environments, a packet typically goes from
the virtual switch to the VNF and then goes back. Using classical uni-directional
producer-consumer solutions requires the VNF to remove data just received from a
first queue and to write them into a second queue used for sending the data back.

22 Designing an efficient data exchange algorithm

A similar solution can be found in the Intel DPDK library [20] and in [29],
which contains algorithms designed to operate in contexts where many processes
can concurrently do operations on a shared buffer. However, those proposals can-
not guarantee isolation between VNFs because they use a unique shared buffer.
Similar considerations can be made for ClickOS [30, 31] (based on the VALE vir-
tual switch [13]) and NetVM [32], which instead targets network function chains.
ClickOS uses two unidirectional queues with the necessity to copy packets once;
NetVM uses two unidirectional queues between “untrusted” functions, while switch-
ing to a unique shared buffer (handled in zero-copy) among “trusted” functions,
hence compromising traffic isolation requirement. MCRingBuffer [33], instead, de-
fines an algorithm to exchange data between a producer and a consumer executing on
different CPU cores, which is particularly interesting for its efficient implementation
of memory access patterns; in fact, part of those techniques were reused on the
implementation (Section 3.4).

3.3 The data exchange algorithm

The implementation of an efficient virtual functions chains within a single middlebox
requires a fast and efficient mechanism to transfer data between the vSwitch and
the VNFs. This requirements is translated into the necessity of a dedicated data
dispatching algorithm, which among the ones having the greatest impact on the
overall system performance. This section provides a description of the designed
algorithm.

In the context of the algorithm, the Master is the module that acts as the vSwitch,
while the Workers are the VNFs. Moreover, a token is a generic data unit exchanged
between the Master and the Workers. The token can be a packet for the NFV use
case, but the proposed algorithm can be actually used to exchange any kind of data,
according to the specific use case implemented.

3.3.1 Algorithm overview

As shown in Figure 3.1, the proposed data exchange algorithm is composed of a set
of lock-free ring buffers; in particular, the Master shares two different buffers with

3.3 The data exchange algorithm 23

Function 1
(Worker) … Function N

(Worker)

Consume/send
packets

Produce/receive
packets

Virtual switch (Master)

Network

Traffic flowing through a
function chain within a
network middleboxPrimary buffer

Auxiliary buffer

Fig. 3.1 Deployment of the algorithm within a middlebox.

each Worker, which are managed through different (but not independent) parts of the
same exchange algorithm.

The intuition behind the algorithm, which is based on the NFV use case, is the
following. VNFs are pieces of software operating on the data plane of the network,
which mainly process pass-through packets. In fact, VNFs receive packets from
the vSwitch and, in the vast majority of cases, forward them back to the vSwitch
itself with minimal (or no) changes (functions as NAT or IDS), allowing packets
to continue their journey towards the final destination. To efficiently support pass-
through data, the model defines the primary buffer shown in Figure 3.1, which has
the peculiarity of allowing tokens to be moved both from the Master to the Worker,
and then back from the Worker to Master, without requiring any (expensive) copy of
data in the Worker itself.

Avoiding to copy each packet in each traversed VNF can save in fact many CPU
cycles and consequently improve the performance of virtualized functions chains.
Notably, in addition to VNFs operating on pass-through data, the primary buffer also
supports functions that need to drop packets (e.g., firewall), which should then not
be sent back to the vSwitch after their processing in the VNF.

Some network functions may need to generate new packets as a consequence of
a previously received packet. For example, a bridging module may need to duplicate
a broadcast packet several times (e.g., once for each interface of the middlebox) and
then provide all these copies to the next function in the chain. Similarly, another
function may modify a packet (e.g., by adding a new header) so that it exceeds the

24 Designing an efficient data exchange algorithm

MTU of the network; this packet must then be fragmented, and all the fragments
must be sent out. Since network applications forward most of the traffic without
generating new packets, the primary buffer is designed to be as simple as possible for
the sake of speed, and then use a new second lock-free ring buffer, i.e., the auxiliary
buffer of Figure 3.1, to support Workers that can possibly generate new tokens as a
consequence of the data received from the Master. It is worth noting that this second
buffer is unidirectional and it is only used by the Worker to provide “new” data to
the Master.

Since VNFs may belong to different tenants, a network function must only
accesses to the proper portion of network traffic; to guarantee this property the model
uses a different pair of buffers per Worker in order to guarantee traffic isolation
among them, as this ensures that a Worker can only access packets that are expected
to flow through the Worker itself.

Each buffer slot (both primary and auxiliary) includes some flags in addition
to the real data, these flags are used to identify the content of the slot itself; more
details will be presented in the next sections.

3.3.2 Execution model

The Master operates in polling mode, i.e., it continuously checks for new tokens and
inserts them into the primary buffer shared with the target Worker. This operating
mode has been chosen because the middlebox (and then the Master itself) is supposed
to be traversed by a huge amount of traffic; hence, a blocking model would be too
penalizing requiring an interrupt-like mechanism to start the Master when there are
new data. This could significantly drop the performance with high packet rates [34].
In fact, interrupt handling is expensive in modern superscalar processors because
they have long pipelines and support out of order and speculative execution [35],
which tends to increase the penalty paid by an interrupt.

Vice versa, since the traffic entering into a specific Worker is potentially a small
portion compared to the one handled by the Master, a blocking model looks more
appropriate for this module. This ensures the possibility to share CPU resources
more effectively, which is important in multi-tenant systems where potentially a
large number of Workers is active. Hence, when a Worker has no more data to

3.3 The data exchange algorithm 25

be processed, it suspends itself until the Master wakes it up by means of a shared
semaphore.

3.3.3 Basic algorithm: handling pass-through data

The algorithm used to move data from the Master to the Workers (and back) requires
the sharing of some variables (underlined in the pseudocode shown in the following),
a semaphore, and the primary buffer between the Master and each Worker. In
particular, in this section we assume the presence of the Master and a single Worker,
while its extension to several Workers is trivial.

The primary buffer is operated through four indexes. M.prodIndex and
W.prodIndex are shared between the Master and the Worker. The former in-
dex points to the next empty slot in the buffer, ready to be filled by the Master, while
the latter points to the next slot in the buffer that the Worker will make available to
the Master again after its processing. M.prodIndex is incremented by the Master
when it enqueues new tokens, while W.prodIndex is incremented by the Worker
when it makes processed tokens available to the Master again. M.consIndex is a
private index of the Master, which points to the next token that the Master itself will
remove from the buffer. Finally, W.consIndex is a private index of the Worker,
which points to the next token to be processed by the Worker itself. In addition to
these indexes, the algorithm exploits the shared variable workerStatus, which
indicates whether the Worker is suspended or it is running.

Algorithm 1 provides the overall behavior of the Master and shows how it
cyclically repeats the following three main operations: (i) in lines 14-21 it produces
new data (line 19), which corresponds to the reception of packets from the network
interface card (NIC) in the NFV use case (with a maximum of N packets per cycle),
and immediately provides them to the Worker through the primary buffer (line 20);
(ii) it reads the tokens already processed by the Worker from the primary buffer (line
22), and finally (iii) it wakes up the Worker if there are data waiting for service for a
long time in order to avoid starvation (line 23). From lines 14-21, it is evident that
the Master produces several tokens consecutively, in order to better exploit cache
locality. Furthermore, if the buffer is full (line 15), it stops data production and starts
removing the tokens already processed by the Worker from the buffer.

26 Designing an efficient data exchange algorithm

Algorithm 1 Executing the Master
1: Procedure master.do()
2:
3: {Initialize shared variables}
4: M.prodIndex← 0
5: W.prodIndex← 0
6: workerStatus←WAIT_FOR_SIGNAL
7:
8: {Initialize private variables of the Master}
9: M.consIndex← 0

10: timeStamp← 0
11:
12: {Execute the algorithm}
13: while true do
14: for i = 0 to (i < N or timeout()) do
15: if M.prodIndex == (M.consIndex−1) then
16: {The buffer is full}
17: break
18: end if
19: data← master.produceData()
20: master.writeDataIntoBuffer(data)
21: end for
22: master.readDataFromBuffer()
23: master.checkForOldData()
24: end while

3.3 The data exchange algorithm 27

Algorithm 2 details the mechanism implemented in the Master to send data to the
Worker. As shown by line 8, a token is inserted into the slot pointed by the shared
index M.prodIndex as soon as it is produced; however, the Worker is awakened
only if at least a given number of tokens (i.e., MASTER_PKT_THRESHOLD) are
waiting for service in the primary buffer (lines 10-13). Thanks to this threshold, we
avoid to wake up the Worker for each single token that needs to be processed, which
results in performance improvement because (i) it reduces the number of context
switches and (ii) it increases cache locality, for both data and code. Since a token is
inserted into the buffer as soon as it is produced regardless of the fact that the Worker
is running or not, and since the Worker will suspend itself only when the buffer is
empty (as detailed in Algorithm 5), the Worker is able to process a huge amount of
data consecutively, thus improving system performance.

Algorithm 2 The Master writing data into the primary buffer
1: Procedure master.writeDataIntoBuffer(Data d)
2:
3: if M.prodIndex == M.consIndex then
4: {The buffer is empty}
5: timeStamp← now()
6: end if
7:
8: buffer.write(M.prodIndex,d)
9: M.prodIndex++

10: if buffer.size() > MASTER_PKT_THRESHOLD and
(workerStatus ̸= SIGNALED) then

11: workerStatus← SIGNALED
12: wakeUpWorker()
13: end if

Our algorithm avoids the starvation of tokens sent to a Worker (which may
happen especially when the system is in underload conditions) thanks to a timeout
event that wakes up the Worker even if the above-mentioned threshold is not reached
yet. In particular, the Master acquires and stores the current time whenever it inserts
a new token and the buffer is empty (lines 3-6 of Algorithm 2). This way, the Master
knows the age of the oldest token and it is able to possibly wake up the Worker also
depending on the value of a given time threshold, as shown in Algorithm 3.

The functions described in Algorithm 2 and Algorithm 3 need to know whether
the Worker is already running or not in order to avoid useless Worker awakenings.
This information is carried by the shared variable workerStatus, which is set to

28 Designing an efficient data exchange algorithm

Algorithm 3 The Master waking up the Worker due to a timeout
1: Procedure master.checkForOldData()
2:
3: if buffer.size() > 0 and (workerStatus ̸= SIGNALED) and

((now() − timeStamp) > TS_THRESHOLD) then
4: workerStatus← SIGNALED
5: wakeUpWorker()
6: end if

SIGNALED by the Master just before waking up the Worker (line 11 of Algorithm 2
and line 4 of Algorithm 3), and changed to WAIT_FOR_SIGNAL by the Worker
just before suspending itself (line 22 of Algorithm 5). This way, the Master can test
this shared variable to have an indication about the Worker status, and then wake it
up only when necessary.

Algorithm 4 shows how the Master removes from the primary buffer the data
that have already been processed by the Worker. In particular, it consumes all the
tokens until the index M.consIndex does not reach the index W.prodIndex,
incremented by the Worker each time it has handled a batch of tokens, as detailed in
Algorithm 5. In this way, also the Master reads several consecutive data from the
primary buffer in order to better exploit cache locality.

Algorithm 4 The Master reading data from the primary buffer
1: Procedure master.readDataFromBuffer()
2:
3: if buffer.size() then
4: if M.consIndex ̸= W.prodIndex then
5: timeStamp← now()
6: while M.consIndex ̸= W.prodIndex do
7: if not buffer.dropped(M.consIndex) then
8: master.consumeData(buffer.read(M.consIndex))
9: end if

10: M.consIndex++
11: end while
12: end if
13: end if

Notice that Algorithm 4 also considers those tokens provided by the Master to
the Worker, and dropped by the Worker itself. In case of dropped data, the Master
receives back an empty slot, identified through the flag dropped. The content of a
slot is only consumed if this flag is zero, otherwise the Master just increments the

3.3 The data exchange algorithm 29

M.consIndex and moves on to the next slot of the buffer, as shown in lines 7-10.
This prevents the Master from reading a slot with a meaningless content.

Algorithm 5 details the operations of the Worker. As evident from lines 12-23,
whenever a Worker wakes up, it processes all the tokens available in the primary
buffer (i.e., all the slots of the buffer with indexes less than M.prodIndex). Only
at this point (line 24), as well as after it has processed a given amount of data (lines
13-16), the Worker updates the shared index W.prodIndex, so that the Master can
consume all the tokens already processed by the Worker itself. This way, the Master
will be notified for data availability only when a given amount of tokens are ready
to be consumed, with a positive impact on performance. It is worth noting that this
batching mechanism is different from the one implemented when the Master sends
data to the Worker. In fact, in that case, the Worker is woken up when the amount of
data into the buffer is higher than a threshold, although the M.prodIndex, used
by the Worker to understand when it has to suspend itself, is incremented each time
a new data is inserted. Here, instead, the W.prodIndex (i.e., the index used by
the Master to know when the consuming of tokens must be stopped) is not updated
each time the Worker processes a data. As a consequence, it is possible that some
tokens have already been processed by the Worker, but the W.prodIndex has still
to be updated, and then the Master cannot consume them in the current execution
of Algorithm 4. This results in a slightly higher latency for these tokens, but in
better performance for the system thanks to this batching processing enabled into the
Master. As a final remark, lines 18-20 show that the Worker can drop the token under
processing by setting the dropped flag in the current slot of the primary buffer.

Figure 3.2 depicts the status of the primary buffer1 and the indexes used by the
algorithm in four different time instants. In Figure 3.2(a) the buffer is empty, and
then all the indexes point to the same position. Instead, in Figure 3.2(b) the Master
has already inserted some data into the buffer, but the Worker is still waiting since the
MASTER_PKT_THRESHOLD has not been reached yet. Figure 3.2(c) depicts the
situation in which the Master has woken up the Worker, which has already processed
two items. Notice that, since the WORKER_PKT_THRESHOLD has not been reached
yet, the W.prodIndex still points to the oldest token in the buffer. Instead, in
Figure 3.2(d) this threshold is passed and the Master has already consumed some
data.

1For the sake of clarity, the figure represents the shared buffer as an array instead of a circular
FIFO queue.

30 Designing an efficient data exchange algorithm

Algorithm 5 Executing the Worker
1: Procedure worker.do()
2:
3: {Initialize private variables of the Worker}
4: W.consIndex← 0
5: pkts_processed← 0
6:
7: {Execute the algorithm}
8: while true do
9: waitForWakeUp()

10: W.consIndex←W.prodIndex
11: pkts_processed← 0
12: while W.consIndex ̸= M.prodIndex do
13: if pkts_processed == WORKER_PKT_THRESHOLD then
14: pkts_processed← 0
15: W.prodIndex←W.consIndex
16: end if
17: toBeDropped← buffer.process(W.consIndex)
18: if toBeDropped then
19: buffer.setDropped(W.consIndex)
20: end if
21: W.consIndex++
22: pkts_processed++
23: end while
24: W.prodIndex←W.consIndex
25: workerStatus←WAIT_FOR_SIGNAL
26: end while

3.3 The data exchange algorithm 31

M.prodIndex

W.prodIndex W.consIndex

M.consIndex

M.prodIndex

W.prodIndex W.consIndex

M.consIndex

M.prodIndex

W.prodIndex W.consIndex

M.consIndex

W.consIndex

M.consIndex M.prodIndex

W.prodIndex

MASTER_PKT_THRESHOLD

WORKER_PKT_THRESHOLD

Token to be handled by
the Worker

Token already processed
by the Worker

a)

b)

c)

d)

Token to be removed by
the Master

Fig. 3.2 Run-time behavior and indexes of the algorithm.

32 Designing an efficient data exchange algorithm

3.3.4 Extended algorithm: handling worker-generated data

The algorithm also supports Workers that may need to generate new token as a
consequence of the token just received from the Master; however, this cannot be
done with the primary buffer alone, as Workers cannot inject new data into the
primary buffer. In fact, the Worker can just modify (potentially completely and also
modify its size) pass-through tokens in the primary buffer or, at most, it can drop
these tokens.

Then, in case new data have to be provided to the Master, the Worker can use
the auxiliary buffer. This buffer, in which the Worker acts as the producer while the
Master plays the role of the consumer, is managed through two indexes; moreover, it
requires a further flag in each slot of the primary buffer, which indicates whether the
next token should be read from the primary or the auxiliary buffer.

Algorithm 6 details how the Worker sends new data to the Master, as a conse-
quence of the processing of the token at position W.consIndex in the primary
buffer. As shown in lines 3-11, several data can be generated for a single token
received from the Master, which are all linked to the same slot of the primary buffer.
A first flag, called aux, is set in the slot of the primary buffer to signal to the master
that the next slot to read is the one on top of the auxiliary buffer (line 13). Instead,
the next flag set in a slot of the auxiliary buffer tells that the next packet has still to
be read from the auxiliary buffer, instead of returning to the next slot of the primary
buffer.

Algorithm 6 The Worker writing new data into the auxiliary buffer
1: Procedure worker.writeDataIntoAuxBuffer(Data[] newData, Index W.consIndex)
2:
3: while data← newData.next() do
4: if auxProdIndex == (auxConsIndex-1) then
5: {The auxiliary buffer is full}
6: break
7: end if
8: auxBuffer.write(auxProdIndex,data)
9: auxBuffer.setNext(auxProdIndex)

10: auxProdIndex++
11: end while
12: auxBuffer.resetNext(auxProdIndex-1)
13: buffer.setAux(W.consIndex)

3.3 The data exchange algorithm 33

M.consIndex

0

1

0

0

1

1

slot
W.prodIndex

Primary
buffer

1 0 1 1 0

auxConsIndex auxProdIndex

Auxiliary
buffer

Dropped flag

Aux flag Next flag

Data to be handled by
the Master

Fig. 3.3 Binding primary buffer - auxiliary buffer.

The reading procedure is described in Algorithm 7. When the Master encounters
a slot with the aux flag set in the primary buffer, it processes a number of tokens
in the auxiliary buffer, starting from the slot pointed by auxConsIndex until the
next flag is set. Moreover, according to lines 4-7 of Algorithm 6, if the auxBuffer
is full, new tokens that the Worker may want to send to the Master are dropped.

Algorithm 7 The Master reading data from the auxiliary buffer
1: Procedure master.readDataFromAuxBuffer()
2:
3: while true do
4: master.consumeData(auxBuffer.read(auxConsIndex))
5: if not auxBuffer.next(auxConsIndex) then
6: auxConsIndex++
7: break
8: end if
9: auxConsIndex++

10: end while

Figure 3.3 depicts the primary buffer with some slots linked to the auxiliary
buffer. In particular, the slot pointed by M.consIndex is associated with two data
of the auxiliary buffer, i.e., the one pointed by auxConsIndex and the following
one, which has the next flag reset to indicate that the next slot is not linked with

34 Designing an efficient data exchange algorithm

the current slot in the primary buffer. Instead, the next token in the primary buffer
is not associated with the secondary buffer (the aux flag is reset), while the third
slot contains data dropped by the Worker; despite this, the slot is linked to three data
in the auxiliary buffer. In other words, the configuration in which aux == 1 and
dropped == 1 is valid and it enables to completely replace a packet with a new
one.

3.4 Implementation choices

This section presents the choices done for the implementation of the prototype to
improve the performance and the scalability of the algorithm.

Private copies of shared variables. The presented algorithm, as the many
derived from the producer-consumer problem, also needs to keep two processes in
sync by means of a pair of shared variables, one written only by the first process,
the other one written only by the second process. Although in this case concurrency
issues are limited (the two processes never try to write the same variable at the
same time so no contention can occur), but, as shown in MCRingBuffer [33], the
actual implementation on real hardware can introduce additional issues. In fact,
when two CPU cores works on cached variables if one core modifies the content of
a variable that is shared, the entire cache line (64 bytes long on the modern Intel
architectures) of the other core containing that variable is invalidated. If the second
core needs to read that variable, the hardware has to retrieve this value either from
the shared cache (e.g., the L3 in many recent Intel architectures) or from the main
memory, with a consequent performance penalty. In the algorithm, this problem
occurs for M.prodIndex, incremented by the Master and read by the Worker, and
for W.prodIndex, incremented by the Worker and read by the Master. However,
the algorithm is robust enough to operate correctly even if those variables are not
perfectly aligned. As a consequence, the code of the algorithm implements a cache
line separation mechanism (similar to MCRingBuffer [33]), which consists in storing
each shared variable (possibly extended with padding bytes) on a different cache line
storing the data on a local private variable while the task is being performed.

Alignment with cache lines. When a cache miss occurs, the hardware introduces
a noticeable latency related to the necessity to update the cache with the latest data,
which happens in blocks of fixed size (the cache line). From that moment, all the

3.4 Implementation choices 35

memory accesses within that block of addresses are very fast, as data are served from
the L1 cache. In order to minimize the number of cache misses (and the associated
performance penalty), the prototype was engineered to align the most frequently
accessed data so that they span across the minimum set of cache lines. In particular,
the starting memory address of the packet buffers and their slot sizes are multiple of
the cache line size; the same technique is used for minimizing the time for accessing
the most important data used in the prototype.

Use of huge memory pages. Huge pages are convenient when a large amount of
memory is needed because they decrease the pressure on the Translation Lookaside
Buffer (TLB) for two reasons. First, the load of virtual-to-real address translation
is split across two TLBs (one for huge pages and the other for normal memory),
preventing normal applications (based on normal pages) from interfering with the
packet exchange mechanism (which uses huge pages). Second, they reduce the
number of entries in the TLB when a large amount of memory is needed. We
use the huge pages for the shared (primary and auxiliary) buffers; the drawback is
the potential increase of the total memory required by the algorithm because the
minimum size of each buffer increases from 4KB to 2MB.

Preallocated memory. Dynamic memory allocation should be avoided during
the actual packet processing, as this would heavily decrease the performance of
the whole system. So, all the buffers used by the packet exchange mechanisms are
allocated at the startup of each Worker, allowing the system to add/remove workers
at run-time while at the same time avoiding dynamic memory allocation.

Emulated timestamp. Getting the current time is usually rather expensive on
standard workstations as it requires the intervention of the operating system and,
often, an I/O operation involving the hardware clock. The implementation emulates
the timestamp, which is needed to wake up a Worker when packets are waiting for
service for too long time, by introducing the concept of current round, that is the
number of loops executed by the Master in Algorithm 1. As a consequence, the
implementation schedules a Worker for service when there are packets waiting for
more than N rounds; this number can be tuned at run-time based on the expected
load on the Master.

Batch processing. Batch processing is convenient because it keeps a high degree
of code and data locality, with a positive impact on cache misses. Our prototype
implements batch processing whenever possible, e.g., the Master reads all waiting

36 Designing an efficient data exchange algorithm

packets from a Worker before serving the next, and Workers process all the packets
in their queue before suspending themselves; the drawback is the potential increase
of the latency in the data transfer.

Semaphores. A simple POSIX semaphore is used to wake up a Worker in case
at least MASTER_PACKET_THRESHOLD packets are queued in the primary buffer,
or in case some packets are waiting for long time and then the timeout expired.
Although POSIX semaphores are implemented in kernel space, their impact on
performance is acceptable as they are rarely accessed by algorithm design. Instead,
no explicit signal is used in the other direction: the shared variables M.consIndex
and W.prodIndex are in fact used by the Master to detect the presence of packets
that need to be read from the buffer.

Threading model. Context switching should be avoided whenever possible
because of its cost, particularly when this event happens frequently (such as in packet
processing applications, which are usually rather simple and often handle a few
packets in a row). For this reason, the Master is a single thread process, cycling on
a busy-waiting loop and consuming an entire CPU core, while Workers (which are
single-thread processes as well) work in interrupt mode and share the remaining
CPU cores. While the Master can be simply parallelized over multiple cores as long
as the function chains are not interleaved2, by design the implementation keeps it
locked to a single core as we would like to allocate the most part of the processing
power to the (huge number of) Workers, which will host the network functions that
are in charge of the actual (useful, from the perspective of the end users) processing.

3.5 Experimental results

In order to evaluate performance and scalability of the data exchange algorithm
described in Section 3.3, we carried out several tests on our prototype implementation
(that follows the implementation choices described in Section 3.4) running on a
workstation equipped with an Intel i7-3770 @ 3.40 GHz (four CPU cores plus
hyperthreading), 16 GB RAM, 16x PCIe bus, two Silicom dual port 10 Gigabit
Ethernet NICs based on the Intel x540 chipset (8x PCIe), and Ubuntu 12.10 OS,

2Interleaved chains may introduce additional complexity because multiple masters may collide
when feeding a single Worker; this would require an extension of the algorithm (no longer lock-free)
that is left to a future work.

3.5 Experimental results 37

kernel 3.5.0-17-generic, 64 bits. In all tests, an entire CPU core is dedicated to the
Master; instead, Workers have been allocated on the remaining CPU cores in a way
that maximizes the throughput of the system. All the following graphs are obtained
by averaging results of 100s tests repeated 10 times.

The tests done to evaluate the chain performance are similar to the ones of Chap-
ter 2. The data exchanged among the Master and the Workers consists of synthetic
network packets of three sizes, 64 bytes to stress the forwarding capabilities of
the chain, 700 bytes that matches the average packet size in current networks, and
1514 bytes to stress the data transfer capabilities of the system. We first present a
set of experiments where packets exchanged between the Master and the Workers
are directly read/written from/to the memory, without involving the network; those
tests aim at validating the performance of the algorithm in isolation, without any
disturbance such as the cost introduced by the driver used to access to the NIC or the
overhead of the PCIe bus. In these testing conditions, Section 3.5.3 compares our al-
gorithm against two existing approaches based on the traditional producer/consumer
paradigm, which are typically used to exchange packets between the vSwitch and
the network functions consolidated on the same server. Particularly, the comparison
shows the advantages deriving by both the absence of data copy in the Worker and
the blocking operating mode of the Worker itself. Finally, Section 3.5.6 presents
some results involving a real network, where the workstation under test is connected
with a second workstation acting as both traffic generator and receiver, with two
10Gbps dedicated NICs. This setup allows to derive the precise latency experienced
by packets in our middlebox. In this case we use the PF_RING/DNA drivers [36] to
read/write packets from/to the NIC, which allows the Master to send/receive packets
without requiring the intervention of the operating system. In addition, data coming
from the network is read in polling mode in order to limit additional overheads
due to NIC interrupts, and in batches of several packets in order to maximize code
locality. Similar techniques are used also when sending data to the network after all
the processing took place.

3.5.1 Single chain - Throughput

This section reports the performance of our algorithm in a scenario where all packets
traverse the same chain, which is statically defined. Tests are repeated with chains of
different lengths and the measured throughput is provided in graphs that include (i) a

38 Designing an efficient data exchange algorithm

bars view corresponding to the left Y axis that reports the throughput in millions of
packets per second and (ii) a point-based representation referring to the right Y axis,
which reports the throughput in Gigabits per second.

Figure 3.4 shows the throughput offered by the function chain in different con-
ditions. These numbers depend both on the design aspects of our algorithm (e.g.,
no data copy in the Worker, polling model in the Master, blocking model in the
Worker, etc.), as well as on the implementation choices we did when implementing
the prototype (e.g., data aligned with cache lines, private copies of shared variables,
etc., as detailed in Section 3.4). For instance, the overall throughput of the chain
(i.e., the packets/bits that exit from the chain) decreases with the number of Workers
because of our choice of reserving the most part of the CPU power to the Workers,
hence limiting the Master to a single CPU core (Section 3.4 - threading model).

Figure 3.4a shows the throughput that could be achieved in ideal conditions, that
is: (i) with dummy Workers, i.e., Workers that do not touch the packet data, and (ii)
with the Master always reading the same input packet from memory and copying
it into the buffer of the first Worker of the chain, which reduces the overall number
of CPU cache misses experienced at the beginning of the chain. This provides an
ideal view of the system, where the penalties due to memory accesses are kept to a
minimum. Results reported in Figure 3.4b are instead gathered in a more realistic
scenario, i.e., with Workers that access to the packet content and calculate a simple
signature across the first 64 bytes of packets. This test shows that performance is
reduced compared to Figure 3.4a for two reasons: (i) the higher number of cache
misses generated by the Workers when accessing to the packet content, and (ii) the
additional processing time spent by the Workers for completing their job.

Next tests consider a scenario where the input data for the chain is stored in
a buffer containing 1M packets, thus emulating a real middlebox that receives
traffic from the network. In particular, Figure 3.4c refers to a scenario with dummy
Workers such as in Figure 3.4a and shows how an apparently insignificant different
memory access pattern can dramatically change the throughput. In fact, the Master
experiences frequent cache misses when reading packets at the beginning of the chain.
This modification alone halves the throughput compared to Figure 3.4a, particularly
when packets have to traverse chains of limited length, while in case of longer chains
this additional overhead at the beginning is amortized by the cost of the rest of the
chain.

3.5 Experimental results 39

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

1 2 4 6 8 10
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(a) Dummy Workers and a single packet in memory.

 0

 10

 20

 30

 40

1 2 4 6 8 10
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(b) Real Workers and a single packet in memory.

 0

 10

 20

 30

 40

 50

1 2 4 6 8 10
 0

 10

 20

 30

 40

 50

 60

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(c) Dummy Workers and 1M packets in memory.

 0

 10

 20

 30

 40

1 2 4 6 8 10
 0

 10

 20

 30

 40

 50

 60

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(d) Real Workers and 1M packets in memory.

Fig. 3.4 Throughput of a single function chain.

40 Designing an efficient data exchange algorithm

Finally, Figure 3.4d depicts a realistic scenario where Workers access the packet
content (such as in Figure 3.4b), and the Master feeds the chain by reading data
from a large initial buffer (1M packets). Even in this case our algorithm is able to
guarantee an impressive throughput, such as about 38 Mpps with 64B packets.

In order to confirm that, with the current workload, the Master represents the
bottleneck of the system, Figure 3.6 shows the internal throughput of the chain,
namely the total number of packets moved by the Master, with an increasing number
of Workers, in the same test conditions of Figure 3.4d. This figure gives an insight
of the processing capabilities of the Master, which slightly increases with a growing
number of Workers and proves the effectiveness of our algorithm as the number of
packets it processes essentially does not depend on the number of Workers.

3.5.2 Single chain - Latency

Some architectural and implementation choices, such as working with batches of
packets, aim at improving the throughput but may badly affect the latency. For
this reason, this section gives an insight about the latency experienced by packets
traversing our chains. Measurements are based on the gettimeofdayUnix system
call and, in order to reduce its impact on the system, only sampled packets (one
packet out of thousand) have been measured.

Figure 3.5a shows the latency of 64B packets when traversing a function chain
consisting of a growing number of Workers, in case of real Workers and 1M packets
in memory. As expected, the latency increases with the length of the chain; however
its value is definitely reasonable for most of networking applications, reaching an
average value of about 2.2ms in case of 10 cascading Workers, being far less with
shorter (and more realistic) chains.

3.5.3 Single chain - Comparison with other algorithms

This section aims at comparing our data exchange algorithm with two other ap-
proaches that could be used to exchange packets between the Master and the Workers,
and which represent the baseline algorithms used to evaluate the improvements (in
terms of performance) brought by our research. Particularly, the comparison aims at

3.5 Experimental results 41

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Time [us]

1 Worker (avg: 37us)
2 Workers (avg: 104us)
4 Workers (avg: 335us)
6 Workers (avg: 784us)

8 Workers (avg: 1394us)
10 Workers (avg: 2211us)

(a) Our algorithm.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Time [us]

1 Worker (avg: 23us)
2 Workers (avg: 71us)

4 Workers (avg: 224us)
6 Workers (avg: 358us)

8 Workers (avg: 421624us)
10 Workers (avg: 419100us)

(b) Zero-copy buffers among the Master and the (polling) Workers.

Fig. 3.5 Latency introduced by the function chain with a growing number of cascading
Workers.

42 Designing an efficient data exchange algorithm

validating the advantages of two important aspects of our algorithm: the absence of
a data copy in the Worker, and the blocking operating mode of the Worker itself.

In this respect, the algorithm cannot directly be compare with existing prototypes
used in NFV such as VALE [13] and OVS [8], because they include the overhead of
packet classification (e.g., L2 forwarding, Openflow matching), which would affect
the performance of the data exchange algorithm. As a consequence, we distilled the
fundamental design choices of the most important alternative approaches and we
carefully implemented them by using, whenever applicable, the guidelines listed in
Section 3.4 (e.g., shared variables on different cache lines, private copies of shared
variables, and more).

The first baseline algorithm is based on the traditional producer/consumer
paradigm, in which the Master shares two buffers with each Worker: the first is used
by the Master to provide packets to the Worker, while the second operates in the
opposite direction. In this case, similarly to our algorithm, only the Master operates
in polling mode, while the Worker wakes up when there are packets to be processed.
The second baseline algorithm closely follows the processing model suggested by
Intel in the DPDK library [20]. Also in this case two buffers (again based on the
traditional producer/consumer paradigm) are shared between the Master and each
Worker; however, these buffers contain pointers, which means that the actual data
is stored in a shared memory region and never moved between the components of
the functions chain (zero-copy). Moreover, both the Master and Workers operate in
polling mode. Although this solution neither provides isolation among the Workers,
nor limits the CPU consumption, it has been selected as a baseline algorithm to be
compared against our proposal because nowadays it represents the “standard” way
to move packets in network function chains.

The baseline algorithms are executed in realistic conditions, namely with Workers
accessing packets and 1M packets in memory; therefore, obtained results should be
compared with numbers reported in Figure 3.4d shown also in Figure 3.7a.

As expected, the throughput of the chain drops of about 30% when unidirectional
buffers are used, as shown by comparing Figure 3.7a and Figure 3.7b. This is mainly
due to the operating principles of our primary buffer, which allows the Worker to
send back a packet to the Master without moving the packet itself, while the baseline
algorithm requires one additional data copy in the Worker.

3.5 Experimental results 43

 0

 10

 20

 30

 40

 50

1 2 4 6 8 10
 0

 20

 40

 60

 80

 100
T

hr
ou

gh
pu

t [
M

pp
s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

Fig. 3.6 Internal throughput of the function chain, with real Workers and a 1M packets in
memory.

Instead, the second baseline algorithm slightly outperforms our algorithm until
the number of jobs (one Master plus N Workers) is lower than the number of available
CPU cores, as evident by comparing Figure 3.7c with Figure 3.7a. This is due to the
absence of data copies and to the polling-based operating mode implemented in the
Workers. However, a stronger performance degradation with respect to our solution
(it offers less than 1 Mpps throughput) is noticeable when 8 (or more) Workers are
active because at least two of them have to share the same CPU core.

The second baseline algorithm has also been evaluated in terms of latency in-
troduced on the flowing packets. Similarly to what happens for the throughput, it
outperforms our proposal when the number of running jobs is less than the number
of CPU cores, as evident by comparing Figure 3.5a and Figure 3.5b. For instance, six
chained Workers introduce an average latency of 358µs, against the 784µs obtained
with our algorithm. Instead, in case of more Workers, the average latency of the
baseline algorithm reaches 420ms, which is a consequence of the fact that many
polling processes share the same CPU core, and is definitely not acceptable. Hence,
this solution neither provides isolation among Workers (due to the zero-copy), nor ac-
ceptable performance when the number of Workers exceeds the number of available
cores, being inappropriate for our objectives.

3.5.4 Single chain - Other tests

Additional tests have been performed in order to evaluate some other aspects of the
system.

44 Designing an efficient data exchange algorithm

 0

 10

 20

 30

 40

1 2 4 6 8 10
 0

 10

 20

 30

 40

 50

 60

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(a) Real Workers and 1M packets in memory.

 0

 10

 20

 30

 40

1 2 4 6 8 10
 0

 10

 20

 30

 40

 50

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(b) Unidirectional buffers shared between the Master and the Workers.

 0

 10

 20

 30

 40

 50

1 2 4 6 8 10
 0
 50
 100
 150
 200
 250
 300
 350
 400
 450

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(c) Zero-copy buffers among the Master and the (polling) Workers.

Fig. 3.7 Throughput of a single function chain when other data exchange algorithms are
used.

3.5 Experimental results 45

Threads vs. Processes

Threads appear more convenient than processes because they share the same virtual
memory space, while processes have distinct virtual memory spaces. In our system,
where the data exchange mechanism requires a shared memory between the Master
and a Worker, this could have an impact on both the cache efficiency and the TLB
behavior and, consequently, on the overall performance of the system. With respect
to the former, the same physical memory address shared in two processes lead to two
virtual addresses, which requires two entries in the L1/L2 caches3; threads, instead,
have the same virtual address, hence potentially allow the same cache line to be used
by different threads. With respect to the TLB, as the same (virtual) address space is
present in many threads, the number of entries in the TLB is reduced as well. Instead,
processes are expected to generate an higher number of TLB misses.

In order to guarantee memory isolation among Workers, which is a key point in
a multi-tenant NFV node, the Master and all the Workers should be implemented
as different processes, which suggests a possible performance penalty compared to
the thread-based implementation. However, our experiments dismantle this belief
as the overall performance is definitely similar in both cases. The reason is that the
L1/L2 caches are private per each physical core, but the Master and the Workers are
usually executed in different cores. Hence, an address already cached by the core
executing the Master cannot be already found in the cache of the core executing the
Worker, forcing the latter to retrieve that data from the (physically addressed) L3
cache, no matter whether it is a thread or a process. As a consequence, as far as
performance is concerned, our system shows no differences between a thread-based
and a process-based implementation.

Normal memory vs. huge pages

We also evaluated the impact of our choice of using huge pages (each one consisting
of 2MB of memory in our testbed) instead of normal pages (4KB) for the shared
buffers. Although it may sound strange, results of the two approaches do not differ
significantly in the test scenarios considered so far. This is a consequence of our
specific test conditions, where the Master and the Workers use a very little amount
of memory in addition to the shared buffers. Hence, we repeated the test with

3The L3 cache operates with physical addresses.

46 Designing an efficient data exchange algorithm

Workers executing a deep packet inspection algorithm based on a Deterministic
Finite Automata (DFA), which requires a huge amount of memory to store the DFA
used to recognize the given patterns into the packets. In this case, the adoption of the
huge pages for the shared buffer results in roughly a 10% improvement in terms of
throughput.

3.5.5 Multiple chains

While previous tests focused on packets traversing a growing number of functions all
belonging to the same chain, this section evaluates the case when multiple function
chains are executed in parallel and each packet traverses only one of them. This
significantly stresses the CPU cache, as (i) the Master has to receive packets from
an high number of buffers, and (ii) the packets read by the Master are likely to be
copied in different buffers for the next processing step.

Data read from the initial memory buffer (containing 1M packets) is provided, in
a round robin fashion, to a growing number of function chains, each one composed
of two Workers. During the tests, each Worker is involved in two chains meaning
that, when 1000 Workers are deployed, packets are spread across 1000 different
function chains. Workers are allocated among six CPU cores in a way that minimizes
the number of times a packet has to be moved from one core to another, in order to
limit CPU cache synchronization operations among cores (Section 3.4).

Obtained results are shown in Figure 3.8; as in the previous tests, these numbers
are due to the combined effect of the choices we did when designing our algorithm
(Section 3.3) and of the implementation guidelines followed to efficiently implement
the prototype (Section 3.4).

Figure 3.8a provides the overall throughput measured at the end of all the chains,
which smoothly decreases with the increment of the number of chains; particularly,
it is equal to several Gbps also with 1000 chains in the system, thus confirming the
effectiveness of our algorithm. Figure 3.8b shows instead the cumulative distribution
of the latency experienced by 64B packets traversing the chains, which ranges from
an average value of 80µs in case of 10 function chains, to an average value of 3.8ms
when 1000 chains are active.

3.5 Experimental results 47

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

10 50 100 500 1000
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

#Chains

64B
700B

1514B

(a) Throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Time [us]

10 Chains (avg: 80us)
50 Chains (avg: 249us)

100 Chains (avg: 362us)
500 Chains (avg: 1675us)

1000 Chains (avg: 3.853us)

(b) Latency.

Fig. 3.8 Results with a growing number of function chains running in parallel, each one
spotting two Workers in cascade.

48 Designing an efficient data exchange algorithm

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 6 8 10
 0

 2

 4

 6

 8

 10
T

hr
ou

gh
pu

t [
M

pp
s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(a) Throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Time [us]

1 Worker (avg: 135us)
2 Workers (avg: 340us)
4 Workers (avg: 721us)

6 Workers (avg: 2880us)
8 Workers (avg: 6635us)

10 Workers (avg: 9705us)

(b) Latency.

Fig. 3.9 Results with a function chain of growing length, with the Master accessing to the
network.

3.5.6 Network tests

This section evaluates our algorithm in a real deployment scenario, i.e., when exe-
cuted on a workstation that receives/sends traffic from the network. In this case the
overall performance of the system depends on the algorithm, on the implementation
choices done when developing the prototype, as well as on additional aspects such
as the driver used for accessing the NIC; anyway, these results provide an insight of
the behavior of the algorithm when used in the context it was designed for.

The throughput obtained in this scenario, whose testing conditions are the same
as those of Figure 3.4d, is depicted in Figure 3.9a. Results are limited by the speed
of the input NIC in several cases, particularly with large packets and (relatively)
short chains. With longer chains (i.e., 10 cascading workers) the throughput is even
slightly better than what was obtained in Figure 3.4d without the network. This can
be due to the fact that real NICs create an input buffer that is much smaller than the

3.6 Conclusion 49

1M packets buffer used in the previous test, hence potentially improving the data
locality.

Figure 3.9b shows the cumulative distribution function of the latency introduced
by network function chains of different length when traversed by 64B packets. Those
numbers, obtained by sending packets at the same rate shown in Figure 3.9a, measure
the time between the instant in which the packet is scheduled for transmission in
the traffic generator, and the time it is received by our testing software in the traffic
receiver. In this case we then consider all the time spent by the packet in our mid-
dlebox, plus the network latency and the time spent in the traffic generator/receiver
after/before hitting our timestamping code. Particularly, reported numbers also
include the time that the packet spends in the input buffer before being picked up
and sent through the chain by the Master, because of its batch-based reading mode.
Our measurements demonstrate that the latency, albeit still acceptable, is about 4-5
times higher than in Figure 3.5a.

3.6 Conclusion

This chapter showed an efficient way to move data between network functions (the
Workers) and a virtual switch module (the Master), in order to implement virtual
network function chains. The architecture is based on a different pair of circular
buffers shared between the Master and each Worker and aims at achieving a scalable
and high performance system while guaranteeing traffic isolation among the different
(huge number of) Workers.

One of the peculiarities of this approach is that, through the primary buffer, data
are sent to a Worker and then returned back to the Master for further processing with
zero-copy. A form of batching has also been introduced in order to amortize the
cost of context switches, while introducing a safeguard mechanism to avoid packet
starvation in case of Workers traversed by a limited amount of traffic. The auxiliary
buffer, instead, is used by the Worker to send new data to the Master.

Finally, performance and scalability of the proposed solution have been eval-
uated by means of a wide range of experiments made on a real implementation,
comparing also different possible implementation choices; obtained results confirm
the effectiveness of the proposed approach.

Chapter 4

Prototyping a dedicated network
function for resource-constrained
devices

Part of the work described in this chapter has been previously published in [37].

4.1 Overview

This chapter presents a specific native application for the filtering of HTTP URLs
on resource constrained devices like home gateways, which leverages a distributed
software architecture.

The architecture of residential gateways is characterized by special purpose
hardware chips that forward packets at high speed at the data link layer, and other
hardware components, such as CPU and central memory, used for other operations
that require more sophisticated processing. Their processing capabilities are often
underutilized and they could be leveraged by Internet access service providers to
offer additional service to their customers. However, the limited computing and
memory resources that residential gateways have by design make the implementation
of new features working at wire-speed very challenging, particularly when complex
operations such as parsing packets up to the application layer (a.k.a. Deep Packet
Inspection (DPI)) are involved.

4.1 Overview 51

This is the case for many critical modern filtering applications, such as malware
protection, corporate policy enforcement, parental control, advertisement block, that
are based on inspection and filtering of Uniform Resource Locators (URLs). In fact,
users access and exchange content mostly through mobile apps and web applications,
both based on HTTP, which uses URLs to identify data objects to be transferred.
Implementing this services on the residential gateway would require matching URLs
against large, dynamic blacklists, which far exceeds the limited hardware capabilities
of this category of devices. For example, an effective parental control service, which
is a valuable offer to residential customers, is based on a very large database of URLs
that cannot be stored in the limited memory of common residential gateways (usually
in the order of tens of MB). An additional challenge comes from the fact that the
database must be frequently updated. Last but not least, URL matching cannot be
limited to the hostname, but the entire URL should be considered because the same
web server can host both appropriate and inappropriate or malicious pages.

The presented solution, named U-Filter, integrates a URL filtering service in a
resource constrained device, such as a common residential gateway, leveraging a
distributed software architecture. A remote policy server in charge of keeping the
URL database provides a fast API that can be accessed through the network in order
to establish if a request for a specific URL is allowed. It is reasonable that the above
mentioned server is operated by a service provider (or the network service provider)
and can rely on powerful hardware resources to serve multiple residential gateways
with minimal response time. However, this architecture does not necessarily require
the network service provider awareness and collaboration. The presented solution
greatly alleviates the load on each residential gateway, even though it must still
perform a limited form of DPI on outgoing packets to extract the URL from every
HTTP request, and afterwards query the server in order to determine the policy that
must be applied. We adopt specific techniques to optimize this task and limit the
latency introduced by the client-server interaction, striking a balance between the
load they introduce and the limited resources available in residential gateways.

The chapter is organized as follows. Section 4.2 presents the architecture of U-
Filter, describing the design principles that led to our solution and the optimizations
used to provide real-time policy enforcement on resource-constrained devices. We
validate U-Filter in Section 4.4 through various experiments showing the impact on
the user experience. Section 4.5 presents the state of the art of HTTP-level policy
enforcement and Section 4.6 concludes the chapter.

52 Prototyping a dedicated network function for resource-constrained devices

Residential Gateway

U-Filter
Policy Server

Web Server

(1) HTTP Request (2a) HTTP Request

(3a) HTTP Response(4) HTTP Response
Client

Fig. 4.1 U-Filter workflow.

4.2 Overall architecture

4.2.1 Operating principles

A typical deployment scenario of U-Filter is presented in Figure 4.1. A user surfing
the web generates many HTTP requests that transit through her/his residential
gateway. These requests are analyzed by U-Filter, which extracts the requested
URL through a lightweight DPI algorithm. This allows to process line rate traffic
with a small overhead for the residential gateway. Afterwards the HTTP request
is released and can continue its journey towards the web server, while the URL is
simultaneously sent to the policy server that provides the policy to enforce. This
policy is enforced by U-Filter on the packet carrying the HTTP response by either
blocking or allowing it.

4.2.2 Architecture overview and design principles

The prototype has been built around three main objectives. First comes flexibility,
as it is essential to be able to enforce effective protection to end users in a prompt
response to newly discovered threats. Second is efficiency since the system is
targeted to resource-constrained devices. Third, we took care of ensuring an excellent
user experience, hence limiting the impact of the system in terms of possible
additional latency when inspecting traffic to apply filtering policies. The above
high-level objectives have translated in the following four design choices.

4.2 Overall architecture 53

LAN
interface

WAN
interface

Linux IP forwarding (kernel)

U-Filter
online module

Web serverUser client

NF_IP_FORWARD hook

U-Filter policy
server

Internet

URL
queueKernel space

User space

HTTP
session

table

Verdict
queue

[Kernel space portion]

U-Filter offline module
[User space portion]

Fig. 4.2 U-Filter architecture.

Three-tier processing architecture

As shown in Figure 4.2, U-Filter includes (i) an online module, which sits on the
data plane of the router and is mainly in charge of identifying (and extracting)
requested URLs from network traffic (more details in Section 4.3.2) and apply the
policy decisions on the return traffic, (ii) an offline module that queries a remote
policy server to know whether such URL should be allowed or not (described in
Section 4.3.3), and (iii) a remote server that implements the complex protection
logic and returns a boolean value with the result of the classification, i.e., if the
corresponding HTTP session handled by the online module has to be allowed or the
URL is malicious and the response has to be blocked. The first two modules are built
with efficiency in mind, while the latter allows to achieve the required flexibility.

The policy server can be executed on a remote host (or on a cluster of hosts for
performance reasons), as its only interaction with the rest of the system is through a
query/response protocol. A single policy server can be queried by offline modules
running on multiple (remotely distributed) residential gateways.

54 Prototyping a dedicated network function for resource-constrained devices

Decoupling policy verification from HTTP operation

As introduced in Section 4.2.1, policy compliance is verified without holding out-
going packets on their ride towards the final destination. This solution makes the
system more complicated but much more efficient. In fact, keeping the HTTP request
on hold until the arrival of the response from the policy server would add additional
delay to the HTTP communication, increasing the Round Trip Time (RTT) of the
HTTP connection and hence affecting the user experience. Vice versa, the U-Filter
offline module checks the requested URL with the policy server during the normal
HTTP RTT. A temporary entry in an HTTP session table is created by the online
module in order to possibly hold a response from the web server received before the
result of the compliance check arrives from policy server. While this allows packets
to travel through the Internet also if they are part of a session that shall be stopped, the
answer from the web server never reaches the user, effectively preventing possible
unwanted data to reach the user’s host.

Efficient memory usage

Efficient memory usage is a key problem because of (i) the limited amount of
memory usually available in current residential gateways, and (ii) the bad effects
in terms of CPU cache pollution when large memory structures (with sparse access
patterns) are used. Several implementation choices have been adopted to ensure
that memory is used efficiently. According to the best practice for kernel module
development, all the memory used by the online U-Filter module is allocated at
startup in order to avoid costly memory allocations at run-time, and the structures
that are used for the communication between online and offline modules are shared
using the proper primitives for mapping memory between kernel and user space
for better memory efficiency. Furthermore, all the helper structures detailed in
Section 4.3.1 make use of contiguous memory areas in order to improve data locality
and, as a result, CPU cache efficiency, except for the packets that may need to be
held temporarily by U-Filter (while waiting for an answer from the policy server),
which have been allocated by other portions of the kernel and therefore are not under
our control. Finally, the usage of additional memory is kept at minimum: (a) the
data structure dedicated to the session table defines a “default” behavior that avoids
storing accepted sessions, and (b) the number of packets held by the router while

4.3 Implementation details 55

Src
IP

Dst
IP

Src
port

Dst
port

skbuff

response packet

KEY VALUE

RX PACKET
(1 entry)

Kernel session table (hash map)

M
 e

n
tr

ie
s

Session entry
DROP|UNKNOWN

SESSION STATUS
FLAG

Fig. 4.3 HTTP session table, shared between online and offline modules.

waiting for the answer from the policy server is limited to, at most, one per session,
hence further reducing memory requirements.

Per-packet operation

This is known to be much more efficient than per-TCP session processing while, at
the same time, reducing the latency required to extract application level information
(namely URLs). In fact, the former can be based directly on the very efficient
packet processing primitives available in the Linux kernel through the netfilter
framework, instead of requiring a full-blown HTTP proxy, whose complexity is
so high to make a kernel implementation problematic. Therefore, an additional
overhead is added for moving all packets from kernel to user space, where a proxy is
usually located, and then back to kernel for their transmission on the output interface.

4.3 Implementation details

4.3.1 Key data structures

The online and offline modules exchange data using three shared structures, as shown
in Figure 4.2: (i) a hash map for the status of the policy for a given session, (ii) a
queue for the URLs that have to be send to the policy server and (iii) a queue with
the verdict received from the policy server. Each of the data structures is described
in detail in the reminder of this section, while their usage will be discussed in the
following sections.

56 Prototyping a dedicated network function for resource-constrained devices

SESSION KEY

Src
IP

Dst
IP

Src
port

Dst
port

URL

Fig. 4.4 URL queue, shared between the online module and the offline module user space
process.

SESSION KEY

Src
IP

Dst
IP

Src
port

Dst
port

ACCEPT | DROP

SESSION STATUS FLAG

Fig. 4.5 Verdict queue, shared between the offline module kernel thread and user space
process.

The HTTP session table (shown in Figure 4.3) stores data regarding pending
sessions. An HTTP session is considered pending when the HTTP request has been
received, but either the HTTP response from the web server or the decision from
the policy server are yet to be received. The hash map implementing the HTTP
session table is allocated in kernel space and is shared between the online and offline
module because the former needs to know (when an HTTP response arrives) whether
a decision for an URL has been received, while the latter needs to know, when the
verdict is available, whether an HTTP response is already waiting. An entry in the
HTTP session table can be deleted as soon as both the HTTP response and the verdict
from the policy server have been received.

The URL queue (shown in Figure 4.4) is shared between the online module and
the offline module user space process, while the verdict queue (shown in Figure 4.5)
is shared between the kernel thread and the user space process of the offline module.
The two queues are managed according to a FIFO policy and the access to each

4.3 Implementation details 57

queue is implemented with two pointers, pointing respectively at the first free and
the first full slot.

To correlate data in different data structures, an entry always contains a key made
by the 4 tuple identifying the TCP session (later referred as session ID):

(Source IP,Destination IP, Source TCP port, Destination TCP port)

The addresses are the ones present in the HTTP request and are inverted in the
corresponding HTTP response.

An entry in the URL queue contains also the URL that should be checked with
the policy server, while an entry in the verdict queue contains a session status flag
that assumes either ACCEPT or DROP, according to the policy to enforce. The URL
is stored in some pre-allocated memory whose size allows containing a full-length
HTTP payload (i.e., 1460 bytes), in order to avoid memory allocations at run-time.
On the other hand, an entry in the HTTP session table stores as value a session status
flag and a void pointer to a packet (skbuff structure, allocated by the operating
system). The use of this pointer is detailed in Section 4.3.2. Differently from the
verdict queue, the session status flag in the HTTP session table can assume either
UNKNOWN or DROP. In fact, entries corresponding to an ACCEPT policy are deleted
as soon as the verdict is available in order to reduce the size of the hash table. Thus,
in the HTTP session table the absence of an entry is considered as an ACCEPT

policy.

As a further optimization to reduce the allocated memory, in our prototype the
TCP session ID uses only the last byte of the source IP address, instead of the entire
4 bytes address, with no impact on the system proper execution. This optimization is
correct in our environment, since domestics LANs usually adopt a 24 bits subnet,
therefore all the clients have the same value for the first 3 bytes of the IP address.
In general this is not valid for every deployment, hence the optimization should be
adapted to the specific addressing plan in use.

4.3.2 Online module

The online module sits on the data path by intercepting all the traffic forwarded
by the router through a callback registered on the NF_IP_FORWARD netfilter

58 Prototyping a dedicated network function for resource-constrained devices

hook. As shown by the workflow depicted in Figure 4.6, most of the processing
occurs when an HTTP request or response is detected. For each packet, the module
first locates the beginning of the TCP payload and then checks if that packet can
be considered the first segment of an HTTP request or response by matching the
beginning of the TCP payload against a few simple text strings, namely an HTTP
method (i.e., GET, POST, PUT, etc.) in case of a request or a version string (i.e.,
HTTP/1.0 or HTTP/1.1) in case of a response. This classification method is far more
reliable than checking the transport-layer port number, as investigated in [38]. All
other packets, namely HTTP packets that are not the first of the request/response
message (hence, do not match the signature), as well as non-HTTP traffic, are left
to continue their way as the online module returns NF_ACCEPT to netfilter.
Notably, since all TCP packets containing a valid payload are matched against the
signature, this algorithm is able to intercept all the HTTP requests/responses that
are issued within a connection in HTTP 1.1 persistent mode, not only the first one,
as well as within HTTP connections terminated on a non-standard TCP port. This
algorithm could raise concerns about the cost of inspecting all packets, as general DPI
techniques are normally demanding in terms of computing resources. However, our
algorithm does not perform a full-blown DPI with full parsing of all protocol headers
and their fields. Instead, it performs a lightweight parsing to locate the beginning
of the TCP payload and a string checking (instead of regular expressions) just on
the initial bytes of the payload. In fact, our experimental validation (Section 4.4.3,
Figure 4.11) confirms that the online module does not introduce noticeable overhead
in the traffic processing.

In case of an HTTP request, the URL is extracted and sent to the offline module
by pushing a new entry in the (shared) URL queue (Figure 4.4), which includes
the TCP session identifier to later match the verdict from the policy server with
the corresponding HTTP session. A new entry is also created in the HTTP session
table; as shown in Figure 4.3, it includes the TCP session identifier (as a key), a
session status flag that is marked as UNKNOWN, and an additional field that is left
empty. Afterwards the packet is allowed to be forwarded by returning NF_ACCEPT
to netfilter.

When an HTTP response is received, the module checks the status in the HTTP
session table and acts according to the three possible scenarios:

4.3 Implementation details 59

Not HTTP

Check packet
(DPI)

NF_ACCEPT

HTTP responseHTTP request

New
Packet

Extract URL

Update HTTP session
table with new
session (status=

UNKNOWN)

Check
state

Store packet

Not Found

UNKNOWN

DROP

Generate HTTP
redirect

Send URL to the
offline module

NF_ACCEPT NF_ACCEPT NF_STOLEN NF_DROP

Send TCP RESET
to the server

Delete entry in
HTTP session

table

Fig. 4.6 Summarized workflow of the online module.

• The lookup is successful and the requested URL is forbidden (DROP in the
session status flag). The HTTP response is dropped (i.e., a NF_DROP is
returned to netfilter), and two new packets are generated: (i) a TCP
RESET message sent to the web server to forcibly close the connection and
(ii) an HTTP redirect message sent to the client in order to show the user a
courtesy web page notifying that the requested web resource was blocked.
Moreover the entry is removed by the HTTP session table.

• The lookup is successful but the system is still waiting for the policy server to
respond (UNKNOWN in the session status flag). This occurs when the response
from the web server arrives before the one from the policy server. In this
case the HTTP response packet is put on hold by returning NF_STOLEN to
netfilter and saved in the proper skbuff structure (shown in Figure 4.3)
of the HTTP session table entry, waiting for the arrival of the answer from the
policy server. This is the only case in which the user experiences an additional
delay compared to a scenario where U-Filter is not deployed.

• The lookup is unsuccessful. Our algorithm interprets this condition as the URL
being allowed, hence the HTTP response is forwarded to the client. Since in
common URL filtering applications most URLs are not to be blocked, this

60 Prototyping a dedicated network function for resource-constrained devices

design choice allows considerable space savings in the HTTP session table
(Figure 4.3), as we avoid explicit entries for all the sessions that correspond to
‘accepted’ URLs.

Notably, the algorithm needs to hold (hence, store in the kernel session table) no
more than one packet per HTTP session. In fact, even if other segments of the HTTP
answer are in fact delivered to the destination, the TCP layer on the destination host
cannot reconstruct the entire message because of the missing packet, which is the first
segment of the HTTP response. This prevents the message to be actually delivered to
the application (e.g., web browser) while keeping at minimum the memory storage
requirements in the residential gateway. However, this solution also causes the
transmission of some duplicated packets, which we analyze in Section 4.4.2 and that
are discarded by U-Filter since they are equal to the packet already on hold.

4.3.3 Offline module

As depicted in Figure 4.2, the offline module is split in two portions, the first one
operating as a process in user space, while the other operates as a thread in kernel
space. The former is in charge of the communication with the policy server, as shown
in Figure 4.7, while the latter executes the workflow summarized in Figure 4.8.

U-Filter
(offline module)

Worker1

U-Filter
policy server

Listening
TCP-Socket

2 TCP Connections

Worker2

URL queue

Verdict queue

Fig. 4.7 Offline module user space process.

The user space process retrieves URLs from the URL queue and sends them to
the policy server, which provides decisions stating whether they are acceptable or to
be blocked. These decisions are then pushed in the shared verdict queue, together
with the same TCP session identifier that was stored in the corresponding URL queue
entry.

4.3 Implementation details 61

Check
decision

ACCEPT
(URL is SAFE)

DROP
(URL is malicious)

New
Verdict

Check
queue

NOT EMPTY

Delete stored
packet

Send TCP RESET to
the server

Update HTTP
session table entry

(status=DROP)

Delete entry in
HTTP session table

Generate HTTP
redirect

EMPTY

Packet in
session
table

PRESENT NOT PRESENT

Send stored packet

Fig. 4.8 Summarized workflow of the offline module kernel thread.

The entries in the verdict queue are retrieved by the offline module thread in
kernel space, which reads the enclosed decision. In case the resource is legitimate
(the entry contains the ACCEPT flag), it checks whether a packet is stored in the
HTTP session table entry corresponding to the TCP session key present in the verdict
queue entry. This packet, if present, is injected back into the networking stack of
the operating system, exactly in the same point of the netfilter chain where
it had been stolen, so that the packet is processed by any other software relying
on netfilter (e.g., NAT). The HTTP session table is then updated by deleting
the entry since, as mentioned earlier, the absence of an entry is interpreted as an
ACCEPT verdict. The skbuff structure containing the first packet of the HTTP
response is stored in a memory location managed by the operating system, hence the
offline module leverages the kernel space thread to access it. In case the resource
is not legitimate (the verdict queue entry contains the DROP flag), if no packet is
found in the HTTP session table entry, the session status flag is updated to DROP,
thus the online module will drop the response packet when it arrives. If a packet
is already stored in the HTTP session queue entry, the offline module performs the
same actions previously described for the online module in case of a DROP policy.
Additionally the packet is dropped, so that the client cannot reassemble the HTTP
response.

62 Prototyping a dedicated network function for resource-constrained devices

Additionally, the last N URLs verdicts are cached in the offline module. Each
URL is first looked up in the ad-hoc verdict cache and, in case of a hit, there is no need
to interact with the policy server and, in case of unauthorized result, redirection to
the courtesy web page can be immediately implemented, thus reducing the overhead
for the module.

4.3.4 Communication with the policy server

The U-Filter offline module exploits two different parallel threads to interact with
the policy server, each one using a distinct TCP connection as shown in Figure 4.7.
The two threads establish the TCP channels when the system starts, hence enabling
the offline module to send immediately a query to the policy server when needed,
without the overhead (and the consequent latency) of the TCP handshake1.

The offline module exploits these threads to implement an asynchronous com-
munication with the policy server, separately processing the requests and the replies
without any wait. The first thread cyclically collects every new entry present in the
URL queue and sends the URL and the TCP session identifier to the policy server,
which replies with a message on the second thread, using the second connection,
containing the same Session ID and a single binary information (ACCEPT/DROP)
that is used to push a new entry in the verdict queue. This solution allows to process
as fast as possible both new entries in the URL queue and new replies from the policy
server. The Session ID sent back and forth is used to correlate the requests with the
replies, so that there is no need to share data between the two threads. Since the
requests are sent sequentially, the policy server can adopt different techniques to
efficiently parallelize the policy checking, such as spawning new threads without
the necessity to open a dedicated TCP connection for each of them. It is worth
noting that most TCP implementations are designed to use the Nagle algorithm by
default, in order to reduce the congestion of the network and increase bandwidth
efficiency at the expense of latency [39]. This algorithm buffers application data until
all the previously sent packets are acknowledged or the data reach the Maximum
Segment Size (MSS). In this way the probability of having small packets in the
network (i.e. packets smaller than the MSS) is strongly reduced, thus limiting the

1The messages sent to and received from the policy server are not intercepted by the callback of
the online module, since they are addressed to the local host and do not cross the NF_IP_FORWARD
hook, where the callback is registered.

4.4 Experimental validation 63

overhead of TCP headers, allowing for a more efficient use of transmission links and
reducing the burden on routers in terms of packets per second to be processed. This
behavior is particularly harmful for U-Filter, since both the offline module and the
policy server always send very small packets, that most of the time would be delayed
up to one RTT. It is therefore crucial that the offline module and the policy server
disable the Nagle algorithm (typically with the TCP_NODELAY socket option) when
establishing the two connections.

4.4 Experimental validation

In order to validate the proposed solution we conducted a broad range of experiments.
Specifically our goal has been to study the interaction between the presented algo-
rithm and TCP, as well as the conditions in which a web page load time is increased,
quantifying to what extent the user experience is affected.

4.4.1 Testbed setup

We deployed U-Filter on a commercial low-cost residential gateway, a TP-Link
Archer C7 (single core MIPS32 CPU clocked at 720MHz, 16MB Flash, 128MB
RAM) running OpenWrt 12.09 [40] with the version 3.3 of the Linux kernel. Open-
Wrt is an open source operating system specifically optimized for the execution on
resource constrained residential gateways. As shown in Figure 4.9, multiple worksta-
tions (whose number and setup varies according to the specific test) acting as clients
are connected on a Gigabit Ethernet LAN representing the “domestic side” of the
residential gateway. Another 1 Gbps interface (“WAN side”) hosts the policy server
and the traffic sink of our experiments, which is represented by a web server during
TCP interaction and throughput experiments or a vanilla Internet connectivity when
evaluating browsing experience. All the workstations and the servers are equipped
with an Intel Core i7-4770 CPU and 32GB of main memory in order to guarantee
not to become the bottleneck.

Since a production-grade policy server is not in the scope of this work, we use
a policy server that gives always a positive verdict, with a customizable delay in
order to simulate the processing time. Moreover, in the policy server we use Linux

64 Prototyping a dedicated network function for resource-constrained devices

Residential Gateway

Workstation

Web Server

WANLAN
U-Filter

Policy Server

(a) Testbed to analyze the interaction
with TCP and to evaluate the maximum
throughput.

Residential Gateway

WANLAN
U-Filter

Policy Server

Workstation 2

VM4 VM6VM5

VM1 VM3VM2

Workstation 1

INTERNET

(b) Testbed to evaluate the browsing expe-
rience.

Fig. 4.9 Testbed setup.

Traffic Control (tc) to add a custom delay to any outgoing packet in order to simulate
various network RTTs.

To generate single HTTP requests we use curl and ab [41], while for real-life
simulations we start multiple VMs on the workstations to emulate multiple end-users.
Each VM runs an instance of WebTrafficGenerator2, an automation tool that can
drive a web browser to replay a user browsing history. For every entry in the provided
browsing history, the browser loads a complete web page (i.e. retrieving the web
page with all the associated resources such as images, javascript files, etc.)3. In
this respect, WebTrafficGenerator can also issue HTTPS requests, which happens
when a page, appearing in HTTP in the browsing history, includes content that has
to be retrieved using an encrypted connection. The time between multiple web page
requests, a.k.a. the Thinking Time, is randomly selected using a random variable with
the same statistical distribution as the actual thinking time of the user as measured
from his/her browsing history. A realistic thinking time is required not only to
simulate a real user behavior, but also to avoid that web services (e.g. Google)
recognize that the client is an automaton and thus provide a different response web
page with the intent of testing whether or not the user is human. In the event that a
new request must start before the previous web page is completely loaded, the tool
creates a different browser window, in order to load multiple web pages in parallel
(which simulates multi-tabbing).

2https://github.com/netgroup-polito/WebTrafficGenerator
3The community have not yet reached a consensus on when a web page should be considered

completely loaded. Particularly, WebTrafficGenerator considers a page complete when the javascript
“onload” event is fired on the “body” HTML tag.

4.4 Experimental validation 65

4.4.2 Interaction with TCP

This section shows how the TCP algorithm reacts when one specific packet (the first
packet of an HTTP response) is repeatedly lost on its way to the destination, for a
certain amount of time. The aim of this analysis is to show that U-Filter has been
designed keeping in mind the peculiar characteristics of the TCP protocol, hence our
algorithm that possibly delays the first packet of the HTTP response does not cause
additional delay in the TCP data exchange.

To reduce external interferences, in this test we use a web server directly con-
nected to the WAN interface of the gateway (as shown in Figure 4.9a) running the
Apache HTTP Server 2.4.7; TW measured in this setup is less than 1 ms, thus we
can consider ∆delay = T P. Moreover, in this test the Linux Traffic Control (tc)
in the policy server is disabled, hence the RTT is negligible and we can consider
T P = T P

proc. A client workstation runs curl to request a 512 KB web page stored
on the webserver. The gateway executes U-Filter with a fixed T P

proc ≈ 100 ms delay
in the policy server response. As detailed in Section 4.3.2 and 4.3.3, only the first
packet of any HTTP response is buffered by U-Filter. In the scenario created for these
experiments, such packet is eventually forwarded to the client about 100 ms after
the HTTP GET request traverses the residential gateway. All subsequent packets are
forwarded correctly. We capture the traffic on both the LAN and WAN links of the
residential gateway and extract the sequence numbers (SEQ) of the TCP segments
from the web server to the client and the acknowledgment numbers (ACK) of the
ones from the client to the webserver, together with their timestamp. The resulting
data are presented in Figure 4.10 (the SEQ and ACK numbers are relative).

This experiment enables us to observe how a TCP connection progresses during
the U-Filter operation. The presented results show that, while the first TCP segment
of the HTTP response is blocked, the server TCP endpoint sends the subsequent
segments as well as duplicates of the first segment (visible only on the WAN side, in
Figure 4.10a), until the TCP window is full. As expected, the TCP receiver repeatedly
acknowledges the segment arrived before the one missing (Figure 4.10c); specifically
one ACK is sent for each of the subsequent segments received out of sequence.
All the modern TCP implementations include the TCP selective acknowledgment
(SACK) option [42] in the duplicated ACK, which is used to selectively acknowledge
correctly received segments logically following the missing one(s). Thanks to the
selective acknowledgments, these segments are not re-transmitted, as it happens

66 Prototyping a dedicated network function for resource-constrained devices

 0
 20
 40
 60
 80

 100
 120
 140

 0.1 1 10 100

Time (milliseconds)

WAN link

Server-Gateway Seq. number (x1000)

(a) Response packets timing on the WAN link

 0
 20
 40
 60
 80

 100
 120
 140

 0.1 1 10 100

Time (milliseconds)

LAN link

Gateway-Client Seq. number (x1000)

(b) Response packets timing on the LAN link

 0
 20
 40
 60
 80

 100
 120
 140

 0.1 1 10 100

Time (milliseconds)

LAN link

Client-Gateway ACK number (x1000)
Client-Gateway SACK number (x1000)

(c) Acknowledgement packets timing on the LAN link

Fig. 4.10 Progress of a TCP session.

4.4 Experimental validation 67

for the blocked segment, as the traditional Go-Back-N algorithm would require.
When the blocked packet is released (after 100 ms in our experiment, as shown
in Figure 4.10b) and properly delivered, all the previously received segments are
cumulatively acknowledged and the transmission can continue from a new segment
(Figure 4.10c).

Abiding by TCP Fast retransmit [43] algorithm, the web server re-sends the
blocked segment for every 3 duplicated acknowledgments. These re-transmitted
segments are the only overhead induced by U-Filter. In our test these duplicates
amount to 12.8% of the packets sent by the server during ∆delay, and half that
number if we consider all the packets transmitted during the same interval; however,
considering the entire lifespan of the TCP connection, this overhead accounts (on
average) no more than 1.6% of all the packets, which can be considered negligible.

From the point of view of the users’ experience, selective acknowledgments
are particularly beneficial because, even if the policy server replies after the web
server (i.e. ∆delay is positive), the actual delay perceived by the user is smaller than
∆delay because several TCP segments are correctly received during the ∆delay interval
and are ready to be used to render the web page as soon as the missing segment is
delivered.

4.4.3 Browsing experience

This section presents the results of several tests executed in a realistic scenario to
show how much a real user browsing experience is affected by U-Filter. Using the
testbed in Figure 4.9b, we launched WebTrafficGenerator in 6 VMs (running on 2
workstations) in order to simulate 6 users simultaneously browsing the Internet. This
number of concurrent users is reasonable for a residential gateway. Moreover, with
a large number of users, the browsing experience would be limited by the network
speed. As expected, the latency of the policy server proved to be the parameter that
has the greater impact on the user-perceived performance of U-Filter.

In every test, a single VM browses 600 web pages collected from the browsing
histories of 30 anonymous users (we consider only web pages downloaded using
HTTP, since those using HTTPS are irrelevant for U-Filter). In order to use realistic
values for the policy server processing time and RTT, we analyzed several traffic
traces captured using Tstat [44] during 24 hours in 4 different points of presence

68 Prototyping a dedicated network function for resource-constrained devices

Table 4.1 Inferred RTT values with the policy server in different locations (RT T P).

Location Type of measure RTT

POP
Median 25 ms

90th percentile 100 ms

Data Center (DC)
Median 45 ms

90th percentile 200 ms

Table 4.2 Inferred policy server latency values (T P
proc).

Type of measure Latency

Median 2 ms

90th percentile 80 ms

(POPs) of an Internet Service Provider and extracted the median and 90th percentile
values for the RTT of HTTP requests and processing time of web servers. Tstat infers
the RTT from the POP to an endpoint by measuring the inter-arrival time of a packet
and its acknowledgment and infers a web server processing time by measuring the
interval between the arrival of the acknowledgment for the request and the arrival
of the first response packet. In fact, a host’s operating system usually sends a TCP
ACK as soon as a packet is received.

Table 4.1 shows the statistical values for the RTTs from a client to the POP and
from a client to the destination server. We use these values in our tests to simulate the
RTT in the case that the policy server is either in the POP or in a remote data center,
those measures were taken from the university network. Additionally Table 4.2 shows
the statistical values of the processing time for web servers. These values are used to
simulate the processing time of the policy server: since the operations performed
are somewhat similar (parsing of a request, look up in a database, preparation of a
response), we assume the complexity to be comparable with (or even lower than) the
one of any web server.

At the end of a test, WebTrafficGenerator provides a file containing a summary
of various aspects of every request. Among the provided values, we are interested
in the complete page load time (the time needed to load the web page with all its

4.4 Experimental validation 69

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 101 102 103 104

C
D

F

Resource waiting time (milliseconds)

Baseline
No delay

POP Median
DC Median

POP 90th perc.
DC 90th perc.

Fig. 4.11 Waiting time for a single HTTP resource - Cumulative distribution function.

resources, such as pictures, libraries, etc.) and the timings of the individual HTTP
requests issued to get the main HTML page and the associated resources.

Individual HTTP requests

The timing of an HTTP request is the sum of multiple components, such as the
queuing time, the DNS resolution time, the connection setup time, etc. The only
component that can be affected by U-Filter is the time spent waiting for a response
from the server (waiting time), equal to max{T P,TW}, if the RTT between the client
and the gateway is negligible. Figure 4.11 shows the cumulative distribution of the
waiting time for HTTP requests with different values of RTT and processing time
(latency) for the policy server, together with the baseline (i.e., the latency without
U-Filter) and the case in which the policy server immediately provides verdicts (in
which case the delay T P is negligible), as if U-Filter and the policy server are on the
same LAN. The different measurement from the figure was done using the delays
presented on the table shown on the previous section.

These results show that U-Filter adds a negligible delay if the policy server
provides an immediate response, therefore proving our claim that the online module
does not introduce noticeable overhead in the traffic processing. On the other hand,
when the policy server response is received after a certain amount of time, the

70 Prototyping a dedicated network function for resource-constrained devices

100

101

102

103

104

105

100 101 102 103 104 105

R
e
so

u
rc

e
 w

a
it

in
g

 t
im

e
 w

it
h
 U

-F
ilt

e
r

(m
s)

Resource waiting time without U-Filter (ms)

10-3

10-2

10-1

100

101

102

103

R
a
ti

o

Fig. 4.12 Resource waiting time considering the 90th percentile of the processing time and
RTT with the policy server in a data center.

cumulative distribution is shifted toward that value, since all the HTTP responses
that arrived earlier are delayed by U-Filter. In summary, the impact of U-Filter on
the single resource loading time is highly dependent on the distance from the policy
server and its processing time.

Considering only the worst case (i.e., the 90th percentile of the processing time
and RTT with the policy server in a data center), we show in Figure 4.12 the waiting
time for each requested HTTP resource, with and without U-Filter. The figure shows
a cluster of requests on the horizontal line corresponding to the delay T P, supporting
the conclusion that this delay highly influences the loading time of a single resources.

Both figures show that, even with U-Filter, some resources are received before
the policy server delay (T P ≈ RT T P +T P

proc). This happens because some resources
are retrieved through HTTPS, even if the main HTML page is on HTTP, therefore
they do not experience the policy server delay.

Complete pages

Figure 4.13 shows the cumulative distribution function of the complete web page
load time, while Figure 4.14 shows for every requested URL the relation between
the complete page loading time with and without U-Filter, in the worst conditions

4.4 Experimental validation 71

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 101 102 103 104 105

C
D

F

Page loading time (milliseconds)

Baseline
No delay

POP Median
DC Median

POP 90th perc.
DC 90th perc.

Fig. 4.13 Complete page loading time cumulative distribution.

(policy server in the data center, 90th percentile values for RTT and latency). These
results show that the impact caused by the presence of U-Filter is not noticeable,
therefore we can assert that the overall page loading time is not affected by U-Filter
and also the browsing experience is unaltered.

This is justified by the fact that multiple resources are requested in parallel by
the browsers, hence the policy server processes all the requests concurrently. As
a result, the increase in the overall time for loading the complete web page is not
dependent on the number of resources and is, in any case, approximately equal to a
single policy server delay T P. Since the time needed to receive, parse and render the
main HTML web page and all its resources is usually an order of magnitude greater
than the policy server delay, the added latency (and the impact of U-Filter on the
browsing experience) is in effect negligible.

4.4.4 Residential gateway aggregated throughput

In this section we evaluate the overhead introduced by U-Filter by comparing the
average aggregated throughput of the residential gateway in 3 scenarios: (i) without a
URL filtering service in place, (ii) with U-Filter and (iii) with Tinyproxy [45], a URL
filtering solution for OpenWrt based on a lightweight HTTP proxy that intercepts and
analyzes all the outgoing web traffic and can operate in either explicit or transparent

72 Prototyping a dedicated network function for resource-constrained devices

101

102

103

104

105

101 102 103 104 105

Pa
g

e
 l
o
a
d

in
g

 t
im

e
 w

it
h
 U

-F
ilt

e
r

(m
s)

Page loading time without U-Filter (ms)

10-3

10-2

10-1

100

101

102

103

R
a
ti

o

Fig. 4.14 Complete page loading time considering the 90th percentile policy server processing
time with the policy server in a data center.

(a.k.a. man-in-the-middle) mode. These experiments assess the impact of U-Filter
with respect to the maximum forwarding capabilities of the residential gateway,
which is basically limited by the CPU consumption of the on-board software.

These experiments employ the testbed setup depicted in Figure 4.9a; the policy
server is configured to simulate a deployment in a data center with the median pro-
cessing time and RTT, while the web server has the same RTT. The client workstation
uses ab to request files of different sizes from the web server; each file is requested
100 times. As suggested by the HTTP/1.1 standard [46] with respect to persistent
HTTP connections, each client issues two concurrent requests toward the server. The
goal of this experiment is to evaluate how much packet inspection and policy check-
ing in the residential gateway affects the download speed and the latency. We show
in Figure 4.15 the minimum, maximum and average application-level throughput
for the 3 scenarios, while in Figure 4.16 we show the time needed to download the
entire file.

These results show that the throughput and the download speed reached with
U-Filter are higher than with Tinyproxy for files larger than 8 KB, while for small
files the two solutions show the same level of performance. In fact, with very small
files, we experience an additional small delay with U-Filter, compared to the baseline.
We ascribe this delay to the time needed for the context switch between the online

4.4 Experimental validation 73

256K

1M

4M

16M

64M

256M

1G

1KB
8KB

64KB
256KB

512KB

1MB
8MB

64MB
256MB

512MB

1GB

Th
ro

ug
hp

ut
 (

bp
s)

File size

Tinyproxy
U-Filter

Baseline

Fig. 4.15 Application-level throughput when downloading files of different sizes.

101

102

103

104

105

106

1KB
8KB

64KB
256KB

512KB

1MB
8MB

64MB
256MB

512MB

1GB

D
ow

nl
oa

d
tim

e
(m

s)

File size

Tinyproxy
U-Filter

Baseline

Fig. 4.16 Download time when requesting files of different sizes.

74 Prototyping a dedicated network function for resource-constrained devices

and offline module, given that the residential gateway has a single core. This delay is
negligible for larger files, for which U-Filter provides almost the same performance
reached without the filtering service in place. We expect that a residential gateway
with at least a dual core processor would not experience this delay, therefore U-Filter
would provide the same level of performance as the baseline. However, even with a
single core gateway, the impact of U-Filter on the download time is only 3% with
large files and never exceeds 54%, while Tinyproxy has an overhead ranging from
44% to a remarkable 322%. As an example, the download of a 1 GB file requires
approximately 1 minute and 12 seconds without a filtering service, 6 seconds longer
with U-Filter and more than 5 minutes with Tinyproxy.

It is worth mentioning that U-Filter can easily implement a whitelist containing
the IP addresses of trusted devices whose traffic should not be filtered. This is a
useful feature that allows to avoid the additional delay for delay-sensitive clients.

4.4.5 Memory footprint

Given the limitations in terms of available memory in current residential gateways,
we extracted the number of pending entries in the HTTP session table every time a
new HTTP request was received and plotted the resulting probability distribution in
Figure 4.17 in order to assess the impact of U-Filter in terms of memory consumption.
The observed values confirm the small memory footprint of U-Filter: even in the
worst case, the number of pending entries are always less than a hundred. In the case
in which every entry stores a packet (usually 1518 bytes at most), together with IP
addresses (8 bytes), TCP ports (4 bytes) and a binary session flag, the HTTP session
table requires less than 200 KB of main memory, a value far below the memory size
of low-end residential gateways (usually in the order of at least tens of MB).

4.5 Related work

Currently several solutions for filtering traffic based on URLs are available com-
mercially or as open source packages, often used as parental control or ad block.
Many are based on software executing on the client machine to control outgoing
traffic. Among them, it is worth mentioning k9 Web Protection [47], a powerful free
software for URL filtering that comes with a large database of URL categorization

4.5 Related work 75

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Number of pending requests

No delay
POP Median
DC Median

POP 90th perc.
DC 90th perc.

Fig. 4.17 U-Filter load.

data. New websites are categorized in real-time and their information published on a
server that is used to update the local database. This software needs to be installed
on any device that must be protected and is tuned to run on common PC hardware.

An idea of outsourcing the complex operations from middleboxes to the cloud
is presented in [48] that is similar to the NFV concept, reducing the middleboxes
operations reduces their costs.

Among existing parental control solutions that do not require execution of a
software agent on clients, some are based on applying the filtering policing in the
DNS server [49]. While this is a low complexity and efficient solution that enables
achieving high performance, it is not effective as it can be easily bypassed choosing a
different DNS server. Moreover, filtering is based on server domain names rather than
URLs, as required when the same server or name domain can deliver both appropriate
and inappropriate content, such as in case of public services like facebook.com.

As an alternative approach, filtering policies can be applied by network appli-
ances on the path of the protected client traffic. Blue Coat WebFilter [50] is a
sophisticated URL filtering solution that runs on business level network appliances
and provides policy enforcement on web traffic, blocking malware downloads and
web threats. WebFilter combines URL filtering and anti-malware technologies, ex-
ploiting an engine with a local rule database continuously updated from a remote

76 Prototyping a dedicated network function for resource-constrained devices

master database. The engine detects hidden malware and provides reputation and
web content categorization based on input from actual users.

None of the above-mentioned solutions is designed to run on resource constrained
devices, such as a typical residential gateway, which would not ensure acceptable
performance when executing computationally intense tasks. Among the efforts to
integrate web filtering service in low-end residential gateways, the ones related to
the OpenWrt platform are noteworthy, such as Tinyproxy [45]. Tinyproxy can filter
HTTP requests checking their URL against a list of regular expressions contained in
a local file, which may be rather big and needs to be frequently updated. A similar
technology has been proposed in [51], where an access gateway performs mobile app
policy enforcement deploying a transparent HTTPS proxy to gain access to encrypted
traffic, extract relevant field values, and pass them to an external policy-checking
module. However, deployment of an HTTP proxy is critical on resource-constrained
devices since it must terminate all the TCP connections, pair them with new TCP
connections with the remote endpoint, parse every packet, identify and extract
patterns of interest, and match them against a large blacklist. Therefore it becomes
easily a bottleneck with high traffic loads, thus impacting user experience.

The work presented in [52] represents an attempt to perform efficient HTTP
traffic filtering in OpenWrt. The authors propose a two-tier architecture, with a
kernel module that intercepts and analyzes HTTP traffic and a user-space process
in charge of policy compliance checking. The computational load of the user space
module, that performs string matching on URLs, grows with the length of the list
of rules, and so does the introduced delay. Consequently, when this approach is
implemented on a residential gateway with limited resources, only short lists can be
supported without user experience degradation, thus limiting the effectiveness of the
policy enforcement system. Moreover, the proposed architecture makes it difficult
for a trusted third-party to push real-time updates to the local database in order to
ensure prompt detection of newly discovered threats. Finally, the URL analysis is
performed by each edge systems in isolation, hence excluding the possibility of a
(centralized) cross-correlation mechanism that identifies new threats by analyzing
URLs requested from different sources.

Traffic processing in residential gateways has been proposed also in the context
of NFV [53, 54]. An existing NFV infrastructure can employ residential gateways
to deploy lightweight eBPF data plane programs [55], in order to provide delay-

4.6 Conclusion 77

sensitive services to the user, while computation intensive services are hosted in the
data center of the service operator. This solution offers flexibility in the type and
number of network services that can be provided and represents an interesting target
platform for the deployment of U-Filter.

4.6 Conclusion

Leveraging an external policy server and an intelligent combination of kernel and
user space processing (and a careful implementation), U-Filter is able to inspect
the URL in every HTTP request and block unwanted web pages with a very small
memory footprint and processing overhead. This makes U-Filter appropriate for
the deployment on resource-constrained devices and also reduces at a minimum the
additional delay introduced on page download, which leaves the overall browsing
experience of the user practically unaltered.

Since U-Filter operates on a packet-by-packet basis, it assumes that the entire
HTTP header is on the same packet. This makes URL extraction easier and avoids
to have to store additional information to correlate subsequent packets. Since the
maximum size of an IP packet is usually 1500 bytes, this does not represent a
problem in a real scenario, as confirmed by [56].

The policy server, where multiple mechanisms and optimizations can be im-
plemented, was purposely kept outside of the scope of this work as it involves a
completely different set of challenges and solutions. Similarly, we did not address
how providing additional information to the residential gateway can increase its
efficiency in caching verdicts, thus reducing the number of interrogations.

In case of HTTPS traffic the URLs matching can not be done because the
HTTP traffic results encrypted, using the same idea the module can extract the data
from the unencrypted packets during the handshake of the connection and with the
server_name field on the CLIENT HELLO packet the module can know the
name of the server that the client wants to contact.

This chapter shows that a lightweight network function can be successfully
installed and executed even on low-profile hardware such as domestic CPE. In the
context of NFV services, we can point out two main observations. Fists, the main
lesson learned from the current work is that even resource-constrained devices can

78 Prototyping a dedicated network function for resource-constrained devices

be used to provide powerful services, particularly when the proper collaboration
between edge and cloud services can be exploited. However, this requires a careful
design of the network function, which should be able to consume a limited amount of
variable resources; in this context, starting a VM as VNF is out of question. Second,
the limitation of the presented work is the lack of flexibility: U-Filter is a function
that is deployed ahead-of-time and any modification to the service (or, even, the
setup of an additional service) requires a re-flashing of the whole system boot disk.
In the context of NFV, a better way to setup services should be envisioned in order
to support the service-on-demand model that is available in NFV.

This work has deeply inspired the results presented in the next chapter, in which
a special-purpose node has been designed to support NFV services, in particularly
through a new service deployment model for lightweight virtualized services called
native network functions.

Chapter 5

Designing a platform for NFV

Part of the work described in this chapter has been previously published in [57] an
[58].

5.1 Overview

NFV enables the instantiation of network functions (NFs) across the (possibly het-
erogeneous) compute resources available in the infrastructure of a network operator,
ranging from Customer Premises Equipment (CPE), which are typically based on
low-cost hardware, to high-end servers in the operator data centers.

The required service is a list of NFs that need to be deployed. Following the
results of Chapter 2, NFs can be implemented with different technologies; so we need
to design a software architecture that can support the possibility to have different
execution environment, and in particularly that can guarantee the NFV flexibility
also when resource-constrained devices are involved.

In order to enable efficient service deployment and delivery, we designed COM-
POSER (COMPact Open-source SERvice platform), which offers a high-level ab-
straction for composing network functions in arbitrary service graphs used to deliver
virtualized services. We design COMPOSER so that it is well-suited to run virtu-
alized services on high-volume servers, as one would expect based on the current
research and industry efforts. In addition, we demonstrate that COMPOSER brings
the power and advantages of NFV on resource-constrained hardware such as home-

80 Designing a platform for NFV

/SOHO CPEs, also known as residential gateways, thus enabling carriers to use
the same service deployment platform across the entire (heterogeneous) infrastruc-
ture available from the end-user sites through the fronthaul/backhaul and transport
network functions all the way to their core network.

COMPOSER exploits locally available information to optimize service deploy-
ment. For instance, COMPOSER evaluates local resources/constraints to select the
best implementation of a required function and binds NF(s) to the most appropriate
CPU core. Finally, COMPOSER is able to execute NFs running in different exe-
cution environments, according to the different operating contexts. For instance, a
resource-constrained CPE can execute NFs on bare metal, while full-fledged virtual
machines are more appropriate for “fat” servers. Hence, COMPOSER adds the
possibility to use the native applications on home gateways, thus extending the
results presented in Chapter 4.

The remainder of the chapter is structured as follows. Section 5.2 highlights
the design objectives of COMPOSER, mainly focusing on the unique features of
the platform with respect to other proposals in the NFV literature. Section 5.3
presents the overall software architecture of COMPOSER. An extensive evaluation
of COMPOSER is provided in Section 5.4, while Section 5.5 analyzes xisting related
work. Finally, Section 5.6 concludes the chapter.

5.2 Design objectives

This section summarizes the COMPOSER design objectives, focusing primarily on
the unique characteristics of the platform.

5.2.1 Domain-oriented orchestration

COMPOSER can interact with overarching orchestrators operating according to two
different models: domain-oriented orchestration based on functional capabilities,
and what we will refer to as “legacy” orchestration, akin to what is currently used in
the cloud computing/data center world based on checking for infrastructure capa-
bilities and available resources. More specifically, the former model abstracts each
infrastructure node, that can be considered as a “domain”, with a set of functional

5.2 Design objectives 81

capabilities, thus hiding from the overarching orchestrator the internal details of
each domain, such as the amount of available resources or the way in which a NF
is actually implemented. This enables the upper orchestration layers to request a
NF such as firewall instead of prescribing a “specific VM” (that, for instance,
implements a firewall).

With this model, COMPOSER can (i) support different implementations of
the same NF and use them transparently from the upper orchestration layer; and
(ii) flexibly select the best implementation for a given request and specific NF,
according to the current state of COMPOSER per se, i.e., number of CPU cores
currently available or availability of a NF compatible with a hardware accelerator.
Consequently, COMPOSER exposes functional capabilities, while infrastructure
capabilities, such as the possibility to execute KVM-based VMs, and resources, such
as the amount of CPU/RAM available on the node, are exported only when necessary
to maintain compatibility with legacy orchestrators.

5.2.2 Network abstraction

The COMPOSER control plane can interact with different virtual switches (vSwitches)
in order to implement paths between functions, each of which may be more appro-
priate for a specific deployment (e.g., CPE vs. high-volume server). For instance, a
vSwitch optimized to exploit hardware acceleration available on the specific node is
well suited when such hardware component(s) exist, while another vSwich, tailored
to exploit multiple CPU cores available in high-end processors, may be the best
choice when COMPOSER is deployed on a high-volume standard server.

5.2.3 Compute abstraction

The COMPOSER control plane is able to interact with different execution engines
and therefore to execute NFs in different ways, depending for example on the
availability of some hardware accelerator or specific software libraries on the infras-
tructure node, and the amount of available resources (e.g., CPU, memory). In fact,
different execution engines may have different requirements in terms of hardware
resources needed to run their NFs (e.g., VMs use more memory than containers),
and hence are well suited for particular COMPOSER deployments.

82 Designing a platform for NFV

5.2.4 Joint network and compute service graph optimization

The service to be implemented by COMPOSER is specified according to the Network
Functions-Forwarding Graph (NF-FG) formalism detailed in Section 5.3.1, which
describes both the compute and networking aspects of the service, i.e., the required
functions and the interconnections between them. This way, each COMPOSER node
has the complete view of the entire service, and can thus optimize, for example, the
binding between NFs and CPU cores by considering the way NFs are interconnected
with each other in the service graph.

5.2.5 Small footprint

This enables service deployment also on resource-limited hardware already available
at the edge of the network, e.g., on residential gateways, that cannot be controlled by
existing software platforms such as OpenStack.

5.2.6 Support for Native Network Functions

Existing virtualization engines are quite demanding in terms of resources required
to run NFs (e.g., memory, CPU, image size), therefore they may not be appropriate
for resource-constrained nodes. However, such devices usually run a Linux-based
operating system that includes a number of software modules (e.g., iptables)
that can be used to implement NFs executed directly on the host, hence providing
services with a reduced overhead compared to VMs and containers. Furthermore,
CPEs may include some hardware components (e.g., crypto accelerator, L2 switch)
that can be exploited to implement NFs as well.

Native Network Functions (NNF) represent a way to exploit these native (software
and hardware) modules, delivering efficient NFs implementations and reduced
overhead. As a consequence, COMPOSER, due to its small footprint and seamless
support for NNFs, enables the operator to deploy the service graph on existing
residential gateways, which are then integrated in the overall NFV telco infrastructure.
This is a design feature that in a real-world deployment enables an overarching
orchestrator to optimize NF placement and scheduling. As an illustrative example,
NFs required to be close(r) to the end users (e.g., secure tunnel termination, low-

5.2 Design objectives 83

latency functions, etc.) can be instantiated directly on the CPE, while other functions
of the same service (e.g., network address translation) can be executed in a data
center.

Unlike VMs and Docker containers that are well-known virtual execution en-
vironments, the COMPOSER concept of Native Network Functions (NNFs) [57]
enables the deployment of service graphs on current, resource-constrained CPEs,
which are then fully integrated in the programmable NFV carrier infrastructure, as
opposed to requiring their own silo for control and management. In fact, as shown
later in Section 5.4.4, NNFs have a significantly reduced image size with respect to
other virtualization environments, which makes them well suited to be executed on
resource-constrained devices.

We define NNF as a data plane processing component that exploits capabilities
natively present on the platform, which are instantiated as software or hardware
modules. Each NNF is executed directly on the host. In practice, an NNF can be
implemented as a tgz archive containing a set of bash scripts that are called by
the NNF driver (see Figure 5.1) to implement the functions defined in Table 5.4,
required in the NF lifecycle management.

Obviously, to be able to execute a particular NNF, all required modules, or
dependencies, must be available on the node. Then, besides all information required
for the execution of a generic NF (e.g., number of ports), the template associated with
a NNF also includes a list of dependencies, which might refer to software packages
(e.g., executable, libraries) that must already be installed and that are required by the
NNF to operate. The NF resolver also considers these dependencies when selecting
the best implementation for the required function.

Differently from virtualization technologies such as VMs and Docker, which
support an isolation model for the instantiated NFs, NNFs rely on scripts executed in
the host operating system. As such, the NNF driver needs to explicitly implement a
layer that provides some form of isolation of the NNF against the rest of the system.
Particularly, the NNF driver creates a network namespace before starting the NNF,
adds to that namespace the virtual ports (virtual Ethernet (veth) interfaces) required
to connect the NNF to the logical switching instance (LSI), and then starts the NNF
within the namespace.

Launching a NNF, i.e. a script running on bare hardware, offers less protection
than starting software in a VM or in a container, which can leverage the additional

84 Designing a platform for NFV

protection shield provided by the hypervisor or the container execution engine. For
instance, little protection exists to limit the resources used by NNFs, e.g., in terms
of CPU/memory consumption or the number of occupied CPU cores. Although
the impact of the above problems could be limited by turning on some additional
Linux mechanism such as cgroup, this may complicate the solution to a point in
which other alternatives may be more appealing, such as replacing the NNF with a
Docker-based implementation.

However, it is worth noting that, in any case, no protection exists that prevents a
NF, which is expected to provide a given service (e.g., firewall), to behave differently,
e.g., to launch an attack toward a remote host and the current solution is simply to
trust the creator of the application or the entity (e.g., app marketplace owner) that
markets it. Therefore, although we acknowledge that the problem of determining
whether a NF is malicious is emphasized in case of NNF because of their inferior
degree of isolation, we feel that the problem is rather general and should require a
more generic solution that guarantees, a priori, the “goodness" of the NF.

5.3 COMPOSER architecture

Figure 5.1 illustrates the COMPOSER architecture, which includes the following
main building blocks. The COMPOSER orchestrator (c-orch) is the main component
of the control plane; it receives commands through a northbound interface and takes
care of implementing them on the infrastructure node. c-orch provides network
and compute abstraction, hence it orchestrates compute and network resources
within COMPOSER by handling the complete lifecycle of the virtual execution
environment(s) and networking primitives (e.g., traffic steering rules). Moreover,
c-orch facilitates domain-oriented orchestration and enables joint optimization of
compute and network resources based on the incoming service graph requests.

c-orch relies on the NF repository to select the best NF implementation available
that matches the service request. The NF repository may also be deployed on another
server and can be contacted by multiple nodes.

The data plane includes a vSwitch that controls the traffic paths between the NFs
and a number of compute engines that can execute NFs implemented with different
technologies (e.g., virtual machines, containers, or natively).

5.3 COMPOSER architecture 85

COMPOSER

Orchestrator

Virtual switch LSI - 0

Network Functions Forwarding Graph (NF-FG)

Compute Manager

NNF
driver

libvirt

NF4

DPDK
driver

Docker
driver

NF2

graph - LSI 1

REST server

Virtual Link among LSIs

Network function port(s)
(between an LSI and a NF)

OpenFlow connection

Compute control

Network management

Node Resource Manager

VM
driver

Graph - LSI N

NF5

Security manager

Network Manager

Node description,
capabilities and resources

NF resolverNF scheduler

NF
repository

Docker
engine

KVM
hypervisor

DPDK
engine

DoubleDecker client

Native
functions

OF driver

Control interface Management interface

xDPd
driver

ERFS
driver

OvS
driver

OF ctrl
LSI #N

NF1 NF3

Other
drivers

ovsdb

Montoring
Manager

M
essage

b
u

s
(b

ro
ker)

D
D

 clien
t

D
D

 clien
t

Monitoring
Function

Fig. 5.1 Detailed architecture of COMPOSER.

86 Designing a platform for NFV

The remainder of this section details the modules of c-orch (Figure 5.1), together
with its northbound interface that is used to interact with the upper orchestrators, and
the traffic steering model used to properly implement network paths between NFs.

5.3.1 Northbound interface

c-orch interacts with the overarching orchestrator(s) through a bidirectional north-
bound interface. Specifically, c-orch receives a service graph, and exports informa-
tion using an OpenConfig-derived [59] YANG model describing the COMPOSER
domain informations.

As shown in Figure 5.1, Create, Read, Update and Destroy (CRUD) commands
related to the NF-FG are received through a REST API, while the COMPOSER
description is exported through a hierarchical messaging bus based on a publish/-
subscribe model. The overarching orchestrator knows exactly the COMPOSER
entity (e.g., the IP address of c-orch) on which (part of) the service has to be creat-
ed/updated/deleted, and hence a REST interface is appropriate for this function. On
the other hand, using a publish/subscriber mechanism the c-orch does not need to
know the consumer(s) of the description it exports, as there may be several entities
interested in such information. All COMPOSERs publish their description using
a specific topic, enabling all entities interested in such information to subscribe to
the corresponding topic. In this case, a pertinent example is the above-mentioned
orchestrator, which can use the COMPOSER descriptions to select the node where
the service should be deployed.

As depicted in Figure 5.1, the REST server interacts with the security manager,
a module that manages authentication and checks the permissions of the entities
that can send commands to c-orch. For instance, only the network operator may be
allowed to deploy NF-FGs, while end users may be only authorized to access the
current service graph operating on their own Internet connection in read-only mode.

Network Functions - Forwarding Graph

The Network Functions - Forwarding Graph (NF-FG) formalism [60] describes the
service to be instantiated with respect to compute (i.e., functions composing the
service) and network (i.e., traffic steering rules) primitives.

5.3 COMPOSER architecture 87

{
"nffg":
{

"id": "0x1",
"name": "example graph",
"NFs": [
{
"id": "0x1",
"name": "firewall",
"ports": [
{
"id": "0xa",
"name":
"internal port"

},
....
]

},
....
],
"saps": [
{

"id": "0x1",
"type": "interface",
"interface": {
"if-name": "eth1"

}
}
....
],
"flowrules": [
{

"id": "0x1",
"priority": 1,
"match":
{

"port_in":
"access-point:0x1",
....

},
"actions":
{

"output_to_port":
"nf:0x1:0xa",

....
}

},
....
]

}
}

Fig. 5.2 Excerpt of Network Functions - Forwarding Graph (NF-FG).

As shown in Figure 5.2, each NF-FG consists of three main parts. First, the NFs
section lists the functions that compose the service. Particularly, the NF-FG may
require a function without specifying any specific implementation (e.g., firewall
in the figure). In this case the proper image is selected by c-orch through the
interaction with the NF repository. However, the NF-FG can also ask for a specific
implementation of a function, by specifying a template that describes it in terms of,
e.g., image to be executed, number of CPU cores needed, technology to be used to
implement the virtual network interface cards (vNICs), and so on.

The saps section describes the Service Access Points (SAPs), namely the in-
gress/egress points of traffic in the (part of the) service deployed on COMPOSER.

88 Designing a platform for NFV

{
" i d " : "0 x2 " ,
" t y p e " : " v l a n " ,
" v l a n " :
{

" v lan−i d " : " 2 5 " ,
" i f−name " : " e t h 1 "

}
}

(a) vlan SAP

{
" i d " : "0 x3 " ,
" t y p e " : " g r e " ,
" g r e " :
{

" l o c a l−i p " : " 1 0 . 0 . 0 . 1 " ,
" remote−i p " : " 1 0 . 0 . 0 . 2 " ,
" gre−key " : "0 x1 "

}
}

(b) GRE SAP

Fig. 5.3 Examples of SAPs in the NF-FG.

In this case, while the interface SAPs (Figure 5.2) correspond to physical or virtual
interfaces of COMPOSER, a vlan SAP only includes traffic belonging to a specific
VLAN, although possibly associated with an interface. This means that COMPOSER
guarantees that only the traffic with a specific VLAN ID arrives from this SAP (e.g.,
VLAN ID 25 in Figure 5.3a), and that all traffic sent on such a SAP is tagged (by
COMPOSER) with the proper VLAN ID.

The GRE SAP (an example is shown in Figure 5.3b) represents the termination
of a GRE tunnel. COMPOSER guarantees that only the traffic encapsulated in a
specific GRE tunnel enters from this SAP, and that all traffic exiting from such a
SAP will be encapsulated in such a GRE tunnel.

Both vlan GRE SAPs can be used to connect (i.e., steer the traffic between) parts
of the same service that are instantiated in different infrastructure nodes. An example
is provided in Figure 5.4, where the overarching orchestrator splits the original
service graph into two subgraphs; as shown, the firewall and the adv-blocker
are then attached to GRE SAPs representing a GRE tunnel between the IP addresses
1.1.1.1 and 2.2.2.2, and identified by the key 0x1. This way, traffic exiting
from the firewall is encapsulated, by COMPOSER, into the GRE tunnel and
then delivered to the adv-blocker by the network infrastructure, and vice versa.
Consequently, SAPs enable NFs to operate irrespective of the nature of the network
connection, because the actual delivery of the traffic to the next NF in the chain is

5.3 COMPOSER architecture 89

Private
cache

Adv-
blocker

Firewall
Service graph

Overarching orchestrator

Firewall
Adv.

blocker
Private
cache

Service subgraph for
infrastructure node 2

Service subgraph for
infrastructure node 1

GRE SAP
- Local IP: 1.1.1.1
- Remote IP: 2.2.2.2
- Key: 0x1

GRE SAP
- Local IP: 2.2.2.2
- Remote IP: 1.1.1.1
- Key: 0x1

Fig. 5.4 Using GRE SAPs to set up traffic steering between subgraphs.

done transparently by the infrastructure node, e.g., by encapsulating packets in a
given VLAN or in a tunnel toward a remote destination.

Finally, the flowrules section in Figure 5.2 describes the interconnections
between NF ports and SAPs. We opted to use semantics akin to OpenFlow whereby
each connection is characterized by: (i) a priority; (ii) a match on a SAP/NF port and
potentially on protocol fields (e.g., IP source); (iii) an action that forwards packets
through a specific SAP/NF port and that potentially modifies the packet content (e.g.,
decrease the IPv4 TTL).

Domain Description

The COMPOSER domain description published by c-orch includes both network
and compute characteristics of the infrastructure node. From the network point of
view, COMPOSER is abstracted as a “big switch” with a set of endpoints, each one
characterized with the following (optional) information: (i) neighbor domain, i.e.,
the identifier of another infrastructure node (e.g., COMPOSER) in case there is a
direct connection with it; (ii) IP address; (iii) support for VLAN traffic: in this case
the endpoint indicates the available VLAN IDs; (iv) support for GRE tunnels.

From the compute point of view, COMPOSER exports functional and infrastructure-
level capabilities, as well as available resources, as mentioned earlier. The multi
domain orchestration will be further analyzed on Chapter 6.

90 Designing a platform for NFV

5.3.2 Traffic steering model

As shown in Figure 5.1, c-orch implements the network paths between NF ports
and SAPs through two LSI layers. The foundation LSI-0 is overlayed by a set of
LSIs (graph-LSI), each one in charge of implementing paths between NFs of a
different graph. LSI-0 is created at boot time and dispatches the traffic from the
COMPOSER physical interfaces to the graph-LSIs, while additional LSIs (each one
created when a new NF-FG has to be deployed) implement the traffic steering paths
among the NFs and GRE SAPs that belong to that graph. In fact, while physical
interfaces are connected to LSI-0, these ports are connected to the associated
graph-LSI.

Notably, as each graph-LSI is connected to NFs of a different NF-FG, c-orch can
implement multi-tenancy and isolate traffic of different tenants with LSI-0 being
the only LSI traversed by packets belonging to multiple tenants/service graphs.

Moreover, the LSI hierarchy takes care of removing encapsulations used to
implement the vlan and the GRE SAPs, in case of traffic arriving from such SAPs.
Similarly, NFs are not aware that traffic they transmit will be sent, by the LSI
hierarchy, through a vlan/GRE SAP; also in this case, in fact, it is the LSI hierarchy
that encapsulates packets in the proper headers, according to the flow rules described
in the NF-FG.

In addition, none of the LSIs can be programmed by an external SDN controller,
belonging, e.g., to the owner of the service graph. LSIs are in fact exploited by
c-orch to implement the network paths described in the NF-FG, and are under the
complete control of c-orch (through the network manager, as detailed below).

Finally, LSIs provide to COMPOSER complete control on the NFs networking,
hence it can implement network connections as defined in the NF-FG. In contrast,
note that the standard networking models offered, e.g., by KVM and Docker, do not
provide such full control of networking paths, since they attach VMs/containers to a
L2 bridge only.

5.3 COMPOSER architecture 91

5.3.3 Node resource manager

The node resource manager is the main module of c-orch, as it handles the commands
received through the REST API and exports the node description both at boot time
as well as each time that something changes in its configuration.

According to the message sequence diagram of Figure 5.5, when c-orch receives
a command to create a new NF-FG, the node resource manager: (i) interacts with the
NF repository in order to select the most appropriate NF image for each function that
is part of the service and that is not explicitly associated with an image in the NF-FG;
(ii) configures the vSwitch to create a new LSI and the ports required to connect it to
the NFs to be deployed; (iii) deploys and starts the selected NFs; and (iv) configures
the forwarding table(s) of the LSI(s) according to the required traffic steering rules.
Similarly, the node resource manager takes care of updating or destroying a graph,
when the corresponding commands are received.

Figure 5.1 shows that c-orch includes, among other modules, the network man-
ager and the compute manager, which are exploited by the node resource manager to
interact respectively with the vSwitch and the execution engines to create the proper
paths and start the proper NFs. The NF resolver interacts with the NF repository and
selects the best implementation for the required functions, according to parameters
such as the amount of compute and memory resources available on COMPOSER
and constraints associated with the requested NF (e.g., 3 ports). Finally, the NF
scheduler can optimize the NF/CPU core(s) binding(s) by taking into consideration
information such as how a NF interacts with the rest of the NF-FG.

5.3.4 Network manager

The network manager is the module that handles the networking part of the service
graph. It can interact with different vSwitches in order to create the virtual network
infrastructure that implements the paths described in the NF-FG; such an architecture
supports the parallel instantiation of multiple service graphs according to the traffic
steering model presented in Section 5.3.2.

Setting up the paths described in the NF-FG requires the network manager to
interact with the vSwitch through the management and control interfaces. The former
is used to create a new graph-LSI with the required virtual ports that will be later

92 Designing a platform for NFV

Resource manager NF resolver Compute manager Network manager NF repository Execution environment vSwitch

selectImplementations(nffg.NFs)

getTemplates(NF)
list<Template> nfTemplates

looploop [for each NF]

list<SelectedImpl> selectedImplementations
createLSI(nffg.flowRules,nffg.NFports,nffg.SAPs)

createLSI()
∗graphLSI

connectLSIs(graphLSI,LSI-0,numVirtLinks)

list<virtualLinks>

createPortOnLSI(graphLSI,nfport→technology)
∗port

looploop [for each NF port]

createSAPOnLSI(graphLSI,SAP→description)
∗sap

looploop [for each SAP]

list<NFport> NFports,list<SAP> saps,list<Link> virtualLinks
createAndStartNFs(nffg.NFs)

createNF(nf→ports,nf→parameters)

∗nf
startNF(nf)

looploop [for each NF]

list<NFs∗> nfs
createTSrules(nffg.flowRules,virtualLinks)

createTSrule(graphLSI,flowRule)

createTSrule(LSI-0,flowRule)

∗

looploop [for each NF-FG flow rule]

Fig. 5.5 c-orch new NF-FG deployment message sequence diagram.

5.3 COMPOSER architecture 93

Table 5.1 Management interface.

Function Description
lsi ∗createLSI() Create a new LSI
void destroyLSI(lsi) Delete a specific LSI
list<∗link> connectLSIs(lsi1,lsi2,N) Create N virtual links between two LSIs
void destroyVlink(link) Destroy a virtual link between two LSIs
port ∗createPortOnLSI(lsi,technology) Create a (NF) port with a specific technology on an

LSI
void destroyPort(port) Destroy a specific (NF) port
sap ∗createSAPOnLSI(lsi, description) Create a SAP on an LSI, according to a specific

description
void destroySAP(sap) Delete a specific SAP

Table 5.2 Control interface.

Function Description
void createTSRule(lsi,rule) Insert a traffic steering rule in the LSI
void deleteTSRule(lsi,rule) Remove a traffic steering rule from the LSI

attached to the NFs1. The latter is used to program the forwarding tables of LSI-0
and of the new graph-LSI in order to realize traffic steering.

The management interface, through the set of primitives listed in Table 5.1,
enables the network manager to interact with different vSwitches without knowing
anything about their switching technology. These primitives are implemented by a set
of technology-specific drivers and enable the network manager to (i) create/destroy an
LSI, (ii) create/destroy a port that will be then connected to a NF, (iii) create/destroy
virtual links between two LSIs, and (iv) create/destroy SAPs.

Similarly, the control interface of the network manager enables the configuration
of the forwarding table(s) of the LSIs by means of multiple technologies (e.g,
OpenFlow [3], eBPF [61], P4 [62]), while at the same time hiding from the network
manager the actual technology used. The set of primitives defined by the control
interface is listed in Table 5.2 and must be implemented by the technology-specific
controllers in order to enable the network manager to insert/remove traffic steering
rules in/from a specific LSI.

As shown in Figure 5.1, a different technology-specific controller is created for
each LSI, which controls the forwarding table of the LSI itself. Similarly to the
management interface, multiple technologies to program the forwarding table(s) of

1The technology of the virtual ports depends on the NF image selected. For instance, in the case
of a DPDK-enabled process, dpdkr ports must be used to interconnect the vSwitch with said NF.

94 Designing a platform for NFV

Table 5.3 LSIs involved in implementing flow rules with specific match/action.

ACTION: output to
Interface/vlan SAP NF port/GRE SAP

/host stack

MATCH

Interface/vlan SAP only LSI-0 LSI-0 and graph-LSI
(no vlink needed)

NF port/GRE SAP/host stack LSI-0 and graph-LSI only graph-LSI
(no vlink needed)

the vSwitch can be supported by writing the corresponding driver implementing the
primitives of Table 5.2.

Translating NF-FG flow rules for traffic steering

In order to implement the network paths described in the NF-FG, the network
manager has to map the flowrules requested by the NF-FG on the traffic steering
model defined in Section 5.3.2. Particularly, this model requires that, for each NF-FG
to be deployed, the network manager: (i) connects the new LSI with LSI-0 through
a number of virtual links, and that, (ii) starting from the flowrules section of the
NF-FG, originates two sets of traffic steering rules to be installed respectively in
LSI-0 and in the new graph-LSI.

According to Table 5.3, some flow rules can be implemented on a single LSI,
because both the match and the action involve ports/SAPs that are connected to the
same LSI, while other rules must be split in one traffic steering rule for the LSI-0
and in another for the graph-LSI. While the former flow rules do not require
any virtual link, as they keep traffic local to one LSI, the latter need virtual links to
transfer packets between the two LSIs.

Particularly, as shown in Algorithm 8, we chose to create a different virtual link
for each different SAP/NF port that appears in the action of rules involving both LSIs
(Table 5.3), which is then used to move all traffic that must be sent on that specific
SAP/NF port from one LSI to another. According to the pseudocode, in order to
minimize the number of virtual links, the same virtual link can be used both to send
towards the graph-LSI all traffic for a specific NF port/GRE SAP/host stack SAP,
and to send towards LSI-0 all traffic for a specific interface or vlan SAP.

Transforming a NF-FG flowrule that can be implemented on a single LSI
in a traffic steering rule for such an LSI does not require any operation (an exam-

5.3 COMPOSER architecture 95

Algorithm 8 Virtual links creation.
1: procedure createVlinks(first_id,nffg,lsi0,graphLsi)
2: vlink_to_lsi0← vlink_to_graphlsi← first_id
3: vlinks← /0
4: for all r ∈ nffg.flowrules do
5: if vlink_needed[r.match.port][r.action.out] and vlinks[r.action.out] ∈ /0 then
6: if r.action.out ∈ nf_port or r.action.out ∈ gre_sap or r.action.out ∈ hoststack_sap

then
7: vlinks[r.action.out]← vlink_to_graphlsi
8: vlink_to_graphlsi← vlink_to_graphlsi+1
9: else if r.action.out ∈ interface_sap or r.action.out ∈ vlan_sap then

10: vlinks[r.action.out]← vlink_to_lsi0
11: vlink_to_lsi0← vlink_to_lsi0+1
12: end if
13: end if
14: end for
15: N← max(vlink_to_lsi0,vlink_to_graphlsi)−first_id
16: return connectLSIs(lsi0,graphLsi,N)

ple is provided by the NF-FG flowrule #3 of Figure 5.6). Algorithm 9 shows
how the network manager derives the traffic steering rules corresponding to NF-FG
flowrules involving both LSIs. After that the NF ports/SAPs have been asso-
ciated with one of the virtual links just created. Particularly, according to lines
#4-#12 of Algorithm 9, rules whose output port is connected to the graph-LSI
generate two traffic steering rules as follows. The match of the LSI-0 rule cor-
responds to the match of the original rule (line #7), while the action differs from
the original action only in the output port field; in fact, it forwards packets on the
virtual link that transfers to the graph-LSI all packets towards the original port
(line #8). Consequently (lines #11-#12) the rule for the graph-LSI just matches
the proper virtual link and forwards traffic on the output port of the original rule.
This behavior can be observed in the NF-FG flowrule #1 of Figure 5.6, where
port 1 of the NAT is associated with the virtual link vlink1.

Lines #13-#21 of Algorithm 9 manage flow rules whose action sends packets
on a port connected to LSI-0. Unlike in the previous case, now it is the match of
the graph-LSI rule that corresponds to the match of the original rule (line #19),
as well as it is the action of the rule on such an LSI that is equal to the original action
except for the output port field, that corresponds to the virtual link that brings to
LSI-0 all the packets towards the original output port. Finally, lines #16-#17

96 Designing a platform for NFV

Algorithm 9 Traffic steering rules creation.
1: procedure splitRules(vlinks,nffg)
2: for all r ∈ nffg.bigswitch do
3: if vlink_needed[r.match.port][r.action.out] then
4: if r.action.out ∈ nf_port or r.action.out ∈ gre_sap or r.action.out ∈ hoststack_sap

then
5: {The rule brings traffic from LSI-0 to the graph-LSI}
6: {Create the rule for LSI-0}
7: rule-LSI0.match← r.match
8: rule-LSI0.action.out← vlinks[r.action.out]
9: rule-LSI0.action.other← r.action.other

10: {Create the rule for the graph-LSI}
11: rule-graphLSI.match.port← vlink[r.action.out]
12: rule-graphLSI.action.out← r.action.out
13: else if r.action.out ∈ interface_sap or r.action.out ∈ vlan_sap then
14: {The rule brings traffic from the graph-LSI to LSI-0}
15: {Create the rule for LSI-0}
16: rule-LSI0.match.port← vlink[r.action.out]
17: rule.LSI0.action.out← r.action.out
18: {Create the rule for the graph-LSI}
19: rule-graphLSI.match← r.match
20: rule-graphLSI.action.out← vlink[r.action.out]
21: rule-graphLSI.action.other← r.action.other
22: end if
23: end if
24: end for

show that the rule created for LSI-0 just matches the proper virtual link. An
example of this procedure is shown for the NF-FG flowrule #2 in Figure 5.6,
where the virtual link used to transfer traffic to eth1 is the same one used to bring
traffic to the port of the NAT.

5.3.5 Compute manager

The compute manager interacts with the available execution environments to manage
the NF lifecycle, including operations needed to attach NF ports already created
on the vSwitch (by the network manager) to the NF itself. The compute manager
module can interact with different execution engines, and can thus manage NFs
based on different technologies, through the compute interface defined in Table 5.4.

5.3 COMPOSER architecture 97

LSI - 0

eth0

vlink1

nat1 nat2

LSI - graph 1

Match: port vlink1
Action: output to port nat1

Match: port eth0, ip_src=10.0.0.1
Action: output to vlink1

Match: port eth0, ip_src=10.0.0.1

Action: output to port nat1

eth1

Match: port nat2, ip_src=192.168.0.1
Action: output to port eth1

Match: port nat2, ip_dst=10.0.0.2
Action: output to vlink1

Match: port vlink1
Action: output to port eth1

NAT

LSI-0
rule

LSI-0
rule

LSI-graph1
rule

LSI-graph1
rule

NF-FG flowrule #1

NF-FG flowrule #2

NATeth0 eth1
ip_src=10.0.0.1

1 2

ip_src=192.168.0.1

NF-FG COMPOSER traffic steering infrastructure

Match: port eth0, ip_src!=10.0.0.1
Action: output to port eth1

NF-FG flowrule #3

Match: port eth0, ip_src!=10.0.0.1
Action: output to port eth1

LSI-0
rule

ip_src!=10.0.0.1

rule #1 rule #2

rule #3

Fig. 5.6 Example of transformation of NF-FG flowrules in traffic steering rules.

Table 5.4 Compute interface.

Function Description
nf ∗createNF(ports,other parameters) Allocate the resources needed by a NF; create a local

copy of/download the NF image
void destroyNF(nf) Release the resources allocated to the NF
void startNF(nf) Start a NF previously created
void stopNF(nf) Stop a NF, without deallocating resources
void updateNF(nf,. . .) Update a running NF (e.g., remove/add network

interfaces)
void pause(nf) Suspend the execution of the NF (e.g., for a possible

migration)

98 Designing a platform for NFV

As shown in Figure 5.1, this abstraction is implemented by a set of drivers, each
one in charge of a specific execution environment technology. The COMPOSER
can support QEMU/KVM hypervisor, Docker containers, processes based on the
DPDK framework [20], and native network functions. Multiple technologies are
supported at the same time. For instance, c-orch can deploy a service including a
first NF executed in a Docker container and a second NF running inside a VM.

5.3.6 NF resolver

The NF resolver is the part of c-orch that interacts with the NF repository in order to
select the NF images to be instantiated. The NF resolver is used when the NF-FG
potentially allows multiple NF images to fulfill the requirements (e.g., firewall with
3 ports). In this case, it selects the best image through the following steps. First, it
asks to the NF repository the templates of all NFs implementing the function (e.g.,
firewall). Subsequently, it selects the best NF that, according to the template, satisfies
the constraints/attributes associated with the function in the NF-FG (e.g., 3 ports),
matches an execution environment supported by COMPOSER and requires resource
levels (e.g., RAM, CPU) available in COMPOSER.

Notably, the selected NF may consist of a single image or it can be a new service
graph composed of a number of other functions arbitrarily connected. In other words,
the template may describe the NF as another NF-FG, according to the principle
of recursive decomposition. In this case, the NF resolver recursively repeats the
operations described above for each function that is part of the new sub-NF-FG, until
all required NF images have been selected.

NF repository

The NF repository contains the templates and images of the available NFs. The
NF template describes a specific NF image in terms of functionality implemented
(e.g., firewall, NAT), amount of physical resources required on the node in order
to execute such an image (e.g., CPU, memory), required execution environment
(e.g., KVM hypervisor, Docker engine, etc.), number of virtual interfaces and
associated technology, and more. The NF image varies according to the technology
implementing the NF. For instance, it is the VM disk in case of virtual machines, a
tgz archive in case of NNFs, and so on.

5.4 Experimental evaluation 99

5.3.7 Internal message bus

As shown in Figure 5.1, COMPOSER includes an internal message bus. Although
in the picture only c-orch, the monitoring manager and the monitoring functions
(Section 5.3.8) are connected to such a bus, NFs may be connected to the bus as well,
for instance in order to receive monitoring alarms or configuration parameters.

5.3.8 Monitoring manager

The monitoring manager is in charge of managing the modules that (i) measure
some metrics of the deployed service (e.g., CPU/memory consumed by NFs), and
(ii) generate alarms when specific events occur or thresholds are exceeded. The
monitoring manager can be configured in order to measure specific metrics through
an instruction string specified in the NF-FG and written according to the MEASURE
monitoring language [63].

After the deployment of the NF-FG, the monitoring manager instantiates and
configures the proper NFs (e.g., Google cAdvisor [64] and Ramon [65]) that monitor
the required metrics and generate alarms on the COMPOSER internal bus.

The monitoring manager, in addition to starting and configuring the proper NFs
for monitoring, it receives alarms, aggregates the received information as required by
the MEASURE instructions, and propagates them again. This way, the aggregated
information can reach the interested NFs. For instance, a NF may exploit the
monitoring results to require an update of the NF-FG, so that it can properly react to
the received event. The consumer of the alarm can be one (or some of the NFs) that
are part of the NF-FG.

5.4 Experimental evaluation

COMPOSER was used as a validation platform for the FP7 projects UNIFY [66] and
SECURED [67]; in addition, we carried out an extensive set of tests that are reported
in the reminder of this section. In particular, we will first present the many hardware
platforms that we used to validate our proposal, by highlighting the limitations
found and the issues we had to solve to run the COMPOSER software and NFs
on them. Then we will show the resource consumption (memory and CPU) of the

100 Designing a platform for NFV

Table 5.5 Machines used in the validation.

Machine Specification

Residential gateway #1
Netgear R6300v2, 800 MHz dual-core ARM Cortex A9 CPU,
128 MB flash 256 MB RAM, 4GbE LAN ports, IEEE 802.11
b/g/n 2.4GHz, IEEE 802.11 a/n/ac5.0GHz, 1 GbE WAN port

Residential gateway #2 Banana Pi R1, A20ARM Cortex-A7 dual-core CPU, 1 GB RAM,
5 GbE ports

Professional CPE #1 Hawkeye HK-0910, Freescale QorIQ T1040, 1.2GHz (quad e5500
cores), 64MB NORFlash, 2GB RAM DDR3L-1600

Professional CPE #2
Tiesse Imola 5, Ikanos Fusiv Core Vx185, single core MIPS 34Kc
V5.4 CPU @ 500MHz, 256MB RAM, 256MB flash memory, xDSL
acceleration

Mid-range server #1 Intel Core i5-3450S @ 2.8 GHz,
8GB RAM, 200GB SSD

Mid-range server #2 Intel Core i7-4770 @ 3.40 GHz (4 cores + hyperthreading),
32GB RAM, 500GB HD

High-end server Intel Xeon E5-2690 v2 @ 3 GHz (10 cores + hyperthreading),
64 GB RAM, two 10G Intel 82599ES NICs

COMPOSER software, including also the vSwitch and the execution engine(s); such
results are compared with OpenStack, as it is the platform typically used to execute
NFs. We will then demonstrate how COMPOSER can deploy network services on a
residential CPE thanks to the NNFs, which are well suited for resource constrained
environments.

5.4.1 Hardware platforms

The portability of COMPOSER has been demonstrated by installing and running
the software on the hardware platforms shown in Table 5.5, which feature very
different characteristics (also in terms of supported operating system and software
build mechanisms) and represent the huge variety of hardware running in carrier
network deployments.

For instance, a residential gateway (Netgear R6300v2) has been demonstrated
to execute COMPOSER compiled for the OpenWrt operating system. Given the
limited hardware capabilities of this box, at the time of this writing c-orch was
able to launch only NNFs with OvS used as a vSwitch. In addition, service access
points such as tunnels (e.g., GRE) and VLANs were supported, hence enabling to
connect COMPOSER to external domains and to create complex services requiring
the stitching of multiple sub-graphs spanning across multiple domains [68]. Another

5.4 Experimental evaluation 101

example is the use of COMPOSER on CarOS, an embedded Linux distribution
targeting carrier networks, running on a Banana Pi R1.

Two professional CPEs were used as well. First, we targeted the Freescale
Hawkeye HK-0910, featuring also IPsec and L2 switch hardware acceleration. The
software environment was based on the Linux Yocto project, which uses recipes
to assemble together the required packages and create the software image that will
be executed on the hardware platform. The overall software setup was very similar
to the previous boxes, hence only NNFs are enabled, although the platform could
support also virtualization.

The second professional CPE was a Tiesse Imola 5 with customized OpenWrt
as operating system. However we had to use an old version of the Linux kernel
(3.10.49) because it was the latest version supported by the drivers needed to control
the xDSL interface. This prevented us from terminating GRE tunnels in OvS, due to
a known incompatibility with that kernel version. The workaround solution consisted
of modifying the OvS driver in the network manager so that, when executed on this
platform, it first creates a GRE tunnel port through the Linux command ip link,
and then adds this port to the proper graph-LSI.

In addition to the aforementioned limited-resource boxes, COMPOSER was
tested on several standard Intel servers, ranging from single CPU i5 machines to
dual-processor Xeon platforms running Ubuntu 14.04 LTS. All features, including
the several supported vSwitches, were turned on and tested.

5.4.2 Empirical evaluation of resource consumption

This section presents the amount of RAM and disk consumed by different COM-
POSER deployments and compares them with the requirements of an OpenStack
compute node supporting VMs, as it the most widespread technology for running
NFs as of this writing.

Starting from a clean installation of Ubuntu server 14.04 LTS with default settings
on the high-end server (Table 5.5), we set up, one at a time, the configurations shown
in Table 5.6, where each line reports the additional resources required with respect
to the case with the clean operating system running. Note that the reported numbers
consider all components needed to execute NFs, including the vSwitch; particularly,
OvS was used for the tests reported in this section.

102 Designing a platform for NFV

Table 5.6 Resources consumed by COMPOSER and OpenStack.

Configuration RAM (MB) Disk (MB)
COMPOSER- only NNF enabled 31 71
COMPOSER- only Docker enabled 46 189
COMPOSER- only KVM enabled 44 131
COMPOSER- all env. enabled 63 249
OpenStack compute node 160 494

As reported in Table 5.6, COMPOSER compiled only with support for NNFs
represents the lightest configuration, requiring less than 20% of RAM and less than
15% of disk space than an OpenStack compute node, as NNFs are executed natively
by a compute manager which launches shell scripts. KVM and Docker are more
resource demanding than NNFs as expected because they need to install and run the
respective execution engines (KVM, QEMU and Libvirt in the first case, Docker
engine in the latter). COMPOSER with Docker only enabled, for example, uses
less that 29% RAM and less than 38% of the disk space required by our benchmark
OpenStack compute node. As expected, the most resource consuming COMPOSER
configuration is when all the (currently) supported execution environments are
enabled. Still, even in this case, COMPOSER requires less than 40% of RAM and
about half of the disk space that an OpenStack compute node requires.

Our empirical measurement of actual resources used confirm the advantages, in
terms of resource requirements, for COMPOSER when compared to OpenStack;
moreover, they also show how NNFs are well-suited for resource constrained envi-
ronments such as CPEs.

5.4.3 Service deployment time

This section compares the time required by COMPOSER and OpenStack to deploy
the service graph shown in Figure 5.7(a), which deploys the firewall NF with a
dedicated specific VM. Notably, the two SAPs of the graph (i.e., ext0 and ext1)
correspond to physical interfaces in COMPOSER, and to external networks in case
of OpenStack.

Tests are executed on the mid-range server (Intel i7) (Table 5.5) with a clean
Ubuntu server 14.04 LTS image, where we added all the components involved in the
service deployment, namely: (i) the COMPOSER software and the NF repository

5.4 Experimental evaluation 103

Firewall
ext0 ext1

Total:
1.816 s

Network Manager: 0.058 s

Compute Manager: 0.755 s

Initialization (e.g., NF-FG parsing and validation, user auth.): 1.003 s

Total: 9.403 s

a) Service graph

b) Service deployed in COMPOSER

c) Service deployed in OpenStack

Neutron: 1.405 s Nova: 7,997 s

Fig. 5.7 Service deployment time: (a) used service graph; (b) results with COMPOSER; (c)
results with OpenStack.

in case of COMPOSER; the Nova, Neutron and Glance (i.e., the compute/network
services, and VM repository) servers, and the compute node actually running the
VMs in case of OpenStack. Both COMPOSER and OpenStack use OvS as vSwitch;
moreover, the VM image is already cached by the OpenStack software in order to
avoid downloading the VM image.2

Tests are repeated 10 times and averaged; results are reported in Figures 5.7(b)
and 5.7(c). In case of COMPOSER (Figure 5.7(b)), the picture reports the total time
required by c-orch to serve the request, which is then broken into: (i) the time used
by the network manager to create the new LSI and the NF ports, and to set up the
traffic steering rules into the vSwitch; (ii) the time required by the compute manager
to create and start the NF as a VM. In the case of OpenStack, we report the total
time needed for the service deployment, which includes the time spent to interact
with Neutron and Nova so that they fulfill the service request. It is worth mentioning
that the results do not include the time needed by the application in the VM (i.e., the
firewall) to actually start, which depends from the software executed in the VM itself
and not from the orchestration framework and is anyway equivalent in the two tests,
given that we used exactly the same VM for the NF.

2Installing the VM repository and the compute node on the same physical machine does not
prevent OpenStack to download the VM image through the repository REST API, in case it is not in
cache yet; this would have a huge (negative) impact on the overall service deployment time.

104 Designing a platform for NFV

As shown, the time required by COMPOSER is nearly an order of magnitude
lower than the one needed by OpenStack to deploy the same service graph; this is
due to the interactions between the various OpenStack components involved in the
service deployment (i.e., Nova/Neutron servers, compute/network agents), which
employ either REST or distributed message bus (RabbitMQ) calls.

5.4.4 Native network functions

This section validates the NNF idea from the point of view of throughput, CPU
load, image size and time required to start the NF. To this purpose, we consider a
transparent VPN access use case in which a user client located in a trusted local
network (e.g., home) needs to connect to its corporate VPN server. In order to avoid
to install the VPN client software on all his devices (e.g., laptop, smartphone, etc.),
the user deploys the VPN client as a NF on the CPE, which provides secure access
to the corporate network independently of the specific user terminal.

Our testbed, shown in Figure 5.8, includes two devices acting both as traffic
source and sink, a CPE executing the IPsec client NF in charge of encrypting/de-
crypting the traffic, and a VPN server with the corresponding duty. All four boxes are
connected with point-to-point full-duplex 1Gbps Ethernet links; faster speed were not
available due to the limitations of the current hardware. Three powerful workstations
were used respectively as traffic source/sink (two machines) and VPN server, in order
to avoid those machines to become a bottleneck in our test setup, while different
flavors of CPEs were used, namely a mid-range server (Intel i5), a professional CPE
based on the Freescale T1040 and a residential gateway (Netgear) (Table 5.5), all
with the same COMPOSER version compiled for the respective platform. The use
of different hardware platforms was coupled with different implementations of the
same NF, whenever possible, as shown in Table 5.7.

The experiments leveraged the iperf tool installed on the two source/sink
machines, each one configured to generate unidirectional TCP streams at maximum
speed; all experiments were repeated 10 times and averaged. According to Table 5.7,
NNFs and Docker bring significant performance improvements compared to VMs
because of the simplified architecture that requires neither the hypervisor nor the
guest OS. As expected, NNFs and Docker show the same level of performance,

5.4 Experimental evaluation 105

C
O

M
P

O
SE

R

Traffic
source/sink

Corporate VPN
server

Traffic
source/sink

Corporate

LAN

IPsec server
endpoint

IPsec client
endpoint

CPE
(device under test)

LSI - graph 1

LSI - 0

Fig. 5.8 Testbed to validate the COMPOSER when running NNFs.

Table 5.7 Different implementations of the IPSec client NF.

IPsec client NF implementation Bidirectional
Throughput (Mb/s) CPU Load NF Image

Size (MB)
Mid-range Server #1 - KVM/QEMU 796 100% 522
Mid-range Server #1 - Docker 1095 80% 240
Mid-range Server #1 - NNF 1094 80% 5
Residential gateway #1 - NNF 57.2 100% 2
Professional CPE #1 - NNF 617 90% 3.7

because they are based on the same technology (i.e., kernel-based processing in the
host plus namespaces).

The last column of Table 5.7 reports the NF image size3, which confirms the
advantages of the NNF approach in resource-constrained environments. In fact,
the reason for not testing VMs and Docker on the residential gateway and on the
professional CPE is the disk size limitation of these platforms. Moreover, the NF
image size also impacts on the time required to download the NF from a remote
location, which is critical when the CPE is connected to the Internet through slow
links (e.g., xDSL).

Finally, we measured the time to make the IPsec client fully operational on the
mid-range server, being the only environment supporting all NF types. Averaged
results show 3016 ms with VM (which requires to start the entire VM), 350 ms
with Docker, and 727 ms with NNF (i.e., with the IPsec client running in a separate
network namespace); the baseline, i.e., the time required to launch the IPsec client on
the base system without wrapping it in any virtualization environment, was 154 ms.
The (relatively) high number of the NNF is due to some implementation-dependent

3In the VM case, we created a guest OS with the default installation of a Ubuntu server 14.04 LTS
plus the only packages required for our NF to work.

106 Designing a platform for NFV

timeouts required to attach the network ports to the NNF, which still need to be
optimized.

5.5 Related work

Based on the ETSI architecture, both industry and academia introduced several
prototypes and proofs of concept (PoCs) to deploy network services and functions.
However, while COMPOSER defines the software architecture of an infrastructure
node that also includes orchestration and VIM functionalities in addition to a number
of VNFMs that can be instantiated as NFs and are part of a service graph, most
of said earlier works define the architecture of the NFVO that sits on top of many
infrastructure nodes and deploys network services through OpenStack [69]. In these
cases, OpenStack acts as a VIM, exploited by the NFVO to properly instantiate the
service on the OpenStack physical infrastructure.

Proposals employing OpenStack as a VIM and VNFI include OpenStack Tacker [70]
which implements the NFVO and a generic VNFM, and uses the Topology and Or-
chestration Specification for Cloud Applications (TOSCA) [71] as a formalism to
describe the various aspects of the service to be deployed, which is an implemen-
tation of the ETSI descriptors. Open Baton [72] defines a NFVO and a generic
VNFM and can be installed on top of existing cloud infrastructures like OpenStack.
OpenMANO [73] implements instead its own VIM (in addition to an NFVO sitting
on the top of many infrastructure node), although it supports OpenStack as well.

It is worth noting that these proposals are orthogonal to our work on COMPOSER,
as they mainly operate on top of the infrastructure nodes and can be extended to
interact with c-orch instead of the OpenStack environment.

Cloud4NFV [74, 75] is a platform for managing network services in a cloud
environment, which covers both the NFVO and the VIM functionalities defined in
the ETSI architecture. The latter includes both a data center controller (OpenStack)
and a WAN controller (OpenDaylight) to interconnect parts of the service deployed
in different data centers. OpenStack and OpenDaylight are used as VIM also by
vConductor [76], while SONATA [77] can support different VIMs by means of
adapters; moreover, SONATA supports recursion at the orchestrator layer. Recursion

5.5 Related work 107

was considered also in the Unify project [66], where two orchestrators [78], [60] that
can sit on top of different infrastructures have been defined.

Compared to COMPOSER, OpenStack presents several limitations when used as
VIM and NFVI. For instance, it does not have the concept of network service, which
means that each NF is just seen as a VM (or container) to be executed independently
from the others on one of the servers forming an OpenStack cluster. Hence, VMs
are allocated to server/CPU cores without taking into consideration connections
between NFs in the service to be deployed, which may result in poor performance
for the whole service. An attempt to introduce the concept of service in OpenStack is
described in [79], which also highlights how the so-called network-aware scheduling
is hard to be implemented in such an environment. Moreover, OpenStack is not
suitable for resource-constrained environments such as CPEs, as shown in Table 5.7.
Instead, OpenStack can be used to implement a virtual CPE such as in [80], in which
the traditional CPE functions are implemented as VNFs running in an OpenStack-
based data center.

Literature on NFV also includes some proposals of software architectures of
network infrastructure nodes that, similarly to COMPOSER, can execute network
functions. NetVM [32] is a platform designed to efficiently transfer packets between
NFs running inside virtual machines, which mainly focuses on the data plane and
marginally considers control and orchestration aspects. NetVM defines its own
virtual switch based on the DPDK framework, which can transfer packets with
zero-copy between trusted VMs, while a copy is required to transfer packets between
untrusted VMs. Moreover, existing network applications are not supported by
NetVM as they must use a library that hides the communication with the NetVM
framework. The NetVM architecture includes a NetVM manager that can talk with an
overarching orchestrator by means of a message based protocol similar to OpenFlow,
although no more information is provided in [32].

OpenNetVM [81, 82] and SDNFV [83] are platforms built on top of NetVM,
which execute ad-hoc DPDK-based NFs within Docker containers and provide a
high-level abstraction to compose NFs in service chains, control packet flows, and
manage NF resources. Particularly, the NFs that have to process a packet can be
selected both by an SDN controller (not part of the OpenNetVM framework) and
by NFs, which can program the vSwitch forwarding table without the necessity to

108 Designing a platform for NFV

interact with said controller. Notably, SDNFV [83] also focuses on creating paths
among VNFs deployed on multiple hosts.

ClickOS [30] presents a platform for high-performance NFV. Particularly, it
uses the VALE vSwitch [13] to provide packets to ClickOS virtual machines, i.e.,
Xen-based [17] VMs executing a Click [84] program running on top of a minimal
operating system. Unlike COMPOSER, which supports many execution environ-
ments and focuses on control and orchestration aspects (in addition to exploiting
optimized data paths), ClickOS only focuses on performance of the data plane as it
solves bottlenecks in the network I/O of the Xen hypervisor, and runs applications
explicitly designed for the ClickOS environment.

nf.io [85] is a platform that employs the Linux file system as an interface to
express NFV management and orchestration operations and acts as an API towards
the NFVO. Particularly, nf.io defines the semantics of files and directory structures to
perform operations such as VNF deployment, configuration, chaining and monitoring.
Similarly to COMPOSER, nf.io can execute NFs as processes on physical machines,
VMs, Docker and LXC containers. Forwarding rules can be configured both with
the iptables Linux facility or with OpenFlow for traffic paths implemented using
OvS.

GNFC [86] and GLANF [87, 88] are frameworks to deploy VNFs. In addition to
a manager that allocates VNFs to servers, and a network controller that configures
traffic steering on the NFV servers and among different servers, these frameworks
define an agent per server responsible of managing (e.g., start, stop, connect them
to OvS) VNFs. However, this agent simply manages Docker containers and creates
ports on OvS, while COMPOSER includes an orchestrator on each server which can
further optimize service deployment.

COMPOSER is well suited for resource constrained environments such as CPEs;
among the other projects focusing on deploying network applications on CPEs we
can cite the tethered Linux CPE [89], which has the limitation of being able to only
run NFs implemented as eBPF programs loaded into the Linux kernel.

Before concluding this section, we analyze projects that are orthogonal to COM-
POSER, as they do not cover all aspects of our proposal, have different targets and
design goals, and they may interact with/be exploited by COMPOSER for some
tasks.

5.6 Conclusion 109

Mantl [90] is a Cisco proposal for deploying and managing microservices through
a number of consolidated technologies for cloud provisioning, service discovering,
resource management, load balancing, orchestration and scheduling. Mantl supports
several public cloud infrastructures (e.g., OpenStack, Google Compute Engine,
Amazon Web Services), and is oriented to the deployment of applications in Docker
containers.

Docker Datacenter [91] is a framework oriented to the deployment, management
and monitoring of applications packaged as one or more Docker containers. One
of its main components is the Docker Universal Control Plane (UCP) [92], which
supports both private infrastructure and public clouds such as Amazon Web Services
and Microsoft Azure. It exploits Docker Swarm as a container scheduler and
infrastructure clustering, and Docker Compose to create multi-container applications
(that can be deployed on multiple nodes). Unlike COMPOSER, these projects are
explicitly designed for Dockerized applications; moreover, they do not focus on the
architectures of the nodes running the containers.

5.6 Conclusion

The chapter presented COMPOSER, a versatile and high-performance service plat-
form for Network Functions Virtualization that can execute several types of NFs on
multiple hardware architectures and virtualization/execution environments at high
speed.

COMPOSER takes advantage of a wide range of hardware and software combi-
nations, including low-cost equipment, covering the entire spectrum from subscriber
premises to carrier-grade data centers across the entire network deployment. COM-
POSER has been demonstrated to run efficiently on hardware platforms such as ARM
and x86, but there are no real limitations that prevent the COMPOSER software to
be executed even on more specialized hardware platforms. Moreover, COMPOSER
can run functions in multiple environments, ranging from “native” execution on bare
metal to fully-fledged virtual machines — with the full set of virtual ports and links
to fine-tune performance as needed.

Finally, from a performance point of view, COMPOSER is superior to other
current NFV solutions in part because of the possibility to seamlessly employ, for

110 Designing a platform for NFV

instance, a high-performance underlying software switches as real-world deployment
needs dictate, while at the same time retaining all the benefits of domain-oriented
orchestration. This type of orchestration is required in case of services that exceed
the capability of the single node, which forces the overarching orchestrator to split
the service on multiple nodes with different technologies and create interconnec-
tion points such as SAPs presented in Section 5.3.1. This topic will be broadly
investigated in the next chapter.

Chapter 6

An orchestration architecture
supporting multiple heterogeneous
domains

Part of the work described in this chapter has been previously published in [93].

6.1 Introduction

Chapter 5 introduces the concept of domain oriented orchestration that usually
involves two levels of orchestration. As shown in Figure 6.1, an overarching or-
chestrator (OO) sits on top of many possible heterogeneous technological domains
and receives service graph, which defines the involved VNFs and their intercon-
nections. This component is responsible of (i) selecting the domain(s) involved
in the service deployment (e.g., where NFs have to be executed), (ii) deciding the
network parameters to be used to create the proper traffic steering links among the
domains, and (iii) creating the service subgraphs to be actually instantiated in above
domains. The bottom orchestration level includes a set of Domain Orchestrators
(DO), each one handling a specific technological domain and interacting with the
infrastructure controller (e.g., the OpenStack [69] cloud toolkit in data centers, the
ONOS [94] or OpenDaylight (ODL) [95] controller in SDN networks) to actually
instantiate the service subgraph in the underlying infrastructure. In addition, DOs
export a summary of the computing and networking characteristics of the domain,

112 An orchestration architecture supporting multiple heterogeneous domains

SDN network

Telco
data center

SDN controller

Overarching
orchestrator

Domain orchestrator

Domain orchestrator

Firewall

Adv.
blocker

Private
cache

OpenStack controller

Internet

Technological domain

Service graph

Private
cache

Adv.
blocker

Firewall

Telco PoP
(edge data center)

Domain orchestrator

OpenStack controller

Inter-domain connection

Inter-domain
connection

Access
Network

?

??

??

Parameters needed to create
inter-domain traffic steering?

Fig. 6.1 Service graph deployment in a multi-domain environment.

used by the OO to execute its own tasks. Notably, DOs simplify the integration
of existing infrastructure controllers in the orchestration framework, because any
possible missing feature is implemented in the DO itself while the infrastructure
controllers are kept unchanged.

Existing orchestration frameworks do not take care of automatically configuring
the inter-domain traffic steering to interconnect portions of the service graph deployed
on different domains. For instance, this would require to properly characterize
subgraphs endpoints (called Service Access Point, or SAPs) with the proper network
parameters, thus replacing the question marks in the subgraphs shown in Figure 6.1
with the proper information such as VLAN IDs, GRE keys and more, based on the
capabilities of the underlying infrastructure.

The orchestration framework proposed (i) can transparently instantiate NFs
wherever they are available (e.g., either on cloud computing or SDN domains), and
(ii) that enables the OO to enrich the service subgraphs with information needed for
DOs to automatically set up the inter-domain traffic steering.

6.2 Related work 113

6.2 Related work

The deployment of service chains in heterogeneous domains is considered by ES-
CAPE [96] and FROG [60], two multi-layer orchestration architectures proposed
in the context of the FP7 UNIFY project [66]. Similarly, Cloud4NFV [97] is an
orchestration framework to deploy network services on different OpenStack and
OpenDaylight based environments interconnected through a WAN, while the recently
started 5GEx project [98] proposes an architecture to deploy services across multiple
administrative domains. However, these proposals do not consider which information
should be used by the upper layer orchestrator to execute its own tasks, as well as
they do not detail how such an orchestrator manipulates the service chain and sets
up the inter-domain traffic steering. Finally, they do not aim to exploit hardware
modules and SDN controllers to execute NFs.

The NFs/links placement in multi-domain networks is studied e.g., in [99], which
proposes an abstraction of the physical domains that, similarly to works like [100],
is based on: (i) available amount of resources (e.g., CPU, memory and storage);
(ii) inter and intra-domain link capacity. However, the paper does not consider the
information needed to set up the inter-domain traffic steering, and the deployment of
NFs in SDN networks and CPEs equipped with software/hardware modules that can
be used to realize the requested service.

Proposals like StEERING [101] and FlowFall [102] can be instead considered
orthogonal to our work, since they define traffic steering architectures that could be
exploited within specific domains. Also the work carried on by the Service Function
Chaining Working Group (SFC) [2] in IETF, at the best of our knowledge, mainly
focuses on the data plane components. In addition, SFC defines a Network Service
Header that identifies the sequence of NFs that have to process a packet, provided
that the data plane components understand it.

6.3 Capability-based domain abstraction

This section presents the common data model we designed to represent heterogeneous
technological domains, thus enabling the overarching orchestrator to: (i) execute
NFs by exploiting all the processing resources available in the operator infrastructure

114 An orchestration architecture supporting multiple heterogeneous domains

Firewall

NAT

VPN

if-3

If-2
. . .
neighbor:

id: internet
type: legacy-net

. . .

domain-C

domain-B

Internet

domain-A

Image repository

NAT A
Tech: KVM [. . .]

Firewall A
Tech: KVM
RAM: 290 MB
CPU: 2 cores

VPN A
Tech: Docker [. . .]

domain-A abstraction

domain-A Orchestrator

if-3

if-2
if-1

Firewall Data Model
leaf ports# {

type uint8;
value max;

}
leaf iso/osi level {

type uint8 { range “1 .. 7” }
...

}
leaf dmz {

type Boolean;
...

}

Domain Data Model
leaf id { ... }
list interface {

container connection-capabilities {
list neighbor {

leaf id { ... }
leaf type {

enumeration {
domain; legacy-net; access-net;

}
}

list labeling-method {
leaf name {

enumeration { VLAN, GRE, … }
}
list available-labels { ... }
leaf preference{ type uint8 { range “0 .. 10” } }

}
uses openconfig-interface;

}
list functional-capabilities {

type identityref { base “functional-capability”; }
}

NAT Data Model

[...]

VPN Data Model

[...]

domain-B Orchestrator

Domain B
Description

NAT Data Model
[...]

Firewall
ports#: 3
iso/osi level: 4
dmz: true

If-1
speed: 10 Gbps
IPv4-address: 10.0.0.1
connection-capabilities:

neighbor:
id: domain-B
type: domain

labeling-methods:
• VLAN

- available-labels: { 25, 26 }
- preference: 4

• GRE
- available-labels: {…}
- preference: 10

• VXLAN { . . . }
. . .

Functional capabilities

OpenStack Controller

SDN Controller

Fig. 6.2 Domain abstraction based on functional and connection capabilities.

(e.g., data centers, CPEs, SDN controllers); (ii) split the requested service chain in
subgraphs and realize the inter-domain traffic steering.

The defined data model derives from the YANG templates defined by OpenCon-
fig [59], which are used for traditional network services and that we extended to
describe a summary of the computing and networking characteristics of the domain.
Particularly, as shown in Figure 6.2, the data model includes what we call functional
capabilities, namely the list of NFs offered by the domain and that can be exploited
to create a service chain. In addition, the domain is described as a big-switch with
a set of interfaces connecting the domain itself with the rest of the network, where
each interface is associated with some connection capabilities.

6.3.1 Modeling functional capabilities

A functional capability represents the ability of the domain to execute a given NF, no
matter how it is actually implemented, and it does not include any information about
the resources needed for its execution. For instance, it could be a VM image in a data
center, a software bundle in an SDN controller, an hardware module in a CPE, and
more. Examples of functional capabilities include firewall and NAT, possibly with
some specific attributes such as the number of ports, support for IPv4 or IPv6, and
more. A service can choose the NFVI where to deploy the NF without knowing how

6.3 Capability-based domain abstraction 115

it is implemented. Usually they are generic functions that implements the standard
behaviour for that function additional specific capabilities have to be published on
the function data model.

As shown in Figure 6.2, each functional capability is in turn associated with its
own YANG-based data model, which may also indicate if a parameter represents
a maximum, a minimum or a precise value (e.g., the firewall data model in figure
indicates that the NF cannot have more than three ports); this information can be
exploited by the overarching orchestrator to check whether the domain can be used
to implement or not a given NF.

6.3.2 Modeling connection capabilities

Each interface attached to the big-switch represents a connection point between the
domain and the external world (e.g., another domain, the Internet). As shown in
Figure 6.2, an interface is associated with a set of connection capabilities such as the
following.

“Neighbor” indicates what can be directly reached through that specific interface,
namely: (i) another domain that can be exploited for traffic steering and/or to
execute NFs (if-1 in Figure 6.2); (ii) a legacy network where packets are delivered
according to, e.g., the traditional IP routing, and hence paths cannot be set up by an
external controller (if-2 in the figure); (iii) an access network, which represents an
entry point for the traffic into the operator network.

“Labeling method” indicates the ability of the domain to: (i) classify incoming
traffic (i.e., packets entering in the domain through that interface) based on specific
patterns (e.g., VLAN ID, GRE tunnel key); (ii) modify traffic that exits from the
interface so that it satisfies a specific pattern (e.g., is encapsulated into a specific
GRE/VXLAN tunnel, is tagged with a specific VLAN ID). Notably, other labeling
methods can be supported as well in addition to those just mentioned (e.g., MPLS
label, Q-in-Q, wavelength), according to the specific interface technology.

Each labeling method is associated with the list of “labels” (e.g., VLAN ID,
GRE key) that are still available and can be exploited to tag/encapsulate new types
of traffic, and with a “preference”. This information, an integer ranging from 0 to
10, can be used to give priority to a labeling method with respect to another and,
implicitly, to express the priority of an interface with respect to the others. Our

116 An orchestration architecture supporting multiple heterogeneous domains

model does not specify how the preference value must be selected; for instance,
it may be derived from a combination of the link capacity and of the overhead
introduced by a specific technology, but other policies may be considered as well.
Other parameters associated with interfaces are inherited by the OpenConfig model,
such as the Ethernet and, potentially, the IPv4/IPv6 configuration. As will be shown
later, all the above information can be exploited by the orchestration software to
define how the traffic exiting from a subgraph in a first domain can be delivered to
its next portion, running in a second domain.

Finally, additional domain information may be exported as well in addition to
functional and connection capabilities, such as the available bandwidth between two
domain interfaces, which may be useful to select the best domain(s) for NFs, in case
multiple placements options exist, as proposed in [99].

6.4 Capability-based orchestration

This section describes how the capability-based domain abstraction presented in
Section 6.3 is exploited by the overarching orchestrator to deploy service chains on
its multi-domain infrastructure.

6.4.1 Service chain

As detailed in [60], service chains consist of a number of Service Access Points
(SAPs), NFs (e.g., firewall with 2 ports) and their interconnections. A SAP represents
an entry/exit point for the traffic in/from the service chain; hence, as shown at the top
of Figure 6.3, it may be characterized with the traffic that has to enter in the service
chain through that access point, which can include traffic specifiers (e.g, IP addresses,
VLANs, etc.) and physical specifiers (e.g., the entry point of such a traffic in the
operator network). According to the picture, links are instead potentially associated
with constraints on the traffic that has to transit on that specific connection. SAPs are
very flexible identifiers and can be updated over time; for instance, in case of per-user
services, a SAP should receive all the traffic coming from the user’s device, e.g., all
the packets matching the MAC address of the device he is currently using, and should
correspond to the connection point of such a device to the network (e.g., sap-0
in Figure 6.3). Since the user can access the Internet through different devices and

6.4 Capability-based orchestration 117

sap-0

web traffic

other traffic
Firewall

sap-2

sap-3

web traffic

Web
cache

NAT sap-1

sap-4

sap-5

domain-A

domain-B

interface: if-1
interface: if-0

interface: if-1
labeling-method: VLAN
vlan-id: 28

Overarching Orchestrator
domain-A domain-B

IPv4: 10.0.0.1
VLAN (25,28): preference 5
GRE (0x03,0x04): preference 4

IPv4: 10.0.0.2
VLAN (25,28): preference 5
GRE (0x03,0x04): preference 4

VLAN 25, 28
preference 10

GRE 0x03, 0x04
preference 8

Virtual topology

Internet
Legacy network

if-1 if-0

if-1

interface: if-0
labeling-method: VLAN
vlan-id: 28

interface: if-1
labeling-method: VLAN
vlan-id: 25

interface: if-1
labeling-method: VLAN
vlan-id: 25

Access
network

if-0

sap-0

web traffic

other traffic

web traffic

Firewall

Web
cache

NAT sap-1

domain: domain-A
interface: if-0
Input-traffic:

eth-src: aa:bb:cc:dd:ee:ff

domain: domain-B
interface: if-1

domain-C

backbone
legacy network

if-2

if-1 if-0

VLAN 28

VLAN 25

if-0

if-0
if-1

Virtual channles

if-1 if-0

subgraph

subgraph

other traffic

other traffic

Fig. 6.3 Service chain deployment involving two domains directly connected.

from different locations, these parameters must be dynamically derived each time
the service chain is going be instantiated (or updated, in case such a graph already
exist). To this purpose we can exploit a user location service graph processing all
the traffic coming from new devices, which is similar to the service detailed in [60].

6.4.2 Virtual topology

As shown in Figure 6.3, the global orchestrator models the entire network infras-
tructure with a set of domains characterized by a set of functional capabilities and
associated with big-switches possibly connected. The virtual topology is created
based on the connection capabilities associated with domain interfaces, as described
in the following. First, the “neighbor” parameter indicates whether a connection
between two interfaces (of different domains) may exist or not. Then, a virtual
channel is actually established between two interfaces per each pair <labeling-

118 An orchestration architecture supporting multiple heterogeneous domains

method,available-label> they have in common1; as shown in Figure 6.3, each virtual
channel is then associated with such an information and with a “preference” that
derives from the preference value of the labeling method in the two interfaces.
For instance, a virtual channel may represent all the traffic exchanged between
two interfaces and that is encapsulated into a particular GRE tunnel, or that be-
longs to a specific VLAN, and more. Referring to the picture, VLAN IDs 25, 28
and GRE keys 0x03, 0x04 are available in both interfaces domain-A/if-1 and
domain-B/if-0, then four virtual channels are established between them. As
described in the remainder of this section, virtual channels play a primary role in the
set up of the inter-domain traffic steering.

Figure 6.3 also shows that domains may be connected through a legacy network;
as this network does not have any orchestrator and implements the legacy IP for-
warding, virtual channels based on tunneling protocols can be established directly
between interfaces connected to it. As a final remark, other information may be
available as well in the virtual topology (e.g., inter-domain bandwidth, intra-domain
bandwidth, path latency), in case it is advertised by domain orchestrators in addition
to functional and connection capabilities.

6.4.3 Service chain placement and subgraphs generation

To deploy a service chain in the virtual topology, the best domain(s) that will actually
implement the required NFs, links and SAPs must be identified. To this purpose,
different algorithms may be defined/exploited.

Inspired by the hierarchical/multi-domain routing, the algorithm proposed is
a greedy approach that minimizes the distance between two NFs/SAPs directly
connected in the service chain, by taking into account the number of domains to be
traversed to realize the connection and the following constraints. First, some SAPs
are forced to be mapped to specific domain interfaces e.g., because they represent the
entry point of the user traffic into the network, as mentioned in Section 6.4.1. Second,
a NF must be executed in a domain that advertises the corresponding functional
capability; notably, to check whether a domain is candidate or not to execute a certain
NF, the description of the functional capability and the associated data model must be

1In case two interfaces do not have any common <labeling-method,available-label>, no link
is established in the virtual topology, although they are physically connected as indicated by the
“neighbor” parameter.

6.4 Capability-based orchestration 119

considered. Third, links between NFs/SAPs deployed on different domains require
the exploitation of virtual channels to move packets from one domain to another;
each virtual channel can be used to set up a single link of the service chain. Fourth,
available virtual channels with higher preference value are used first.

However, more sophisticated algorithms may be exploited as well, according to
the information exported by each domain in addition to the capabilities defined in
Section 6.3, and then available in the virtual topology.

A possible placement of the service chain at the top of Figure 6.3 on the virtual
topology shown in the cloud is depicted at the bottom of the picture, which has been
possible because domain-A and domain-B: (i) offered the requested functional
capabilities, and (ii) at least two virtual channels were available between them, one
needed to set up the connection between the firewall and the NAT, the other to
implement the link between the firewall and the web cache.

As shown in the picture, the output of the placement algorithm is one subgraph
per each domain involved in the service chain deployment, which includes the
NFs assigned to that domain and, possibly, new SAPs. These SAPs are originated
by links of the service chain that have been split because connecting NFs/SAPs
mapped to different domains; then, the two SAPs originated by the same link are
connected through a virtual channel that terminates in two interfaces of the involved
domains, in order to recreate the original link. An example is given by the link
between the firewall and the NAT in Figure 6.3, which has been split causing the
generation of sap-3 in domain-A and sap-5 in domain-B, connected through
the virtual channel corresponding to traffic tagged with the VLAN ID 25. Third,
links in the service chain between NFs/SAPs deployed on different domains require
the exploitation of virtual links to move packets from one domain to another; each
virtual link can be used to set up a single connection described in the service chain.
Fourth, available virtual links with the higher preference value should be prioritized.

When applying this heuristic to deploy the service chain at the top of Figure 6.3
on the virtual topology shown in the cloud, we get the mapping depicted at the bottom
of the picture, which has been possible because domain-A and domain-B: (i)
offered the require services, and (ii) at least two virtual links were available between
them (one is then selected to set up the connection between the firewall and the NAT,
the other to implement the link between the firewall and the web cache).

120 An orchestration architecture supporting multiple heterogeneous domains

Overarching Orchestrator

sap-0

web traffic

other traffic

Firewall

domain-A
domain-B

sap-2

sap-3

sap-4 Sap-6

sap-5
sap-7

web traffic

Web
cache

NAT sap-1

sap-8

sap-9

domain-A

domain-B
domain-C

IPv4: 10.0.0.1
VLAN (25,28): preference 5
GRE (0x03,0x04): preference 4

VLAN 25, 28
preference 10

GRE 0x03, 0x04
preference 8

IPv4: 10.0.1.1
GRE (0x01,0xA3): preference 6

if-1

Virtual topology

Internet
legacy network

domain-C

if-1

if-0

IPv4: 10.0.1.2
GRE (0x01,0xA3): preference 6

if-1 if-0

interface: if-1
labeling-method: GRE
local IP: 10.0.1.1
remote IP: 10.0.1.2
key: 0x01

interface: if-0
labeling-method: GRE
local IP: 10.0.1.2
remote IP: 10.0.1.1
key: 0x01

interface: if-1
labeling-method: VLAN
vlan-id: 25

interface: if-0
labeling-method: VLAN
vlan-id: 25

interface: if-1
labeling-method: GRE
local: IP 10.0.1.1
remote IP: 10.0.1.2
key: 0x03

interface: if-0
labeling-method: GRE
local IP: 10.0.1.2
remote IP: 10.0.1.1
key: 0x03

interface: if-1

interface: if-0

interface: if-1
labeling-method: VLAN
vlan-id: 28

interface: if-0
labeling-method: VLAN
vlan-id: 28

other traffic

Access
network

if-0

IPv4: 10.0.0.2
VLAN (25,28): preference 5
GRE (0x03,0x04): preference 4

sap-0

web traffic

other traffic other traffic

web traffic

Firewall

Web
cache

NAT sap-1

domain: domain-A
interface: if-0
Input-traffic:

eth-src: aa:bb:cc:dd:ee:ff

domain: domain-C
interface: if-1

VLAN 28

VLAN 25

GRE 0x01

GRE 0x03

if-1 if-0
if-1 if-0

if-1 if-0
if-1 if-0

if-1

if-1
subgraph

subgraph
subgraph

Fig. 6.4 Service chain deployment involving three domains: domain-A and domain-C
execute NFs, while domain-B just implements network connections.

As shown in the picture, the placement algorithm originates one subgraph per
each domain involved in the service chain deployment, which includes the NFs
assigned to that domain and a number of new SAPs. These SAPs are originated
by links of the service chain that have been split because connecting NFs/SAPs
mapped to different domains; then, the two SAPs originated by the same link are
connected through a virtual link that terminates in two interfaces of the involved
domains (particularly, in the two interfaces directly connected), in order to recreate
the original link of the service chain. An example is given by the link between
the firewall and the NAT, which has been split causing the generation of one SAP
in domain-A and one SAP in domain-B, connected through the virtual link
corresponding to traffic tagged with the VLAN ID 25.

Figure 6.4 shows instead the case in which NFs are assigned to two domains
connected by means of the intermediate domain-B, which is only used to forward
traffic between its boundary interfaces. As shown, a subgraph is generated for this
domain as well, which just includes connections between SAPs. As in the example
above, SAPs of this subgraph are then connected with SAPs of other domains through
virtual channels, in order to create the connection described in the service chain.

6.4 Capability-based orchestration 121

sap-1

sap-3

interface: if-1
ts-tech: VLAN
vlan-id: 28

interface: if-1
ts-tech : VLAN
vlan-id: 25

if-1 if-0

sap-2

sap-4
inter-domain

link

domain-A
domain-B

interface: if-0
ts-tech : VLAN
vlan-id: 25

interface: if-0
ts-tech: VLAN
vlan-id: 28

pkt

pkt

pkt

pkt

vlan 28 pkt

vlan 25 pkt

Fig. 6.5 Inter-domain traffic steering based on information associated with SAPs.

6.4.4 Inter-domain traffic steering

Both Figure 6.3 and Figure 6.4 show that, before pushing subgraphs to the proper
domain orchestrators, each SAP is enriched with information associated with the
virtual channel connected to the SAP itself, thus enabling those orchestrators to
properly set up the inter-domain traffic steering.

As highlighted in Figure 6.5, this information allows each domain orchestrator
to configure the domain so that packets sent through a specific SAP are properly
tagged/encapsulated before being delivered to the next domain through a specific
interface. Similarly, since a domain typically receives through the same interface
traffic to be delivered to different SAPs, the information associated with each SAP
allows the domain orchestrator to known that receiving traffic with a certain tag/en-
capsulation from a specific interface means receiving it through a certain SAP.

The figure also shows how information associated with SAPs should only be used
to implement the inter-domain traffic steering; packets should be tagged/encapsulated
just before being sent out of the domain, while the tag/encapsulation should be
removed just after the packet classification in the next domain. The definition of
the intra-domain traffic steering (i.e., how to implement links between SAPs/NFs
deployed in the same domain) is instead a task of the specific domain orchestrator,
and depends on the specific domain infrastructure. Moreover, in case the inter-
domain traffic steering is done through a tunneling protocol (such as between sap6

122 An orchestration architecture supporting multiple heterogeneous domains

and sap8 in Figure 6.4), the specific tunnel must be set up by the involved domain
orchestrators.

This requires that traffic leaving a domain is properly encapsulated/tagged so
that the next domain can understand how to process it. For example, domain-B
in Figure 6.3 must understand whether packets arriving through if-0 have to be
provided to the web cache or the NAT. To this purpose, we attach to the same virtual
link the two SAPs (in contiguous domains) that have to be directly connected in
order to realize (part of) a connection of the service chain (different pairs of SAPs are
instead assigned to different virtual links). In other words, as shown in the figures,
we enrich the SAP description with information of the selected virtual link (e.g.,
GRE tunnel towards a specific remote IP and with a specific key). So that the domain
orchestrator understands how specific traffic (i.e., packets sent through that SAP)
must be tagged/encapsulated before being actually sent to the next domain. Similarly,
the domain orchestrator knows that receiving traffic with a certain tag/encapsulation
means receiving it through a certain SAP, and then it knows how to process it (i.e.,
to which NF it must be provided). For instance, sap-2 and sap-4 in Figure 6.3,
which must be connected in order to realize the link between the firewall and the web
cache, are assigned to the VLAN ID 28, while sap-3 and sap-5 are assigned to
the VLAN ID 25. This way, considering a traffic flow from the left to the right of the
picture, domain-A knows that: (i) all web traffic arriving from the firewall must
be sent on sap-2, which means to tag such a traffic with the VLAN ID 28 before
transmitting it on the interface if-1; (ii) the other traffic coming from the firewall
has to be sent on sap-2, namely tagged with the VLAN ID 25 and then sent on
the interface if-1. On the other side of the links, domain-B knows that traffic
arriving from if-0 and tagged with the VLAN ID 28 correspond to sap-5 and
then must be provided to the web cache, while traffic arriving from the same interface
but belonging to the VLAN 25 have to be forwarded to the NAT. This approach can
be easily applied also to the more complex example of Figure 6.4, where the two
domains hosting NFs are interconnected through a third domain. This picture also
highlights how the technology used to identify a specific type of traffic may change
between two different domains (e.g., web traffic is associated to a VLAN in the first
link, and to a GRE tunnel in the second).

It is worth noting that, in case of direct connection between two domains, the
technology associated with the SAPs has just the purpose of allowing the next domain
to understand how to process a given packet.

6.5 Validation 123

To conclude, it is worth mentioning that domain orchestrators have to take care
of setting up the GRE tunnels required by the subgraph they have to implement.
Moreover, the encapsulation/tag is just needed to implement the inter-domain traffic
steering, while it could not be used inside a specific domain, where the task to
properly set up connections as required by the subgraph is again let to the specific
domain orchestrator. Then, it is up to this module to decide whether to use the same
traffic steering mechanism within the domain, or to exploit some other technique; in
this second case, the domain orchestrator has to properly instruct the infrastructure
to remove the tag/encapsulation as soon as the packet enters in the domain. Simi-
larly, it is the domain orchestrator that has to configure its own domain to properly
tag/encapsulate the traffic, as required by the received subgraph.

6.5 Validation

To validate both our approach to implement inter-domain traffic steering and the
advantages brought by the idea of exposing, per each domain, its functional capa-
bilities, we executed some tests over a geographical testbed consisting of an SDN
domain that connects an access network encompassing a set of COMPOSERs to
emulate residential gateways, an OpenStack domain and the Internet, as shown in
Figure 6.6.

As shown at the top of the picture, the deployed service chain operates between
the green user U and the host H on the Internet2. Particularly the firewall is deployed
in COMPOSER, since this domain represents the entry point of the user’s traffic into
the network and has the firewall functional capability.

Then, in the first test (Figure 6.6(a)), no functional capability is exported by the
SDN domain, which is then used just to implement network paths, while the NAT is
deployed inside the data center in Venice, which is the only domain advertising such
a functional capability. Notably, VLANs are used for the set up of the inter-domain
traffic steering.

2NFs implementations: firewall: iptables executed in the host; NAT in the SDN domain:
ONOS bundle; NAT in data center: iptables executed in a KVM-based VM.

124 An orchestration architecture supporting multiple heterogeneous domains

a)

2)

3) 3)

OS Controller

Compute
nodes

SDN Controller

image

Domain Orchestrator

Venice – Data Center
Milan

NAT

NAT

Domain Orchestrator

1)

Functional
Capabilities

Functional
Capabilities

1)

VLAN 14

VLAN 15

SDN
Network

NAT

Domain
Orchestrator

Firewall

COMPOSER

3)

Functional
Capabilities

1)

Overarching
Orchestrator

VLAN 11

Firewall

U

Turin

Firewall NAT

Internet

H

repository

b)

2)

3)

Domain Orchestrator

Venice – Data Center

Domain Orchestrator

1)

Functional
Capabilities

1)

SDN
Network

NAT

Domain
Orchestrator

Firewall

3)

Functional
Capabilities

1)

Overarching
Orchestrator

VLAN 11

NAT

NAT

U

Turin

Firewall

Firewall NAT

Milan

Internet

H

Domain not
involved in the
service chain
deployment

Functional
Capabilities

COMPOSER

intra-domain traffic steering
inter-domain ts SAP (VLAN 11)

inter-domain ts SAP (VLAN 14)

inter-domain ts SAP (VLAN 15)

No network functions: TCP throughput: 88.59 Mbit/s | latency: 10.96 ms
Case a): TCP throughput: 67.04 Mbit/s | latency: 27.10 ms
Case b): TCP throughput: 81.34 Mbit/s | latency: 14.99 ms

Fig. 6.6 Validation scenario: (a) service chain split across three domains; (b) service chain
deployed in two domains.

6.6 Conclusion 125

In the second test (Figure 6.6(b)), the SDN domain orchestrator exports the NAT
functional capability, then the overarching orchestrator selects this domain for the
execution of this NF, thus reducing the distance between chained NFs.

In both cases, we measured the end-to-end latency introduced by the service
(using the ping command) and the throughput (using iperf generating TCP
traffic) between U and H. As shown in Figure 6.6, performance results better when
the NAT is executed in the SDN domain (case (b)), with respect to the case in which
such a NF is deployed in the data center (case (a)), and it is very close to the case in
which no network functions are present (baseline), which is limited by the speed of
the geographical connections (100Mbps). This is because (i) traffic does not need
to be forwarded to the far away data center before being actually delivered to H,
and (ii) the NAT is actually implemented as a set of Openflow rules installed by
the NAT bundle into the switches (only the first packet of a flow is processed in
the software bundle, while the following packets are directly processed in hardware
by the switches). Finally, the figure also reports performance measured when no
NF is instantiated between U and H, in order to give an insight of how the network
performs when only used to forward network packets.

6.6 Conclusion

The chapter presents an orchestration framework that can deploy service chains
across the heterogeneous resources available in a multi-domain network. Particularly,
it proposes a common capability-based representation of heterogeneous domains,
where each domain is exposed to the overarching orchestrator as: (i) a set of func-
tional capabilities indicating which NFs it is able to implement; (ii) a big switch
whose interfaces (representing boundary interfaces of the domain) are associated
with connection capabilities (e.g., next domain, support to GRE tunnels). The chap-
ter shows how this information can be used by the overarching orchestrator to select
domains involved in the deployment of the service chain (some domains can be used
to execute NFs, while other may just be exploited to realize network connections)
and to create the subgraphs to be deployed in those domains. Notably, each subgraph
contains also information needed to set up the inter-domain traffic steering, namely
to create links connecting NFs/service access points deployed on different domains.
Moreover, functional capabilities enable the overarching orchestrator to also exploit,

126 An orchestration architecture supporting multiple heterogeneous domains

for the execution of NFs, software bundles available in SDN controllers as well
as hardware accelerators/software components available, e.g., in CPEs. Notably,
the proposed orchestration model is suitable also for the deployment of service
chains across different administrative domains, since it does not mandate to export
information that can be considered confidential in such a scenario (e.g., amount of
available resources, links capacity).

Chapter 7

Conclusions

This thesis compiles all the scientific work carried out by the PhD candidate in his
doctoral studies, which aimed at improving the performance of virtualized network
services.

Network Functions Virtualization was an hot and promising technology when
this thesis started, in 2014; four year later we can see that this technology has become
mainstream, with several operators that already use some early products in their
production environment, although the standardization has not been fully completed.

This work mainly focused on investigating the problem of the performance of
virtualized network services, and from the perspective of a network operator. This
angle was chosen due to the several collaborations that the candidate established
with different operators during his studies and by participating to the FP7 European
projects SECURED and, in some parts, UNIFY.

The thesis introduces various improvements in the context of Network Function
Virtualization, both in terms of technological improvements and orchestration design.
The thesis started from the analysis of the existing technologies used on the packet
forwarding on a single server, and proposed an efficient algorithm to improve the
packets forwarding between the switch and the network functions.

Thanks to the suggestions from telecom operators, which currently operate the
intermediate network infrastructure (fronthaul/backhaul, core) but are interested to
play a more active role at the edge of the network as well, even at the customer’s

128 Conclusions

premises, the thesis started to investigate the problem of flexible packet inspection
on resource-constrained devices, such as residential or SOHO CPEs.

Driven by the observation that even resource-constrained network devices can
successfully host network services, this thesis presented the architecture of a node
that supports multiple virtualization technologies. In particular, this node supports
the novel concept of Native Network Functions, i.e., software components launched
directly on the bare metal, leveraging the capability of the home gateway to execute
some already existing software. In addition, this idea allows to exploit also the
hardware capabilities of the device, when available. As expected, this software
architecture is suitable to be deployed also on resource constrained devices, which
results in the possibility to instantiate virtual network functions close to the end user.

Finally, to overcome the limitations in terms of scalability and resource usage
when operating exclusively on CPEs, the last chapter presented a more complex
solutions that proposes a distributed NFV architecture, which enables to transparently
deploy network functions on multiple heterogeneous technological domain, such as
edge nodes, SDN networks, datacenters. This result has been achieved by defining a
standard interface that enable different technological (and, possibly, administrative)
domains to talk to an overarching orchestrator. The latter component is in charge of
performing the deployment based on the given requirements; furthermore, when the
service requirements cannot be fulfilled by a single domain, it can split the graph
representing the requested service among different domains, creating the proper
points of interconnection between them.

References

[1] ETSI NFV. http://www.etsi.org/technologies-clusters/technologies/nfv.

[2] Internet Engineering Task Force (IETF). Service Functions Chaining (SFC)
working group. https://datatracker.ietf.org/wg/sfc/documents/, 2014.

[3] OpenFlow. https://www.opennetworking.org/software-defined-standards/
specifications/.

[4] ETSI. Network Functions Virtualisation (NFV); Infrastructure; Methodology
to describe Interfaces and Abstractions, 2014.

[5] R. Bonafiglia, I. Cerrato, F. Ciaccia, M. Nemirovsky, and F. Risso. Assessing
the performance of virtualization technologies for nfv: A preliminary bench-
marking. In 2015 Fourth European Workshop on Software Defined Networks,
pages 67–72, Sept 2015.

[6] Kvm. http://www.linux-kvm.org.

[7] Docker. https://www.docker.com/.

[8] Openvswitch. http://openvswitch.org/.

[9] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. Performance characteris-
tics of virtual switching. In Cloud Networking (CloudNet), 2014 IEEE 3rd
International Conference on, pages 120–125, Oct 2014.

[10] Y. Zhao, L. Iannone, and M. Riguidel. Software switch performance factors
in network virtualization environment. In Network Protocols (ICNP), 2014
IEEE 22nd International Conference on, pages 468–470, Oct 2014.

[11] M. Casoni, C.A. Grazia, and N. Patriciello. On the performance of linux
container with netmap/vale for networks virtualization. In Networks (ICON),
2013 19th IEEE International Conference on, pages 1–6, Dec 2013.

[12] LXC. https://linuxcontainers.org/.

[13] L. Rizzo and G. Lettieri. Vale, a switched ethernet for virtual machines. In
Proceedings of the 8th international conference on Emerging networking
experiments and technologies, CoNEXT ’12, pages 61–72, New York, NY,
USA, 2012. ACM.

http://www.etsi.org/technologies-clusters/technologies/nfv
https://datatracker.ietf.org/wg/sfc/documents/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
http://www.linux-kvm.org
https://www.docker.com/
http://openvswitch.org/
https://linuxcontainers.org/

130 References

[14] B. Zhang, X. Wang, R. Lai, L. Yang, Z. Wang, Y. Luo, and X. Li. Evaluating
and optimizing i/o virtualization in kernel-based virtual machine (kvm). In
C. Ding, Z. Shao, and R. Zheng, editors, Network and Parallel Computing,
volume 6289 of Lecture Notes in Computer Science, pages 220–231. Springer
Berlin Heidelberg, 2010.

[15] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance
comparison of virtual machines and linux containers. volume 28, page 32.

[16] M.G. Xavier, M.V. Neves, F.D. Rossi, T.C. Ferreto, T. Lange, and C.A.F.
De Rose. Performance evaluation of container-based virtualization for high
performance computing environments. In Parallel, Distributed and Network-
Based Processing (PDP), 2013 21st Euromicro International Conference on,
pages 233–240, Feb 2013.

[17] Xen. http://www.xen.org/.

[18] OpenVZ. https://openvz.org/.

[19] Linux-VServer. http://linux-vserver.org.

[20] DPDK. http://dpdk.org/.

[21] R. Russell. Virtio: Towards a de-facto standard for virtual i/o devices. SIGOPS
Oper. Syst. Rev., 42(5):95–103, July 2008.

[22] Ntoppfring. http://www.ntop.org/products/pf_ring/.

[23] S. McCanne and V. Jacobson. The bsd packet filter: A new architecture
for user-level packet capture. In Proceedings of the USENIX Winter 1993
Conference Proceedings on USENIX Winter 1993 Conference Proceedings,
pages 2–2. USENIX Association, 1993.

[24] I. Cerrato, G. Marchetto, F. Risso, R. Sisto, M. Virgilio, and R. Bonafiglia. An
efficient data exchange mechanism for chained network functions. Journal of
Parallel and Distributed Computing, 114:1 – 15, 2018.

[25] M. Michael and M. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Proceedings of the fifteenth annual
ACM symposium on Principles of distributed computing, PODC ’96, pages
267–275, New York, NY, USA, 1996. ACM.

[26] A. Gidenstam, H. Sundell, and P. Tsigas. Cache-aware lock-free queues for
multiple producers/consumers and weak memory consistency. In Proceedings
of the 14th international conference on Principles of distributed systems,
OPODIS’10, pages 302–317, Berlin, Heidelberg, 2010. Springer-Verlag.

[27] S. Prakash, Y. H. Lee, and T. Johnson. A nonblocking algorithm for shared
queues using compare-and-swap. IEEE Trans. Comput., 43(5):548–559, May
1994.

http://www.xen.org/
https://openvz.org/
http://linux-vserver.org
http://dpdk.org/
http://www.ntop.org/products/pf_ring/

References 131

[28] M. Hoffman, O. Shalev, and N. Shavit. The baskets queue. In Eduardo Tovar,
Philippas Tsigas, and Hacene Fouchal, editors, OPODIS, volume 4878 of
Lecture Notes in Computer Science, pages 401–414. Springer, 2007.

[29] P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking concurrent
fifo queue for shared memory multiprocessor systems. In Proceedings of the
thirteenth annual ACM symposium on Parallel algorithms and architectures,
SPAA ’01, pages 134–143, New York, NY, USA, 2001. ACM.

[30] J. Martins, M. Ahmed, C. Raiciu, and F. Huici. Enabling fast, dynamic network
processing with clickos. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, HotSDN ’13, pages
67–72, New York, NY, USA, 2013. ACM.

[31] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici. Clickos and the art of network function virtualization. In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 459–473, Seattle, WA, 2014. USENIX Association.

[32] J. Hwang, K. K. Ramakrishnan, and T. Wood. NetVM: High performance
and flexible networking using virtualization on commodity platforms. In
11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 445–458, Seattle, WA, 2014. USENIX Association.

[33] P. Lee, T. Bu, and G. Chandranmenon. A lock-free, cache-efficient multi-
core synchronization mechanism for line-rate network traffic monitoring. In
IPDPS, pages 1–12, 2010.

[34] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. In USENIX Annual Technical Conference, pages
99–112, 1996.

[35] C. Dovrolis, B. Thayer, and P. Ramanathan. Hip: Hybrid interrupt-polling for
the network interface. ACM Operating Systems Reviews, 35:50–60, 2001.

[36] F. Fusco and L. Deri. High speed network traffic analysis with commodity
multi-core systems. In Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, IMC ’10, pages 218–224, New York, NY, USA,
2010. ACM.

[37] R. Bonafiglia, A. Sapio, M. Baldi, F. Risso, and P. C. Pomi. Enforcement of
dynamic http policies on resource-constrained residential gateways. Computer
Networks, 123(Supplement C):169 – 183, 2017.

[38] A. Moore and K. Papagiannaki. Toward the accurate identification of network
applications. In Passive and Active Network Measurement, pages 41–54.
Springer, 2005.

[39] W. R. Stevens. UNIX Network Programming: Networking APIs, volume 1.
Prentice-Hall, Inc., 1997.

132 References

[40] OpenWrt: Linux distribution for embedded devices. https://openwrt.org.

[41] ApacheBench. http://httpd.apache.org/docs/2.2/programs/ab.html.

[42] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC 2018 - TCP Selective
Acknowledgment Options, 1996.

[43] Mark Allman, Vern Paxson, and Ethan Blanton. TCP Congestion Control,
2009.

[44] M. Mellia, R. Cigno, and F. Neri. Measuring ip and tcp behavior on edge
nodes with tstat. Computer Networks, 47(1):1–21, 2005.

[45] Tinyproxy. http://tinyproxy.github.io.

[46] R. Fielding, J. Gettys, J. Mogul, H. Nielsen, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1, 1999.

[47] K9 Web Protection. http://www1.k9webprotection.com.

[48] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia
Ratnasamy, and Vyas Sekar. Making middleboxes someone else’s problem:
Network processing as a cloud service. SIGCOMM Comput. Commun. Rev.,
42(4):13–24, August 2012.

[49] Cisco Umbrella. https://umbrella.cisco.com/use-cases/web-filtering.

[50] Blue Coat WebFilter. https://www.bluecoat.com/products/webfilter.

[51] A. Sapio, Y. Liao, M. Baldi, G. Ranjan, F. Risso, A. Tongaonkar, R. Torres,
and A. Nucci. Per-user policy enforcement on mobile apps through network
functions virtualization. In Proceedings of the 9th ACM Workshop on Mobility
in the Evolving Internet Architecture, MobiArch ’14, pages 37–42, New York,
NY, USA, 2014. ACM.

[52] L. Chou, Z. He, D. C. Li, H. Chen, J. Su, C. Chen, H. Wei, and C. Li.
Design and implementation of content-based filter system on embedded linux
home gateway. In Advanced Communication Technology (ICACT), 2012 14th
International Conference on, pages 1046–1051. IEEE, 2012.

[53] N. Herbaut, D. Negru, G. Xilouris, and Y. Chen. Migrating to a nfv-based
home gateway: introducing a surrogate vnf approach. In Network of the
Future (NOF), 2015 6th International Conference on the, pages 1–7. IEEE,
2015.

[54] R. Cziva, S. Jouet, and D. Pezaros. Roaming edge vnfs using glasgow network
functions. In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference, pages 601–602. ACM, 2016.

[55] F. Sánchez and D. Brazewell. Tethered linux cpe for ip service delivery. In
Network Softwarization (NetSoft), 2015 1st IEEE Conference on, pages 1–9.
IEEE, 2015.

https://openwrt.org
http://httpd.apache.org/docs/2.2/programs/ab.html
http://tinyproxy.github.io
http://www1.k9webprotection.com
https://umbrella.cisco.com/use-cases/web-filtering
https://www.bluecoat.com/products/webfilter

References 133

[56] L. Shuai, G. Xie, and J. Yang. Characterization of http behavior on access
networks in web 2.0. In Telecommunications, 2008. ICT 2008. International
Conference on, pages 1–6. IEEE, 2008.

[57] R. Bonafiglia, S. Miano, S. Nuccio, F. Risso, and A. Sapio. Enabling nfv
services on resource-constrained cpes. In 2016 5th IEEE International Con-
ference on Cloud Networking (Cloudnet), pages 83–88, Oct 2016.

[58] Ivano Cerrato, Fulvio Risso, Roberto Bonafiglia, Kostas Pentikousis, Gergely
Pongrácz, and Hagen Woesner. Composer: A compact open-source service
platform. Computer Networks, 139:151 – 174, 2018.

[59] OpenConfig. http://www.openconfig.net.

[60] I. Cerrato, A. Palesandro, F. Risso, M. Suñé, V. Vercellone, and H. Woesner.
Toward dynamic virtualized network services in telecom operator networks.
Computer Networks, 92:380–395, 2015.

[61] eBPF. http://man7.org/linux/man-pages/man2/bpf.2.html.

[62] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4: Program-
ming protocol-independent packet processors. ACM SIGCOMM Computer
Communication Review, 44(3):87–95, 2014.

[63] UNIFY consortium. Deliverable 4.3: Updated concept and evaluation results
for SP-DevOps. http://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/
Deliverables/UNIFY-WP4-D4.3_final_v1.0-unify-web.pdf, 2016.

[64] Google. Google cAdvisor. https://github.com/google/cadvisor.

[65] P. Kreuger and R. Steinert. Scalable in-network rate monitoring. In 2015
IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 866–869, May 2015.

[66] UNIFY consortium. Unify: unifying cloud and carrier network. http://www.
fp7-unify.eu/, 2013.

[67] SECURED consortium. SECURity at the network EDge. http://www.
secured-fp7.eu/, 2013.

[68] A. Manzalini, F. Risso, and M. Ullio. Exploiting infrastructure capabilities
to dynamically orchestrate nfv services across multiple domains. In ETSI
Workshop - From Research To Standardization, May 2016.

[69] Openstack. https://www.openstack.org/.

[70] OpenStack community. OpenStack Tacker. https://wiki.openstack.org/wiki/
Tacker.

http://www.openconfig.net
http://man7.org/linux/man-pages/man2/bpf.2.html
http://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY-WP4-D4.3_final_v1.0-unify-web.pdf
http://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY-WP4-D4.3_final_v1.0-unify-web.pdf
https://github.com/google/cadvisor
http://www.fp7-unify.eu/
http://www.fp7-unify.eu/
http://www.secured-fp7.eu/
http://www.secured-fp7.eu/
https://www.openstack.org/
https://wiki.openstack.org/wiki/Tacker
https://wiki.openstack.org/wiki/Tacker

134 References

[71] Tosca. TOSCA Simple Profile for Network Functions Virtualization (NFV)
Version 1.0. http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.
html.

[72] TU Berlin Fraunhofer FOKUS. Open Baton. http://openbaton.github.io/.

[73] Telefonica. OpenMANO. https://github.com/nfvlabs/openmano.

[74] J. Soares, M. Dias, J. Carapinha, B. Parreira, and S. Sargento. Cloud4nfv:
A platform for virtual network functions. In Cloud Networking (CloudNet),
2014 IEEE 3rd International Conference on, pages 288–293, Oct 2014.

[75] J. Soares, C. Gonçalves, B. Parreira, P. Tavares, J. Carapinha, J. P. Barraca,
R. L. Aguiar, and S. Sargento. Toward a telco cloud environment for service
functions. IEEE Communications Magazine, 53(2):98–106, Feb 2015.

[76] W. Shen, M. Yoshida, T. Kawabata, K. Minato, and W. Imajuku. vconductor:
An nfv management solution for realizing end-to-end virtual network services.
In Network Operations and Management Symposium (APNOMS), 2014 16th
Asia-Pacific, pages 1–6, Sept 2014.

[77] S. Dräxler, M. Peuster, H. Karl, M. Bredel, J. Lessmann, T. Soenen,
W. Tavernier, S. Mendel-Brin, and G. Xilouris. Sonata: Service program-
ming and orchestration for virtualized software networks. arXiv preprint
arXiv:1605.05850, 2016.

[78] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek, S. Sahhaf, W. Tavernier,
and F. Risso. Multi-domain service orchestration over networks and clouds: a
unified approach. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages 377–378. ACM, 2015.

[79] F. Lucrezia, G. Marchetto, F. Risso, and V. Vercellone. Introducing network-
aware scheduling capabilities in openstack. In Proceedings of the 2015 1st
IEEE Conference on Network Softwarization (NetSoft), pages 1–5, April 2015.

[80] V. Cunha, I. Cardoso, J. Barraca, and R. Aguiar. Policy-driven vcpe through
dynamic network service function chaining. In 2016 IEEE NetSoft Conference
and Workshops (NetSoft), pages 156–160. IEEE, 2016.

[81] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi, K.K.
Ramakrishnan, and T. Wood. Opennetvm: A platform for high performance
network service chains. In Proceedings of the 2016 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization, HotMIddlebox ’16, pages
26–31, New York, NY, USA, 2016. ACM.

[82] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi, K. K.
Ramakrishnan, and T. Wood. Opennetvm: Flexible, high performance nfv
(demo). In 2016 IEEE NetSoft Conference and Workshops (NetSoft), pages
359–360, June 2016.

http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
http://openbaton.github.io/
https://github.com/nfvlabs/openmano

References 135

[83] T. Wood, K. K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang. Toward a
software-based network: integrating software defined networking and network
function virtualization. IEEE Network, 29(3):36–41, May 2015.

[84] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The click modular
router. In Proceedings of the seventeenth ACM symposium on Operating
systems principles, SOSP ’99, pages 217–231, New York, NY, USA, 1999.
ACM.

[85] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. nf.io: A file system
abstraction for nfv orchestration. In Network Function Virtualization and
Software Defined Network (NFV-SDN), 2015 IEEE Conference on, pages
135–141, Nov 2015.

[86] R. Cziva, S. Jouet, and D. Pezaros. Gnfc: Towards network function cloudi-
fication. In Network Function Virtualization and Software Defined Network
(NFV-SDN), 2015 IEEE Conference on, pages 142–148. IEEE, 2015.

[87] R. Cziva, S. Jouet, K. White, and D. Pezaros. Container-based network func-
tion virtualization for software-defined networks. In 2015 IEEE Symposium
on Computers and Communication (ISCC), pages 415–420. IEEE, 2015.

[88] R. Cziva, S. Jouet, and D. Pezaros. Roaming edge vnfs using glasgow network
functions. In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference, pages 601–602. ACM, 2016.

[89] F. Sánchez and D. Brazewell. Tethered linux cpe for ip service delivery. In
Network Softwarization (NetSoft), 2015 1st IEEE Conference on, pages 1–9,
April 2015.

[90] Cisco. MANTL. http://mantl.io.

[91] Docker. Docker for the enterprise. https://www.docker.com/enterprise.

[92] Docker. Docker Universal Control Plane. https://www.docker.com/sites/
default/files/DCR_UniversalControlPlane_TechBrief_070716_v1.pdf.

[93] R. Bonafiglia, G. Castellano, I. Cerrato, and F. Risso. End-to-end service
orchestration across sdn and cloud computing domains. In 2017 IEEE Confer-
ence on Network Softwarization (NetSoft), pages 1–6, July 2017.

[94] ONLAB. Open Network Operating System. http://onosproject.org/.

[95] Open Daylight. https://www.opendaylight.org/.

[96] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek, S. Sahhaf, W. Tavernier,
and F. Risso. Multi-domain service orchestration over networks and clouds:
a unified approach. ACM SIGCOMM Computer Communication Review,
45(4):377–378, 2015.

http://mantl.io
https://www.docker.com/enterprise
https://www.docker.com/sites/default/files/DCR_UniversalControlPlane_TechBrief_070716_v1.pdf
https://www.docker.com/sites/default/files/DCR_UniversalControlPlane_TechBrief_070716_v1.pdf
http://onosproject.org/
https://www.opendaylight.org/

136 References

[97] J. Soares, M. Dias, J. Carapinha, B. Parreira, and S. Sargento. Cloud4nfv:
A platform for virtual network functions. In Cloud Networking (CloudNet),
2014 IEEE 3rd International Conference on, pages 288–293, Oct 2014.

[98] 5g exchange, 2015. Accessed on: 2017-02-06.

[99] I. Vaishnavi, R. Guerzoni, and R. Trivisonno. Recursive, hierarchical em-
bedding of virtual infrastructure in multi-domain substrates. In Network
Softwarization (NetSoft), 2015 1st IEEE Conference on, pages 1–9. IEEE,
2015.

[100] T. Soenen, S. Sahhaf, W. Tavernier, P. Sköldström, D. Colle, and M. Pickavet.
A model to select the right infrastructure abstraction for service function
chaining. In IEEE NFV-SDN2016, the IEEE Conference on Network Function
Virtualization and Software Defined Networks, pages 1–7, 2016.

[101] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan, et al.
Steering: A software-defined networking for inline service chaining. In 2013
21st IEEE International Conference on Network Protocols (ICNP), pages
1–10. IEEE, 2013.

[102] R. Nakamura, K. Okada, S. Saito, H. Tanahashi, and Y. Sekiya. Flowfall: A
service chaining architecture with commodity technologies. In 2015 IEEE
23rd International Conference on Network Protocols (ICNP), pages 425–431.
IEEE, 2015.

Appendix A

Publications list

This appendix lists all the paper that have been published during the PhD studies.

A.1 Journals

• Bonafiglia R., Sapio A., Baldi M., Risso, F. and Pomi P. C. (2017). Enforce-
ment of dynamic HTTP policies on resource-constrained residential gateways.
Computer Networks, 123, 169-183.

• Cerrato I., Marchetto G., Risso F., Sisto R., Virgilio M. and Bonafigli, R.
(2017). An efficient data exchange mechanism for chained network functions.
Journal of Parallel and Distributed Computing, 114, 1-15.

• Cerrato I., Risso F., Bonafiglia R., Pentikousis K., Pongracz G., Woesner H.,
(2018). COMPOSER: A Compact Open-source Service Platform. Computer
Networks, 139, 151–174.

A.2 Conferences

• Bonafiglia R., Ciaccia F., Lioy A., Nemirovsky M., Risso F. and Su T., Of-
floading personal security applications to a secure and trusted network node,
Proceedings of the 2015 1st IEEE Conference on Network Softwarization
(NetSoft), London, 2015, pp. 1-2.

138 Publications list

• Bonafiglia R., Cerrato I., Ciaccia F., Nemirovsky M. and F. Risso, Assessing
the Performance of Virtualization Technologies for NFV: A Preliminary Bench-
marking, 2015 Fourth European Workshop on Software Defined Networks,
Bilbao, 2015, pp. 67-72.

• Bonafiglia R., Miano S., Nuccio S., Risso F. and Sapio A., Enabling NFV Ser-
vices on Resource-Constrained CPEs, 2016 5th IEEE International Conference
on Cloud Networking (Cloudnet), Pisa, 2016, pp. 83-88.

• Baldi M., Bonafiglia R., Risso F. and Sapio, A., Modeling Native Software
Components as Virtual Network Functions, In Proceedings of the 2016 confer-
ence on ACM SIGCOMM 2016 Conference (pp. 605-606). ACM.

• Bonafiglia R., Castellano G., Cerrato I. and Risso F., End-to-end service or-
chestration across SDN and cloud computing domains, 2017 IEEE Conference
on Network Softwarization (NetSoft), Bologna, 2017, pp. 1-6.

