3,663 research outputs found

    A physically based trunk soft tissue modeling for scoliosis surgery planning systems

    Get PDF
    One of the major concerns of scoliotic patients undergoing spinal correction surgery is the trunk's external appearance after the surgery. This paper presents a novel incremental approach for simulating postoperative trunk shape in scoliosis surgery. Preoperative and postoperative trunk shapes data were obtained using three-dimensional medical imaging techniques for seven patients with adolescent idiopathic scoliosis. Results of qualitative and quantitative evaluations, based on the comparison of the simulated and actual postoperative trunk surfaces, showed an adequate accuracy of the method. Our approach provides a candidate simulation tool to be used in a clinical environment for the surgery planning process.IRSC / CIH

    Observations and models for needle-tissue interactions

    Get PDF
    The asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. In this study we present a mechanics-based model that calculates the deflection of the needle embedded in an elastic medium. Microscopic observations for several needle- gel interactions were used to characterize the interactions at the bevel tip and along the needle shaft. The model design was guided by microscopic observations of several needle- gel interactions. The energy-based model formulation incor- porates tissue-specific parameters such as rupture toughness, nonlinear material elasticity, and interaction stiffness, and needle geometric and material properties. Simulation results follow similar trends (deflection and radius of curvature) to those observed in macroscopic experimental studies of a robot- driven needle interacting with different kinds of gels. These results contribute to a mechanics-based model of robotic needle steering, extending previous work on kinematic models

    Efficient techniques for soft tissue modeling and simulation

    Get PDF
    Performing realistic deformation simulations in real time is a challenging problem in computer graphics. Among numerous proposed methods including Finite Element Modeling and ChainMail, we have implemented a mass spring system because of its acceptable accuracy and speed. Mass spring systems have, however, some drawbacks such as, the determination of simulation coefficients with their iterative nature. Given the correct parameters, mass spring systems can accurately simulate tissue deformations but choosing parameters that capture nonlinear deformation behavior is extremely difficult. Since most of the applications require a large number of elements i. e. points and springs in the modeling process it is extremely difficult to reach realtime performance with an iterative method. We have developed a new parameter identification method based on neural networks. The structure of the mass spring system is modified and neural networks are integrated into this structure. The input space consists of changes in spring lengths and velocities while a "teacher" signal is chosen as the total spring force, which is expressed in terms of positional changes and applied external forces. Neural networks are trained to learn nonlinear tissue characteristics represented by spring stiffness and damping in the mass spring algorithm. The learning algorithm is further enhanced by an adaptive learning rate, developed particularly for mass spring systems. In order to avoid the iterative approach in deformation simulations we have developed a new deformation algorithm. This algorithm defines the relationships between points and springs and specifies a set of rules on spring movements and deformations. These rules result in a deformation surface, which is called the search space. The deformation algorithm then finds the deformed points and springs in the search space with the help of the defined rules. The algorithm also sets rules on each element i. e. triangle or tetrahedron so that they do not pass through each other. The new algorithm is considerably faster than the original mass spring systems algorithm and provides an opportunity for various deformation applications. We have used mass spring systems and the developed method in the simulation of craniofacial surgery. For this purpose, a patient-specific head model was generated from MRI medical data by applying medical image processing tools such as, filtering, the segmentation and polygonal representation of such model is obtained using a surface generation algorithm. Prism volume elements are generated between the skin and bone surfaces so that different tissue layers are included to the head model. Both methods produce plausible results verified by surgeons

    Deformable Object Modelling Through Cellular Neural Network

    Get PDF
    This paper presents a new methodology for thedeformable object modelling by drawing an analogybetween cellular neural network (CNN) and elasticdeformation. The potential energy stored in an elasticbody as a result of a deformation caused by an externalforce is propagated among mass points by the non-linearCNN activity. An improved autonomous CNN model isdeveloped for propagating the energy generated by theexternal force on the object surface in the naturalmanner of heat conduction. A heat flux based method ispresented to derive the internal forces from the potentialenergy distribution established by the CNN. Theproposed methodology models non-linear materials withnon-linear CNN rather than geometric non-linearity inthe most existing deformation methods. It can not onlydeal with large-range deformations due to the localconnectivity of cells and the CNN dynamics, but it canalso accommodate both isotropic and anisotropicmaterials by simply modifying conductivity constants.Examples are presented tThis paper presents a new methodology for the deformable object modelling by drawing an analogy between cellular neural network (CNN) and elastic deformation. The potential energy stored in an elastic body as a result of a deformation caused by an external force is propagated among mass points by the non-linear CNN activity. An improved autonomous CNN model is developed for propagating the energy generated by the external force on the object surface in the natural manner of heat conduction. A heat flux based method is presented to derive the internal forces from the potential energy distribution established by the CNN. The proposed methodology models non-linear materials with non-linear CNN rather than geometric non-linearity in the most existing deformation methods. It can not only deal with large-range deformations due to the local connectivity of cells and the CNN dynamics, but it can also accommodate both isotropic and anisotropic materials by simply modifying conductivity constants. Examples are presented to demonstrate the efficacy of the proposed methodology

    Nonlinear effects in finite elements analysis of colorectal surgical clamping

    Get PDF
    Minimal Invasive Surgery (MIS) is a procedure that has increased its applications in past few years in different types of surgeries. As number of application fields are increasing day by day, new issues have been arising. In particular, instruments must be inserted through a trocar to access the abdominal cavity without capability of direct manipulation of tissues, so a loss of sensitivity occurs. Generally speaking, the student of medicine or junior surgeons need a lot of practice hours before starting any surgical procedure, since they have to difficulty in acquiring specific skills (hand–eye coordination among others) for this type of surgery. Here is what the surgical simulator present a promising training method using an approach based on Finite Element Method (FEM). The use of continuum mechanics, especially Finite Element Analysis (FEA) has gained an extensive application in medical field in order to simulate soft tissues. In particular, colorectal simulations can be used to understand the interaction between colon and the surrounding tissues and also between colon and instruments. Although several works have been introduced considering small displacements, FEA applied to colorectal surgical procedures with large displacements is a topic that asks for more investigations. This work aims to investigate how FEA can describe non-linear effects induced by material properties and different approximating geometries, focusing as test-case application colorectal surgery. More in detail, it shows a comparison between simulations that are performed using both linear and hyperelastic models. These different mechanical behaviours are applied on different geometrical models (planar, cylindrical, 3D-SS and a real model from digital acquisitions 3D-S) with the aim of evaluating the effects of geometric non-linearity. Final aim of the research is to provide a preliminary contribution to the simulation of the interaction between surgical instrument and colon tissues with multi-purpose FEA in order to help the preliminary set-up of different bioengineering tasks like force-contact evaluation or approximated modelling for virtual reality (surgical simulations). In particular, the contribution of this work is focused on the sensitivity analysis of the nonlinearities by FEA in the tissue-tool interaction through an explicit FEA solver. By doing in this way, we aim to demonstrate that the set-up of FEA computational surgical tools may be simplified in order to provide assistance to non-expert FEA engineers or medicians in more precise way of using FEA tools

    Determination of critical factors for fast and accurate 2D medical image deformation

    Get PDF
    The advent of medical imaging technology enabled physicians to study patient anatomy non-invasively and revolutionized the medical community. As medical images have become digitized and the resolution of these images has increased, software has been developed to allow physicians to explore their patients\u27 image studies in an increasing number of ways by allowing viewing and exploration of reconstructed three-dimensional models. Although this has been a boon to radiologists, who specialize in interpreting medical images, few software packages exist that provide fast and intuitive interaction for other physicians. In addition, although the users of these applications can view their patient data at the time the scan was taken, the placement of the tissues during a surgical intervention is often different due to the position of the patient and methods used to provide a better view of the surgical field. None of the commonly available medical image packages allow users to predict the deformation of the patient\u27s tissues under those surgical conditions. This thesis analyzes the performance and accuracy of a less computationally intensive yet physically-based deformation algorithm- the extended ChainMail algorithm. The proposed method allows users to load DICOM images from medical image studies, interactively classify the tissues in those images according to their properties under deformation, deform the tissues in two dimensions, and visualize the result. The method was evaluated using data provided by the Truth Cube experiment, where a phantom made of material with properties similar to liver under deformation was placed under varying amounts of uniaxial strain. CT scans were before and after the deformations. The deformation was performed on a single DICOM image from the study that had been manually classified as well as on data sets generated from that original image. These generated data sets were ideally segmented versions of the phantom images that had been scaled to varying fidelities in order to evaluate the effect of image size on the algorithm\u27s accuracy and execution time. Two variations of the extended ChainMail algorithm parameters were also implemented for each of the generated data sets in order to examine the effect of the parameters. The resultant deformations were compared with the actual deformations as determined by the Truth Cube experimenters. For both variations of the algorithm parameters, the predicted deformations at 5% uniaxial strain had an RMS error of a similar order of magnitude to the errors in a finite element analysis performed by the truth cube experimenters for the deformations at 18.25% strain. The average error was able to be reduced by approximately between 10-20% for the lower fidelity data sets through the use of one of the parameter schemes, although the benefit decreased as the image size increased. When the algorithm was evaluated under 18.25% strain, the average errors were more than 8 y times that of the errors in the finite element analysis. Qualitative analysis of the deformed images indicated differing degrees of accuracy across the ideal image set, with the largest displacements estimated closer to the initial point of deformation. This is hypothesized to be a result of the order in which deformation was processed for points in the image. The algorithm execution time was examined for the varying generated image fidelities. For a generated image that was approximately 18.5% of the size of the tissue in the original image, the execution time was less than 15 seconds. In comparison, the algorithm processing time for the full-scale image was over 3 y hours. The analysis of the extended ChainMail algorithm for use in medical image deformation emphasizes the importance of the choice of algorithm parameters on the accuracy of the deformations and of data set size on the processing time

    Realistic tool-tissue interaction models for surgical simulation and planning

    Get PDF
    Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in pre- and intra-operative surgical planning. Realistic modeling of medical interventions involving tool-tissue interactions has been considered to be a key requirement in the development of high-fidelity simulators and planners. The soft-tissue constitutive laws, organ geometry and boundary conditions imposed by the connective tissues surrounding the organ, and the shape of the surgical tool interacting with the organ are some of the factors that govern the accuracy of medical intervention planning.\ud \ud This thesis is divided into three parts. First, we compare the accuracy of linear and nonlinear constitutive laws for tissue. An important consequence of nonlinear models is the Poynting effect, in which shearing of tissue results in normal force; this effect is not seen in a linear elastic model. The magnitude of the normal force for myocardial tissue is shown to be larger than the human contact force discrimination threshold. Further, in order to investigate and quantify the role of the Poynting effect on material discrimination, we perform a multidimensional scaling study. Second, we consider the effects of organ geometry and boundary constraints in needle path planning. Using medical images and tissue mechanical properties, we develop a model of the prostate and surrounding organs. We show that, for needle procedures such as biopsy or brachytherapy, organ geometry and boundary constraints have more impact on target motion than tissue material parameters. Finally, we investigate the effects surgical tool shape on the accuracy of medical intervention planning. We consider the specific case of robotic needle steering, in which asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. We present an analytical and finite element (FE) model for the loads developed at the bevel tip during needle-tissue interaction. The analytical model explains trends observed in the experiments. We incorporated physical parameters (rupture toughness and nonlinear material elasticity) into the FE model that included both contact and cohesive zone models to simulate tissue cleavage. The model shows that the tip forces are sensitive to the rupture toughness. In order to model the mechanics of deflection of the needle, we use an energy-based formulation that incorporates tissue-specific parameters such as rupture toughness, nonlinear material elasticity, and interaction stiffness, and needle geometric and material properties. Simulation results follow similar trends (deflection and radius of curvature) to those observed in macroscopic experimental studies of a robot-driven needle interacting with gels

    Characterizing anisotropy in fibrous soft materials by MR elastography of slow and fast shear waves

    Get PDF
    The general objective of this work was to develop experimental methods based on magnetic resonance elastography (MRE) to characterize fibrous soft materials. Mathematical models of tissue biomechanics capable of predicting injury, such as traumatic brain injury (TBI), are of great interest and potential. However, the accuracy of predictions from such models depends on accuracy of the underlying material parameters. This dissertation describes work toward three aims. First, experimental methods were designed to characterize fibrous materials based on a transversely isotropic material model. Second, these methods are applied to characterize the anisotropic properties of white matter brain tissue ex vivo. Third, a theoretical investigation of the potential application of MRE to probe nonlinear mechanical behavior of soft tissue was performed. These studies provide new methods to characterize anisotropic and nonlinear soft materials as well as contributing significantly to our understanding of the behavior of specific biological soft tissues

    Real-time simulation of soft tissue deformation for surgical simulation

    Get PDF
    Surgical simulation plays an important role in the training, planning and evaluation of many surgical procedures. It requires realistic and real-time simulation of soft tissue deformation under interaction with surgical tools. However, it is challenging to satisfy both of these conflicting requirements. On one hand, biological soft tissues are complex in terms of material compositions, structural formations, and mechanical behaviours, resulting in nonlinear deformation characteristics under an external load. Due to the involvement of both material and geometric nonlinearities, the use of nonlinear elasticity causes a highly expensive computational load, leading to the difficulty to achieve the real-time computational performance required by surgical simulation. On the other hand, in order to satisfy the real-time computational requirement, most of the existing methods are mainly based on linear elasticity under the assumptions of small deformation and homogeneity to describe deformation of soft tissues. Such simplifications allow reduced runtime computation; however, they are inadequate for modelling nonlinear material properties such as anisotropy, heterogeneity and large deformation of soft tissues. In general, the two conflicting requirements of surgical simulation raise immense complexity in modelling of soft tissue deformation. This thesis focuses on establishment of new methodologies for modelling of soft tissue deformation for surgical simulation. Due to geometric and material nonlinearities in soft tissue deformation, the existing methods have only limited capabilities in achieving nonlinear soft tissue deformation in real-time. In this thesis, the main focus is devoted to the real-time and realistic modelling of nonlinear soft tissue deformation for surgical simulation. New methodologies, namely new ChainMail algorithms, energy propagation method, and energy balance method, are proposed to address soft tissue deformation. Results demonstrate that the proposed methods can simulate the typical soft tissue mechanical properties, accommodate isotropic and homogeneous, anisotropic and heterogeneous materials, handle incompressibility and viscoelastic behaviours, conserve system energy, and achieve realistic, real-time and stable deformation. In the future, it is projected to extend the proposed methodologies to handle surgical operations, such as cutting, joining and suturing, for topology changes occurred in surgical simulation
    • …
    corecore