1,927 research outputs found

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    Wireless sensor network as a distribute database

    Get PDF
    Wireless sensor networks (WSN) have played a role in various fields. In-network data processing is one of the most important and challenging techniques as it affects the key features of WSNs, which are energy consumption, nodes life circles and network performance. In the form of in-network processing, an intermediate node or aggregator will fuse or aggregate sensor data, which are collected from a group of sensors before transferring to the base station. The advantage of this approach is to minimize the amount of information transferred due to lack of computational resources. This thesis introduces the development of a hybrid in-network data processing for WSNs to fulfil the WSNs constraints. An architecture for in-network data processing were proposed in clustering level, data compression level and data mining level. The Neighbour-aware Multipath Cluster Aggregation (NMCA) is designed in the clustering level, which combines cluster-based and multipath approaches to process different packet loss rates. The data compression schemes and Optimal Dynamic Huffman (ODH) algorithm compressed data in the cluster head for the compressed level. A semantic data mining for fire detection was designed for extracting information from the raw data by the semantic data-mining model is developed to improve data accuracy and extract the fire event in the simulation. A demo in-door location system with in-network data processing approach is built to test the performance of the energy reduction of our designed strategy. In conclusion, the added benefits that the technical work can provide for in-network data processing is discussed and specific contributions and future work are highlighted

    A Deep Learning Approach for Vital Signs Compression and Energy Efficient Delivery in mhealth Systems

    Get PDF
    © 2013 IEEE. Due to the increasing number of chronic disease patients, continuous health monitoring has become the top priority for health-care providers and has posed a major stimulus for the development of scalable and energy efficient mobile health systems. Collected data in such systems are highly critical and can be affected by wireless network conditions, which in return, motivates the need for a preprocessing stage that optimizes data delivery in an adaptive manner with respect to network dynamics. We present in this paper adaptive single and multiple modality data compression schemes based on deep learning approach, which consider acquired data characteristics and network dynamics for providing energy efficient data delivery. Results indicate that: 1) the proposed adaptive single modality compression scheme outperforms conventional compression methods by 13.24% and 43.75% reductions in distortion and processing time, respectively; 2) the proposed adaptive multiple modality compression further decreases the distortion by 3.71% and 72.37% when compared with the proposed single modality scheme and conventional methods through leveraging inter-modality correlations; and 3) adaptive multiple modality compression demonstrates its efficiency in terms of energy consumption, computational complexity, and responding to different network states. Hence, our approach is suitable for mobile health applications (mHealth), where the smart preprocessing of vital signs can enhance energy consumption, reduce storage, and cut down transmission delays to the mHealth cloud.This work was supported by NPRP through the Qatar National Research Fund (a member of the Qatar Foundation) under Grant 7-684-1-127

    Performance Evaluation of Routing Protocols in Wireless Sensor Networks

    Get PDF
    The efficiency of sensor networks strongly depends on the routing protocol used. In this paper, we analyze three different types of routing protocols: LEACH, PEGASIS, and VGA. Sensor networks are simulated using Sensoria simulator. Several simulations are conducted to analyze the performance of these protocols including the power consumption and overall network performance. The simulation results, using same limited sensing range value, show that PEGASIS outperforms all other protocols while LEACH has better performance than VGA. Furthermore, the paper investigates the power consumption for all protocols. On the average, VGA has the worst power consumption when the sensing range is limited, while VGA is the best when the sensing range is increased

    Distributed Coding/Decoding Complexity in Video Sensor Networks

    Get PDF
    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality

    A prediction-based approach for features aggregation in Visual Sensor Networks

    Get PDF
    Visual Sensor Networks (VSNs) constitute a key technology for the implementation of several visual analysis tasks. Recent studies have demonstrated that such tasks can be efficiently performed following an operative paradigm where cameras transmit to a central controller local image features, rather than pixel-domain images. Furthermore, features from multiple camera views may be efficiently aggregated exploiting the spatial redundancy between overlapping views. In this paper we propose a routing protocol designed for supporting aggregation of image features in a VSN. First, we identify a predictor able to estimate the efficiency of local features aggregation between different cameras in a VSN. The proposed predictor is chosen so as to minimize the prediction error while keeping the network overhead cost low. Then, we harmonically integrate the proposed predictor in the Routing Protocol for Low-Power and Lossy Networks (RPL) in order to support the task of in-network feature aggregation. We propose a RPL objective function that takes into account the predicted aggregation efficiency and build the routes from the camera nodes to a central controller so that either energy consumption or used network bandwidth is minimized. Extensive experimental results confirm that the proposed approach can be used to increase the efficiency of VSNs

    Experimental evaluation of a video streaming system for Wireless Multimedia Sensor Networks

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs) are recently emerging as an extension to traditional scalar wireless sensor networks, with the distinctive feature of supporting the acquisition and delivery of multimedia content such as audio, images and video. In this paper, a complete framework is proposed and developed for streaming video flows in WMSNs. Such framework is designed in a cross-layer fashion with three main building blocks: (i) a hybrid DPCM/DCT encoder; (ii) a congestion control mechanism and (iii) a selective priority automatic request mechanism at the MAC layer. The system has been implemented on the IntelMote2 platform operated by TinyOS and thoroughly evaluated through testbed experiments on multi-hop WMSNs. The source code of the whole system is publicly available to enable reproducible research. © 2011 IEEE
    • …
    corecore