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Abstract

Visual Sensor Networks (VSNs) constitute a key technology for the imple-
mentation of several visual analysis tasks. Recent studies have demonstrated
that such tasks can be efficiently performed following an operative paradigm
where cameras transmit to a central controller local image features, rather
than pixel-domain images. Furthermore, features from multiple camera views
may be efficiently aggregated exploiting the spatial redundancy between over-
lapping views. In this paper we propose a routing protocol designed for sup-
porting aggregation of image features in a VSN. First, we identify a predictor
able to estimate the efficiency of local features aggregation between differ-
ent cameras in a VSN. The proposed predictor is chosen so as to minimize
the prediction error while keeping the network overhead cost low. Then,
we harmonically integrate the proposed predictor in the Routing Protocol
for Low-Power and Lossy Networks (RPL) in order to support the task of
in-network feature aggregation. We propose a RPL objective function that
takes into account the predicted aggregation efficiency and build the routes
from the camera nodes to a central controller so that either energy consump-
tion or used network bandwidth is minimized. Extensive experimental results
confirm that the proposed approach can be used to increase the efficiency of
VSNs.
Keywords: Visual Sensor Networks, Multi-View Features Compression,
RPL
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1. Introduction

In the last few years, Visual Sensor Networks (VSNs) have emerged as
an important class of distributed networked systems. Composed of many
low-cost, battery-operated wireless camera sensors with the ability of acquir-
ing, processing and transmitting visual data, VSNs extend the capabilities
of traditional Wireless Sensor Networks (WSNs), and they are expected to
play a major role in the evolution of the Internet-of-Things (IoT) paradigm.
Being able to gather, process and analyse visual data, VSNs constitute a
key technology to implement several monitoring and analysis applications in
remote and inaccessible scenarios. As an example, in the field of environ-
mental monitoring, battery-operated wireless cameras can be employed to
keep track of the changes in the characteristics of the vegetation or other
environmental features over time [1]; in the fields of ecology, conservation
biology and wildlife monitoring, VSNs are deployed in remote locations and
coupled with additional sensors (e.g., motion or infrared) to capture and
possibly analyze images of wild animals [2]. VSNs find application also in
the context of Smart Cities: although it is reasonable to assume that most
of the cameras deployed in urban environments do not run on batteries and
have high-bandwidth communication capabilities, the possibility to quickly
deploy many wireless-capable battery-operated cameras opens the way to
the implementation of several services (traffic and infrastructure monitor-
ing, vacant parking lot detection, etc.) in a much more flexible way than
what achievable with traditional wired deployments. VSNs are also stud-
ied coupled with vehicular mobility to build up powerful vehicular sensor
networks to support safety and smart city applications [3, 4]. VSNs are par-
ticularly stimulating from the research point of view as they pose additional
challenges compared to traditional WSNs. Such challenges come from the
struggle between applications requirements and technology constraints: on
the one hand, applications based on visual data generally require intense
processing and high bandwidth availability. On the other hand, VSNs are
characterized by tight energy, processing and bandwidth constraints, thus
calling for advanced solutions in the areas of data compression, processing
and networking.

In VSNs, multiple camera sensors are generally deployed in the same area,
and it is very likely that their fields of view (FoVs) overlap. This is done either
for increasing the robustness of monitoring (e.g, ensuring visual coverage even
in case of camera failures) or the monitoring accuracy (avoiding occlusions,
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fusing information from multiple points of view, etc.). As a result, visual
data streams from multiple cameras may exhibit high degrees of correlation:
considering the energy and bandwidth constraints of VSNs, it is imperative
to find efficient ways to remove such redundancy before data transmission.
When the data transmitted from camera nodes is composed of images and
video, it is possible to rely on recent advances in the fields of multi-view cod-
ing (MVC) [5] and distributed video coding (DVC) [6] in order to compress
and aggregate correlated image data in networked scenarios. Such solutions
generally aim at maximizing the overall compression efficiency following a
two steps approach: first, the correlation existing between different cameras
is predicted using either geometric [7] or content-dependent information [8];
then, based on this prediction, routing in the network is optimized so as to
maximize different performance metrics (e.g., lifetime [9, 10] or quality-of-
service [11]).

However, recent works in the field of VSNs and embedded vision systems
have demonstrated that pixel-domain (images and videos) data transmission
from camera nodes to a remote server performs poorly in bandwidth- and
energy-constrained scenarios [12]. At the same time, an alternative approach
is gaining popularity: instead of acquiring, compressing and transmitting
images to a central server for further analysis, camera nodes may extract,
compress and transmit visual features to the server. Such visual features have
a series of favorable characteristics when used in constrained scenarios: first,
they summarize in a compact way the semantic content of an image/video,
thus requiring less bandwidth than their pixel-domain counterpart. Second,
being invariant with respect to several geometric transformations (scale, rota-
tion, illumination, viewpoint, etc...), they are particularly suited to perform-
ing analysis tasks such as object detection, recognition, tracking and classi-
fication. Finally, they can be extracted very efficiently even on low-power
architectures [13]. For these reasons, feature-based visual analysis has been
applied successfully to several networked scenarios, including VSNs [14] and
mobile visual search [15], and constitutes the basis of the recently released
MPEG-7 CDVS (Compact Descriptors for Visual Search) standard [16]. The
solutions proposed for aggregating correlated image/video data in networked
scenarios need to be carefully redesigned in light of such a novel feature-based
paradigm. To the best of our knowledge very limited work has been done in
this regard, as previous works focused only on image/video data.

In this paper we propose a prediction-based routing protocol for aggre-
gating visual feature data in a VSN. The main contributions of this work are
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as follows:

• we analyze empirically the relationship between the bitrate reduction
obtained with a practical multi-view local feature encoder and several
predictors. We consider different types of predictors (topology-based,
image-based, feature-based and mixed ones) as well as different types of
multi-view image datasets characterized by different inter-camera rela-
tionships. The purpose of the analysis is to identify the most accurate,
yet compact, predictor of the achievable compression efficiency when
jointly aggregating correlated streams of local features.

• we propose a new routing metric based on the identified predictor tai-
lored to minimize the energy consumption in a VSN. The proposed
routing metric is integrated in the recently standardized Routing Pro-
tocol for Low Power and Lossy Network (RPL), reusing where possible
its native mechanisms.

• we evaluate the performance of the proposed methods in realistic sce-
narios, and we demonstrate through network simulations the benefits
of feature aggregation in VSNs.

The rest of this paper is organized as follows: Section 2 discusses the
related works in the area of compression and routing of correlated visual data
in VSNs. In Section 3 we present an empirical analysis aimed at selecting
the best predictor of the achievable multi-view feature compression (MVFC)
efficiency. The resulting predictor is leveraged in Section 4 to modify the RPL
protocol in order to support visual features aggregation. Section 5 provides
an extensive experimental evaluation of the proposed framework and finally
Section 6 concludes the paper.

2. Related Work

The broad field of data aggregation in sensor networks has always received
particular attention from the research community. Many works have focused
on scalar sensor networks, where data is constituted by one-dimensional mea-
surements (e.g., temperature, humidity) and aggregation is either performed
by executing simple operations (averaging a set of measurements or taking the
maximum value) or relying on correlated source coding [17]. However, when
it comes to Visual Sensor Networks, one should cope with the peculiar char-
acteristics of such a technology. Being multi-dimensional in nature, visual
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data is more complex than simple scalar measurements and requires ad-hoc
aggregation functions. Indeed, image, video and features encoders used in
such scenarios are generally complex and power-eager, and it is therefore im-
portant to consider their performance both from the aggregation efficiency
and the energy consumption points of view. Several works in the recent
past addressed the problem of aggregation and routing of correlated pixel-
domain image data in visual sensor networks. As mentioned earlier, such
works follow a two steps approach: in the first step, an estimation process
is performed to predict the possible gain resulting from the joint compres-
sion of images acquired by two or more cameras with overlapping FoVs. In
the second step, the prediction is leveraged to perform network-related op-
timizations. In [7] a spatial correlation model is proposed to describe the
redundancy existing between multiple homogeneous cameras (i.e., with the
same focal length). The proposed model uses geometrical information of the
cameras (e.g., their locations and sensing directions) to estimate a correlation
coefficient between them. The correlation coefficient is used in [18] to predict
the compression efficiency of H.264 with MVC extension, and to partition a
VSN into a set of coding clusters such that the global coding gain is maxi-
mized. In [9], the correlation coefficient between cameras is leveraged to set
up three different network optimization problems targeting (i) the placement
of multimedia processing hubs to collect and encode correlated images in a
VSN, (ii) the maximization of the global compression gain and (iii) the max-
imization of the VSN lifetime. In [19], a correlation-aware quality-of-service
routing algorithm is proposed in order to minimize energy consumption in
the network subject to delay and reliability constraint. The work in [10]
proposes a joint coding/routing optimization problem which maximizes the
lifetime of a VSN subject to image distortion and rate constraints. Again,
the key parameter in evaluating the rate-distortion function of each camera is
an inter-view spatial correlation coefficient, which is assumed inversely pro-
portional to the distance between two cameras. In such works, providing an
accurate modeling of the relation between camera correlation and multi-view
compression efficiency is of key importance. Therefore, several efforts have
been made to improve such a modeling, either taking into account cameras
heterogeneity [20], or departing from a geometric/spatial approach and tak-
ing a different approach which explicitly takes into account the visual content
of the different views. In [8], the common sensed area (CSA) between dif-
ferent camera views is defined and used as a predictor for the compression
efficiency of multi-view coding. Differently from previous works, the CSA
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Figure 1: Multi-view features encoder architecture. Each feature f of the input feature
set F , whose original rate is R, is encoded using Fr as reference using RMVFC < R bits.

is not computed based on geometric information, but is estimated starting
from downsampled images which are exchanged between cameras. The main
benefits in taking this approach is that it is robust to several scene-related
factors (presence of moving objects, occlusions, illumination changes, etc...)
that a geometric model may not capture accurately. The CSA is also lever-
aged in [21] to evaluate the possible benefits of a joint coding/routing scheme
in multi-hop VSNs.

All the aforementioned works deal with coding and transmission of cor-
related images. To the best of our knowledge, very little work has been done
targeting aggregation and routing of features data in networked scenarios.
Some preliminary works have studied the problem of compressing local [22]
or global features [23] extracted from multiple correlated views, forming the
basis aggregation functions used in this work. In [24] we presented a pre-
liminary work on aggregation and routing of local features in a VSN. In this
paper we extend the study with a more detailed evaluation of the relation-
ship between different predictors and the aggregation efficiency. In addition,
we propose a practical way to implement our predictor-based approach in a
VSN by integrating it into the recently standardized RPL routing protocol
for low-power sensor networks.

3. MVFC Compression Efficiency Prediction

This section describes the approach taken to estimate the compression
efficiency of a practical multi-view features encoder based on different predic-
tors. First, we give a brief background on local and global features extraction
and multi-view features coding. Then, we describe different predictors for the
MVCF compression efficiency, including existing and novel approaches. We
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compare their performance in terms of accuracy of prediction and overhead
transmission cost.

3.1. Background on local and global features
There exist several different algorithms for extracting local visual features

from an image, all following a two-steps approach. First, a detector algorithm
identifies salient keypoints k in the image. Each keypoint is generally char-
acterized by its location, dimension (scale) and principal orientation of the
surrounding patch of pixels. Then, for each keypoint, a descriptor vector
d is computed, which summarizes the photometric properties of the image
area around the keypoint. A visual feature f is then composed of a keypoint
and the corresponding descriptor, i.e. f = {k,d}, and we denote as F the
complete set of features extracted from an image. Although the method pre-
sented in this paper could be applied to any type of features, in this work
we consider features produced by the SIFT (Scale Invariant Features Trans-
form) algorithm [25], which is widely recognized as the gold standard for
a broad range of visual analysis tasks (scene analysis [26], augmented real-
ity [27], hand gesture recognition [28], image forgery detection [29]) and has
also been partially adopted by the MPEG Compact Descriptors for Visual
Search (CDVS) standard [30]. Moreover, the SIFT algorithm has recently
been subject of several studies aimed at optimizing its computational com-
plexity, paving the way for its use in real-time and energy-efficient embedded
machine vision systems [31, 32, 33].

The set of local features F can also be transformed in a global repre-
sentation known as Bag of Visual Words (BoVW) according to a clustering
process. Starting from a large number of representative descriptors, a cluster-
ing process similar to k-mean is executed and a vocabulary of W descriptors
w1,w2, . . . ,wW is learned. In this case, k = W and the visual words can be
viewed as the centroids of the W clusters. Each descriptor in the set F is
therefore associated with the nearest centroid. Finally, a BoVW histogram
is produced: the histogram has W bins bi, i = 1 . . .W where bi counts the
number of descriptors from F belonging to the cluster whose centroid is wi.
Due to its compactness and ability to summarize efficienctly an image con-
tent, the BoVW representation is generally used in the field of content based
image retrieval from very large databases [34].
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3.2. Multi-view local features coding (MVFC)
Several compression algorithms have been proposed to efficiently encode a

set of features F . Mimicking the best practices in the field of video and image
coding, such algorithms exploit either the redundancy of the set of features,
or encode F using another set of features Fr as reference. In this work we
focus on multi-view features encoders, where the sets F and Fr are extracted
from two images acquired by cameras with overlapping FoVs. In particular,
we take as reference design the multi-view features encoder proposed in [22],
whose architecture is illustrated in Figure 1. The key idea is to use the set
of features in Fr to predict the set of features F . A matching step selects
potential candidates for prediction. Mimicking the practices used in recent
video encoders, a mode decision algorithm decides whether each feature in F
should be encoded with respect to a local feature in Fr (i.e., in an inter-view
coding fashion, exploiting the spatial redundancy), or intra-view coded (i.e.,
solely exploiting the correlation between the elements of its descriptor). In
the case of inter-view coding, only the residual between the input descriptor
and its best match in the base view is encoded, resorting to transform coding
followed by arithmetic coding.

3.3. MVFC compression efficiency prediction
Given two sets of features Fi and Fj extracted from two cameras with

overlapping fields of view, we define the MVFC coding efficiency as:

ηi,j =
Rj −RMVFC

i,j

Rj

. (1)

In (1), Rj is the rate needed by camera j to encode Fj independently: in
this case, the encoder works in intra-mode following the transform-coding
scheme based on KLT transform proposed in [35]. First, the descriptors are
projected in the transform domain to decorrelate their elements. Then, scalar
quantization is applied to each individual descriptor element with the same
quantization step. The output symbols of the quantizer are entropy coded
using arithmetic coding. As for RMVFC

i,j in (1), it corresponds to the rate
to encode Fj using the MVFC encoder in inter-mode, with Fi as reference.
In other words, ηi,j is the achievable bitrate reduction on Fj, when using
Fi as reference with respect to intra-coding. Note that ηi,j can be computed
exactly only after camera i transmits Fi to camera j for multi-view encoding.
Our goal is to estimate ηi,j without explicit transmission of Fi to camera j,
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resulting in increased network efficiency. As an example, the set of features
Fi may be routed to the camera j for which the compression efficiency ηi,j is
maximized.

As it happens for multi-view coding of pixel-domain content such as im-
ages and video, we expect ηi,j to be directly related to the the amount of
correlation existing between the two cameras. Thus, we study the relation-
ship of ηi,j with the following predictors of inter-camera correlation:

3.3.1. Geometry-based
similarly to [7], we consider predictors based solely on the inter-camera

geometry, such as the distance di,j between the two camera centers or the
angle θi,j between their viewing directions. The rationale behind the use of
such predictors is that the closer the two camera centers and viewing direc-
tions are, the more correlated their acquired images will be and consequently
the higher the resulting MVFC compression efficiency.

3.3.2. Image-based
using only the information of the inter-camera geometry may not be very

accurate. Indeed, occlusions, changes in illumination and dissimilarities in
the camera sensors may lead to weakly correlated images even if the two
cameras are very close. It is thus reasonable to use a predictor which is
able to capture the actual content of the acquired scene. Following this idea,
two cameras may exchange the acquired images in order to estimate the
inter-camera correlation. After such information exchange, several image-
based predictor may be computed. Here we consider three different possible
predictors that can be computed starting from two images:

• Peak Signal-to-Noise Ratio (PSNR): the PSNR is generally used in
the field of image/video encoding to express the distortion introduced
by the encoding process compared to the original content. In this work,
we use the PSNR as a baseline dissimilarity metric between two images
i and j and refer to it as PSNRi,j.

• Structural Similarity Index (SSIM): the SSIM value has been proposed
to overcome the limitations of the PSNR in capturing the ability of the
human visual system in detecting dissimilarity between two images. In
particular, SSIMi,j evaluates the similarities of two images i and j
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based on their luminance, contrast and structure and has been demon-
strated to outperform PSNR in many perceptual image and video pro-
cessing applications [36].

• Common Sensed Area (CSA): the PSNR and SSIM were originally
designed to compare impaired/compressed versions of a picture with
the original one. Therefore, their power in capturing the amount of
correlation between any two images is expected to be low and limited
only to those cases where the fields of view of the two cameras do not
differ too much. Conversely, the CSA value αi,j, originally presented
in [8], captures the similarity between two images by estimating the
fraction of pixels existing in the overlapping region between the view of
camera i and a suitably displaced version of the view of camera j. The
displacement is chosen so at to maximize the inter-view normalized
bidimensional crosscorrelation function. Since the CSA is computed
starting from the crosscorrelation function, rather than from a simple
pixel-by-pixel comparison as done for PSNR or SSIM, it is expected to
overcome the latter two in capturing the amount of similarity between
two views.

The computation of the image-based predictors requires the two cameras to
exchange their acquired images. To reduce the network overhead associated
with such exchange, the images may be downsampled and compressed with a
suitable encoder (e.g., JPEG) before transmission. In this paper, we analyze
the performance of the image-based predictors considering different image
resolutions as well as different JPEG compression degrees. These two fac-
tors determine the size (in bytes) of the images to exchange, therefore the
associated network overhead.

3.3.3. Feature-based
The Bag of Visual Word features are widely used in the fields of content

based image retrieval and augmented reality, due to their ability to summa-
rize the content of an image. Therefore, the BoVW representations can be
naturally used to understand the similarity between two images. After local
feature extraction, camera i may produce a BoVW histogram and transmit it
to camera j, which also computes its own histogram. In practice, the BoVW
histrograms are first normalized to unit length and then quantized before
transmission. Finally, the Euclidean distance between the two histograms
can be computed and used as a predictor of inter-view correlation.
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3.3.4. Multi-predictor approach
we also evaluate a multi-predictor approach where the MVFC compression

efficiency is estimated based on the knowledge of both the geometry between
the cameras and a content-based predictor.

3.4. Model fitting
We are interested in evaluating the goodness of the identified predictors

in capturing the achievable MVFC compression efficiency given any two cam-
eras. Note that the predictor should be able to identify the benefit of MVFC
compression if two camera views are highly correlated, but at the same time it
should reveal that there will be no benefit in compressing with the MVFC en-
coder two feature sets from uncorrelated/non-overlapping views. Therefore,
we performed experiments relying on pairs of images obtained from cameras
with both overlapping and non-overlapping fields of view. In particular, we
created three image pairs datasets characterized by different features:

Linearly spaced cameras with parallel sensing directions (di,j > 0, θi,j = 0).
We started from the three publicly available datasets Akko&Kayo, Kendo
and Balloons1, which all contain multi-view video sequences recorded with
a linear array of cameras with 5-cm spacings. From each one of the three
original datasets, we chose 6 camera pairs, corresponding to a linear spacing
between cameras of 5,10,15,20,25 and 30 cm respectively. For each camera
pair, 50 time-synchronized frames are chosen. This gives a total number of
image pairs (samples) in the newly created dataset equal to 3×6×50 = 900.
To populate the new dataset also with examples corresponding to camera
pairs with non-overlapping fields of view, we added 900 image pairs obtained
from non-synchronized frames. This is needed to test the performance of the
predictor when there is no correlation between the views.

Cameras with non-parallel sensing directions (di,j > 0, θi,j > 0). We started
from the Columbia Object Image Library (COIL-100)2 and Amsterdam Li-
brary of Image Objects (ALOI)3 datasets, which contain images of objects
captured at 72 different poses obtained by rotating the object by 5 degrees
each time. From each dataset, 6 camera pairs are selected, corresponding

1http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/
2 http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
3http://aloi.science.uva.nl/
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to the following angles between the camera sensing directions: {5◦, 10◦, 15◦,
20◦, 25◦, 30◦}. For each dataset and camera pair, 50 objects are selected, for
a total of 600 image pairs. Again, to add to this new dataset examples of
non-overlapping camera pairs, 600 image pairs obtained coupling images of
different objects are added to this dataset.

Images from a real VSN (di,j > 0, θi,j > 0). We deployed a VSN composed
of 2 cameras on the roof of our university building and used them to monitor
a portion of the underneath parking lot. The camera nodes are based on
the design introduced in [37], using BeagleBone platforms mounting Radi-
umBoards cameras and wireless transceivers. The resolution of the images
taken by the camera nodes is 320 × 240 pixels. The camera nodes are de-
ployed so that the distance between their centers is 25 cm. Three different
configurations are used: one in which the cameras viewing directions are par-
allel, one in which the angle between the viewing directions is 5 degrees and
one in which the angle is 15 degrees. For each configuration 100 image pairs
are selected, for a total of 300 overlapping image pairs. In addition 300 non-
overlapping image pairs are added to the dataset, by selecting image couples
formed by images shot in different days. The dataset is publicly available for
download4.

The tests have been performed according to the following steps: for each
sample (i.e., each couple of frames (i, j) from the aforementioned datasets),
we extract SIFT local features. Frame i is used as reference view, and the
corresponding set of features Fi is used to encode the features extracted from
the j-th view using the MVFC encoder. The resulting coding efficiency ηi,j
is stored. Simultaneously, for the same couple of frames (i, j) the following
measures are computed and stored:

• the physical distance di,j between the cameras or the angle between
the camera sensing directions θi,j, depending on the type of dataset
under study. For the first two datasets, such information is given as
groundtruth.

• PSNRi,j, SSIMi,j and the CSA value αi,j. These measures are com-
puted resizing the input images at different resolutions and compressing
them at different JPEG quality factors. The following resolutions have

4http://home.deib.polimi.it/redondi/vsn/vsn.html
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Figure 2: Different predictors of multi-view compression efficiency and fitted models. (a)
Geometry-based (distance between camera centers) (b) Image-based, CSA (c) Image-
based, PSNR (d) Image-based, SSIM (e) Feature-based, BoVW distance, (f) Multi-
predictor approach (geometry based + feature-based)

been used: {(22 × 18), (40 × 30), (80 × 60), (160 × 120), (320 × 240)}.
For what concerns JPEG compression, ten different quality factors have
been tested (from 1 to 100 with a step size equal to 10). For each combi-
nation of spatial resolution and JPEG compression factor, the average
size (in bytes) of the images is stored and used to approximate the
actual transmission overhead.

• the Euclidean distance between the BoVW representations of the two
frames, bi,j. We use BoVW histograms with increasing vocabulary size
W in the range {128, 256, 512, 1024, 2048} visual words.

We show in Figure 2 the relationships between the MVFC compression
efficiency and the different predictors for the dataset characterized by linearly
spaced cameras (similar results are obtained for the datasets with non-parallel
sensing directions). Figure 2(a) refers to the geometric-based predictor: the
MVFC compression efficiency decreases as the distance between two cameras
increases, and we fit a linear model to capture such a relationship.
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Figure 3: Performance of the CSA image-based predictor at different image resolutions
and at a fixed JPEG quality factor of 10: (a) 22× 18 pixels, (b) 40× 30 pixels, (c) 80× 60
pixels, (d) 160× 120 pixels

The CSA predictor (extracted from a couple of 320×240 pixels images
compressed at JPEG quality factor 10) is plotted in Figure 2(b). As one can
see, the higher the CSA, the higher the compression efficiency. As proposed
in [21] we use the following model to approximate the relationship between
the CSA and the MVFC compression efficiency:

η̂i = ηmax ·
ε

1− αi + ε
, (2)

where ηmax is the maximum observed compression and ε is a parameter to be
estimated. Note that the model proposed in equation (2) does not seem to
be valid for all tested pixel resolutions: Figure 3 shows how the relationship
between the CSA and the compression efficiency varies when increasing the
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Figure 4: Performance of the different predictors in terms of their estimation accuracy and
overhead transmission cost for (a) cameras with parallel sensing directions, (b) cameras
with non-parallel sensing direction and (c) realistic deployment.

images resolution (at a fixed JPEG quality factor of 10). For very small
resolutions (Figure 3(a) and (b)), there is no visible relationship between
the CSA and η: both the RMSE and the coefficient of determination R2
calculated after fitting the model in (2) to the CSA data are lower than the
ones computed with a simple linear fitting. Therefore, only for fitting CSA
data, we use the model in in (2) for resolution greater than 80x60 pixels and
a simple linear model for lower resolutions for the CSA case.

Figure 2(c), (d) and (e) illustrate the relationship between the MVFC
compression efficiency and the PSNR value, SSIM value and BoVW distance,
respectively. In all these cases, a linear model is fitted to the data points.

Finally, Figure 2(f) shows the multi-predictor approach, where the MVFC
compression efficiency is estimated from both the BoVW distance bi,j and the
physical distance di,j through multilinear regression.
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Figure 5: Performance of the different predictors in terms of their estimation accuracy and
overhead transmission cost for (a) cameras with parallel sensing directions, (b) cameras
with non-parallel sensing direction and (c) realistic deployment.

3.5. Predictors evaluation
To evaluate the accuracy of each predictor we resort on a traditional

machine-learning based process. We divide the image datasets in a training
set and a test set: the training set is used to estimate the parameters of
each model, and the test set is used to compute the root mean squared error
(RMSE) between the predicted and observed compression efficiency, ηi and
η̂i respectively:

RMSE =

√√√√ 1

n

n∑
i=1

(η̂i − ηi)2, (3)

The RMSE computation was performed relying on k-fold cross-validation
with k = 5. For each model, we also compute the cost of transmitting the
predictor between the two cameras. For the geometry-based model, one may
assume that the physical topology is known to all cameras and therefore
there is no need of transmitting the predictors. For the image-based models
(PSNR, CSA and SSIM), we use the average size of the downsampled and
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compressed images as explained in Section 3.4. For the feature-based models,
the cost of the predictor depends on the BoVW size W . We assumed that
each bin in the histogram is quantized uniformly using 8 bits, and the out-
put symbols of the quantizer are lossless coded with an arithmetic encoder
(whose symbols probabilities are learned from a large set of quantized BoVW
histograms). Finally, for each predictor we also compute the R-squared (R2)
value as a goodness-of-fit indicator.

Figures 4(a), 4(b) and 4(c) illustrate the accuracy-cost tradeoff obtained
for the different predictors, on the three used datasets, while Figure 5 illus-
trates the R-squared value. Based on the inspection of such results, several
consideration can be made:

3.5.1. Image-based methods
Different curves relative to the image-based methods at different resolu-

tions are illustrated in Figures 4(a),(b) and (c), where each curve is obtained
varying the JPEG quality factor in the range {1,20,30,60}5. As one can see,
the performance of all image-based predictors increases with increasing im-
age resolution (as illustrated in Figure 3). Conversely, JPEG compression
hurts the performance of the image-based predictors only at very low qual-
ity factors. Among all tested image-based predictors, the SSIM is the one
obtaining the lowest RMSE. At the same time, such methods requires to
exchange thousands of bits of information between the cameras (from a min-
imum of 2700 bits for a quality factor equal to one), which can be prohibitive
in certain bandwidth-constrained scenarios.

3.5.2. Geometry-based methods
If on the one hand they are the cheapest solution in terms of data trans-

mitted between the two cameras (if the geometry is known a-priori, there
is not even the need to transmit such information), on the other hand such
methods have the worst performance both in terms of RMSE and goodness-
of-fit. This is due to the lack in capturing the actual correlation in the content
of two images, which can be null even if the two views are overlapped (as
it happens in case of occlusions or difference in lightings conditions/camera
lenses).

5we do not consider higher JPEG compression quality factors since the performance is
already saturated
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3.5.3. Feature-based methods
perform worse in terms of RMSE than image-based methods only for the

parallel cameras dataset. For the other two more realistic datasets contain-
ing images from non-parallel cameras, they perform best. In all cases, their
performance increase with the BoVW size, as expected, as a larger vocabu-
lary can represent more accurately the similarity between two images. Also,
the performance seems to saturate for vocabularies larger than 1024 words.
In any case, the network overhead resulting from the use of feature-based
methods is almost four times less than the one for image-based methods at
the same RMSE (640 bits VS 2700 bits).

3.5.4. Multi-predictor approach
which fuses together the geometry- and feature-based methods is the one

performing best both in terms of RMSE and network overhead. As one
can see from Figure 4, adding geometric information to the feature-based
prediction produces a benefit, although limited. This also means that the
feature-based predictor is strong enough to shadow the issues caused by a
wrong geometric-based prediction. For BoVW with a vocabulary size of 1024
words, the RMSE is 0.096 for the case of linearly spaced cameras and 0.103
for cameras with non parallel sensing directions and the network overhead is
limited to 640 bits. This method constitutes the preferred choice and it is
the one selected in the following of this work.

4. Routing protocol

In this section we describe how the proposed predictor of MVFC com-
pression efficiency can be integrated in the Routing Protocol for Low power
and Lossy networks (RPL), one of the most widespread multi-hop routing
protocol for wireless sensor networks [38]. First we give a brief background on
how RPL works, then we describe how it can be modified in order to support
the proposed local visual features aggregation method in VSN scenarios.

4.1. Background on RPL
RPL was defined by the IETF ROLL (Routing Over Low-power and

Lossy networks) working group and adopted as a standard since March 2012,
in response to the need of creating a routing protocol for wireless sensor
networks and networks of smart objects in general. Such low-power and lossy
networks consist of a multitude of resource constrained nodes with limited
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processing capabilities interconnected by lossy links that are usually unstable.
Moreover, the traffic patterns of such networks are either Multipoint-to-Point
(M2P) or Point-to-Multipoint (P2M), with sensor nodes communicating in
a multi-hop fashion with a central controller node usually called sink. To
address such challenges, RPL was designed as an IPv6-based distance vector
routing protocol that specifies how to create a Destination Oriented Acyclic
Graph (DODAG) rooted at the sink node and optimized according to a user-
specific objective function (OF) working on a set of different metrics and
constraints. The purpose of the OF is to give each node a Rank (a scalar
representation of the depth of that node in the DODAG) and a preferred
parent node (the immediate successor of the node on the path toward the
sink). This is done through the exchange of particular signalling messages
called DODAG Information Object (DIO) messages, which carry information
that allows a node to join a DODAG, compute its rank and select its preferred
parent node. For the common case of multipoint-to-point traffic (where data
traffic flows from sensor nodes to the sink), the macro-steps involved in the
creation of a DODAG are the following:

1. The sink node starts sending DIO messages advertising the DODAG.
In its DIOs, the root node advertizes its own rank as the minimum one
(equal to 0).

2. Nodes receive DIOs from their in-range neighbours (referred to as
neighbouring set N ). To avoid loops in the DODAG, nodes process the
DIOs of neighbours characterized by lower ranks (the so-called candi-
date parents set P). After that, nodes compute their ranks according
to the selected OFs and select their preferred parent among the can-
didate parents set. Then, they update the DIOs with their own rank
and routing metric and forward the DIO to other sensors.

Besides the traditional shortest path distance vector routing, where nodes
join the DODAG so as to reach the sink node in the minimum number of
hops, one of the most used objective function/metric combination in RPL is
the minimization of the Expected Transmission Count (ETX), a link metric
that represents the average number of times a packet should be transmitted
in order to successfully reach its destination. In order to find a path from
a node to the root of the DODAG with the least number of transmissions,
a non-root node i computes the ETX path metric for a path to the root
through each candidate parent j by adding these two components:

1. The ETX εi,j on the link from i to j. This is generally estimated as
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Figure 6: A VSN in which nodes i and j shares part of their FoVs. Solid lines represents
already computed paths, dashed lines represents communication links. (a) Node j is
already associated to the network and has a path to the sink (b) Node i choses j as
selected parent and its features will be aggregated there. (c) Node i selects k as a selected
parent. Node j also switch to k in order to aggregate its features with node i’s ones.

εi,j = 1
PfPr

, where Pf is the probability of successful packet delivery
and Pr is the the probability of successful acknowledgment reception.

2. The cumulative ETX from j to the root node, εj,r, which is advertised
by node j in its DIO messages.

Then, node i selects the candidate parent for which the cumulative ETX
path metric is minimized.

The ETX itself can be also converted from a link quality metric to an
energy metric, capturing the total energy cost that a packet transmission
causes on the entire network on its path from the source node to the sink.
In particular, assuming that Etx is the per-packet transmission energy con-
sumption of a node, the product Etx · εi,j captures the average transmission
energy spent by node i to transmit one packet to node j. Similarly, Etx · εj,r
is the average transmission energy spent to transmit one packet from node
j to the sink. Consequently, by adopting such a conversion, it is possible to
select paths in a DODAG so that the overall amount of energy consumed for
the transmission process is minimized.

4.2. RPL for features aggregation
In order to use RPL as a routing protocol for supporting features aggre-

gation in VSNs, we propose a routing metric able to identify paths where
such aggregation can take place, as well as the mechanisms needed for the
computation of the metric itself.

We observe that performing features aggregation may be beneficial to
two aspects of a VSN: bandwidth and energy. Bandwidth can be saved if
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camera nodes route their visual features to nodes with correlated views, so
that multi-view compression may be applied. In turn, the reduction in the
amount of data to forward toward the sink node directly reflects on the
consumed energy for data transmission/reception of (battery-operated) relay
nodes, thus extending the network lifetime. However, features compression
does not come for free: running the MVFC encoder summarized in Section
3.2 requires a non-negligible energy cost Ec which can impact negatively
on energy consumption. Indeed, a camera node attempting to aggregate
(compress) its features with the ones from another node without any hint
on the amount of correlation between the two sets of features may end up
paying an extra energy cost for compression without any benefit in terms of
saved bandwidth. Our proposed predictor of MVFC compression efficiency
is intended to solve this dilemma and avoid such unpleasant scenarios.

Figure 6(a) shows a VSN with two nodes with overlapping FoVs. Let i
be a camera node that needs to join an existing DODAG, and let η̂i,j be the
compression efficiency estimated by i after reception of the predictor from
all nodes in its neighbouring set Ni (that is nodes j, B and C in Figure
6(a)). Camera node i needs to transmit Ri bits of information, containing
the visual features data extracted from an image, which corresponds to Ni

radio packets. Should i route its features to j, the estimated number of bits
for i’s features after feature compression is (1− η̂i,j) ·Ri, corresponding to a
number of radio packets Mi ≤ Ni.

It is useful to define two variables for capturing the average energy con-
sumption spent by the entire network in the process of collecting features
from different camera nodes, namely the energy for independent transmis-
sion:

Ei = Etxεi,rNi, (4)

where Ei captures the energy spent for features transmission from node i
to the sink using a preferred path without aggregation and the energy for
transmission with aggregation:

Ek
i,j = Etxεi,kNi + Etxεj,kNj + Etxεk,r(Mi +Nj) + Ec (5)

where Ek
i,j denotes the energy spent when node i aggregates its features with

the ones from node j at node k. Note that Ek
i,j captures the costs associated to

both i’s and j’s feature streams, as well as the additional cost for performing
MVFC coding at k, Ec. Note also that k in this case must be either equal to
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j or a common candidate parent of both i and j. Figure 6(b) and (c) provide
a graphical illustration of these scenarios, respectively.

We propose a routing metric that selects paths so that the energy saved
through features aggregation is maximized. In order to do this, a node i
computes the values:

Gk
j = Ei + Ej − Ek

i,j (6)

for all neighbours j and considering all possible common candidate parents
k. The measure Gk

j captures the total amount of energy saved in the network
if i and j aggregate their features at k. Note that, in order to compute Gk

j

and agree on a common parent k, node i and j both have to:

• Estimate the MVFC coding efficiency η̂i,j exchanging the 640-bit pre-
dictor and using the model illustrated in Figure 2(e) (or in Figure 2(f),
if geometric information is as well available).

• Compute the total energy cost for independent transmission, Ei + Ej,
using equation (4). This requires that i and j exchange both the cu-
mulative ETX on their selected path to the sink, εi,r and εj,r and the
number of features packets to transmit Ni and Nj.

• Compute the potential energy saved through features aggregation Gk
j

for all common candidate parents k using equation (5). This requires
that i and j exchange their set of candidate parents Pi and Pj. The
set of common parents is then Ci,j = Pi ∩ Pj.

• Select a node j to aggregate features with and the selected parent k at
which such aggregation must be performed:

max
j∈Ni,k∈Ci,j

Gk
j (7)

• Finally, node i sends its features to k and mark its packets to be ag-
gregated with the ones from j.

4.3. DIO message structure
A natural choice for exchanging the information required for computing

the values in (4)-(6) among cameras using RPL mechanisms is to embed them
in the DAG metric container option present in DIO messages, which can be
used to report metrics along the DODAG as chosen by the implementer. In
details, each node i should add the following information to its DIO messages:
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• The 640-bit predictor of MVFC compression efficiency (80 bytes).

• The current selected parent k and the cumulative ETX for reaching the
sink through k, εi,r. According to RPL specifications, the ETX value
for a link is encoded using 16 bits in unsigned integer format. The
address of the selected parent is encoded using 16-bit short addresses,
which are unique within the network according to the IEEE 802.15.4
standard. Transferring this information requires 4 bytes.

• The set of alternative possible candidate parents Pi and the ETX on the
links to them εi,p, p ∈ Pi, for a total of 4 bytes per candidate parents.
Assuming that DIO messages are encapsulated in IEEE 802.15.4 frames
with header compression, which allows for a payload size of 97 bytes,
the number of alternative possible candidate parents each node may
disseminate in a single frame is limited to b(97 − 80 − 4)/4c = 3.
Therefore, we propose to sort the set of candidate parents in increasing
order of their associated ETX before DIO dissemination and to transmit
the best three candidate parents.

4.4. Extension to other types of data
With the proposed changes, the RPL protocol can be used to support

aggregation not only of local visual features, but also of any type of data.
Both scalar (e.g., temperature, humidity) data or complex measurements
(e.g. pixel-domain images, videos) could in fact be aggregated on their path
to the sink node, following the same principles used in this work. Note
that, for adapting the proposed scheme to a specific type of data, one needs
to define (i) a proper aggregation function, (ii) the energy cost needed to
execute such aggregation function and (iii) a predictor able to estimate the
benefit of aggregation for each pair of nodes. As an example, for the case
of transmission of pixel-domain images or videos, the MVC extension of the
H.264/MPEG ACV encoder could serve as aggregation function (with its
corresponding energy cost) and the CSA between the two views could be
used as a predictor, as proposed in [21].

5. Experimental Evaluation

To evaluate the performance of the proposed framework, we have carried
out extensive experimental simulations. In particular, we are interested in as-
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sessing how beneficial features aggregation is in realistic scenarios, compared
to the following cases:

1. camera nodes compress and transmit their features to the sink in an
independent way, using only intra-mode encoding and without resorting
to aggregation. In this case each camera computes the best path to the
sink by minimizing the cumulative ETX.

2. camera nodes perform opportunistic aggregation. In details, cameras
still computes the best path to the sink by minimizing the cumulative
ETX. Intermediate cameras on the path to the sink always run the
MVFC encoder trying to aggregate their own features with the one
received from their children.

For the task at hand, we simulated several VSN instances characterized by
different numbers of camera nodes. Camera nodes are added to the simula-
tion in couples, reflecting the actual configurations of cameras in the datasets
used in Section 3. Therefore, half of the camera couples are added so that
their fields of view are non-overlapping. The other half of camera couples
is deployed so that the distance between the camera centers is randomly
selected in the range 5-30 cm and the viewing direction is chosen so that
half of the camera couples (25% of the initial couples) have parallel view-
ing directions and the other half have viewing directions chosen uniformly
in the range 5◦.-◦.. The camera couples are then deployed randomly in a
100m × 100m simulation area, as illustrated in Figure 7. Finally, a single
sink node is deployed at the center of the simulation area. Each node in the
sensor network is modeled based on a real-life implementation of a camera
node: in particular, we rely on a Linux-operated BeagleBone Black platform,
which is coupled with a IEEE 802.15.4-compliant Memsic TelosB dongle and
with an ad-hoc camera board. The platform runs an open-source framework
for VSNs capable of performing several processing tasks, including features
extraction and multi-view features encoding [37].

According to the chosen platform, in our simulation the MAC and PHY
layers are compliant with the IEEE 802.15.4 specifications and the network
layer runs IPv6 RPL. At the application layer, a simple UDP agent is used
to periodically transmit features to the sink. The channel model used in the
simulation is the Unit Disk Graph Medium (UDGM) distance loss model,
according to which a link is established between two cameras if their distance
is less than a pre-defined communication range, which depends on the output
transmission power and is set equal to 30 meters in our tests.
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Figure 7: A network instance with 20 cameras used in our simulations. The big black
circle at the center of the area represents the sink node. Half of the deployed camera
couples have overlapping fields of view (green dots) and half have non-overlapping fields
of view (red dots).

For each couple of cameras with overlapping fields of view in one network
instance, we randomly select a couple of images from our datasets: the selec-
tion process is performed so that the distance between camera centers and
the angle between their viewing direction in the simulation is approximately
the same as the ones characterizing the selected images. For camera couples
with non-overlapping fields of view, uncorrelated images are selected (e.g.,
images of different objects). Finally, for each couple of cameras and selected
images, we generate the actual aggregation parameter ηi,j by running the
MVFC encoder and we compute the estimated aggregation parameter η̂i,j
using the multi-predictor model.

For each network instance, the simulation keeps track of two performance
metrics: total used bandwidth and total consumed energy. The former is mea-
sured counting the aggregated number of feature data packets transmitted
in the network, including both packets generated by cameras and packets
forwarded by relay nodes. The latter metric is measured by relying on a
realistic energy model which captures all the operations performed on-board
cameras. In particular, we rely on the following model for tracking the energy
consumption at camera i:

Etot
i = EtxMi + Erx

∑
j∈Ci

Nj + niEc, (8)

where Mi is the total number of packets transmitted by i, including both
i’s data packets and packets aggregated/forwarded from its children (in the
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Figure 8: (a) Total energy consumed, (b) total used bandwidth per round and (c) achiev-
able network lifetime at different number of camera nodes in the network. Results are
averaged over 50 experiments. (d) Energy, bandwidth and lifetime gains achievable by the
proposed approach with respect to ETX or opportunistic aggregation.

set Ci), Nj is the number of packets received by i from its j-th children and
ni is the number of children that aggregate their features at i (the cost of
multi-view encoding should be paid for each children).

The values used for the transmission and reception energy consumptions
Etx, Erx and for the multi-view coding energy consumption Ec have been
measured indirectly by keeping track of the time spent by the BeagleBone-
based visual sensor node in each operative mode and multiplying this time
by the platform power consumption. The obtained values are summarized in
Table 1.

The simulations are performed following these steps:
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Table 1: Measurements from a VSN testbed

Name Symbol Value
Per-packet transmission cost Etx 5.48×10−2 J/packet
Per-packet reception cost Erx 5.62×10−2 J/packet

Energy cost for multi-view coding Ec 2.14×10−1 J

• The camera network is deployed randomly in the area, and each node
but the sink is given an initial energy budget Eb equal to 32.4 × 103

J, corresponding to the energy available to a BeagleBone-based visual
sensor node when powered with four standard AA batteries (1.5V, 1500
mAh).

• Cameras are periodically fed with new images. Upon image generation
and features extraction, each camera runs RPL to find routing paths
to the sink. In the first test, camera nodes use only the ETX as routing
metric and do not perform any type of aggregation. In a second test,
camera nodes still use only the ETX as a routing metric, but they also
perform opportunistic aggregation, running the MVFC encoder on all
incoming features set. In the third test, camera nodes run the proposed
version of RPL using the predictor-based approach. Note that in the
first two tests the routing tree does not change, while in the third test
the routing tree may change from round to round due to the predictor-
based approach which routes data so that the benefit of aggregation is
maximized.

• At each round (generation of images), features are transmitted to the
sink node along the computed routing tree. It is hence possible to com-
pute the total used bandwidth and the total consumed energy. Note
that, for the prediction-based approach, the routing tree is computed
using the estimated aggregation parameter η̂i,j, while the total used
bandwidth and the total consumed energy are computed using the ac-
tual aggregation parameter ηi,j. The simulation runs until the first node
in the network depletes its energy budget (determining the network life-
time). The experiment is repeated 50 times varying the position of the
cameras, and results are averaged.

Figures 8(a) and (b) show the average total consumed energy and total
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used bandwidth per round for different number of camera nodes in the net-
work. As one can see, for all methods tested, the energy consumption and
utilized bandwidth increase as the number of nodes in the network increases.
The ETX metric is the one consuming most energy and bandwidth, followed
by opportunistic aggregation, while the proposed predictor-based approach
is the one performing best. Figure 8(c) shows the network lifetime achievable
by the three different methods: being the most energy-eager, the ETX allows
for the smallest lifetime. Conversely, the proposed approach based on pre-
diction obtains the best results. Finally, Figure 8(d) shows the bandwidth,
energy and lifetime gains achievable by the proposed approach with respect
to using the ETX or opportunistic aggregation. As one can see, compared to
the ETX, the predictor-based approach is able to save up to 20% bandwidth
and lifetime, by carefully selecting paths to the sink in order to maximize
the benefit of aggregation. The total energy savings compared to the ETX
are smaller, in the order of 12%: this is due to the additional costs spent
by camera nodes for (i) disseminating the predictors in their DIOs and (ii)
running the multi-view features encoder. Overall, the gains obtained by the
proposed approach over the ETX metric seems independent from the network
size (in terms of number of nodes). Differently, the gain achievable by the
proposed approach over opportunistic aggregation increases as the number
of node increases. This can be explained considering that in opportunistic
aggregation a node always runs the MVFC encoder on the features received
from its children, in a blind way: this is inefficient from an energy point of
view and such inefficiency increases as the number of nodes in the network
increases. Finally, the importance of selecting an accurate predictor is il-
lustrated in Figure 9, where the energy, bandwidth and lifetime gains of the
proposed approach over the ETX and opportunistic aggregation are reported
at different predictor RMSE, selected in the range of the ones found in our
evaluation described in Section 3. The experiment is performed over 50 in-
stances of VSNs composed of 40 camera nodes and results are averaged. As
one can see, as the RMSE increases, the achievable gains decrease rapidly.
This is caused by the routing algorithm which selects non-optimal paths due
to the inaccuracy of the predictor.

6. Conclusions

In this paper, we propose a methodology for jointly routing and com-
pressing streams of local features in visual sensor networks. The method-
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Figure 9: Achievable gains at different predictor RMSE

ology exploits a predictor to identify cameras with similar visual content,
which is carefully identified among different geometric-based, image-based
and feature-based predictors. The selected predictor allows to estimate with
good accuracy the compression efficiency, with at an overhead transmission
cost of less than 700 bits. Therefore it is very well suited to be used in
applications for bandwidth and energy constrained networks. Secondly, we
integrate the selected predictor in the working operation of the RPL proto-
col for low power and lossy networks, obtaining a protocol able to support
multi-view features aggregation. We carefully modify the protocol routing
metrics in order to take into account the peculiarity of such a scenario and
we demonstrate through experiments the benefits of the proposed approach.
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