2,211 research outputs found

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Towards Spatial Queries over Phenomena in Sensor Networks

    Get PDF
    Today, technology developments enable inexpensive production and deployment of tiny sensing and computing nodes. Networked through wireless radio, such senor nodes form a new platform, wireless sensor networks, which provide novel ability to monitor spatiotemporally continuous phenomena. By treating a wireless sensor network as a database system, users can pose SQL-based queries over phenomena without needing to program detailed sensor node operations. DBMS-internally, intelligent and energyefficient data collection and processing algorithms have to be implemented to support spatial query processing over sensor networks. This dissertation proposes spatial query support for two views of continuous phenomena: field-based and object-based. A field-based view of continuous phenomena depicts them as a value distribution over a geographical area. However, due to the discrete and comparatively sparse distribution of sensor nodes, estimation methods are necessary to generate a field-based query result, and it has to be computed collaboratively ā€˜in-the-networkā€™ due to energy constraints. This dissertation proposes SWOP, an in-network algorithm using Gaussian Kernel estimation. The key contribution is the use of a small number of Hermite coefficients to approximate the Gaussian Kernel function for sub-clustered sensor nodes, and processes the estimation result efficiently. An object-based view of continuous phenomena is interested in aspects such as the boundary of an ā€˜interesting regionā€™ (e.g. toxic plume). This dissertation presents NED, which provides object boundary detection in sensor networks. NED encodes partial event estimation results based on confidence levels into optimized, variable length messages exchanged locally among neighboring sensor nodes to save communication cost. Therefore, sensor nodes detect objects and boundaries based on moving averages to eliminate noise effects and enhance detection quality. Furthermore, the dissertation proposes the SNAKE-based approach, which uses deformable curves to track the spatiotemporal changes of such objects incrementally in sensor networks. In the proposed algorithm, only neighboring nodes exchange messages to maintain the curve structures. Based on in-network tracking of deformable curves, other types of spatial and spatiotemporal properties of objects, such as area, can be provided by the sensor network. The experimental results proved that our approaches are resource friendly within the constrained sensor networks, while providing high quality query results

    Katakan tidak pada rasuah

    Get PDF
    Isu atau masalah rasuah menjadi topik utama sama ada di peringkat antarabangsa mahupun di peringkat dalam negara. Pertubuhan Bangsa- bangsa Bersatu menegaskan komitmen komuniti antarabangsa bertegas untuk mencegah dan mengawal rasuah melalui buku bertajuk United Nations Convention against Corruption. Hal yang sama berlaku di Malaysia. Melalui pernyataan visi oleh mantan Perdana Menteri Malaysia, Tun Dr. Mahathir bin Mohamed memberikan indikasi bahawa kerajaan Malaysia komited untuk mencapai aspirasi agar Malaysia dikenali kerana integriti dan bukannya rasuah. Justeru, tujuan penulisan bab ini adalah untuk membincangkan rasuah dari beberapa sudut termasuk perbincangan dari sudut agama Islam, faktor-faktor berlakunya gejala rasuah, dan usaha-usaha yang dijalankan di Malaysia untuk membanteras gejala rasuah. Perkara ini penting bagi mengenalpasti penjawat awam menanamkan keyakinan dalam melaksanakan tanggungjawab dengan menghindari diri daripada rasuah agar mereka sentiasa peka mengutamakan kepentingan awam

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverableā€™s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    Energy-Efficient Data Management in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are deployed widely for various applications. A variety of useful data are generated by these deployments. Since WSNs have limited resources and unreliable communication links, traditional data management techniques are not suitable. Therefore, designing effective data management techniques for WSNs becomes important. In this dissertation, we address three key issues of data management in WSNs. For data collection, a scheme of making some nodes sleep and estimating their values according to the other active nodesā€™ readings has been proved energy-efficient. For the purpose of improving the precision of estimation, we propose two powerful estimation models, Data Estimation using a Physical Model (DEPM) and Data Estimation using a Statistical Model (DESM). Most of existing data processing approaches of WSNs are real-time. However, historical data of WSNs are also significant for various applications. No previous study has specifically addressed distributed historical data query processing. We propose an Index based Historical Data Query Processing scheme which stores historical data locally and processes queries energy-efficiently by using a distributed index tree. Area query processing is significant for various applications of WSNs. No previous study has specifically addressed this issue. We propose an energy-efficient in-network area query processing scheme. In our scheme, we use an intelligent method (Grid lists) to describe an area, thus reducing the communication cost and dropping useless data as early as possible. With a thorough simulation study, it is shown that our schemes are effective and energy- efficient. Based on the area query processing algorithm, an Intelligent Monitoring System is designed to detect various events and provide real-time and accurate information for escaping, rescuing, and evacuation when a dangerous event happened

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Distributed information extraction from large-scale wireless sensor networks

    Get PDF
    • ā€¦
    corecore