4,012 research outputs found

    Green compressive sampling reconstruction in IoT networks

    Get PDF
    In this paper, we address the problem of green Compressed Sensing (CS) reconstruction within Internet of Things (IoT) networks, both in terms of computing architecture and reconstruction algorithms. The approach is novel since, unlike most of the literature dealing with energy efficient gathering of the CS measurements, we focus on the energy efficiency of the signal reconstruction stage given the CS measurements. As a first novel contribution, we present an analysis of the energy consumption within the IoT network under two computing architectures. In the first one, reconstruction takes place within the IoT network and the reconstructed data are encoded and transmitted out of the IoT network; in the second one, all the CS measurements are forwarded to off-network devices for reconstruction and storage, i.e., reconstruction is off-loaded. Our analysis shows that the two architectures significantly differ in terms of consumed energy, and it outlines a theoretically motivated criterion to select a green CS reconstruction computing architecture. Specifically, we present a suitable decision function to determine which architecture outperforms the other in terms of energy efficiency. The presented decision function depends on a few IoT network features, such as the network size, the sink connectivity, and other systems’ parameters. As a second novel contribution, we show how to overcome classical performance comparison of different CS reconstruction algorithms usually carried out w.r.t. the achieved accuracy. Specifically, we consider the consumed energy and analyze the energy vs. accuracy trade-off. The herein presented approach, jointly considering signal processing and IoT network issues, is a relevant contribution for designing green compressive sampling architectures in IoT networks

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    Get PDF
    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation

    Efficient JPEG 2000 Image Compression Scheme for Multihop Wireless Networks

    Get PDF
     When using wireless sensor networks for real-time data transmission, some critical points should be considered. Restricted computational power, reduced memory, narrow bandwidth and energy supplied present strong limits in sensor nodes. Therefore, maximizing network lifetime and minimizing energy consumption are always optimization goals. To overcome the computation and energy limitation of individual sensor nodes during image transmission, an energy efficient image transport scheme is proposed, taking advantage of JPEG2000 still image compression standard using MATLAB and C from Jasper. JPEG2000 provides a practical set of features, not necessarily available in the previous standards. These features were achieved using techniques: the discrete wavelet transform (DWT), and embedded block coding with optimized truncation (EBCOT). Performance of the proposed image transport scheme is investigated with respect to image quality and energy consumption. Simulation results are presented and show that the proposed scheme optimizes network lifetime and reduces significantly the amount of required memory by analyzing the functional influence of each parameter of this distributed image compression algorithm.
    • …
    corecore