
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

Summer 7-13-2010

Energy-Efficient Data Management in Wireless
Sensor Networks
Chunyu Ai
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Ai, Chunyu, "Energy-Efficient Data Management in Wireless Sensor Networks." Dissertation, Georgia State University, 2010.
https://scholarworks.gsu.edu/cs_diss/55

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71421704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

ENERGY-EFFICIENT DATA MANAGEMENT IN WIRELESS SENSOR NETWORKS

by

CHUNYU AI

Under the Direction of Dr. Yingshu Li

ABSTRACT

Wireless Sensor Networks (WSNs) are deployed widely for various applications. A variety

of useful data are generated by these deployments. Since WSNs have limited resources and

unreliable communication links, traditional data management techniques are not suitable.

Therefore, designing effective data management techniques for WSNs becomes important.

In this dissertation, we address three key issues of data management in WSNs.

For data collection, a scheme of making some nodes sleep and estimating their values

according to the other active nodes’ readings has been proved energy-efficient. For the

purpose of improving the precision of estimation, we propose two powerful estimation models,

Data Estimation using a Physical Model (DEPM) and Data Estimation using a Statistical

Model (DESM).

Most of existing data processing approaches of WSNs are real-time. However, historical

data of WSNs are also significant for various applications. No previous study has specifically

addressed distributed historical data query processing. We propose an Index based Historical

Data Query Processing scheme which stores historical data locally and processes queries

energy-efficiently by using a distributed index tree.

Area query processing is significant for various applications of WSNs. No previous study

has specifically addressed this issue. We propose an energy-efficient in-network area query

processing scheme. In our scheme, we use an intelligent method (Grid lists) to describe an

area, thus reducing the communication cost and dropping useless data as early as possible.

With a thorough simulation study, it is shown that our schemes are effective and energy-

efficient. Based on the area query processing algorithm, an Intelligent Monitoring System

is designed to detect various events and provide real-time and accurate information for

escaping, rescuing, and evacuation when a dangerous event happened.

INDEXWORDS: Data management, Data estimation, Historical data query, Area query,
Wireless sensor networks

ENERGY-EFFICIENT DATA MANAGEMENT IN WIRELESS SENSOR NETWORKS

by

CHUNYU AI

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2010

Copyright by
Chunyu Ai

2010

ENERGY-EFFICIENT DATA MANAGEMENT IN WIRELESS SENSOR NETWORKS

by

CHUNYU AI

Committee Chair: Dr. Yingshu Li

Committee: Dr. Yi Pan

Dr. Raheem Beyah

Dr. Xu Zhang

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2010

iv

DEDICATION

This dissertation is dedicated to my parents.

v

ACKNOWLEDGEMENTS

I would like to thank all of those people who helped make this dissertation possible.

First of all, thank my advisor, Dr. Yingshu Li, for all her guidance, encouragement,

support, and patience. Dr. Li was always there to listen and to provide constructive advice.

She taught me how to express my ideas and showed me different ways to approach a re-

search problem. During difficulty times of my life, she understood my situation and totally

supported me. Without her guidance and persistent help this dissertation would not have

been possible.

I would like to thank my committee members, Dr. Yi Pan , Dr. Raheem Beyah, and

Dr. Xu Zhang, for their very helpful insights, comments, and suggestions. Dr. Pan proposed

thoughtful suggestions for improving my dissertation. Dr. Beyah taught me how to write

an academic paper, guided me to solve the research issues, and provided me useful materials

and information. Many thanks also goes to Dr. Raj Sunderraman who instructed me Ph.D.

study and teaching.

A special thanks goes to Prof. Jianzong Li, my advisor of M.S., who brought me in the

research field in the first place and encouraged me to pursue the Ph.D. degree.

In addition, I would like to thank my fellow graduate students and postdoc, Dr.

Longjiang Guo, Yiwei Wu, Shan Gao, Chinh T. Vu, Jing He, Souling Ji, and Yueming

Duan, who provided invaluable support and suggestions throughout this process. Thank my

friends for sharing happiness.

Last, but not least, I thank my family: my parents, Shuqin Tian and Guozhen Ai,

for giving me life, for educating me, for unconditional supporting me. Thank my brother,

aunties, and uncles for support and understanding.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ABBREVIATIONS xii

Chapter 1 INTRODUCTION 1

1.1 Data Management in Wireless Sensor Networks 2

1.2 Some Research Issues of Data Management in WSNs 4

1.2.1 Data Estimation Using Physical and Statistical Methodologies . . 4

1.2.2 In-network Historical Data Storage and Query Processing 5

1.2.3 Area Query Processing . 7

Chapter 2 RELATED WORK 10

2.1 Basic Approaches to Data Management in WSNs 10

2.2 Data Collection and Estimation . 11

2.3 Data Storage . 13

2.4 Area Query . 15

Chapter 3 DATA ESTIMATION USING PHYSICAL AND STATIS-

TICAL METHODOLOGIES 18

3.1 Problem Definition and Working Scenario 18

3.2 Estimation Models . 19

3.2.1 Data Estimation using Physical Model (DEPM) 20

vii

3.2.2 Data Estimation using Statistical Model (DESM) 24

3.2.3 Discussion . 26

3.3 Experiment Results . 28

3.3.1 Estimation accuracy . 30

3.3.2 Energy consumption . 32

Chapter 4 IN-NETWORKHISTORICALDATA STORAGEANDQUERY

PROCESSING 35

4.1 Historical Data Storage . 35

4.2 Construct and Maintain Distributed Index Tree 36

4.2.1 Construct a Hierarchical Index Tree 36

4.2.2 Index Maintaining . 39

4.3 Historical Data Query Processing . 40

4.4 Multi Query Optimization . 42

4.5 Simulation . 44

Chapter 5 AREA QUERY PROCESSING 51

5.1 Area Query in Wireless Sensor Networks 51

5.2 In-network Area Query Processing Scheme 53

5.2.1 Area Partition . 53

5.2.2 Reporting Tree Construction . 56

5.2.3 In-network Area Query Processing 57

5.2.4 Incremental Result Update . 62

5.2.5 Advantages of Using Gray Codes 63

5.3 Intelligent Monitoring Systems . 63

5.3.1 Escaping Routing Algorithm . 66

5.4 Simulation Results . 66

5.4.1 Simulation Setup . 67

viii

5.4.2 Efficiency of Our Scheme . 68

Chapter 6 CONCLUSIONS 73

REFERENCES . 75

ix

LIST OF TABLES

Table 3.1 Symbol Table . 22

Table 3.2 System Parameters and Setting. 32

Table 3.3 Model Selection Guideline. 33

Table 4.1 Index Structure . 39

x

LIST OF FIGURES

Figure 1.1 Area Queries . 7

Figure 3.1 Working rounds. 19

Figure 3.2 A light intensity monitoring WSN. 21

Figure 3.3 A Grid. 25

Figure 3.4 Experimental environment. 29

Figure 3.5 The relative error of estimations reported by DEPM and DESM using

data set 1. 30

Figure 3.6 The relative error of estimations reported by DEPM and DESM using

data set 2. 31

Figure 3.7 The relative error of estimations reported by DEPM and DESM using

data set 3. 31

Figure 3.8 The energy consumptions of different models. 34

Figure 3.9 The remained energy of DEPM. 34

Figure 4.1 Network Partition . 36

Figure 4.2 Index Tree . 37

Figure 4.3 Index tree on BS. 44

Figure 4.4 Cost of maintaining the index tree with various network size. . . . 45

Figure 4.5 Query responding delay of variant network size. 46

Figure 4.6 Average network traffic of variant network size. 46

xi

Figure 4.7 Total network traffic of variant network size. 47

Figure 4.8 Average network traffic of variant average involved nodes percentage

of queries. 47

Figure 4.9 Average network traffic of variant average length of query time win-

dow. 48

Figure 4.10 Accumulative network traffic of 48

Figure 5.1 Working Scenario. 54

Figure 5.2 Merge subareas. 59

Figure 5.3 IMS for monitoring fire in a building. 64

Figure 5.4 Network Traffic of execution intervals (L=10 bits, S=50%, F=50%,

C=20%). 69

Figure 5.5 Network Traffic of variant L (S=50%, F=50%,C=20%, 100 intervals). 69

Figure 5.6 Network Traffic of variant S (L=10 bits, F=50%, C=20%, 100 intervals). 70

Figure 5.7 Network Traffic of variant F (L=10 bits, S=50%, C=20%, 100 intervals). 70

Figure 5.8 Network Traffic of variant C (L=10 bits, S=50%, F=50%, 100 intervals). 71

xii

LIST OF ABBREVIATIONS

• WSN - Wireless Sensor Network

• BS - Base Station

• 2-D - Two Dimensional

1

Chapter 1

INTRODUCTION

A Wireless Sensor Network (WSN) is a wireless network composing of spatially dis-

tributed sensor nodes. Each sensor node is normally small, lightweight, and portable. A

sensor node in a WSN is typically equipped with a transducer, a radio transceiver, a small

microcontroller, and a power source (usually batteries). The transducer can convert sensed

physical effects and phenomena into electrical signals. Consequently, sensor nodes can coop-

eratively monitor physical or environmental conditions to collect, record, and report data and

information of monitored objects. Generally, monitored parameters are temperature, humid-

ity, wind direction, speed, illumination intensity, sound intensity, vibration intensity, pres-

sure, power-line voltage, chemical concentrations, motion, pollutant levels, and vital body

functions. The microcontroller processes and stores the sensed data. The radio transceiver

is responsible for receiving and sending data packets from/to other sensor nodes and BS.

Also, each sensor supports a multi-hop routing algorithm, so a packet can be received by the

destination node through multi-hop forwarding. The size of a single sensor node can vary

from the size of a shoebox down to grain. Moreover, a sensor node costs from hundreds of

dollars to a few pennies, depending on the size and the complexity requirements. Due to

size and cost constraints of sensor nodes, there are corresponding constraints on resources

including computational capability, memory capacity, energy, and bandwidth [1].

Initially, WSNs were designed for military applications such as battlefield surveillance.

Nowadays WSNs are widely used in many civilian and industrial application areas, such as

industrial process monitoring and control, machine health monitoring, robot control, envi-

ronmental monitoring, habitat monitoring, healthcare applications, home automation, object

tracking, detecting disasters, and traffic control. In the recent years, WSNs have entered a

wide variety of systems and applications with various characteristics and requirements [1]

2

[2]. WSNs has attracted many researchers’ attention in the field of computer science and

telecommunications, and there are numerous workshops and conferences arranged each year.

1.1 Data Management in Wireless Sensor Networks

Nowadays large-scale sensor networks are widely deployed around the world for various

applications. Tremendous volumes of various useful data are generated by these deployments.

An interface between WSNs and users, which can extract the data users want and represent

the data as the format users required, is significant. To develop this kind of interface, it is in-

dispensable of supporting of data management techniques. However, compared to traditional

networks or databases, a WSN has limited storage capacity, processing, analysis, computa-

tion abilities, bandwidth, and power supply. Obviously, traditional data management and

processing methods are not suitable for WSNs. Thus, how to collect, store, process, and an-

alyze data generated by WSNs is a challenging issue. In the past years, researchers proposed

a lot of systems, algorithms, and methods to address data management problems of WSNs

such as data collection, various aggregations, queries processing, event detection, and data

mining. When we design algorithms for WSNs, the following are several characteristics and

constraints of sensors and WSNs we have to consider.

1. Unstable and unreliable. The network topology of WSNs change frequently due to the

following reasons:

(a) Some sensor nodes have mobility.

(b) New sensor nodes join in.

(c) Some sensor nodes leave because of using up energy.

Moreover, wireless communication is unreliable in practice since wireless channel is

not reliable especially compared to wired channel. Due to practical issues such as link

failures, high retransmission rate, and high packet missing rate, 100% communication

reliability is not achievable.

3

2. Limited power supply. Due to the constraint of deployment environment, sensor nodes

generally use batteries as power supply instead of wired power supply. For instance,

the popular motes, Mica2, Micaz, and TelobB, use 2 AA batteries [3]. Normally,

the lifetime of batteries can be several weeks or months [4]. Unfortunately, for some

sensor nodes which are deployed at dangerous environment or unreachable spots, re-

placing the batteries is not possible. Therefore, prolonging the network lifetime is an

important optimization goal for designing an algorithm of WSNs. Also, the network

lifetime or energy consumption is usually used to judge the performance of an algo-

rithm. Importantly, the communication operations, such as sending, receiving, and

forwarding packets, are the most energy consumed operations compared to sensing,

computing, etc. The energy consumption for transmitting 1 Kb a distance of 100 m is

approximately the same as that for the executing 3 million instructions by 100 million

instructions per second/W processor [5]. Thus, reducing unnecessary communication

cost is an efficient way to save energy and prolong the network lifetime. Therefore, we

only consider the communications cost (network traffic) when we evaluate the energy

efficiency of the designed algorithms.

3. Low bandwidth. The bandwidth of WSNs is low because of the constraints of wireless

radio,power supply, and other charactoristcs of WSNs. The transmit data rate of Micaz

and TelobB’s wireless transceiver is 250 kbps [3]. However, the bandwidth of WSNs

cannot reach a sensor’s maximum bandwidth since low qualify links, collisions, and

high retransmission rate due to packets missing affect the transmission performance of

WSNs. Moreover, for large-scale WSNs, the transmission latency is high since WSNs

must use multi-hop routing mechanism due to the limited transmission range of a

wireless transceiver.

4. Limited storage capacity and computational ability. The storage capacity and com-

putation ability of a sensor node is restricted by the requirements of size and cost.

For instance, the processor performance of a TelosB mote is 16-bit RISC. TelosB has

4

48K bytes program flash memory, 10K bytes RAM, and 1024K bytes measurement

serial flash memory [3]. Therefore, the processing and storing ability of a single sensor

node is limited. However, the ability of a WSN is powerful by making all sensor nodes

cooperate with each other.

Aforementioned constraints of WSNs make designing data management algorithms more

challenging.

1.2 Some Research Issues of Data Management in WSNs

In this section several research issues of data management in WSNs, which are addressed

in my dissertation, are introduced.

1.2.1 Data Estimation Using Physical and Statistical Methodologies

Sensor-based applications extract different kinds of data via collecting data, processing

in-network aggregations, and detecting complicated events. Since sensor nodes have limited

resources, novel data management techniques are needed to satisfy application requirements,

especially, the limitation of resources. To date, data acquisition using WSNs has became

an essential ingredient of current technologies. Due to the energy limitations faced by sen-

sor nodes, most techniques focus on in-network aggregating data so as to improve energy

efficiency. Although this is a good way to conserve energy, for some applications it is neces-

sary that all sensor readings are collected by BS. In such a scenario, in-network aggregation

cannot be permitted as it reduces the data-set communicated to BS. Consequently, in such

situations, data-estimation can prove to be a very fruitful alternative to data aggregation.

An example is the determination of light intensity distribution in a region, such as photosen-

sitive horticulture under artificial illumination [6]. Commercial gadgets are now available [7]

for such purposes, the HortiSpec [7] was developed to measure light intensity and spectral

distribution in the visible and NIR range inside greenhouses. The light intensity can be

measured by these sensors, and data estimation techniques employed in such environments

5

would help conserve energy and prolong network lifetime. Commercial light sensors which

use photodiodes that produce a voltage proportional to the light intensity are now available.

Similarly, light intensity sensors are required to monitor maintenance of optimum lighting in

animal husbandry related business [8], and also in cell-culture experiments [9] under artificial

light, where also data estimation techniques would help enhance the longevity of WSNs.

Usually, users can accept approximate data. As a result, a method of data estimation

is a perfect option for conserving energy. In fact, the key challenge is how to provide

estimated data with high precision while consuming as little energy as possible. To address

this problem, two novel data estimation methods are proposed in Chapter 3. In our scheme,

a minimal number of nodes are set to be active and the other nodes are set to sleep. All nodes

serve as active working nodes by turns. BS estimates values of sleeping nodes based on two

estimation models, Data Estimation using Physical Model (DEPM) and Data Estimation

using Statistical Model (DESM). The scheme not only prolongs network lifetime, but also

fulfills users’ expectations of data precision. Notably, the DEPMmodel is the first one to take

advantages of physical characteristics of monitored attributes for estimation. Experiments

on a real sensor network consisting of twenty TelosB nodes [10] were conducted to evaluate

the proposed models. The experimental results show that the proposed methods are energy

efficient.

1.2.2 In-network Historical Data Storage and Query Processing

Most existing applications just process real-time data generated by WSNs (e.g., [11, 12]).

However, historical data of sensor networks are also significant to us, especially statistical

meaning of historical data. For instance, maximum, minimum, and average temperatures

of the past two months in a specific area are concerned in the weather monitoring applica-

tion. By capturing rush hours and the bottleneck of traffic according to historical data, a

large quantity of useful information can be provided to improve traffic conditions. Through

analysis of historical data, some knowledge, principles, and characteristics can be discovered.

One simple method to process historical data is that BS collects all data and processes in

6

a centralized manner. Nevertheless, sensor nodes will deplete energy rapidly for continually

reporting and forwarding data. Another method is storing data locally, that is, data are

stored at a sensor node where they are generated. Intuitively, a sensor node cannot store

a large quantity of historical data since its memory capacity is low. Popular motes such as

Mica2 and Micaz [3] are equipped with a 512K bytes measurement flash memory, it can store

more than 100,000 measurements. Another popular mote, TelosB [3], has a 1024K bytes flash

memory. 512K or 1024K bytes are really small memory capacity. However, it is enough to

store most of sensing data, sampling data, or statistical data during a sensor node’s entire

lifetime since the lifetime of a sensor node is short due to the limitation of batteries. For a

Mica mote powered by 2 AA batteries, the lifetime is 5-6 days if continuously running, and

it can be extended to over 20 years if staying sleep state without any activity [13]. For most

applications, a sensor can live for several weeks or months [4]. Assume a Mica mote with

a 512K bytes flash memory can live 3 months. (100, 000/90) = 1111 measurements can be

saved locally every day. Suppose we have 4 sensing attributes need to be saved, frequency

of sampling can be 1 per 5 minutes which is normal in wireless sensor network applications.

If proper compressing techniques are applied according to data’s characteristics, much more

data can be stored locally. Consequently, storing data locally at a sensor is feasible. The

historical data can be downloaded when the battery is replaced or recharged if possible.

The motivation of storing historical data is to support historical data queries. However,

locally storing data might cause a query to be flooded in the entire network to probe data

when it is processed. We propose a scheme in Chapter 4 named Historical Data Query

Processing based on Distributed Indexing (HDQP) which stores historical data in network

and processes queries energy-efficiently by using index techniques. Historical data is stored at

each sensor. For saving memory capacity, compressing and sampling techniques can be used

according to data characteristics and users’ requirements. To process queries quickly and

energy-efficiently, in-network distributed tree-based indexes are constructed. Using indexes

to process queries can reduce the number of involved sensors as many as possible, thus

conserving energy consumption. To avoid load skew, index data are partitioned on different

7

nodes according to their time stamp. That is, there exist multiple index trees in the network.

Which index trees are used depends on query conditions.

1.2.3 Area Query Processing

R1 R2 R3 R4 R5

Figure 1.1. Area Queries

Most existing data collection systems are query-based ones. Traditional query processing

techniques of WSNs mainly deal with retrieving sensor node locations, sensing values, and

aggregating the sensed values. However, in a lot of applications, users expect information

about areas of their interests. For instance, workers in a coal mine want to find an area with

8

a high oxygen density to take a break, and this area must be big enough to accommodate

several workers. In Figure 1.1, all sensing values of the sensors in regions R1 through R5 reach

the expected oxygen density. However, regions R3 and R5 are not big enough for several

workers, so R3 and R5 are not the areas users expect. For this application, previous methods

may only return the locations and sensing values of the sensors, which is meaningless and

helpless. Here, users want to find areas instead of several locations since the size of an area

should also be a filtering condition.

Another interesting scenario is an air pollution monitoring application within a city.

Users expect this monitoring system to detect regions whose pollution levels reach thresholds.

In reality, the polluted thresholds might be different for different areas. For example, the

threshold of an industrial area is 80, and that of a residential area is 50. In Figure 1.1,

R1 and R4 are in the industrial area, and R2, R3, and R5 are in the residential area. The

polluted level of R1 through R5 are 70, 60, 40, 90, and 40 respectively. Usually, traditional

methods apply the same filtering condition for the whole network. In this example, if the

threshold 80 is used, polluted area R2 is missed since R2’s polluted level actually exceeds

the threshold for residential areas while the filtering condition does not indicate this. If the

threshold 50 is used, R1 is identified as a polluted area which triggers a false alarm. So

the existing methods cannot be used for this application. This application concerns specific

areas, and different filtering conditions should be applied for each area.

We define Area Query as requests for area information including area locations, sizes

of areas, and collected and aggregated data of areas. Sensor nodes with expected readings

and adjacent sensing coverage are divided into the same group. The total coverage area of

sensor nodes in the same group is a possible result area. Area Query can retrieve not only

sensing values but also specific geographical information compared to traditional queries of

wireless sensor networks. Area Query is more practicable and useful than traditional queries

for some applications, which require geographical information. A common property of Area

Query applications is that results of these queries are areas and aggregation values of sensors

in these areas. Size of areas also can be query conditions. Furthermore, queries might be run

9

for either the whole network or sub-areas. For different areas, it is possible to use different

querying conditions. Area Query is a new kind of query in wireless sensor networks.

Intuitively, BS can collect data from all sensor nodes and answer area queries. However,

sensor nodes will drain energy quickly due to frequently reporting. Existing techniques of

in-network query processing suppress and aggregate sensing values to save energy. However,

these methods do not consider sensor coverage area as part of results. Consequently, a new

in-network area query processing technique is necessary.

The first challenge of in-network area query processing is that it is hard to suppress

useless data as early as possible. For instance, an area satisfies all the conditions except size

of requirement. Obviously, this area is not the one expected by users. However, we cannot

drop this area since it is difficult to decide the boundary of a result area locally. Moreover,

how to describe an area in-network is another challenge. Because areas are also part of query

results, ideal area description can reduce the size of transmitted data and the complexity of

area size computation, which are two primary consideration factors for energy conservation.

In Chapter 5, we propose an energy-efficient in-network area query processing scheme.

The whole sensor network is partitioned into grids, and a gray code is used to represent

each grid. We construct a reporting tree to process merging areas and aggregations. For

conserving energy, incremental update techniques are used to process continuous queries.

Our contributions are summarized as follows:

1. A new area query is studied.

2. A smart area description, GID lists, is used to reduce the size of query results.

3. An energy-efficient in-network area query processing scheme is proposed. By using

GIDs and merging strategies, partial results can be merged to reduce the size of results

and useless data can be dropped as early as possible to reduce the number of messages.

4. An incremental update method is addressed to reduce the size of reports for continuous

queries.

10

Chapter 2

RELATED WORK

In this chapter, we begin with a brief introduction of related work to data management

in WSNs. Then, related literature of research issues which are addressed in the dissertation

is discussed.

2.1 Basic Approaches to Data Management in WSNs

First, we introduce some early data management approaches. In [14], a scalable and

robust communication paradigm, directed diffusion, is proposed. Attribute-value pairs are

used to name data generated by sensor nodes. A request node sends its interests of named

data to destination sensor nodes or regions. Then, data satisfying the interest are returned

along the reverse path of interest dissemination to the request node. To improve the perfor-

mance and save energy, intermediate nodes can cache data and might aggregate the data.

[15] extends and improves the directed diffusion method especially on experiments. TinyOS

[16] is a free and open source operating system designing for WSNs. TinyOS is an embedded

operating system which is written in the nesC. The component library of TinyOS consists of

sensor drivers, network protocols, distributed services, and data acquisition tools. Therefore,

TinyOS can support basic data requests. Moreover, users can develop their own applications

based on TinyOS.

TinyDB [4] is a data management system for WSNs based on TinyOS. It can extract

information from WSNs by sending queries. Importantly, TinyDB allows users describe

the data they want to acquire by writing a simple, SQL-like query. For answering a query,

TinyDB requests the data from sensor nodes in the network and routes it back to a PC. In the

phase of processing queries, filtering and aggregation algorithms might be used. TinyDB uses

intelligent in-network energy-efficient processing algorithms to prolong the network lifetime.

11

For instance, tree-based routing is used for query delivery, data collection, and in-network

aggregation, and [17] is used to processing aggregation in in-network manner. Also, TinyDB

supports metadata management, in-network persistent storage, multiple concurrent queries.

REED [18] extends TinyDB with the ability to process joins operations between sensing data

and static tables which is built outside the WSN. Filter conditions is stored in static tables,

and then those tables are distributed throughout the network. Join operation is executed

in in-network manner. REED is also suitable for various event detection applications which

TinyDB and data collection systems cannot handle.

Cougar [19] is another distributed database system to sensor networks. It consid-

ered query languages, aggregation processing, query optimization, catalog management, and

multi-query optimization. When a new query is coming, query optimizer of Cougar either

merge it with an existing query or generate a new query plan. A leader is chosen to control

the execution of the query plan.

Recently, researchers focus on specific issues which were found in some applications

such as data estimation, data aggregation, event detection, and data centric storage. In the

following sections we will introduce literature which is related to the issues we focus on.

2.2 Data Collection and Estimation

Common techniques to save energy in WSNs employ various alternative strategies to

minimize data acquisition and/or transmission by using a variety of approaches. For in-

stance, in-network aggregation (e.g., MIN [20] and AVG [17]) can reduce communication

cost significantly. Also, using synopsis diffusion [21] and wavelets compression [22] to pre-

cess aggregation can decrease network traffic. However, aforementioned methods are not

suitable for some applications which require all sensed data to be sent to BS since these

methods do not provide detailed data desired by users. Apparently, reporting all sensed

data will consume energy quickly. Therefore, researchers proposed some energy-efficient

approximate algorithms to collect all sensed data.

Data collection is widely used for applications, which collects all sensed data contin-

12

uously (SELECT ∗ query). In [23], Chu et al. have proposed a mechanism, Ken, using

conditional data transmission to conserve energy by reporting only if the difference between

the sensed value and the predicted value is beyond certain bounds. The replicated dynamic

probabilistic model for a sensor node is installed on both the sink and that sensor node. A

sensor node does not need to report sensed value normally if the predicted error is within the

threshold user specified, thus saving reporting communication cost. Once the predication

error is greater than the error bound, the sensed data is reported to the sink, and the param-

eters of the model are adjusted to match current data changing intend. The effectiveness of

this scheme in reducing the communication cost is relied on the predication model chosen.

As shown in [24], the prediction models based on the temporal and spatial correlations of

data work extremely well in WSNs. A novel disjoint-Cliques Model is also proposed to use

spacial correlation to reduce data transmission and improve prediction accuracy. In [25],

a data-driven approach was presented. Model-based suppression is used to provide contin-

uous data without continuous reporting. In addition, a key problem for data suppression,

link failure, is addressed. A mobile filtering approach for error-bounded data collection was

proposed in [26]. By migrating filters wisely the number of data reporting is reduced signif-

icantly. Jain et al. have built dynamic procedures that employ maximum filtering of data

using a technique called stochastic recursive data filtering, to conserve resources subject to

meeting precision standards [27]. Primarily, these methods are aimed at reducing energy

consumption by substituting data acquisition using data estimation. Another method of

data estimation is based on collection of data samples for a relatively long time and cal-

culating the autocorrelation of the vector of samples [28]. This approach aims at enabling

nodes to identify patterns in the behavior of sensed processes and report only uncommon

observable data to conserve energy.

Dash et al. have studied using physical laws for data estimation, approximate values

of land surface temperature and emissivity from passive sensor data [29]. Essentially, this

work makes use of well-known laws of Physics to estimate the Land Surface Temperature

realistically. While physical laws have been used in some of technologies mentioned above to

13

govern sensor mechanisms, in the DEPM technique proposed by us in [30] it seems for the

first time that physical laws are employed in a direct energy saving strategy aimed at data

estimation. Most other methods rely on some forms of temporal and/or spatial correlations

and/or data filters for data estimation whereas in the present work well-established physical

laws that are known to be correct with extremely high accuracy are used directly in the net-

work plan to achieve minimization of energy consumption which is the primary challenge in

WSN technology. The data estimation scheme we propose can conserve more energy than the

methods mentioned above obviously, because in the methods, such as [23, 27, 28], all nodes

should be always in working status; however, in our scheme nodes serve as working nodes

by turns, and others go to sleep, so our scheme can prolong network lifetime significantly.

2.3 Data Storage

Many approaches have been proposed to describe how to store data generated by WSNs.

One category of such storage solutions is that BS collects and stores all data. Apparently,

it is easy to store and access the data at BS. However, such methods (such as [31] [17] [32])

might be more applicable to answer continuous queries. Obviously, the mortal drawback of

collecting all data is shortening the network lifetime for WSNs with limited power supply

since sending packets costs large amount of energy. Also, shipping all data out of network

may be not necessary because users are not interested in all data. Sensor nodes near BS

become the bottleneck as a result of forwarding packets. Moreover, the WSNs may not

able to transfer all data continuously generated by sensor nodes due to the limitation of

bandwidth. Since centralized storage is not practical, naturally distributed in-network data

storage is considered. Nevertheless, in-network data storage and data retrieve of WSNs are

challenging issues for WSNs because each sensor node just has limited memory space and

there are a number of sensor nodes in a WSN normally.

For improving network lifetime, in-network storage techniques have been addressed to

solve ad-hoc queries. These frameworks are primarily based on the Data-Centric Storage

(DCS) concept [33]. In DCS, relevant data are categorized and named according to its

14

meanings (e.g., tiger sightings). All data with the same general name will be stored at the

same sensor node. Then, when users query the data with a particular name, it can be sent

directly to the sensor node who stores those named data. The major difference among in-

network DCS schemes is using different events-to-sensors mapping methods. The mapping

was designed using hash tables in DHT [33] and GHT [34], or using k-d trees in DIM [35],

KDDCS [36], and STDCS [11]. STDCS uses sensor location as data indexing instead of

the sensed values. Hence, STDCS addresses a sensors-to-sensors mapping instead of the

readings/events-to-sensors mapping. Moreover, a switching-time is defined to be the time

duration after which the mapping function changes. STDCS uses a spatio-temporal indexing

to balance query load among sensors.

As we know, indexing techniques can significantly improve the data acquiring/query

performance. For WSNs, another benefit of using index is reducing cost of data request

dissemination since the destination of data request can be obtained from the index. The

works in [37], [35], and [36] use a spatially distributed hashing index technique to solve

range queries in a multi-dimensional space. The work in [12] proposed a distributed spatial-

temporal index structure to track moving objects. The work in [38] addressed a time-based

index management for event query processing. For saving energy, the index is adjusted

according to the event frequency.

Specially, most of these approaches just store partial data, which satisfy conditions or

present events and moving objects, generated by sensors [34], [36], [35], [37], [12], and [38].

To our best knowledge, no in-network distributed historical data storage, indexing, and query

processing schemes have been presented in the literature.

Since sensors have limited memory space, storing all historical data on sensors might

not be applicable for some applications with a large quantity of sensing data. However, most

applications desire statistical results, events, the trend of value changing of historical data

rather than specific values. This characteristic provides us a chance to store sketch infor-

mation to answer queries based on historical data of sensor networks. For enhancing query

processing performance and saving energy, a distributed index is necessary to guide query

15

forwarding. In [39], we proposed a in-network historical data storage and query processing

scheme based on distributed index. This scheme stores historical data locally and processes

queries energy-efficiently by using a distributed index tree. Regression techniques can be

used to save memory capacity according to data characteristics and users’ requirements.

In order to process queries quickly and energy-efficiently, in-network distributed tree-based

indexes are constructed and maintained. Using indexes to process queries can significantly

reduce the number of involved sensors, thus conserving energy consumption. Furthermore,

for avoiding load skew, index data are partitioned on different nodes according to their time

stamp.

2.4 Area Query

Area query processing is a special kind of data processing in wireless sensor networks.

As we know, data processing of wireless sensor networks was well-studied. It mainly involves

three aspects, data collection, data aggregation, and query processing. Resource-limitation

and unreliable communication links are the main concerns.

Data collection techniques achieve ideal data reduction when bounded error is acceptable

for users as discussed in Section 2.2. Data collection may be used to process area queries.

That is, BS computes results after collecting data from all sensor nodes. However, since

errors are not tolerable for area queries, then the methods which provide results with errors

are not suitable for area query processing. If the methods which can provide accurate results

are employed, energy consumption will be large since most of data cannot be suppressed and

must be sent to BS.

In-network data aggregation is an efficient way to reduce energy consumption since data

items are compressed on their way to the destination. TAG [17] and TiNA [40] aggregate

sensed data as early as possible through tree-based routing. Aggregation of values from

multiple sensor nodes are routed to one destination (BS). In [41], a many to many aggregation

scheme was proposed. In this scheme, there are multiple destination nodes. Each destination

may also have multiple source nodes. In [42], a continuous Spatial Aggregation was studied.

16

Users specify a set of spatial regions, data aggregation is then performed in each region.

Existing data aggregation methods either consider the sensor nodes in the whole network as

belong to one group or divide sensor nodes into static groups such as the works in [41] and

[42]. Area query processing requires dynamic sensor grouping based on readings from each

sensor. Therefore, the above mentioned methods cannot be used.

Query processing technique involves query optimization, decomposition, distribution,

and result retrieval. A query processing system must have the ability to execute multiple

continuous queries simultaneously. Cougar [19] system reduces communication cost by push-

ing operations such as selections and aggregations into the network. TinyDB [4] is a robust

query processing system. A SQL-like interface is used to specify the data expected by users.

It also supports event detection. Power-aware optimization, dissemination, routing, and ex-

ecution techniques are used in TinyDB to prolong network lifetime. Query processing can

be utilized for event detection. In an event detection system, when an event is detected, a

warning should be delivered to users. In [18] and [4], thresholds are set for sensor readings

in a query to detect events. In [43], the top-k monitoring issue over WSNs is addressed.

Usually, sensor readings are correlated with location, so top-k nodes are clustered at some

areas. A tree structure, partial ordered tree(POT), is used to maintain clusters with the

highest sensed values, thus only potential top-k result are evaluated for query processing. In

[44], events are abstracted into spatial-temporal patterns. In this scheme, event detection

is effectively carried out through matching contour maps of sensed data to event patterns.

Contour map is constructed in distributive manner via merging submaps. In [45], an al-

gorithm for detection the boundary of events (such as detection the region in forest fire)

is proposed. Since the detection algorithm is based on a simple clustering technique, the

computation cost is low. In [46], robust median estimator based approaches for detection of

the reach of events are proposed. In [47] [48], map-based world model (MWM) is proposed to

model the physical world as a stack of maps by presenting temporal and sptial distributions

of sensed data. MWM supports efficient event detection, prediction, and queries.

To the best of our knowledge, our work [49] is the first work to address area queries

17

specifically. We propose an area query processing scheme, which can handle not only normal

queries like selection, aggregation, and threshold-based event detection but also area queries.

More importantly, this scheme is energy-efficient since it processes area queries in in-network

manner. Compared with existing techniques, the remarkable difference is that this scheme

supports dynamic sensor grouping which is an indispensable step for area query processing.

For dynamic sensor grouping, we consider not only geographical correlations of sensors’

sensing coverage but also sensed data correlations of sensors to derive expected results.

18

Chapter 3

DATA ESTIMATION USING PHYSICAL AND STATISTICAL

METHODOLOGIES

In this chapter, we introduce data estimation models using physical and statistical

methodologies. In our scheme nodes serve as working nodes by turns, and others go to sleep,

and sleeping nodes’ readings are estimated by our data estimation models, so our scheme

can prolong network lifetime significantly.

3.1 Problem Definition and Working Scenario

In this section, we formally define the SEAQA problem, and describe the working sce-

nario of our estimation scheme.

In many applications, it is not necessary for users to obtain completely accurate values.

A scheme that provides approximate answers might offer an opportunity to prolong network

lifetime efficiently. We formally define this problem as the Sensor Energy-efficient Approxi-

mate Query Answer (SEAQA) problem.

Definition 1 (SEAQA Problem): Given a three dimensional area A and a set of

N sensors S = {s1, s2, ..., sN}, derive a working scheme ws for S such that:

1. For each sensor si, its returned value Ve deviates its real sensing value V as little as

possible, that is, |Ve − V | is minimized.

2. The energy consumptions among all the sensors are balanced.

3. The network lifetime is maximized.

The lifetime of a WSN depends on the node with the minimal remaining energy, so

maintaining energy consumption balance among sensors is also a significant problem to

19

prolong network lifetime.

To conserve energy, some nodes in a network can be in sleep mode, and only a subset of

the nodes are responsible for sensing and communication. Nodes work in rounds as shown

in Figure 3.1. There are three phases in each round. In the first phase, BS gathers the

remained energy information of all the nodes and selects a subset of nodes with much more

remained energy to serve as active working nodes. In the second phase, BS informs each

node its role and working duration. Then, in the rest of this round, the selected working

nodes are in charge of sensing and communication, and the other nodes go to sleep in order

to conserve energy. The sensing values of the sleeping nodes are estimated by the proposed

DEPM and DESM methods at BS.

... ...round 2 round i

elect working node communication period sleep or sense real data and estimate values of all other nodes

round

round 1

Figure 3.1. Working rounds.

3.2 Estimation Models

To address the data estimation problem, we propose two efficient methods DEPM and

DESM. DEPM estimates data using physical laws and DESM accomplishes data estimation

using a statistical model.

20

3.2.1 Data Estimation using Physical Model (DEPM)

In this section, we introduce DEPM which employs basic laws of Physics. This is

achieved by exploiting the principle of superposition of the physical sensed parameters.

Essentially, the problem is to determine a physical quantity at a field point when its value

is the result of linear superposition produced by multiple sources. DEPM does not need to

deploy any more sensors than a constant number, that is the number of sources, and all the

extra sensors go to sleep. The sensing values of sleeping nodes can be predicted by DEPM

model according to sensing values of the active nodes. By activating one of the sleeping

nodes, one can carry out an actual sensory measurement at that location and verify the

prediction of the DEPM model. After such verification, DEPM enables. As long as source

properties remain invariant, the prediction of the physical quantities at an infinite number

of locations within the region R and makes it redundant to deploy sensors at these new

locations. DEPM thus achieves enormous energy conservation by exploiting the principle of

linear superposition and solving a set of algebraic linear inhomogenous equations. DEPM

provides accurate physical estimates of the physical observable at an infinite number of field

points in the region without having to consume energy in activating additional sensors.

To define and illustrate the functioning of DEPM, we use light intensity as an example

monitored attribute. We consider a total of N nodes and M sources of light, where M # N .

Each of the light sensors registers an amount of light intensity Ik at the node Sk (k ∈ [1, N])

in the system (Figure 3.2). BS needs to determine the power radiated by each source of light

from the measurements of light intensities measured by nodes.

DEPM operates in two modes: dynamic and static. The dynamic mode of DEPM is

employed when the power radiated by the M sources is not known and needs to be measured

by active sensors. DEPM provides energy conservation by accurately estimating the power

of the M sources by employing only M active sources. Toward this goal, DEPM exploits

the principle of linear superposition and provides solutions by addressing a set of linear

algebraic inhomogeneous equations. Energy minimization is achieved by requiring only a

constant minimal number M out of the available N nodes to be activated to determine

21

work node sleep node light source

Figure 3.2. A light intensity monitoring WSN.

the power radiated by the M sources. These constant number of active nodes are shown

as dark nodes in Figure 3.2. In each round, the DEPM algorithm solves the set of linear

inhomogeneous equations, thus providing the accurate reliable values of the light power P

radiated by the M light sources.

The static mode of DEPM is employed when (a) the power radiated by the sources is

first determined by carrying out sensor measurements in the dynamic mode, and (b) when

it is known that the power radiated by the light sources is time-invariant. In the static

problem, no node at all is required to be activated, except to verify the DEPM prediction,

even as the DEPM algorithm solves the inverse problem and estimates with complete ac-

curacy the values of light intensity distribution at an infinite set of point locations in the

region R. No energy is consumed in the activation of any node at all, both data acquisition

energy and data transmission energy are thus fully conserved while the DEPM Static Al-

22

gorithm provides light intensity solutions at an infinite number of field points as shown below.

DEPM DYNAMIC Algorithm

In each execution round, three tasks are processed:

1. At the beginning, M out of N nodes are elected to work as active nodes by using

a random algorithm which ensures that energy is conserved in all of the N nodes

optimally.

2. The light intensity Ik (k ∈ [1,M]) sensed by the M active nodes are sent to BS.

3. BS computes the values of Power P l radiated by each of the l th light source using the

DEPM dynamic algorithm explained below.

Table 3.1 lists the symbols used by DEPM.

Table 3.1. Symbol Table
Symbol Meaning
N Number of sensor nodes.
M Number of light sources.
Pi Power radiated by the light source li.
{s1, s2, ..., sM} Set of active nodes.
Ii Value of light intensity measured by

an active node si.
D(li, sj) Distance between light source li and

location j where the active sensor sj
is located.

If the jth light source alone is switched on, the rest of the (M − 1) light sources being

switched off, then the light intensity Ik measured by the kth active sensor is related to the

power Pj of the jth light source by the well-known inverse square law :

Ik =
Pj

4πd2(lj , sk)
. (3.1)

23

Now, if all the M light sources are switched on, one requires a minimum of M nodes

to uniquely determine the light powers of each of the M light sources. DEPM requires

only a constant number M of nodes to be activated for this purpose and permits all of the

remaining nodes to sleep, thereby conserving their energy. Thus, at the beginning of each

round, DEPM elects M nodes as active working nodes. For the sake of balancing the energy

consumptions, the active nodes are always selected randomly from the subset of sensors that

have residual energy that is higher than the average energy per sensor in the entire network.

Then, the selected active nodes sense the light intensity Ik of light at each kth node and

communicate the recorded values to BS.

Since the light intensity Ik at the kth node obeys the principle of superposition with

respect to light reaching that node from each of the M number of light sources, we have:

Ik =
P1

4πd2(l1, sk)
+

P2

4πd2(l2, sk)
+ ... +

PM

4πd2(lM , sk)
, wherek = 1 . . .M (3.2)

Ik =
M
∑

j=1

Pj

4πd2(lj, sk)
=

M
∑

j=1

ajk Pj, ajk =
1

4πd2(lj, sk)
(3.3)

Equation 3.3 represents a family of linear algebraic equations in which the coefficients

ajk are known from the geometrical arrangements of the WSN and the locations of the M

light sources. The inhomogeneous linear equations can be solved using well-known techniques

in [50]. These equations can be written in a matrix form:

α π = ι,

where α =















a1,2 a1,2 a1,l a1,M

.....

al,1 al,2 al,l al,M

.....

aM,1 aM,2 aM,l aM,M















,

π = [P1, P2, ..., Pl, ..., PM]T , ι = [I1, I2, ..., Il, ..., IM]T .

We note that the matrix α is determined entirely by geometrical arrangement and is

24

completely independent of the light sources and the sensor properties.

The solution to this system of equations is: π = α−1ι, where α−1 is the inverse of the

matrix α. A condition is easily incorporated in the algorithm that when the determinant of

the matrix α,
∣
∣
∣α
∣
∣
∣, is small, a different set of active nodes must be chosen such that

∣
∣
∣α
∣
∣
∣ % δ,

where δ is a user-defined small quantity.

Thus, from the values of the light intensities sensed by the set of M active nodes, the

DEPM dynamic algorithm determines the power radiated by each of the M light sources.

So far, we can use Equation 3.3 to calculate the light intensity of each sleeping node easily.

3.2.2 Data Estimation using Statistical Model (DESM)

Another estimation mode, DESM, is introduced in this section. A WSN is logically

divided into cells using a grid (as shown in Figure 3.3) of which each cell is called an observing

region. In each observing region and in each round, only the node that has the maximal

remained energy is chosen to be the active working node.

Usually, the collected data has strong temporal and spatial locality property. The

temporal locality means that values sensed by the same sensor over a continuous time domain

have strong relationships. Spatial locality means that values sensed by the sensors whose

locations are nearby often are also similar. For instance, HortiSpec mentioned above shows

the strong temporal and spatial locality. Aware of these two locality properties, DESM

studies the temporal relationship of a sleeping node s from its historical data set and the

spatial relationship between s and the current working node that is in the same grid with s,

and gives an estimation value for s.

DESM needs a real historical sensing data set of each node to start. In the first several

rounds, all the nodes are in working mode. The sensed values are collected and stored at BS

as a historical data set. Thereafter, only one node in each cell is active and the other nodes

in the same cell go to sleep. We use the following method to estimate the sensing values of

the sleeping nodes.

Formally, let SR = {S1, S2, . . . , Sn} be the nodes in an observing region R. For each

25

Figure 3.3. A Grid.

node Si ∈ SR, Xi1, Xi2, ..., Xim represent its corresponding historical value sequence. The

historical value sequences of the node set SR are stored in a matrix AR. Suppose that Si is

the active node in SR. Each time Si observes a new value Xi(m+1), the values of the other

n− 1 nodes can be estimated according to Xi(m+1) and AR.

AR =












X11 X12 ... X1m

X21 X22 ... X2m

...

Xn1 Xn2 ... Xnm












Being aware of the locality of nodes, we can use the following equation to estimate the

value X̂j(m+1) of Sj.

X̂j(m+1) = (1− α)Ŷ + (α)Ẑ (3.4)

where Ŷ is the last estimated value X̂j(m), which measures the influence of the historical

sensing data on the current value at node Sj. Ẑ is computed by Xi(m+1), which measures

the influence of the data sensed by the active node Si on the data of node Sj . α is a weight

26

parameter that evaluates the effects of Ŷ and Ẑ on the estimated value X̂j(m+1), whose value

is in [0, 1].

We use the following method to compute Ẑ. Given two random variables Xi =

{Xi1, Xi2, . . . , Xim} and Xj = {Xj1, Xj2, . . . , Xjm} with Xi(m+1), the estimated value Ẑ for

Xj(m+1) is computed as follows:

Ẑ = Xj(m)(1 +
Xi(m+1) −Xi(m)

Xi(m)
) (3.5)

Equation 3.5 is based on an assumption thatXi and Xj have the similar data fluctuation

trend, which is usually true for the two nodes in the same cell according to the space locality

of a WSN.

Intuitively, if Xi is more related with Xj, then Ẑ is expected to impact more influence

on the value of X̂j(m+1), that is, α should be a larger value. According to the above analysis,

correlation coefficient ϕ(Xi, Xj) is an exact way to define α.

Given two random variables Xi and Xj, whose first m values are Xi1, . . . , Xim and

Xj1, . . . , Xjm respectively. We can use the following formula to compute the correlation

coefficient between Xi and Xj :

ϕ(Xi, Xj) =
Cov(Xi, Xj)

σXi
σXj

(3.6)

In Equation 3, Cov(Xi, Xj) is covariance between Xi and Xj . Cov(Xi, Xj) = E[(Xi −

EXi)(Xj −EXj)] = E(XiXj)− E(Xi)E(Xj).

3.2.3 Discussion

The Dynamic DEPM technique offers by itself as a very powerful algorithm to solve the

inverse problem when it is known that the power radiated by each of the light sources is not

changing, as is often the case, and it is nevertheless of importance to know the distribution

of intensity of light at a large number of point-locations in the region illuminated by the

M light sources. Such problems are of interest in very many different areas, such as in

27

the determination of light intensity distribution in a sports arena where games are played

under artificial light sources of constant power, and in horticulture experiments [7] in which

cultivation of some vegetation is sought under artificial light from a set of constant-power

sources. Likewise, cell-culture experiments [9] under controlled light intensity environment

is another example of a situation where the Static DEPM model introduced below can be

extremely valuable.

To solve such problems, the DEPM inverse algorithm is to be used, treating the matrix

π as known and determining the intensity matrix ι for any set of M point-locations whose

coordinates alone determine the corresponding matrix α. Since in this model the matrix π is

considered to be known (i.e. pre-determined), the inverse algorithm is referred to as STATIC

DEPM. Thus for a predetermined matrix π, and for a set of arbitrary M number of locations

whose coordinates alone determine the required matrix, the STATIC DEPM algorithm solves

the matrix relation: απ = ι, thereby giving the values of the light intensities at a set of M

arbitrary locations whose coordinates alone need to be provided as input for the STATIC

DEPM algorithm. Not a single node needs to be activated at this set of M locations, thus

providing reliable data estimation that substitutes data acquisition conserving energy of the

WSN. Of course, some of the sensors can be activated to verify the prediction of the static

DEPM algorithm, and this is a tremendous advantage that lends itself as a tool to check

reliability of the model.

Light intensity distribution at arbitrary locations (xk, yk, zk) can be achieved by data

estimation using a method completely based on physical laws instead of using actual nodes

being activated at these locations. The physical laws that are employed are very rigorous.

Hence, as long as the physical conditions of the algorithm are satisfied, the DEPM is expected

to provide very accurate predictions. To the best of our knowledge, most of the energy

saving techniques employed in WSNs employ various combinations of spatial and temporal

coherence and/or data filters, whereas the present method employs well-established laws of

physics as direct energy conservation strategy and thus provides a very novel approach to

develop energy saving mechanisms in WSNs based on physical laws. Based on the temporal

28

and spatial correlation among adjacent nodes, DESM method can estimate the intensity of

light, temperature, humidity and etc. We merely need to know the position information of

sensor nodes, and do not require any information about the monitored objects.

How to set up a grid is a primary factor in the accuracy of estimation. In order to

conserve energy as much as possible, it is desirable that the number of nodes in sleep mode

is maximized. However, the accuracy of DESM would decrease in such a case. There is thus

a trade-off between the estimation accuracy and energy conservation. In some applications,

using clusters to separate the observation regions is more preferred. For instance, in order

to monitor the temperature of a big building, in each room must be placed several sensors.

Consequently, a room can be considered as an observing region, and it is no doubt that the

trend of temperature fluctuation in a room is rather similar.

3.3 Experiment Results

In the prototype experiments that were performed, twenty TelosB [10] sensors were

deployed in a laboratory of size 25’x50’ as shown in Figure 3.4. The laboratory was insulated

from natural light so that the sensors would sense and record only light intensities from two

artificial electrical light sources L1 and L2. The twenty sensors and the two light sources

were geometrically distributed randomly in the room, such that there is no obstacle between

sensors and the light sources.

Each sensor sensed 10 values of light intensity every 2 seconds, and sent the average

value to BS. The data that were received by BS were stored as the tested data set. Three

different experimental sets were employed to test the methodology developed. In the first

set, intensity data recorded by the sensors were analyzed with both the light sources turned

on. In the second data set, intensity data were collected from the sensors and the experiment

was performed while the two light sources were turned on and off every 5 minutes. In the

third set, data were obtained with the two light sources turned on and off randomly and

frequently. Detailed experiments settings can be found at [51].

We have implemented our two methods on TelosB motes and have conducted extensive

29

Figure 3.4. Experimental environment.

30

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

R
e

la
tiv

e
 E

rr
o

r(
%

)

The number of grids

 DEPM
 DESM

Figure 3.5. The relative error of estimations reported by DEPM and DESM using data set
1.

experiments. Our experiments are designed with two objectives in mind. First, we verify the

proposed methods, DEPM and DESM, are able to report highly accurate answers. Second,

we assess the two methods DEPM and DESM for their energy consumption.

To evaluate the two algorithms we proposed, we need the real data set to validate the

accuracy of DESM and DEPM. We use 20 TelosB sensors to sense and collect the intensity

of light as the testing data set. To prolong the lifetime of sensor network is our motivation

to propose these two algorithms, so we also test and analysis the energy consumption of each

algorithm.

3.3.1 Estimation accuracy

In this section, we report the results of DEPM and DESM and assess the accuracy of

the data estimates reported by the proposed methods. The average relative error is used as

the metric to measure the accuracy. We conducted the experiments with the three data sets

that mentioned above.

31

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

R
e

la
tiv

e
 E

rr
o

r(
%

)

The number of grids

 DEPM
 DESM

Figure 3.6. The relative error of estimations reported by DEPM and DESM using data set
2.

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

R
e

la
tiv

e
 E

rr
o

r(
%

)

The number of grids

 DEPM
 DESM

Figure 3.7. The relative error of estimations reported by DEPM and DESM using data set
3.

32

As is shown in Figures 4.4, 4.5, and 4.6, with the number of grids increases, the relative

error of answers reported by DESM goes down. This is because the more the number of

grids is, the less the number of sensors in each grid, while the stronger the space locality of

sensors in one grid has. We could also see that DESM is more accurate for data set 1 but

gets worse for the data sets 2 and 3. The reason is that the light intensity values of data set

1 are stable while vary in the data set 2 and 3.

The accuracy of DEPM method has no relationship with the number of grids as shown

in Figures 4.4, 4.5 and 4.6. DEPM outperforms DESM on data set 2 and 3, but performs

worse on data set 1. Furthermore, obviously DEPM is not affected by different data sets. It

can keep good and stable quality on all three data sets.

3.3.2 Energy consumption

Table 3.2. System Parameters and Setting.
Parameter Setting
Number of sensor nodes 20
Message size 8 bytes
Transmission distance 50m
Energy Cost for Sending a Message 19.2uJ
Energy Cost for Receiving a Message 3.2uJ
Energy Cost for Sensing a Light Intensity 100nJ
Energy Cost in Sleeping Mode 0.016mW
Initial Energy Budget at Each Sensor Node 1J

In this section, we assess the energy consumption. We use the energy model in [52] as

presented in Table 3.2. For the DESM and DEPM methods, one execution round is set to 10

minutes. For DESM, all the sensors collect data in the first two rounds of every two hours

considered as the history data. After the history data collecting phase, in each round one

node with the most remained energy works as an active node in every grid, and others go to

sleep in the rest time. For DEPM, in each round two nodes with the most remained energy

work as active nodes, and others go to sleep.

33

Table 3.3. Model Selection Guideline.
Which model should be used? DESM DEPM DEPM

(large δ) (small δ)
Lowest total energy consumption No Yes Yes
Accuracy Yes Yes No
Accuracy and balanced energy consumptions Yes No No
Sensing variable light intensity sources No Yes Yes
Accuracy at the cost of balanced energy consumptions N/A Yes No
Balanced energy consumptions at the cost of accuracy N/A No Yes

We compare the proposed models with a naive model where all the sensors are set active.

As shown in Figure 4.8, the average energy consumption of both DEPM and DESM is much

less than that of the naive model. After running about 10 rounds, the accumulative average

energy consumption of DEPM is about 50% of that of the naive model. So DESM and DEPM

can prolong network lifetime effectively. DEPM is more effective than DESM, because DESM

has the collecting history data phase, consuming more energy. DESM-1 (DESM-2, DESM-4)

represents the DESM method with one grid (2 grids, 4 grids correspondingly) in the WSN.

From Figure 4.8, we can see that the more grids for DESM, the more energy consumption.

The reason is that each grid has an active sensor in DESM. The more number of grids means

the more sensors are set to active in the same time, hence the amount of energy consumed

is more.

We show the remained energy of DEPM with different constraints in Figure 3.9. It

is defined as the coefficient of variation of all the nodes’ remained energy. The average

energy consumption of all the nodes is almost half of initial energy. When we use larger δ,

the estimation accuracy is better, but it makes some nodes impossible to be active, so the

balance of energy consumptions is worse.

Neither DESM nor DEPM is a perfect method in all situations. Table 3.3 provides a

guide for choosing the proper estimation model in different situations. For instance, if users

prefer high accuracy, it is better to choose DESM or DEPM with large δ. If users expect

long network lifetime, DEPM is a good choice.

34

0 2 4 6 8 10 12 14 16 18 20 22 24
0

100

200

300

400

500

 Naive Method
 DESM-1
 DESM-2
 DESM-4
 DEPM

A
cc

u
m

u
la

tiv
e

 A
ve

ra
g

e
 E

n
e

rg
y

C
o

n
su

m
p

tio
n

(m
Jo

u
le

)

Round

Figure 3.8. The energy consumptions of different models.

0.00 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

5

6

7

delta

 Remained Energy Balance
Relative Error

Figure 3.9. The remained energy of DEPM.

35

Chapter 4

IN-NETWORK HISTORICAL DATA STORAGE AND QUERY

PROCESSING

In this chapter, we propose a scheme, HDQP, to store historical data locally on sensor

nodes and process historical data queries efficiently by using distributed index.

4.1 Historical Data Storage

Since a sensor node’s memory capacity is limited, we have to fully utilize it to store

as many data as possible. The administrator of the sensor network can specify the at-

tributes which need to be stored locally according to users’ requirements. Suppose there

are n attributes (A1, A2, · · · , An) need to be saved, and the sensor node senses the values

V1, V2, · · · , Vn of A1, A2, · · · , An respectively at sensing intervals. For each sensing interval,

a record with the format (T ,V1, V2, · · · , Vn) (where T is a time-stamp) is written to the

flash memory. However, if the sensing interval is very short such as 5 seconds, the flash

memory will be full filled quickly. Then the rest of coming sensing data cannot be stored.

To avoid this happen, whenever the flash memory is occupied more than 80%, a weight-

reducing process is trigged. One record of every two consecutive records is erased. This

weight-reducing process can make at least half of memory space available again. Applying

the weight-reducing process repeatedly causes partial historical data lost. However, as we

mentioned in Chapter 1, even though the flash memory capacity is small, it still can store

5 to 10 values per hour for each attribute. Consequently, the historical data stored in the

flash memory can reflect the changing trend of each sensing attribute.

Each sensor node needs to calculate the maximum, minimum, and average for each

attribute periodically. The administrator specifies an update interval which is much greater

than the sensing interval. For instance, if the sensing interval is 5 minutes, the update

36

Sensor Node Index Node

N1

N2

N3

N9

N10

N11

N12

N13

N14
N15 N16

N17

N18

N19
N20 N21

N22 N23

N24

N4 N5

N6
N7

N8

CID:00 CID:01

CID:02 CID:03

CID:10 CID:11

CID:12 CID:13

CID:20 CID:21 CID:30 CID:31

CID:22 CID:23
CID:32 CID:33

Figure 4.1. Network Partition

interval can be 2 hours. At the end of each update interval, a sensor node sends the index

update message including the maximum, minimum, and average values of that interval to

its parent node of the index tree (we will discuss it in the next section).

4.2 Construct and Maintain Distributed Index Tree

Constructing effective distributed index structures can help process queries efficiently.

In this section, we introduce how to construct and maintain distributed index trees.

4.2.1 Construct a Hierarchical Index Tree

We assume that any point in the monitored area is covered by at least one sensor node.

Moreover, the sensor network is static, and absolute or relative locations (2-D cartesian co-

37

N1

N1 N12N4

N8N6N2N1 N4 N5 N9 N11 N12 N13 N19 N21

N16

N16 N18 N22 N23

{(0,30),(40,80)}{(40,0),(60,30)}{(0,0),(40,30)} {(40,30),(60,80)}

{(0,0),(60,80)}

Figure 4.2. Index Tree

ordinates) of sensor nodes are known via using GPS or location algorithms. This is necessary

since users use the location as query conditions or results sometimes. At BS, the entire net-

work is divided into four subregions in vertical and horizontal directions, and each subregion

has almost the same number of sensor nodes. Then, for each generated subregion, it is con-

tinuously divided into four subregions with almost the same number of sensor nodes. This

partition process keeps going until there is no enough sensor nodes to promise that every

generated subregion has at least one sensor node. A partition example is shown in Figure 4.1.

The entire network is divided into a lot of rectangles called cells in this paper. Each cell has

at leat one sensor node. In each iteration of the partition, a generated subregion is assigned

an ID from 0,1,2, and 3 according to its relative position, top-left, top-right, bottom-left, and

bottom-right, respectively. Finally, the cell id (CID) is the combination of IDs generated by

all partition steps (as shown in Figure 4.1). For example, the node N18’s CID is 31 since in

the first partition iteration, the ID is 3 (bottom-right), and in the second partition iteration,

the ID is 1 (top-right). After partition, the location and CID of each cell are recorded and

sent to the sensor nodes within that cell. We use 2-D coordinates of the cell’s top-left and

bottom-right vertices, {(xtl, ytl), (xbr, ybr)}, to describe the cell’s geographical position.

For processing queries efficiently, a hierarchical index tree is constructed. An index tree

example is shown in Figure 4.1 and 4.2. Firstly, each cell randomly chooses a sensor node

as the leader of this cell. Other nodes in that cell set the leader as their parent. Since only

the leader has a chance to be the index node, to maintain energy balance, sensor nodes in

the same cell serve as the leader in turn. In the example, node N13, N14, and N15 are in

the same cell, and node N13 is chosen to be the leader of N14 and N15. If a cell only has

38

one sensor node, the only node is chosen to be the leader naturally. Then, the index tree

is established in a reverse manner of network partition. In other words, the index tree is

constructed from bottom to top. For each group of four cells which are generated from the

same subregion, the leader of the top-left cell is chosen to be the parent of these four cells’

leaders including itself. Then, for each group of four generated parent nodes which belong

to the same subregion in the partition process, the top-left one is chosen to be the parent.

The process continues until the root is generated. In the example shown in Figure 4.1, Node

N1 is chosen to be the parent of Node N1, N2, N6, and N8. Node N4, N12, and N16 are

chosen to be the parents of other three groups respectively. Next step, Node N1 is chosen

to be the parent of N1, N4, N12, and N16, and the root N1 is generated. The structure of

the index tree is shown in Figure 4.2. Obviously, the index tree is a quad-tree, and all inter

nodes have four children.

If we use the same index tree during the entire network lifetime of networks, the accu-

mulative index data will occupy most memory space quickly, especially the top layer nodes.

Furthermore, index nodes will use up energy much earlier than others because the query

processing frequently accesses these nodes. To balance index data distribution and energy

consumption among sensor nodes, a set of index trees is generated by switching nodes’

positions in the index tree periodically.

The administrator needs to specify a tree switching period PS. The ideal value of PS

is the estimated network lifetime divided by the number of sensor nodes. Thus, every node

has a chance to sever as an index node. Four children of the root serve as the root node in

turn. For the root node (first layer), the switching period is PS. Each node in the second

layer also makes its four children serve as the parent in turn. However, the switching period

of nodes in the second layer is 4 ∗ PS. The switching period for nodes in the layer L is

4L−1 ∗ PS. The lower the layer, the longer the switching period. In fact, in our index tree

structure, a higher layer index node contains more data than a lower layer index node since

an internal node appears at each layer of the subtree rooted at itself. For example, the root

node N1 in Figure 4.2 appears in every layer of the index tree. Our schedule replaces the

39

higher layer nodes more frequently than lower layer nodes, thus evenly distributing index

data to all sensor nodes.

Through switching nodes in the index tree, a large number of index trees are available.

However, a sensor node does not need to store all these index trees. Since we follow the

rules to switch nodes, a sensor node can calculate its current parent according to the current

time-stamp T . For a node in the (L)th layer of an index tree, its parent’s CID at time

T can be calculated by replacing its own CID’s (L − 1)th bit with (
⌊

T/(4L−1 ∗ PS)
⌋

%4).

Geographic routing is used to generate routes among nodes of the index tree since the CID

of a sensor node also indicates its relative position.

4.2.2 Index Maintaining

Table 4.1. Index Structure
Child0: Child1: Child2: Child3:
Location: {(xtl, ytl), (xbr, ybr)} Location: {(xtl, ytl), (xbr, ybr)}
Attribute1: Ti, max, min, avg Attribute1: Ti, max, min, avg

Ti+1, max, min, avg Ti+1, max, min, avg
...

...
Attribute2: Ti, max, min, avg Attribute2: Ti, max, min, avg

Ti+1, max, min, avg Ti+1, max, min, avg
...

...
Attribute3: Ti, max, min, avg Attribute3: Ti, max, min, avg

Ti+1, max, min, avg Ti+1, max, min, avg
...

...
...

...

The leader of each cell is responsible for calculating the maximum, minimum, and

average values of each attribute for the cell it belongs to periodically. If there are more than

one sensor node in a cell, the maximum, minimum, and average values are calculated among

all sensing values of the current interval from these sensor nodes. At the end of each update

interval, the leader sends the update message, (T,max,min, avg) (where T is the beginning

time stamp of the current time interval), to its parent in the index tree. The update message

40

also includes the time stamp and node ID of the max and min values. The internal node in

the index tree maintains the received index data with the structure as shown in Table 4.1.

When an update message is received, it is inserted into the index structure. The internal

node also merges four update messages for the current time interval T by calculating max,

min, and avg, and sends this update message to its parent. For instance, at time T , a node

receives four update messages (with the format (max, min, avg)), (78, 56, 68), (70, 56, 65),

(75, 54, 65), and (72, 55, 64) from its children respectively. The merge result for the attribute

temperature at time T of Ni is (78, 54, 65.5).

4.3 Historical Data Query Processing

Historical data queries can inquire max, min, and avg values for a past period of time

in a specified geographic area. Also, the sensing values of specific sensor nodes or locations

in the past can be retrieved. A historical query can be issued at BS or a sensor node in the

network which is named as query node.

Query Example1:

SELECT S.temperature, S.humidity, S.location

FROM sensor S

WHERE S.location

WITHIN {(10, 10), (30, 30)} AND S.time

BETWEEN now()-1 days AND now()

Query Example2:

SELECT MAX(S.temperature), S.location

FROM sensor S

WHERE S.location

WITHIN {(0, 0), (50, 30)} AND S.time

BETWEEN 02/01/2009 and /02/04/2009

If the query node receives a query like Query Example1, the query is forwarded to the

query location {(10, 10), (30, 30)}. When a sensor node within {(10, 10), (30, 30)} receives

41

this query, it forwards this query to the closest ancestor node (node N1 at the second layer

in Figure 4.1) of the index tree, whose location contains the query location. Then, N1

accesses its indexes and sends the query to all its children which have intersection with the

query location. Thus, the query is sent to sensor nodes which possibly satisfy the query

conditions through the index tree. When a sensor node receives a query, it verifies itself. If

the conditions are satisfied, it sends corresponding results back to the query node. In this

query example, the index tree can bound the number of involved sensor nodes efficiently.

Only cells which have intersection with location {(10, 10), (30, 30)} are probed.

For Query Example2, the query node forwards the query to the lowest layer index

node (the root N1 in Figure 4.1), which contains the query location. Then, N1 probes

MAX(S.temperature) within {(0, 0), (40, 30)} from N1 and MAX(S.temperautre) within

{(40, 0), (50, 30)} from N4 between 02/01/2009 and /02/04/2009 separately. For loca-

tion {(0, 0), (40, 30)}, we can calculate the index nodes, which store the MAX value

between 02/01/2009 and /02/04/2009, and merge results from these index nodes to get

MAX(S.temperautre) within {(40, 0), (50, 30)}. However, since {(40, 0), (50, 30)} does

not perfectly match N4’s location {(40, 0), (60, 30)}, N4 has to further probe some of its

children, then merges results returned by its children to get MAX(S.temperautre). Finally,

the root N1 merges results returned by N1 and N4 to get the MAX(S.temperature) within

{(0, 0), (50, 30)} and sends the results back to the query node. Usually, users send queries

like Query Example2 to inquire statistical information from wireless sensor networks.

The distributed index tree can guide queries to be processed efficiently and restrict the

number of involved sensor nodes. For some queries, the results are already stored in the

index structure, so accessing one or several index nodes instead of a large number of sensor

nodes can acquire the results. The query processing method is shown in Algorithm 4.3

and 4.3. Algorithm 4.3 illustrates how a query node sends requests to corresponding sensor

nodes and merges results returned by sensor nodes. Algorithm 4.3 shows how a sensor node

processes a query request. For queries with aggregation functions, if a sensor node in the

index tree maintained results already, we do not need to probe its children. If not, usually

42

Algorithm 1 : A query node processes queries.

Input: A query Q.
Output: Requests to index nodes or sensor nodes.
1: if There is no aggregation function in the query Q then
2: Send Type1 query requests, including the query conditions to all sensor nodes within

the queried area;
3: else
4: Find the smallest subtree T which can totally covers the queried area;
5: Calculate the root nodes of the subtree T which served as the roots within the queried

time span. Insert these root nodes into set R;
6: Send Type2 query requests with query conditions to nodes in R;
7: end if
8: Wait for results from queried sensor nodes;
9: if Query type is Type1 then
10: return results to users directly;
11: else
12: Merge results according to query aggregation functions and return final results to

users.
13: end if

this is because the queried area and time span do not match corresponding information of

the index node, we need to send query requests to its children.

4.4 Multi Query Optimization

For most applications, users concern raw data or statistical data of some hot areas

and/or some specific time slices. Therefore, there is a big probability several queries acquire

results based on similar data. In the literature [53], [54], [55], and [56], authors designed

query optimization strategies to process multi queries energy-efficiently by sharing common

data requests among multi queries. This strategy also works for historical queries. However,

if there are not a lot of query requests simultaneously, this strategy does not work well.

For improving the performance of our scheme, we propose an optimization method which

caches results at BS to avoid accessing the same data repeatedly, thus conversing unnecessary

energy consumption.

On BS, we construct an index tree as shown in Figure 4.3 which has similar architecture

43

Algorithm 2 : A sensor node S processes a query request.

Input: A query request.
Output: Query results.
1: if Query request is Type1 then
2: Search data which satisfy the conditions in the memory or flash memory and send

results to the query node.
3: return;
4: end if
5: if Query request is Type2 then
6: if S is a leaf node in the tree then
7: Look for results from the index and return results to the sensor node which sent the

request. If results are not maintained by the index, then calculate the results based
on the raw data;

8: else
9: for each child C of S which has overlap with the queried area do
10: if Results are maintained by the index then
11: Return results to the sensor node which sent the request;
12: return;
13: else
14: Send a Type2 query request with query conditions to the child C;
15: end if
16: end for
17: Wait for results from queried sensor nodes;
18: Merge results according to query aggregation functions and return merged results

to the sensor node which sent the request;
19: end if
20: end if

with the distributed index tree. However, in the index tree of BS, only leaf nodes represent

the sensor nodes. Each non-leaf node uses coordinates of top-left and bottom-right vertices

to represent the area it covers. For saving unnecessary energy cost of accessing same data

repeated from sensor nodes, we insert results of queries into corresponding nodes of the index

tree on BS. When a new query is submitted, we will search results from the index tree first.

The optimization algorithm is shown in Algorithm 4.4. If the index tree does not include

any useful data, we will process the query normally. If the index tree has complete results,

we don’t need to send query requests to the sensor network. The complicated case is that

the index tree just maintains partial results, then we need to rewrite the query to request

data which the index tree cannot provide. Then merge the partial results from the index

44

Algorithm 3 : Multi Query Optimization.

Input: A query request q and the index tree T of BS.
Output: Query results.
1: if T contains the results of q then
2: Return results to users;
3: return;
4: else
5: if T contains partial results of q then
6: Rewrite WITHIN and BETWEEN subclauses of the query by subtracting the part

which already in the index tree T .
7: Call Algorithm 4.3 to process the rewroten query.
8: Merge partial results from the index tree T and in-network, and send final results

to users.
9: else
10: Call Algorithm 4.3 to process the original query q.
11: end if
12: end if

N8N6N2N1 N4 N5 N9 N11 N12 N13 N19 N21 N16 N18 N22 N23

{(0,0),(60,80)}

{(0,0),(40,30)} {(40,0),(60,30)} {(0,30),(40,80)} {(40,30),(60,80)}

Figure 4.3. Index tree on BS.

tree and the network to answer the query. When we rewrite the query to reduce the size of

queried area or the time span, the energy cost will be reduced.

4.5 Simulation

In this section, we evaluate the performance of our proposed HDQP. The sensing interval

of a sensor is 5 minutes, and the update interval PS of the index tree is 2 hours. Since network

traffic greatly affects energy efficiency, we use it as the metric for performance evaluation.

The main cost of maintaining the index tree is sending and forwarding update messages

along the index tree periodically. Figure 4.4 shows the number of average accumulative

messages of sensor nodes with 100, 500, and 1000 sensor nodes in the network respectively.

45

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

T
h

e
 n

u
m

b
e

r
o

f
 a

ve
ra

g
e

 a
cc

u
m

u
la

tiv
e

m

e
ss

a
g

e
s

Time (hour)

 100
 500
 1000

Figure 4.4. Cost of maintaining the index tree with various network size.

The more sensor nodes the network has, the more cost of maintaining the index tree. The

reason is that a bigger network must generate a bigger index tree structure, thus increasing

the maintaining load. Since for a sensor node, one time index updating just causes about 2

messages averagely, and the index tree is not updated frequently, so the cost of maintaining

the index tree is acceptable for wireless sensor networks with limited energy. Furthermore, as

can be seen in Figure 4.4, the maintaining cost does not rapidly increase with the increasing

of the network size. Therefore, the distributed index structure is also suitable for large-scale

wireless sensor networks.

The performance of our HDQP is evaluated on two aspects, delay of query processing

and cost of network traffic. The delay of query processing is query responding time since

the query is issued until the user receives results. In our simulation, computation delay of

sensor nodes is ignored, so this delay is measured by the number of hops of the longest path

for sending a query and returning results. Network traffic is defined as the average number

of messages sent and forwarded by all sensor nodes. Figure 4.5, 4.6, 4.8, and 4.9 show the

46

0 100 200 300 400 500 600 700 800 900 1000 1100
0

10

20

30

40

50

60

70

A
ve

ra
g

e
 q

u
e

ry
 r

e
sp

o
n

se
 d

e
la

y

Network size

 HDQP
 FLOOD

Figure 4.5. Query responding delay of variant network size.

0 100 200 300 400 500 600 700 800 900 1000 1100

0

500

1000

1500

2000

2500

N
e

tw
o

rk
 t
ra

ff
ic

Network size

 HDQP
 FLOOD

Figure 4.6. Average network traffic of variant network size.

47

0 100 200 300 400 500 600 700 800 900 1000 1100

0

500000

1000000

1500000

2000000

2500000

T
o

ta
l n

e
tw

o
rk

 t
ra

ff
ic

Network size

 HDQP
 FLOOD

Figure 4.7. Total network traffic of variant network size.

0.05 0.10 0.15 0.20 0.25 0.30
0

500

1000

1500

2000

2500

N
e

tw
o

rk
 T

ra
ff
ic

Average percentage of involved nodes

 HDQP
 FLOOD

Figure 4.8. Average network traffic of variant average involved nodes percentage of queries.

48

0 2 4 6 8 10 12 14 16 18

200

400

600

800

1000

1200

1400

1600

N
e

tw
o

rk
 t
ra

fii
c

Average length of query time window (day)

 HDQP
 FLOOD

Figure 4.9. Average network traffic of variant average length of query time window.

0 100 200 300 400 500 600 700 800 900 1000
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

A
cc

u
m

u
la

tiv
e

 t
o

ta
l n

e
tw

o
rk

 t
ra

ff
ic

The number of queries

 HDQP
 HDQP with multi query optimization

Figure 4.10. Accumulative network traffic of
HDQP with multi query optimization strategy.

49

average query responding delay and network traffic (including cost of maintaining the index

tree) of processing 1000 queries during 72 hours. Figure 4.7 shows the total network traffic

of processing 1000 queries during 72 hours. We compare our HDQP with Flood method

where the query node floods the query to entire network and all sensor nodes satisfied query

conditions send corresponding data back to the query node. As seen in Figure 4.5, with the

increasing of network size, query responding delay increases too since the length of pathes

for sending queries and returning results increases with the network size. HDQP achieves

shorter delay than Flood because it does not need to probe all qualified sensor nodes, and

partial or all results can be acquired from the index tree. Figure 4.6 and 4.7 show that

HDQP is much better than Flood on network traffic especially for large-scale networks.

This is because the index tree can help HDQP to answer queries by accessing index nodes

and a small number of qualified sensor nodes if necessary. However, Flood method lets all

qualified sensor nodes involve in the query processing. Network traffic of HDQP decreases

with the network size increasing since for processing the same number of queries, a large-scale

network has much more nodes to share work load. Figure 4.8 shows the average network

traffic with variant involved sensor nodes percentage of queries. This parameter is decided by

the location condition in a query. As shown in the figure, with the increasing of involved node

percentage, the network traffic of Flood increases obviously since all involved nodes need to

report results. However, HDQP is not affected by this parameter obviously, since HDQP

acquire most of data from the index trees. The average network traffic with variant length of

query time window is shown in Figure 4.9. With the increasing of time window length, the

network traffic of HDQP increases too. Since index data are partitioned by time stamp, more

index nodes are accessed for processing queries with a longer time window. When the length

of time window reaches a certain value, the network traffic does not evidently increase any

more. The reason is that when the time window is long than 4 times of partition period of

the accessed layer, the number of accessed index nodes does not increase any more. However,

an index node may include index data of several time slices.

For evaluate the multi query optimization strategy we proposed, we execute 1000 queries

50

using HDQP without multi query optimization and HDQP with multi query optimization

respectively. As shown in Figure 4.10, the accumulative total network traffic of HDQP with

multi query optimization is less than HDQP without multi query optimization since query

optimization avoids accessing the same data shared by multi queries repeatedly. With the

number of queries increasing, the more energy multi query optimization can save since more

results already are saved by the index tree.

In summary, our HDQP scheme can process historical data query quickly and energy-

efficiently, and it is also suitable for large-scale networks.

51

Chapter 5

AREA QUERY PROCESSING

In this chapter, we propose an energy-efficient in-network area query processing scheme.

We define the area queries and introduce our area query processing scheme in detail in the

following sections.

5.1 Area Query in Wireless Sensor Networks

In monitored areas of a sensor network, sensor nodes might be equipped with several

sensing components to monitor environment or detect events. Users can specify a query,

which describes an event or specific areas of users’ interests.

An area query is defined as followings:

SELECT areas and/or aggregation functions

FROM entire sensor network or subareas

[WHERE predicates]

[GROUP BY Adjacency]

[HAVING predicates]

[DURATION time− span

EVERY time− interval]

SELECT presents query results. It can be an area, some aggregation function of sensing

values of an area. FROM specifies queried areas. Users can write complicated query con-

ditions on sensing attributes by WHERE. GROUP BY is used to divide sensor nodes with

expected readings and adjacent sensing coverage into groups. HAVING presents conditions

on aggregation functions. DURATION specifies lifetime of a continuous query. EVERY

defines an execution interval, which means the query is continuously executed and results

are returned every time − interval seconds. If a query does not specify DURATION and

52

EVERY, it is not a continuous query, and it will be executed just once.

The coal mine example mentioned in Chapter 1 can be presented as the following area

query.

SELECT Area,Area.avg(sensors.oxygen)

FROM sensors

WHERE sensors.oxygen > 80

GROUP BY Adjacency

HAVING Area.size > 50m2

DURATION 24 Hours

EVERY 600 Seconds

It depicts that an area is qualified when oxygen density of sensors is greater than 80, and

the acreage of this area is greater than 50m2. This query will continuously run for 24 hours.

Results will be reported to users every 600 seconds. To promise the safety of workers, this

query continuously reports results to users. This query also reports the average oxygen

density of each qualified area to users. Most previous aggregation methods provide the

aggregated values of some particular properties, but not for areas.

Another example, air pollution monitoring, is described as the following query.

SELECT Area,Area.avg(sensors.pollution − level)

FROM industrial area as R1, residential area as R2

WHERE R1.sensors.pollution − level > 80,

R2.sensors.pollution− level > 50

GROUP BY Adjacency

HAVING R1.Area.size > 1000m2,R2.Area.size > 100m2

DURATION 72 Hours

EVERY 20 minutes

A scheme which efficiently processes area queries is needed. Due to the fact of limited com-

putation and energy resources of sensor networks, energy-efficiency is the main optimization

goal here, and reducing in-network computation complexity of in-network should also be a

53

concern.

5.2 In-network Area Query Processing Scheme

In this section, an in-network area query processing scheme is presented. Our approach is

to construct an initial query results and incrementally update query results along a reporting

tree in a bottom-up manner, rather than collecting all sensor reports and transmitting them

to BS to process queries centrally. As we know, energy is the most limited resource for current

battery-powered sensor nodes. Moreover, communication cost is the dominating factor of

energy consumption. Consequently, in-network area query processing is more energy-efficient

than a simple, centralized approach.

We first need to partition the whole monitored area into grids and assign a unique ID

for each grid, which is presented in Section 5.2.1. Then a reporting tree is constructed for

the whole network, which is described in Section 5.2.2. Based on the reporting tree, we show

in Section 5.2.3 how to obtain an initial set of query results. The procedure to incrementally

update the previous results through the whole query lifetime is presented in Section 5.2.4.

5.2.1 Area Partition

We assume that any point in the monitored area is covered by at least one sensor node.

In addition, the sensor network is static, and the locations (2-D Cartesian coordinates) of

sensor nodes are known to BS. This location information can be either acquired by GPS

or measured manually. Localization algorithms also can be used to calculate locations of

sensor nodes. For easy to describe areas, the whole monitored area is divided into small

grids. First, the whole monitored area is vertically partitioned into two even subregions.

Then, these two subregions are further horizontally partitioned into four subregions. For

each subregion, we recursively partition it vertically and horizontally. The partition process

is stopped until either there is only one sensor node in that subregion or the size of this

subregion is not greater than partitioning threshold Pt. Pt is the minimum size of a grid

defined by users. If there are enough sensor nodes, we suggest that the diagonal length of

54

000

100

101

111

110

010

011

001

000

100101111110010011

sensor

001

leader

Y
X

Figure 5.1. Working Scenario.

a grid is no larger than a sensor’s sensing range, so that each sensor can cover its resident

grid. The accuracy is therefore guaranteed. In this way we divide the whole network into

grids as shown in Figure 5.1. The benefit of this partition is that it is convenient to merge

the qualified subareas and to calculate the aggregated acreage.

The grid at top-right corner has two sensor nodes. Since the size of this grid is less

than Pt, we can stop the partition even though there are more than one sensor node in that

grid. The grid at bottom-right corner cannot be further divided because there is only one

55

Algorithm 4 : Partition(Xl, Xr, Yl, Yr, Xb, Yb, D, CX, CY)

Input: Partition area. {Initially, Partition(Xleft, Xright, Yleft,
Yright, null, null, X, 0, 0) is called.}

Output: Grids with GIDs.
1: if area((Xl, Xr), (Yl, Yr)) has no intersection with the monitored area then
2: return;
3: end if
4: if

√

(Xr −Xl)2 + (Yr − Yl)2 ≤ Pt then
5: Output the Grid ((Xl, Xl), (Xr, Yr))with GID:(Xb, Yb).
6: return.
7: end if

{The condition, at least one sensor node in each grid, cannot be guaranteed.}
8: if it cannot be partitioned in direction D then
9: if D == X(i.e. verticality) then
10: Partition(Xl, Xr, Yl, Yr, Xb, Yb, Y, CX , CY) {If it cannot be partitioned in vertical di-

rection, try to partition it in horizontal direction.}
11: else
12: Output the Grid ((Xl, Xl), (Xr, Yr)) with GID:(Xb, Yb).
13: end if
14: end if
15: if D == X then
16: Partition(Xl,

(Xl+Xr)
2 , Yl, Yr, Shiftleft(Xb) + CX , Yb, Y, 0, CY).

17: Partition((Xl+Xr)
2 , Xr, Yl, Yr, Shiftleft(Xb) + CX , Yb, Y, 1, CY).

18: else
19: Partition(Xl, Xr, Yl,

(Yl+Yr)
2 , Xb, Shiftleft(Yb) + CY , X, CX , 0).

20: Partition(Xl, Xr,
(Yl+Yr)

2 , Yr, Xb, Shiftleft(Yb) + CY , X, CX , 1).
21: end if

sensor node in it. After partition, there is at least one sensor node in each grid. The average

sensing value of all sensor nodes in each grid is treated as the sensing value of that grid. For

prolonging the lifetime of sensor networks, sensor nodes in a grid can be on duty alternately.

As BS is in charge of partitioning, it stores geographical location information of all

grids. We can use a unique Grid ID (GID) to represent each grid so that BS can easily

acquire location information according to a GID. Gray code [57] is a binary numeral system

where two successive numbers differ in only one bit. We adopt gray codes as GIDs. We use

X to present a gray code in horizontal direction, and Y to present a gray code in vertical

direction. A GID is formatted as (X, Y). As shown in Figure 5.1, the grid at the top-right

56

corner is (100, 000). The grid at the bottom-right corner is (100, 10x), where x means either

0 or 1 since it is the union of (100, 101) and (100, 100). Obviously, the length of a GID is

the number of partition iterations in both vertical and horizontal directions. Furthermore,

we can use one GID to express the union of multiple adjacent grids by replacing the union

of 0 and 1 with x. For instance, (10x, 00x) is the union of the four grids at top-right corner.

This scheme can significantly reduce the amount of the maintained information.

The recursive partition algorithm is described in Algorithm 1. First, the whole moni-

tored area is enclosed with a rectangle. We use two vertices on the same diagonal to decide

a rectangle’s location. BS needs to record what is the location information of a particular

GID. BS runs Algorithm 1 to divide this rectangle into grids. Since the monitored area might

be in an irregular shape, it is possible that there exists non-monitored area in this rectangle

as shown by the bottom-left corner gris in Figure 5.1. In the process of partitioning, once

a non-monitored subregion is detected, it is ignored (Algorithm 1, Line 1-3). The rectan-

gle is recursively partitioned in vertical and horizontal directions alternatively until return

condition is satisfied. For each generated grid, the location information, GID (Xb, Yb), and

sensor nodes in this grid are recorded. In Algorithm 1, (Xl, Xr), (Yl, Yr) are coordinates of

the two vertices representing the current partition area. D is partition direction, and it can

be either X (vertical) or Y (horizontal). CX and CY are parameters to generate gray codes.

Function Shiftleft is used to shift a binary number one bit left. After partition, BS sends a

unique GID to every sensor node.

5.2.2 Reporting Tree Construction

For in-network query processing, a reporting tree is constructed by BS. In Figure 5.1, a

reporting tree example is shown. This tree is established from leaf nodes to the root. After

deploying sensor nodes, BS knows the initial energy and GID of all sensor nodes. We group

the grids whose GIDs differ on the last bits of X and Y codes (i.e. (%x,%x), where % can

represents any binary string of any length) together. In each group, a sensor node is chosen

to be the leader (triangular nodes shown in Figure 5.1) of this group . Other sensor nodes in

57

the group report data to its leader. In the other words, the leader is the parent node of other

sensor nodes in the same group. Then, among the leaders in the groups of grids (%xx,%xx),

one sensor node is chosen to be the parent node of other leaders generated from the last

step. Next step, we consider groups with grids (%xxx,%xxx) and so on. The process is

repeated until the root of this tree is identified. That is, finally we consider all the grids as

an entire group. The height of this reporting tree is Max(|X| , |Y |) + 1, where |X| and |Y |

are the length of gray code X and Y respectively. BS sends children and parent information

to each sensor node. In our scheme, the reporting tree does not serve as the routing tree.

The routing can be generated by any routing protocol such as DSDV in [58].

Since leaders, non-leaf nodes, have to process the reports from their children and report

to their parent, they consume much more energy than leaf nodes. To prolong the network

lifetime, we should reconstruct the reporting tree periodically, and let sensor nodes with more

residual energy serve as leaders. However, to construct a new tree, BS has to collect energy

information from all sensor nodes, and after generating the new tree, BS has to broadcast

the tree structure to the whole network. This consumes a large amount of energy. Therefore

we generate a new reporting tree through switching child and parent roles in the tree in

distributed way. This switching process starts from the bottom of the tree and ends at the

root. The child node with the maximum remaining energy accepts its parent role to sever

as new parent, the old parent becomes a child of this new parent, and new parent’s siblings

become its children. Switching process is accomplished in a bottom-up manner which is

similar to the way we construct the initial reporting tree.

5.2.3 In-network Area Query Processing

The motivation of in-network processing is that the number of transmission messages

can be reduced by merging multiple reports as one and filtering useless data as early as

possible, thereby prolonging network lifetime.

When BS receives an area query request, it registers this query in the system. Then, the

query is decomposed into query conditions, merging conditions, query lifetime, and executing

58

interval. Query conditions, lifetime, and executing interval are sent to every sensor node in

the queried area. Merging conditions are sent to non-leaf nodes of the reporting tree. If a

query is a continuous query, it is processed at interval.

In essence, query conditions are these filtering conditions on sensing attributes defined

by WHERE clause such as temperature, moisture, and oxygen density. Query lifetime

and executing interval are specified in DURATION and EVERY clauses respectively. A

noteworthy point is that different sensor nodes might accept different query conditions if

they are in different query areas since users might define different conditions for different

areas such as air pollution monitoring example mentioned in Section 1. Within the lifetime

of a query, a sensor node sends a report to its parent every interval if its readings satisfy the

query conditions. The reporting message is formatted as (SID,GID,RID, V1, V2, ..., VM),

where SID is a sensor node ID, GID is the grid ID, RID is the area ID to indicate different

query areas such as industrial area and residential area in the example mentioned in Chapter

1, and Vi is the sensing value of the attribute i.

Merging conditions include aggregation operations and filtering conditions specified by

HAVING clause. The number of merging steps S is Max(|X| , |Y |). We start from step

1 involving grids (%x − %x) and stop at step S involving all grids. In the other words,

merging process follows the reporting tree in bottom-up order. In the reporting tree, every

non-leaf node is responsible for at least one merging step. If a non-leaf node is the root

for grids (%x · · ·x,%x · · ·x), it is the merging node for these grids. The merging step i

is the number of x in X or Y. Some non-leaf nodes might participate in several merging

steps, and the root node participates all merging steps. For instance, in Figure 5.1 the

root node (in the grid (010, 110)) processes step 1, 2, and 3 merging for grids (01x, 11x),

(0xx, 1xx), and (xxx, xxx) one by one. In the process of merging, a leader merges adjacent

subareas from its children into one and filters areas which cannot be merged by the up-level

leader. Moreover, aggregations are calculated after merging. Then, the leader generates a

report and sends it to its parent. Specially, the root sends a report to BS. The report is

formatted as (RID, Subarea1, GIDlist, datalist, RID, Subarea2, GIDlist, datalist, · · · ,

59

Figure 5.2. Merge subareas.

RID, Subarean, GIDlist, datalist). A GID list is used to describe an area. For instance,

the shaded areas at top-left corner in Figure 5.1 is denoted as (00x, 001), (0x1, 01x) instead

of 6 GIDs. Consequently, GID lists can reduce the size of area description information since

a GID can represent multiple grids.

There are two main difficulties for merging areas. Firstly, how to judge two subareas

are adjacent since location information is not maintained by sensor nodes. Secondly, how to

judge an isolated area is identified. For a non-leaf node, it cannot decide whether a subarea

is adjacent to subareas of its siblings since it just has information of its children. However,

using gray codes as GIDs provides an intelligent way to solve these two difficult problems.

For the example in Figure 5.1, suppose the shaded grids are eligible grids which satisfy

the requirements on sensing attributes. Suppose the requirement of acreage is that the

returned area should not be less than 2A, where A is the acreage of a smallest grid. At

step 1, grids in each group (%x,%x) are merged. For example, the result of the group

60

(00x, 00x) is (00x, 001) which means the two lower grids are involved, and the result of the

group (11x,11x) is (11x,11x) which means all the grids in this group are involved. At step

2, grids in each group (%xx,%xx) are merge. For example, the result of group (1xx, 0xx)

is (1x1, 0x1), and this is an isolated area since it is not adjacent to the border of the group

(1xx, 0xx). That is, only the grids adjacent to the border of a group have chances to be

merged with other grids in other groups at the next step. We can infer the following rule.

At step i, grids whose last i − 1 bits are all 0’s on X or Y , are on the border of a group.

Once an isolated area is found, it is sent to BS instead of its parent if it is large enough,

otherwise it is dropped. As a result, transmitting data size in the reporting tree can be

reduced significantly. Thus, (1x1, 0x1) is sent to BS since its size is 4A, and (011, 111) is

dropped since its size is less than 2A. Other two shaded subareas, ((00x, 001), (0x1, 01x))

and ((11x, 11x), (101, 111), (1x1, 101)), are sent to the leader in the grid (010, 110) which is

the root of the tree, because they have chances to be merged. Now we give another rule for

merging. At step i, only GIDs, whose the last (i− 1)th bit is 1 and last i− 2 bits are all 0’s

on X (or Y), might be merged on X (or Y). For example, at step 2, grids in (%1,%) and

(%,%1) might be merged; at step 3, grids in (%10,%) and (%,%10) might be merged. This

rule is important for reducing the complexity of merging computation. The properties of

gray codes and these two rules are crucial for efficiently solving these two difficult problems

mentioned above.

The merging algorithm is described in Algorithm 2. An example is shown in Figure

5.2. After receiving reports from its children, a non-leaf node invokes this algorithm to do

merging subareas with same RID and sends merged results to its parent. In this algorithm,

if L0 and L1 are ordered by Y -GID in a gray code order when we try to merge on X , the

complexity can be reduced since we try to find GIDs with intersection on Y . XNOR (the

inverse of the exclusive OR operation) denoted as
⊕

is used to judge whether two GIDs

have intersection on Y or X . We define the result of x
⊕

ω = 1, where ω is 0,1, or x. The

acreage of a GID is 2n ∗ A, where n is the number of x in the GID. The acreage of an area

or subarea is the sum of acreage of all GIDs in its GID list. Acreage calculation is also

61

Algorithm 5 : Merging(i, GID lists from its children)

Input: Step i and subareas from children.
Output: Merged results.
1: for each grid in the reporting messages do
2: if the last (i− 1)th bit of GID on X is 1 and last (i− 2) bits are 0 then
3: Add this GID into merging list L0 if the ith bit is 0, otherwise add it to L1.
4: end if
5: end for
6: for all pairs of GID1 in L0 and GID2 in L1 do
7: if GID1.Y

⊕

GID2.Y == 1 then
8: if (GID1.Y == GID2.Y) AND (GID1.X == GID2.X except the last ith bit)

then
9: Merge GID1 and GID2 into one GID by replacing 0 and 1 on the last ith bit

with x.
10: end if
11: Merge two GID lists (to which GID1 and GID2 belong) into one and Calculate

aggregations.
12: end if
13: end for
14: Merge subareas on Y coordinate using the similar method from line 1 to 13.
15: for each subarea A do

16: if GIDs of this Area list have no intersection with ((% x

(i−1)bits
︷ ︸︸ ︷

0 · · ·0 ,%) ∪ (%,% x

(i−1)bits
︷ ︸︸ ︷

0 · · ·0))
then

17: if Size of A does not satisfy the condition then
18: Delete A.
19: else
20: Send this result A to BS and delete A.
21: end if
22: end if
23: end for
24: Send merged subareas to its parent.

62

simplified by using GIDs. The aggregation function sum and avg of an area are calculated

by

n∑

i=1

Vi∗Ai

n∑

i=1

Ai

and

n∑

i=1

Vi∗Ai

n∗
n∑

i=1

Ai

respectively, where Vi and Ai are the sensing value and acreage of

the grid i respectively.

5.2.4 Incremental Result Update

In most applications, sensing values only change slightly or mostly unchange over a long

time. Therefore, consecutive merged results are extremely similar for a continuous query and

incremental updates could conserve a large amount of energy. By comparison, regenerating

query results at intervals using Algorithm 2 will quickly deplete energy because of the heavy

communication cost.

We now present an incremental updating scheme to maintain merged results on non-leaf

nodes of the reporting tree after the initial results are calculated. Each sensor node stores

its previous report, and non-leaf nodes store previous merged results. We classify changed

subareas into three classes, only value, positive, and negative. For a subarea in the previous

report, if only sensing values or aggregation values are changed, it is a only value subarea;

for a subarea not in the previous report but in the current report, it is a positive subarea;

for a subarea in the previous but not in the current report, it is a negative subarea. The

incremental updating process updates merged results along the reporting tree step by step.

For a negative subarea, a merging node removes the dropped grids. A subarea might be split

if some grids are dropped. For a positive subarea, it is merged into the previous results by

using the similar method in Section 5.2.3. For only value subareas, aggregation values are

updated.

A leaf node does not send a report if its readings are not changed or both previous and

current readings are not satisfied the WHERE conditions. A non-leaf node generates an

update report by comparing new merged results with the previous results and sends it to its

parent. An update report includes positive, negative subareas, and new aggregation values

for other subareas if these values are changed. If the size of an update report is greater than

merged results, we still send merged results.

63

5.2.5 Advantages of Using Gray Codes

Communication cost is a significant guideline to evaluate the efficiency of an algorithm

in wireless sensor networks. Gray codes are used to represent grids in our scheme. If we

use 14-bit gray codes, i.e. 7 bits for X and 7 bits for Y , 16384 (that is 27 ∗ 27) grids can

be represented. However, we cannot use binary representation since x (either 0 or 1) is also

used in GIDs. Hence, 14-bit ternary (base 3) representation is used to represent GIDs. Due

to the fact that 224 is greater than 314, 3 bytes (i.e. 24 bits) is enough to express a GID

after converting it to binary representation. Another effective method for representing a

grid is using two vertices. Each vertex is stored as a pair of x-y coordinate. If we use 2

bytes for x and y coordinates respectively, 8 bytes are needed to represent a grid. 8 bytes

are quite long compared to 3 bytes of a GID. Furthermore, GID description method does

not lose location information, although GIDs do not maintain these information. Location

information can be retrieved from BS. So, GID is the most effective approach to reduce the

size of grid denotation.

In our merging algorithm, due to the properties of gray codes and two rules we found,

it is easy to detect an isolate area as early as possible. Consequently, useless data can be

dropped early, and results can be sent to BS without further merging. Moreover, adjacent

subareas can be merged to reduce the size of GID list. In summary, all these strategies are

effective methods to reduce the number of messages and the size of messages. However, it is

very difficult to achieve these benefits by using other methods such as vertex denotation.

5.3 Intelligent Monitoring Systems

Sensor networks consisting of different kinds of sensors can help people gather a large

amount of information at any time, any place, and under any circumstances. Monitoring

systems of sensor networks are significant for various fields such as industrial, civilian, and

military applications. In this section, we will introduce an Intelligent Monitoring System

(IMS) we proposed, which can not only detect various events but also provide real-time

64

Figure 5.3. IMS for monitoring fire in a building.

and accurate information for escaping, rescuing, and evacuation when a dangerous event

happened. To the best of our knowledge, this is the first study addressing the issues, event

detection, escaping, rescuing, and evacuation, at the same time for a monitoring system in

the literature. IMS can be widely used for various monitored environments and monitoring

missions.

Area queries can find areas which users define. For monitoring applications, we usually

try to find safe ares (e.g., high oxygen density areas for coal mine workers), dangerous areas

(e.g., pollution areas for monitoring environment), or both. For a monitoring system of a

building, we expect not only it can detect dangerous events such as fire and gas leak but

also it can provide useful information for rescuing, finding a shortest safe route for trapped

people and rescuers. For instance, if a building is on fire as shown in Figure 5.3, sensor nodes

65

can detect it and trigger an alarm since fire causes high temperature and smoke. Then, our

area processing can find all safe areas (with sufficient oxygen density), and dangerous areas

(with high temperature and smoke). Importantly, we need to detect the location of trapped

people, and calculate a safe shortest escaping route for them. Specially, an isolate safe area

(which is inside an dangerous area) needs to be payed more attention if there are people in

that area, we should send rescuers to save them first. People inside the building can send

query to the system and get the real-time information which can help them find a way out or

find a safe place to stay. The challenging issues to develop this system are listed as follows:

1. How to find a safe escaping route for a person? This is not a simple routing problem

in sensor networks since we try to find a route for people instead of a message. A

safe route has to be a path people can get through and the entire area along the path

should be safe.

2. How to detect an isolate safe area? This is the issue of how to identify a safe area

which is contained by a dangerous area in sensor networks. This is very important for

finding the trapped people.

3. How to update results in a real-time manner? This is important since any false infor-

mation can result in severe loss. However, unstable and unreliable characteristics of

sensor networks bring difficulties for implementing real-time updating.

4. How to improve system reliability? We need to consider how to make the system work

properly under various bad cases like some sensor nodes are broken by accidents, thus

guaranteeing the reliability.

Once an event which needs evacuation is detected, BS will send area queries to the

whole network to identify dangerous and safe areas. Then, BS has the whole picture of the

network. BS can identify an isolate safe area by judging if it is inside an dangerous area.

66

5.3.1 Escaping Routing Algorithm

An approach to calculate the best escaping route for a person in the monitored area.

First, we mark sensors on the exit passageway as routing sensors. Then, designing a method

to calculate all routes to exits. For each route, we assign a grade by considering various

parameters such as the distance to the exit, safe factor on the path, and other possible

factors.

After sensor nodes are deployed and routing sensor nodes are marked, each non-routing

sensor broadcasts a routing node finding to find the closest routing sensor nodes in all di-

rections. When a non-routing sensor node receives a routing node finding message, it will

add its own id into the message (insert its id into the id list) and broadcast it. If a routing

sensor node receives a routing node finding message, it will send a message with the id list

back to the source sensor node via the reverse route (the id list) memorized by the message.

Then, non-routing sensor nodes add this routing senor node into its routing sensor list L for

finding escaping routes when an escaping route is requested.

Once a serious event happens, we force all sensor nodes work more actively than usual to

enhance reliability and reduce respond delay. By increasing transmission range and sampling

frequency, updating delay can be shortened obviously. System reliability can be improved

through using multi-path routing and increasing transmission range.

The safe escaping algorithm is shown in Algorithm 5.3.1. When we try to find a safe

escaping route, only safe routing sensor nodes respond the request message since only this

kind of sensor nodes are in the safe exit passageway. Several escaping routes might be found.

We only provide first 5 received safe routes to users since the early the route is found, the

shorter the path is.

5.4 Simulation Results

In this section, we evaluate the performance of our proposed in-network area query

processing scheme.

67

Algorithm 6 Escaping Routing Algorithm

Input: A sensor node S requests an escaping route.
Output: Escaping paths.
1: Node S sends requests to all routing sensor nodes in its routing sensor list;
2: for each routing sensor rs receives a request message do
3: if rs’s sensing values do not satisfy safe area conditions then
4: Drop the message;
5: return;
6: end if
7: if rs is not a routing sensor located at an emergency exit then
8: Add rs into the id list of the message;
9: Broadcast the message;
10: else
11: A safe escaping path found. Add rs into the message, and send acknowledgment

back to the source node vis the reverse path.
12: end if
13: end for
14: Node S returns first 5 received safe routes to users.

5.4.1 Simulation Setup

We simulate the area query of coal mine mentioned in Section 5.1. The payload size

limit of a packet is 29 bytes which are the standard payload size provided by the TinyOS

[59]. Transmission range of sensor nodes is 30m, and sensing range is 15m. Pt is 15m. DSDV

[58] is used as the routing protocol.

Since network traffic greatly affects energy efficiency, we use it as the metric for perfor-

mance evaluation. The network traffic is defined as the total number of messages transmitted

(sent and forwarded) by all nodes in the network during the execution of a query.

We compare the performance of our scheme, IPGID for short, with two other alternative

approaches: (1) Centralized Processing (CP), and (2) In-network Processing based on Vertex

description (IPV). For a fair comparison, both CP and IPV use conditions on attributes to

filter useless readings. That is, a sensor node does not send a report if its readings cannot

passs through the WHERE conditions. IPV is similar with our scheme except using an

area’s vertices to represent it instead of a GID list. In-network merging techniques are also

used in IPV.

68

We varied several system parameters when comparing the performances of the three

approaches. These parameters are listed as follows:

1. Length of a GID (L). This parameter affects network diameter and the number of

sensor nodes deployed. The longer L means the bigger network and much more sensor

nodes deployed.

2. Selective Rate on Attributes (S). It is the percentage of sensors’ sensing values which

can pass through the WHERE conditions.

3. Filtered Rate of Area (F). It is the percentage of areas which satisfy the HAVING

conditions.

4. Changed Rate of sensing Values (C). This parameter is the percentage of changed

results compared to the previous set of results.

5.4.2 Efficiency of Our Scheme

As shown in Figures 5.4, 5.5, 5.6, 5.7, and 5.8, our IPGID is always the best one, and

IPV is better than CP. The reason is that since IPGID and IPV use incremental updating

techniques to maintain results, only the difference between the current and previous set of

results are reported. However, CP reports qualified data every interval. IPGID is better

than IPV due to the fact that the size of a GID list is much smaller than that of vertex

information for describing an area.

Figure 5.4 shows the network traffic of the first 20 intervals. At the first interval, there’s

only a marginal difference among the three approaches since both IPV and IPGID construct

the initial query results at the first interval. Later on, a clear difference between CP and

IPV (or IPGID) presents. The reason is that the number of the reported messages is reduced

after the first interval since IPV and IPGID use incremental update techniques. At the 20th

interval, IPGID has 83% less transmitted messages than CP. IPV has 71% less transmitted

messages than IPV.

69

0 5 10 15 20
0

20000

40000

60000

80000

100000

N
e

tw
o

rk
 T

ra
ff
ic

Intervals

 CP
 IPV
 IPGID

Figure 5.4. Network Traffic of execution intervals (L=10 bits, S=50%, F=50%, C=20%).

6 8 10 12 14
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

N
e

tw
o

rk
 T

ra
ff
ic

L

 CP
 IPV
 IPGID

Figure 5.5. Network Traffic of variant L (S=50%, F=50%,C=20%, 100 intervals).

70

0.2 0.4 0.6 0.8

100000

200000

300000

400000

500000

600000

700000

800000

N
e

tw
o

rk
 T

ra
ff
ic

S

 CP
 IPV
 IPGID

Figure 5.6. Network Traffic of variant S (L=10 bits, F=50%, C=20%, 100 intervals).

0.2 0.4 0.6 0.8
80000

100000

120000

140000

N
e

tw
o

rk
 T

ra
ff
ic

F

 IPV
 IPGID

Figure 5.7. Network Traffic of variant F (L=10 bits, S=50%, C=20%, 100 intervals).

71

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

100000

200000

300000

400000

500000

600000

N
e

tw
o

rk
 T

ra
ff
ic

C

 CP
 IPV
 IPGID

Figure 5.8. Network Traffic of variant C (L=10 bits, S=50%, F=50%, 100 intervals).

As shown in Figure 5.5, with the increasing of L, the advantages of IPGID becomes

more obvious. Although a longer GID incurs more messages, merging multiple reports and

filtering useless data in the reporting tree as early as possible can reduce the number of

messages, which is the method used by IPV and IPGID. However the reporting pathes of

CP become longer as the network size becomes bigger. Thereby, on average, IPGID has 84%

less transmitted messages than CP. IPGID has 37% less transmitted messages than IPV.

Figure 5.6 shows the network traffic for variant S. The network traffic increases with

S because the bigger S causes more sensor nodes to report readings. CP is affected by

S more obvious than IPV and IPGID. The reason is that for CP, one more sensor node

involved causes a long path message transmitting to BS. However, for IPV and IPGID, it

just causes a message to its parent. The network traffic for variant F is shown in Figure

5.7. Since smaller F implies that more areas can be dropped in the reporting tree according

to HAVING conditions, the smaller F , the less network traffic for IPGID. IPV and CP

are not affected by this parameter since IPV and CP cannot filter the useless areas. The

72

network traffic for variant C is presented in Figure 5.8. With the increasing of C, the task

of incremental updating becomes much heavier. As a result, network traffic increases with

C. When C is close to 1, IPGID and IPV almost have to reconstruct merged results every

interval. IPV is worse than IPGID since IPV use more messages to describe a big area than

IPGID.

In summary, our in-network area query processing scheme is energy-efficient in various

circumstances.

73

Chapter 6

CONCLUSIONS

In this dissertation, we addressed three key issues of data management in WSNs.

To conserve energy in WSNs for data collection, we propose a scheme where only a few

nodes are chosen to work, and the other nodes are set to sleep. The data sensed by sleeping

nodes are estimated by two efficient methods, DESM and DEPM. DESM is a statistical

method that takes advantages of the time and space locality of a WSN. DEPM technique

utilizes the physical laws to estimate data. Since the principle of superposition on which

DEPM is based on is a very common principle in physics and is obeyed by a large number

of physical quantities, the presented techniques have a very wide applicability. Furthermore,

DEPM model enables us to deploy a rather small constant number of sensors out of a large

number of available sensors, thereby conserving much energy. Experimental results show

that the proposed methods are efficient and effective.

We have proposed a scheme, HDQP, to process historical data queries of wireless sensor

networks. Our approach is the first work to study distributed historical data query processing

by using an effective distributed index tree. The indexes can help process queries energy-

efficiently and reduce the query responding delay. Index tree switching mechanism also can

balance the load among sensor nodes to avoid data distribution and energy consumption

skew.

An energy-efficient in-network area query processing scheme is proposed in this disser-

tation. Our approach is the first work to study area query processing in wireless sensor

networks. We define the area queries and partition the network into grids. Gray Code is

employed to express the ID of grids. Initial query results are generated by merging partial

results along the reporting tree. For conserving energy, an incremental updating strategy

is used to generate continuous query results. The size of results can be reduced by using

74

binary GIDs to describe areas. In-network processing can drop the useless data as early as

possible. Furthermore, incremental updating avoids unnecessary reports. All these details

fulfill the achievement of energy efficiency. Our simulation results confirm it.

Since energy cost for sensing and data processing is insignificant compared to data

communication in a sensor node, when we design the algorithms we mainly focus on how

to reduce network traffic, thus reducing data communication cost. The algorithms proposed

in this dissertation can reduce the network traffic efficiently as shown in the experimental

results. Therefore, our data management algorithms are energy-efficient.

75

REFERENCES

[1] K. Romer and F. Mattern, “The design space of wireless sensor networks,” Wireless

Communications, IEEE, vol. 11, no. 6, pp. 54–61, Dec. 2004.

[2] S. Hadim and N. Mohamed, “Middleware: middleware challenges and approaches for

wireless sensor networks,” Distributed Systems Online, IEEE, vol. 7, no. 3, pp. 1–1,

March 2006.

[3] “Crossbow - wireless sensor networks - products - wireless modules,”

http://www.xbow.com/Products/productdetails.aspx?sid=156. [Accessed February 03,

2009].

[4] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb: an acquisitional

query processing system for sensor networks,” ACM Trans. Database Syst., vol. 30, no. 1,

pp. 122–173, 2005.

[5] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks:

A survey,” Computer Networks (Elsevier) Journal, p. 393422, 2002.

[6] E. Runckle and R. Heins, “Manipulating the light environment to control flowering and

morphogenesis or herbaceous plants,” in International Symposium on Artificial Lighting

in Horticulture, June 2006.

[7] “Horticulture measurements. [online],” available: http://www.avantes.com/Applications/

HortiSpec.htm. [Accessed November 03, 2007].

[8] “Commonwealth of massachusetts. proposed regulations and public hearing notice,”

available: http://www.mass.gov/agr/animalhealth/petshops/. [Accessed November 03,

2007].

[9] G. Richter, “Blue light control of the level of two plastid mrnas in cultured plant cells,”

Plant Molecular Biology, vol. 3, pp. 271–276, 1984.

76

[10] “Crossbow wireless sensor networks. telosb,” available:

http://www.xbow.com/Products/productdetails.aspx?sid=252. [Accessed Novem-

ber 03, 2007].

[11] M. Aly, A. Gopalan, J. Zhao, and A. Youssef, “Stdcs: A spatio-temporal data-centric

storage scheme for real-time sensornet applications,” in Sensor, Mesh and Ad Hoc Com-

munications and Networks, 2008. SECON ’08. 5th Annual IEEE Communications So-

ciety Conference on, June 2008, pp. 377–385.

[12] A. Meka and A. Singh, “Dist: a distributed spatio-temporal index structure for sensor

networks,” in CIKM ’05: Proceedings of the 14th ACM international conference on

Information and knowledge management. New York, NY, USA: ACM, 2005, pp. 139–

146.

[13] D. Malan, T. Fulford-jones, M. Welsh, and S. Moulton, “Codeblue: An ad hoc sen-

sor network infrastructure for emergency medical care,” in International Workshop on

Wearable and Implantable Body Sensor Networks, 2004.

[14] R. G. C. Intanagonwiwat and D. Estrin, “Directed diffusion: a scalable and robust

communication paradigm for sensor networks,” in Proceedings of the sixth annual inter-

national conference on Mobile computing and networking, Boston, MA USA, 2000, pp.

56–67.

[15] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan,

“Building efficient wireless sensor networks with low-level naming,” in SOSP ’01: Pro-

ceedings of the eighteenth ACM symposium on Operating systems principles. New York,

NY, USA: ACM, 2001, pp. 146–159.

[16] “Tinyos website,” available: http://www.tinyos.net/ [Accessed August 15, 2009].

[17] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: a tiny aggregation

service for ad-hoc sensor networks,” in SIGOPS Oper. Syst. Rev., vol. 36, no. SI, June

2002, pp. 131–146.

77

[18] D. J. Abadi, S. Madden, and W. Lindner, “Reed: robust, efficient filtering and event

detection in sensor networks,” in VLDB ’05: Proceedings of the 31st international con-

ference on Very large data bases. VLDB Endowment, 2005, pp. 769–780.

[19] Y. Yao and J. Gehrke, “The cougar approach to in-network query processing in sensor

networks,” SIGMOD Rec., vol. 31, no. 3, pp. 9–18, 2002.

[20] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden, “Distributed regression:

an efficient framework for modeling sensor network data,” in Information Processing in

Sensor Networks, 2004. IPSN 2004. Third International Symposium on, April 2004, pp.

1–10.

[21] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson, “Synopsis diffusion for robust

aggregation in sensor networks,” in SenSys ’04: Proceedings of the 2nd international

conference on Embedded networked sensor systems. New York, NY, USA: ACM, 2004,

pp. 250–262.

[22] J. M. Hellerstein and W. Wang, “Optimization of in-network data reduction,” in DMSN

’04: Proceeedings of the 1st international workshop on Data management for sensor

networks. New York, NY, USA: ACM, 2004, pp. 40–47.

[23] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong, “Approximate data collec-

tion in sensor networks using probabilistic models,” in ICDE ’06: Proceedings of the

22nd International Conference on Data Engineering. Washington, DC, USA: IEEE

Computer Society, 2006, p. 48.

[24] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong, “Model-

driven data acquisition in sensor networks,” in VLDB ’04: Proceedings of the Thirtieth

international conference on Very large data bases. VLDB Endowment, 2004, pp. 588–

599.

[25] A. Silberstein, R. Braynard, G. Filpus, G. Puggioni, A. Gelfand, K. Munagala, and

J. Yang, “Data-driven processing in sensor networks,” in CIDR ’07: Proceedings of the

78

3rd Biennial Conference on Innovative Data Systems Research. Asilomar, California,

USA: IEEE Computer Society, 2007.

[26] D. Wang, J. Xu, J. Liu, and F. Wang, “Mobile filter: Exploring migration of filters

for error-bounded data collection in sensor networks,” Data Engineering, 2008. ICDE

2008. IEEE 24th International Conference on, pp. 1483–1485, April 2008.

[27] A. Jain, E. Y. Chang, and Y. Wang, “Adaptive stream resource management using

kalman filters,” in SIGMOD Conference, 2004, pp. 11–22.

[28] D. de O. Cunha, R. P. Laufer, I. M. Moraes, M. D. Bicudo, P. B. Vel-

loso, and O. C. M. B. Duarte, “Bio-inspired field estimation with wire-

less sensor networks,” Universidade Federal do Rio de Janeiro, Tech. Rep.,

http://www.gta.ufrj.br/ftp/gta/TechReports/CLMB05a.pdf, accessed November 03,

2007.

[29] P. Dash, “Land surface temperature and emissivity estimation from passive sensor data:

Theory and practice–current trends,” International Journal of Remote Sensing, vol. 23,

pp. 2563–2594, 2002.

[30] Y. Li, C. Ai, W. P. Deshmukh, and Y. Wu, “Data estimation in sensor networks using

physical and statistical methodologies,” in ICDCS ’08: Proceedings of the 2008 The

28th International Conference on Distributed Computing Systems. Washington, DC,

USA: IEEE Computer Society, 2008, pp. 538–545.

[31] P. B. Johannes, J. Gehrke, and P. Seshadri, “Towards sensor database systems,” 2001,

pp. 3–14.

[32] J. Gehrke and S. Madden, “Query processing in sensor networks,” in Proceedings of the

First Biennial Conference on Innovative Data Systems Research. CIDR’ 03, 2003.

[33] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin, “Data-centric storage

in sensornets,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 1, pp. 137–142, 2003.

79

[34] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker, “Ght:

a geographic hash table for data-centric storage,” in WSNA ’02: Proceedings of the 1st

ACM international workshop on Wireless sensor networks and applications. New York,

NY, USA: ACM, 2002, pp. 78–87.

[35] X. Li, Y. J. Kim, R. Govindan, and W. Hong, “Multi-dimensional range queries in

sensor networks,” in SenSys ’03: Proceedings of the 1st international conference on

Embedded networked sensor systems. New York, NY, USA: ACM, 2003, pp. 63–75.

[36] M. Aly, K. Pruhs, and P. K. Chrysanthis, “Kddcs: a load-balanced in-network data-

centric storage scheme for sensor networks,” in CIKM ’06: Proceedings of the 15th ACM

international conference on Information and knowledge management. New York, NY,

USA: ACM, 2006, pp. 317–326.

[37] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker, “Difs: a dis-

tributed index for features in sensor networks,” in Sensor Network Protocols and Appli-

cations, 2003. Proceedings of the First IEEE. 2003 IEEE International Workshop on,

May 2003, pp. 163–173.

[38] G. Li, J. Li, and Y. Li, “Time: Time-based index management for event query pro-

cessing in wireless sensor networks,” in Performance, Computing and Communications

Conference, 2008. IPCCC 2008. IEEE International, Dec. 2008, pp. 1–8.

[39] C. Ai, R. Du, M. Zhang, and Y. Li, “In-network historical data storage and query

processing based on distributed indexing techniques in wireless sensor networks,” in

WASA ’09: Proceedings of the International Conference on Wireless Algorithms, Sys-

tems and Applications. Boston, MA, USA: Springer Berlin / Heidelberg, August 2009,

pp. 264–273.

[40] A. Sharaf, J. Beaver, A. Labrinidis, and K. Chrysanthis, “Balancing energy efficiency

and quality of aggregate data in sensor networks,” The VLDB Journal, vol. 13, no. 4,

pp. 384–403, 2004.

80

[41] A. Silberstein and J. Yang, “Many-to-many aggregation for sensor networks,” Data

Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, pp. 986–995,

April 2007.

[42] D. Goldin, “Faster in-network evaluation of spatial aggregationin sensor networks,” Data

Engineering, 2006. ICDE ’06. Proceedings of the 22nd International Conference on, pp.

148–148, April 2006.

[43] Y. Cho, J. Son, and Y. D. Chung, “Pot: an efficient top-k monitoring method for

spatially correlated sensor readings,” in DMSN ’08: Proceedings of the 5th workshop on

Data management for sensor networks. New York, NY, USA: ACM, 2008, pp. 8–13.

[44] W. Xue, Q. Luo, L. Chen, and Y. Liu, “Contour map matching for event detection

in sensor networks,” in SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD inter-

national conference on Management of data. New York, NY, USA: ACM, 2006, pp.

145–156.

[45] C.-R. Li and C.-K. Liang, “A fault-tolerant event boundary detection algorithm in

sensor networks,” pp. 406–414, 2008.

[46] M. Ding, “Fault tolerant event boundary detection and target tracking in sensor net-

works,” Ph.D. dissertation, Washington, DC, USA, 2008, adviser-Cheng, Xiuzhen and

Adviser-Choi, Hyeong-Ah.

[47] A. Khelil, F. K. Shaikh, B. Ayari, and N. Suri, “Mwm: a map-based world model for

wireless sensor networks,” in Autonomics ’08: Proceedings of the 2nd International Con-

ference on Autonomic Computing and Communication Systems. ICST, Brussels, Bel-

gium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics and Telecom-

munications Engineering), 2008, pp. 1–10.

[48] P. Szczytowski, A. Khelil, and N. Suri, “Map++: support for map-based wsn model-

ing and design with omnet++,” in Simutools ’09: Proceedings of the 2nd International

81

Conference on Simulation Tools and Techniques. ICST, Brussels, Belgium, Belgium:

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications En-

gineering), 2009, pp. 1–2.

[49] C. Ai, L. Guo, Z. Cai, and Y. Li, “Processing area queries in wireless sensor networks,”

in Accepted by MSN ’09: the Fifth International Conference on Mobile Ad-hoc and

Sensor Networks, Wuyi Mountain, China, December 2009.

[50] G.B.Arfken and H.J.Weber, Mathematical Methods for Physicists. Academic Press,

2003.

[51] “Computer science of georgia state university. experimental demonstration of the phys-

ical methodology,” available: http://www.cs.gsu.edu/yli/datasets/sensor.html. [Ac-

cessed November 03, 2007].

[52] X.Tang and J.Xu, “Extending network lifetime for precision constrained data aggrega-

tion in wireless sensor networks,” in Proc. IEEE INFOCOM, Apr. 2006.

[53] S. Xiang, H. B. Lim, and K.-L. Tan, “Multiple query optimization for wireless sensor

networks,” Data Engineering, International Conference on, vol. 0, pp. 1339–1341, 2007.

[54] S. Xiang, H. B. Lim, K.-L. Tan, and Y. Zhou, “Two-tier multiple query optimization

for sensor networks,” in ICDCS ’07: Proceedings of the 27th International Conference

on Distributed Computing Systems. Washington, DC, USA: IEEE Computer Society,

2007, p. 39.

[55] Y. W. Lee, K. Y. Lee, and M. H. Kim, “Energy-efficient multiple query optimization

for wireless sensor networks,” in SENSORCOMM ’09: Proceedings of the 2009 Third

International Conference on Sensor Technologies and Applications. Washington, DC,

USA: IEEE Computer Society, 2009, pp. 531–538.

[56] M. Tang, J. Cao, and N. Chilamkurti, “Tampa: Tabu search-based multiple queries

optimization for wireless sensor networks,” in Wireless Communications, Networking

82

and Mobile Computing, 2007. WiCom 2007. International Conference on Digital Object

Identifier, 2007, pp. 2731 – 2734.

[57] G. M., “The binary gray code,” in Ch. 2 of Knotted Doughnuts and Other Mathematical

Entertainments, New York: W. H., 1986.

[58] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector

routing (dsdv) for mobile computers,” SIGCOMM Comput. Commun. Rev., vol. 24,

no. 4, pp. 234–244, 1994.

[59] “Tinyos faq [online],” Available: http://www.tinyos.net/faq.html. [Accessed Oct 28,

2008].

	Georgia State University
	ScholarWorks @ Georgia State University
	Summer 7-13-2010

	Energy-Efficient Data Management in Wireless Sensor Networks
	Chunyu Ai
	Recommended Citation

	Dissertation.dvi

