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Characterizing anisotropy in fibrous soft materials by MR elastography of slow and fast shear 

waves 

by 

John L. Schmidt 

Doctor of Philosophy in Mechanical Engineering 

Washington University in St. Louis, 2017 

Professor Philip V. Bayly, Chair 

 

The general objective of this work was to develop experimental methods based on magnetic 

resonance elastography (MRE) to characterize fibrous soft materials. Mathematical models of 

tissue biomechanics capable of predicting injury, such as traumatic brain injury (TBI), are of great 

interest and potential. However, the accuracy of predictions from such models depends on 

accuracy of the underlying material parameters. This dissertation describes work toward three 

aims. First, experimental methods were designed to characterize fibrous materials based on a 

transversely isotropic material model. Second, these methods are applied to characterize the 

anisotropic properties of white matter brain tissue ex vivo. Third, a theoretical investigation of the 

potential application of MRE to probe nonlinear mechanical behavior of soft tissue was performed. 

These studies provide new methods to characterize anisotropic and nonlinear soft materials as well 

as contributing significantly to our understanding of the behavior of specific biological soft tissues. 
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Chapter 1: Soft tissue mechanical 

characterization: Magnetic resonance 

elastography (MRE), mechanical anisotropy 

 

1.1 Overview: mechanical characterization of soft tissues 
Mechanical deformation of soft biological tissues, such as brain tissue, muscle tissue and cardiac 

tissue, is a natural occurrence in everyday life. Material parameters, which describe the 

relationship of stress (loading) to the strain (deformation) of tissue are important for the 

modeling and simulation of traumatic brain injury (TBI) and processes at the interface of 

implants and other medical devices. Clinical medicine has long relied on the manual evaluation 

of mechanical properties (palpation) to identify a variety of disease processes, such as tumors 

located in the breast or prostate. Knowledge of their material parameters in relation to soft 

tissues, however, is limited. Most biological tissues are mechanically anisotropic, heterogeneous, 

viscoelastic, and may have nonlinear behavior at high strains or strain rate. These properties 

require models to account for directionality, location, speed and amplitude of loading and 

deformations. Elastographic imaging methods and direct mechanical techniques now exist to 

identify the effect of these properties. This chapter describes current and past efforts to measure 

the parameters associated with these properties, with an emphasis on elastographic techniques.  
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1.2  Significance 

1.2.1 Palpation 

The mechanical properties of soft biological tissues have been of interest in medicine for 

centuries. Even with little understanding about tumors or other disease processes, manual 

palpation by an experienced person could lead to a successful diagnosis, simply by detecting soft 

and hard regions within tissue. Although modern imaging methods such as computed 

tomography (CT), magnetic resonance imaging (MRI), or ultrasound are used frequently during 

the pre-operative stage, a surgeon will often find new tumors through palpation during surgery 

(Manduca et al., 2001). Thus, identifying the mechanical properties of tissues is important for the 

diagnosis of disease or injury while also providing a more complete knowledge of healthy tissue. 

1.2.2 Traumatic brain injury 

Traumatic brain injury (TBI) is one of the leading causes of death and disability in the United 

States, with about 1.7 million people incurring the injury every year (Faul et al., 2010). It is 

estimated there are more than 5 million people living with lasting TBI-related disabilities in the 

United States (Schulz-Heik et al., 2016). Cognitive impairments among survivors are common, 

with survivors frequently incurring reduced quality of life (Lew et al., 2006). 

TBI in the human brain occurs as a result of abnormally high strain in brain tissue, usually 

caused by high linear and angular accelerations of the skull (Holbourn, 1943). Studies involving 

tagged MRI during minor (non-injurious)  impacts to the head (Figure 1.1) have illustrated the 

relationship of skull accelerations to brain tissue deformation (Bayly et al., 2005; Margulies and 

Thibault, 1992).  
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Figure 1.1: MRI tagging study showing impact to the head and corresponding strain. a) Schematic diagrams 

of head motion in the sagittal plane b) Lagrangian strain tensor fields at 18, 78 and 84 milliseconds after skull 

motion was stopped after impact to the posterior of the head. Here εxx is the dimensionless strain in the x-

direction, εyy in the y-direction, and εxy the shear strain. Adapted from reference (Bayly et al., 2005). 

 

Computer simulations using finite element (FE) methods offer enormous potential for the 

understanding and prevention of TBI. Experimental study of injurious conditions in humans is 

ethically impossible, therefore in silico experiments are a reasonable substitute. However, FE 

simulations require an accurate and thorough understanding of the mechanical behavior of brain 

tissue and the surrounding structures. In  addition, while many authors have proposed 

computational models of TBI  (Giordano et al., 2014; Kleiven and Hardy, 2002; Mao et al., 

2013; Ueno et al., 1995; Vavalle et al., 2015; Zhang et al., 2004), validation, in the form of 

experimental data confirming the accuracy of these models, is lacking.  
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While computer models of TBI are generally less expensive than physical simulations using 

surrogate materials or devices, physical models are still important for understanding injury (Zhu 

et al., 2012) as well as for surgical training and simulation (Ploch et al., 2016). Desmoulin and 

Dionne (2009) describe the biomechanical response requirements needed to simulate many 

biological tissues (not only brain tissue) to physically replicate battlefield injuries.  

1.2.3 Tissue material properties affect medical device implantation 

The development of medical devices also requires a thorough understanding of tissue properties. 

Deep brain stimulation (DBS) treatments consist of the placement of stimulating electrodes to 

provide high frequency electrical impulses in the region of the ventral intermediate nucleus of 

the thalamus or globus pallidus (see Figure 1.2). Impulses applied in those regions have been 

found to treat the symptoms of essential tremor and Parkinson’s disease, respectively (Perlmutter 

and Mink, 2006). Knowledge of the mechanical interaction between electrodes and surrounding 

brain tissue is critical. Movement of an implant relative to surrounding tissue (likely due to a 

mechanical mismatch) can lead to a glial scar surrounding the electrode (Groothuis et al., 2014), 

which can decrease stimulation effectiveness (Groothuis et al., 2014; Salatino et al., 2017). 
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Figure 1.2: Surgical implantation of stimulation electrodes into the subthalamic nucleus for deep brain 

stimulation therapy. Adapted from Reference (Benabid et al., 2009). 

 

The spinal intervertebral disc (IVD) has been shown to exhibit changes in mechanical properties 

with degeneration and aging (Iatridis et al., 1997). Figure 1.3 shows the various regions within 

the IVD. The mechanical properties of IVD could be important in the prediction of degeneration 

or the development/assessment of therapy. Mechanical characterization could also be crucial for 

total disc replacement, in which an artificial IVD implant replaces a completely degenerated 

IVD.   
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Figure 1.3: The complicated structure of human intervertebral disc. Adapted from Reference (Urban and 

Winlove, 2007). 

1.2.4 Mechanical anisotropy of soft tissues 

Mechanical anisotropy in a material refers to the dependence of a response on the direction of 

mechanical loading. Muscle tissue has shown to be anisotropic under compressive loads (Böl et 

al., 2014). The Achilles tendon has been found to exhibit mechanically anisotropic behavior in 

shear wave dispersion analysis (Brum et al., 2014).  

Several recent studies have suggested brain white matter (WM) is mechanically anisotropic. In 

both small (Feng et al., 2013b) and large (Feng et al., 2017) deformations, brain tissue was 

observed to be anisotropic, with the authors applying a transversely isotropic model to interpret 

their data. Velardi et al. (2006) studied experimental behavior of ex vivo porcine brain tissue in 

extension and proposed an anisotropic, hyperelastic constitutive model to explain their data. 

Prange and Margulies (2002) studied ex vivo porcine and human brain tissue, finding a 
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directional dependence (though somewhat inconsistent) in WM. Ning et al. (2006) characterized 

brainstem experimental data as a transversely isotropic, viscoelastic material and compared 

observed behavior to the predictions of a corresponding numerical model.  

1.2.5 Material nonlinearity of soft tissue at large strains 

While complete characterization of the linear properties of soft tissue is important, it is important 

to note that injurious conditions typically involve large strains (Holbourn, 1943). Recently, 

injury thresholds in isolated optic nerve axon stretch studies (ex vivo, in situ) have been found to 

be ~0.2 strain (Bain and Meaney, 2000). Researchers have noted the need for non-linear material 

characterization rather than simply assuming linear material behavior in FE models (Brands et 

al., 2002).  

1.3  Elastography: non-invasive measurement of soft tissue 

mechanical properties 
Elastographic techniques, including both ultrasound elastography and magnetic resonance 

elastography (MRE) present an exciting future for non-invasive evaluation of the mechanics of 

soft tissues. 

1.3.1 Principles of magnetic resonance elastography (MRE) 

MRE relies on the measurement of oscillating displacements of tissue caused by an external 

harmonic vibration. These oscillating displacements generally correspond to shear waves 

propagating through the tissue. In an MRI scanner, the displacements caused by external 

harmonic vibration are measured by modulating the gradient field at the vibration frequency 

(Muthupillai et al., 1995a). The phase difference between the MR signals acquired during 

gradient field modulations applied in opposite directions is proportional to the displacement in 
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the direction of the gradients. Images of these phase differences (or phase contrast images), 

which encode the harmonic displacement of the tissue, are acquired at every voxel to create an 

image volume describing propagation of shear waves. Transient MRE, which measures the wave 

propagation of a single actuated pulse is also an active field of research (McCracken et al., 

2005). This thesis focuses on harmonic, steady-state MRE.  

1.3.2 Parameter estimation from MRE 

MRE was originally developed using isotropic, elastic material models (Muthupillai et al., 

1995b; Muthupillai and Ehman, 1996).  Similar isotropic, elastic or viscoelastic models have 

been used to characterize tissues such as liver (Asbach et al., 2008; Klatt et al., 2010a; 

Mariappan et al., 2009), breast (Sinkus et al., 2005a), and brain (Atay et al., 2008; Clayton et al., 

2011a; Feng et al., 2013a; Green et al., 2008; Johnson et al., 2013; Murphy et al., 2013; Sack et 

al., 2008). Elastic material models are often generalized for viscoelastic materials by the 

correspondence principle, which allows elastic moduli to be replaced with complex viscoelastic 

moduli (Clayton et al., 2011a) to describe the response to harmonic excitation.  

Techniques used in MRE should be extended to account for directionally-dependent material 

properties. Work has recently been published on anisotropic material models in three general 

categories: theoretical studies, ultrasound elastography studies (involving estimation of two or 

three parameters), and MRE studies involving estimation of two, three, or five or more 

parameters. Rouze et al. (2013) showed agreement between predictions of a three-parameter, 

incompressible, transversely isotropic (ITI) theory and a finite element model. Royer et al. 

(2011) outlined an incompressible, transversely isotropic (ITI) model and approach for 

ultrasound elastography. Gennisson et al. (2003) also using ultrasound elastography, studied 
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transversely isotropic phantoms and measured shear moduli parallel and perpendicular to the 

fibers. Other recent ultrasound studies (Aristizabal et al., 2014; Wang et al., 2013) describe two 

different shear-wave speeds in transversely isotropic phantoms.  

Anisotropic MRE has most commonly been used to estimate two elastic parameters: the two 

shear moduli governing shear in planes (i) parallel or (ii) perpendicular to the fiber direction. 

Such studies have been performed by Sinkus et al. (2005) (breast tissue); Green et al. (2013), 

Klatt et al. (2010b), Papazoglou et al. (2006), Qin et al. (2014, 2013) (muscle tissue); Qin et al. 

(2013) (anisotropic phantoms); and Namani et al. (2009) (aligned fibrin gels). MRE can also be 

used to estimate three parameters (for example, two shear moduli and an independent tensile 

modulus) for ITI material models (Feng et al., 2013b; Guo et al., 2015) and five parameters for 

general TI material models, or more for general orthotropic models (A Romano et al., 2012). 

Papazoglou et al. (2006) derived a three-parameter model for skeletal muscle tissue and an 

approach for estimation, though only two shear moduli were reported. Feng et al. (2013b) 

demonstrated that at least three elastic parameters are required to describe white matter in the 

brain because of anisotropy in shear and tensile moduli. Romano et al. (2012) identified five 

parameters in brain white matter (corticospinal tracts) with the application of spatial-spectral 

filters and Helmholtz decomposition to separate shear and pressure waves in a waveguide. These 

authors also applied their technique to patients with amyotrophic lateral sclerosis (Romano et al., 

2014). Guo et al. (2015) measured three parameters in skeletal muscle by inverting the curl field 

measured by MRE. Tweten et al. (2015) showed by simulation that two types of shear waves 

must exist, with propagation of both waves in different directions, in order to estimate accurately 

the three material parameters. In the human brain, Anderson et al. (2016) used multiple 
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excitation methods and showed that estimates of isotropic material parameters depended on the 

directional properties of the wave field. 

While these recent studies have illustrated the plausibility of different approaches to estimate 

parameters for TI material models, several key issues remain to be addressed. In most studies, 

the performance of the anisotropic inversion algorithm has not been validated, either by using 

data from simulations or from phantoms with known anisotropic properties. The notable 

exception is the study of Qin et al. (2013), which found close agreement between shear moduli 

estimated by MRE and direct measurements. Most importantly, in prior experimental work, the 

criterion that both slow (pure transverse, or PT) and fast shear (quasi-transverse, or QT) waves 

must be present (at significant amplitudes, with multiple directions) in the estimation region in 

order to estimate accurately all three ITI parameters (Tweten et al., 2017, 2015) was not 

explicitly met.  

1.4  Summary 
The mechanical properties of soft biological tissue are useful for diagnosis of disease and injury, 

and for characterization of normal tissue to learn about development and aging. Knowledge of 

these properties is essential for the accurate simulation of injury biomechanics, especially TBI, 

and crucial for developing safe and reliable medical devices. New elastographic imaging 

methods and direct mechanical tests can illuminate these properties.  
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1.5  Specific Aims and Dissertation Outline 

1.5.1 Specific aims  

At the outset of this work, three specific aims were proposed:  

Aim 1: Develop a method to identify separate contributions of anisotropic shear and tensile 

moduli to the wave propagation in fibrous materials such as ex vivo muscle tissue and aligned 

fibrin gels. 

Aim 2: Estimate the shear and tensile anisotropic parameters of ex vivo white matter. 

Aim 3: Study the non-linear behavior of ITI tissue and tissue surrogates by imaging wave 

(infinitesimal) motion superimposed on larger (finite) deformations. 

 

Over the last year, the dissertation scope has been modified slightly, in part to facilitate a pilot 

project on MRE in the mouse liver, funded by industry (Genentech). Significant progress was 

still achieved in each of the proposed Aims. 

 

The following was actually performed for each aim: 

Aim 1: Developed a method to identify separate contributions of anisotropic shear and tensile 

moduli to the wave propagation in fibrous materials such as ex vivo muscle tissue and aligned 

fibrin gels. 

Aim 2: Estimated the anisotropic shear parameters of ex vivo white matter. 

Aim 3: Studied the non-linear behavior of a solid in silica by analyzing wave (infinitesimal) 

motion superimposed on larger (finite) deformations. 
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1.5.2 General Organization 

Chapter 2 provides an overview of the mathematical theory required to perform this work. Basic 

principles of continuum mechanics, wave motion, and their relationships to MRE are briefly 

reviewed. 

 

Chapter 3 describes experimental work on the excitation and imaging of slow and fast shear 

waves in fibrous soft tissue (Aim 1). The test materials were ex vivo muscle tissue (turkey breast) 

and fibrous surrogate biomaterial (magnetically aligned fibrin). Wave fields were directionally 

filtered and shear wave speeds were measured to estimate the anisotropic parameters that 

describe the response of fibrous soft materials to shear and tension. Data were compared to direct 

mechanical tests (dynamic shear tests).  

 

In Chapter 4, shear anisotropy is characterized using MRE in white matter brain tissue (Aim 2). 

Excised portions of ex vivo porcine white matter brain tissue were studied using methods detailed 

in Chapter 3. Due to the small size of the sample, finite element simulations similar to the 

experiment were created to aid in parameter estimation, allowing estimation of parameters 

without relying on typical assumptions of infinite, uniform domain.  

 

In Chapter 5, a method is proposed to probe nonlinear properties of soft tissue, primarily through 

simulation and theoretical analysis of waves in a nonlinear, hyperelastic material (Aim 3). The 

effect of an imposed, finite shear strain on shear wave speed is explored analytically in a Yeoh 

material model. This effect is confirmed by finite element simulations and analysis of simulated 

data, which replicate a proposed experiment and corresponding data processing steps.  



13 

 

 

Conclusions, experimental limitations, and future work are discussed in Chapter 6.  
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Chapter 2: Theoretical background and 

imaging methods 

 

2.1 Overview 
In this chapter, equations of motion for steady-state harmonic wave propagation in fibrous 

materials are derived. Understanding wave behavior in anisotropic materials is potentially 

valuable for characterizing soft fibrous biological tissues. The starting point is the equation of 

dynamic equilibrium (Newton’s 2nd law) in a continuum. Constitutive relationships for isotropic 

and anisotropic (transversely isotropic), linear, elastic materials are then introduced, along with 

the kinematic equations that relate displacement and strain in small deformations. The resulting 

equation (Navier’s equation) admits harmonic plane wave solutions, which can be found from 

the acoustic tensor, for a given propagation direction. We compare our approach and 

nomenclature to other descriptions, and describe the extension of our methods to the 

characterization of nonlinear materials. Finally, the theory and application of MRE to these 

models is explained.  
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2.2 Equilibrium 
Newton’s second law, which defines the force (𝑭 = 𝑚𝒂) acting on a body and the resulting 

motion can be applied to a material element of an arbitrary solid: 

𝜕𝜎𝑖𝑗

𝜕𝑥𝑖
=  𝜌

𝜕2𝑢𝑗

𝜕𝑡2
      (2.1) 

to relate the components of the stress tensor (𝝈) and displacement vector (𝒖) in a Cartesian 

reference frame for 𝑖, 𝑗 = 1, 2, 3 (typically 𝑥, 𝑦, 𝑧 coordinates).  

2.3 Kinematics: Strain – displacement relationships 
Given two particles at initial points 𝑃 and 𝑃0 of a body under load, the displacement of a particle 

is a function of position, 

𝑢𝑖 = 𝑢𝑖(𝑥1, 𝑥2, 𝑥3),     (2.2) 

which can be expanded by Taylor series around 𝑃0 (Chou and Pagano, 1992): 

𝑢𝑖 = 𝑢𝑖
0 +

𝜕𝑢𝑖

𝜕𝑥𝑗
(𝑥𝑗 + 𝑥𝑗

0) +
1

2!

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑘
(𝑥𝑗 − 𝑥𝑗

0)(𝑥𝑘 − 𝑥𝑘
0) + ⋯, (2.3) 

Dropping the second and higher powers as 𝑥𝑗 − 𝑥𝑗
0 and infinitesimal quantities, we can express 

this as: 

𝑢𝑖 = 𝑢𝑖
0 +

𝜕𝑢𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗     (2.4) 
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where 𝑑𝑥𝑗 = 𝑥𝑗 − 𝑥𝑗
0. The gradient 

𝜕𝑢𝑖
𝜕𝑥𝑗

⁄  is a second-order tensor, because 𝑢𝑖 is a vector. 

Equation 2.4 can now be expressed as: 

𝑢𝑖 = 𝑢𝑖
0 +

1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 𝑑𝑥𝑗 +

1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) 𝑑𝑥𝑗,    (2.5) 

or  

𝑢𝑖 = 𝑢𝑖
0 + 휀𝑖𝑗𝑑𝑥𝑗 + 𝜔𝑖𝑗𝑑𝑥𝑗,    (2.6) 

where 

휀𝑖𝑗 = 
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 

𝜕𝑢𝑗

𝜕𝑥𝑖
),     (2.7) 

is the strain tensor, and  

𝜔𝑖𝑗 = 
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
),     (2.8) 

is the rotation tensor. 

 

2.4 Constitutive Equations 

2.4.1 Stress, strain and elasticity tensors 

The stress and strain in an elastic material under small deformations may be related, in terms of 

their Cartesian components, as: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙,      (2.9) 
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which is a generalized form of Hooke’s law; here 𝐶𝑖𝑗𝑘𝑙 is the rank-four elasticity tensor which 

describes the behavior of the material under general loading. 

Voigt notation can be used to compactly represent the elasticity tensor as a 6×6 matrix (the 

“elasticity matrix” or “stiffness matrix”), allowing Equation 2.9 to become: 

[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

 =

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 𝑐14 𝑐15 𝑐16

𝑐22 𝑐23 𝑐24 𝑐25 𝑐26

𝑐33 𝑐34 𝑐35 𝑐36

𝑐44 𝑐45 𝑐46

sym. 𝑐55 𝑐56

𝑐66]
 
 
 
 
 

 

[
 
 
 
 
 
휀11

휀22

휀33

2휀23

2휀13

2휀12]
 
 
 
 
 

    (2.10) 

 

2.4.2 Isotropic, linear elastic materials 

Using Lamé constants (𝜆𝐿, 𝜇), the elasticity matrix for isotropic, elastic materials can be 

expressed as: 

𝐶 =

[
 
 
 
 
 
 
𝜆𝐿 + 2𝜇 𝜆𝐿 𝜆𝐿 0 0 0

𝜆𝐿 + 2𝜇 𝜆𝐿 0 0 0

𝜆𝐿 + 2𝜇 0 0 0

𝜇 0 0

sym. 𝜇 0

𝜇]
 
 
 
 
 
 

.    (2.11) 

The Lamé constants used in Equation 2.11 can be expressed in terms of the engineering 

constants: Young’s modulus, governing uniaxial tension; Poisson’s ratio, governing transverse 

and axial strain; and shear modulus, governing the response to shear, respectively: 
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𝐸 =
𝜇(3𝜆+2𝜇)

𝜆𝐿+ µ
, 𝜈 =

𝜆𝐿

2(𝜆𝐿+𝜇)
, and 𝜇 =

𝐸

2(1+𝜈)
.    (2.12-14) 

Using these terms, the compliance tensor can be expressed in Voigt notation as: 

𝑆 =
𝜆𝐿+ 𝜇

𝜇(3𝜆𝐿+2𝜇)

[
 
 
 
 
 
 
 
 1

−𝜆𝐿

2(𝜆𝐿+ 𝜇)

−𝜆𝐿

2(𝜆𝐿+ 𝜇)
0 0 0

−𝜆𝐿

2(𝜆𝐿+ 𝜇)
1

−𝜆𝐿

2(𝜆𝐿+ 𝜇)
0 0 0

−𝜆𝐿

2(𝜆𝐿+ 𝜇)

−𝜆𝐿

2(𝜆𝐿+ 𝜇)
1 0 0 0

0 0 0 2(1 + 𝜈) 0 0
0 0 0 0 2(1 + 𝜈) 0
0 0 0 0 0 2(1 + 𝜈)]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 

1

𝐸
−𝜐
𝐸

−𝜐
𝐸

0 0 0
−𝜐
𝐸

1
𝐸

−𝜐
𝐸

0 0 0
−𝜐
𝐸

−𝜐
𝐸

1
𝐸

0 0 0

0 0 0 1
𝜇

0 0

0 0 0 0 1
𝜇

0

0 0 0 0 0 1
𝜇]
 
 
 
 
 
 

   (2.15) 

We can now write the linear elastic constitutive law in compact indicial notation for isotropic 

materials: 

𝜎𝑖𝑗 = 𝜆𝐿 휀𝑘𝑘𝛿𝑖𝑗  +  2 μ휀𝑖𝑗 .     (2.16) 

2.4.3 Anisotropic (transversely isotropic) materials 

The simplest anisotropic material is a transversely isotropic material model, where material 

properties are invariant to rotation about an axis normal to the plane of isotropy. We define such a 

material, with an axis defining the fiber direction, x1, and A as the unit vector in the fiber direction. 

The deformation gradient is defined as: 

F =
𝜕x

𝜕X
,    or  𝐹𝑖𝑗 =

𝜕𝑥𝑖

𝜕𝑋𝑗
    (2.17) 
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with X representing the material vector in the reference configuration and x representing the 

corresponding spatial vector in the deformed configuration. The right Cauchy-Green tensor is 

defined as: 

C = FTF.      (2.18) 

The volume ratio between the deformed and undeformed configurations is given by: 

𝐽 = det (F).      (2.19) 

And the principal invariants are given by: 

𝐼1 = tr(C), 𝐼2 =
1

2
(tr(C)2 − tr(C2)), 𝐼3 = det(C) = 𝐽2, 𝐼4 = A ∙ CA, and 𝐼5 = A ∙ C2A.  (2.20-25) 

A strain energy density function for nearly incompressible, transversely isotropic (NITI) elastic 

materials can be described by (Feng et al., 2013b):  

𝑊 = 𝜇

2
[(𝐼1̅−3)+𝜁(𝐼4̅−1)2+𝜙𝐼5

∗̅]+
𝜅

2
(𝐽−1)2.    (2.26) 

Where 𝐼1̅ = 𝐽−2 3⁄ 𝐼1 and describes deformation, 𝐼4̅ = 𝐽2 3⁄  and describes fiber stretch, 𝐼5̅ =

𝐽−4 3⁄ 𝐼5 and describes fiber-matrix interaction. 𝐼5
∗̅ is defined as the isochoric pseudo-invariant, 

which contains no contribution from fiber stretch 𝐼5
∗̅ = 𝐼5̅ − 𝐼4̅

2
 . The last term (

𝜅

2
(𝐽 − 1)2) 

describes volumetric strain.  

 

The components of the elasticity tensor of a nearly incompressible, transversely isotropic (NITI) 

material model (Feng et al., 2013b), are given below in Voigt notation. The fiber direction is 

assigned to be 𝒂 = 𝒆1 = [1 0 0]T. The components of the elasticity matrix in Equation 2.10 

are: 
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𝑐11 =  𝜅 + 
4

3
𝜇 (1 +

4

3
휁) ;    𝑐22 = 𝑐33 =  𝜅 + 

4

3
𝜇 (1 +

1

3
휁); (2.27a-b) 

𝑐12 = 𝑐13 = 𝑐21 = 𝑐31 =  𝜅 − 
2

3
𝜇 (1 +

4

3
휁);    𝑐32 = 𝑐23 =  𝜅 − 

2

3
𝜇 (1 −

2

3
휁); (2.28a-b) 

𝑐44 = 𝜇;         𝑐55 = 𝑐66 = 𝜇(1 + 𝜙).  (2.29a-b) 

where 𝜇 is the shear modulus, 𝜅 is the bulk modulus, 𝜙 is the shear anisotropy, and 휁 is the 

tensile anisotropy (Feng et al., 2013b). The compliance matrix, which is the inverse of the 

elasticity matrix in Voigt notation, is shown below using the current notation and in standard 

engineering nomenclature. 

𝑆 =  

[
 
 
 
 
 
 
 
 
 
 

1

𝜇(4𝜁+3)
+

1

9𝜅

−1

2𝜇(4𝜁+3)
+

1

9𝜅

−1

2𝜇(4𝜁+3)
+

1

9𝜅
0 0 0

−1

2𝜇(4𝜁+3)
+

1

9𝜅

1+𝜁

𝜇(4𝜁+3)
+

1

9𝜅

−(1+2𝜁)

2𝜇(4𝜁+3)
+

1

9𝜅
0 0 0

−1

2𝜇(4𝜁+3)
+

1

9𝜅

−(1+2𝜁)

2𝜇(4𝜁+3)
+

1

9𝜅

1+𝜁

𝜇(4𝜁+3)
+

1

9𝜅
0 0 0

0 0 0
1

𝜇
0 0

0 0 0 0
1

𝜇(1+𝜙)
0

0 0 0 0 0
1

𝜇(1+𝜙)]
 
 
 
 
 
 
 
 
 
 

 =

[
 
 
 
 
 
 
 
 
 

1

𝐸1
−

𝜈21

𝐸2
−

𝜈21

𝐸2
0 0 0

−
𝜈12

𝐸1

1

𝐸2
−

𝜈2

𝐸2
0 0 0

−
𝜈12

𝐸1
−

𝜈2

𝐸2

1

𝐸2
0 0 0

0 0 0
1

𝜇2
0 0

0 0 0 0
1

𝜇1
0

0 0 0 0 0
1

𝜇1]
 
 
 
 
 
 
 
 
 

.   (2.30) 

In the incompressible limit, as bulk modulus becomes large (𝜅 →  ∞), the components of the 

compliance matrix approach finite, well-defined limits that correspond clearly to standard 
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engineering constants (see Table 2.1). The relationships between these parameters allow us to 

define the following: 

𝜙 =
𝜇1

𝜇2
− 1 and 휁 =

𝐸1

𝐸2
− 1.     (2.31-32) 

which describe the relative difference in shear moduli and the relative difference between 

Young’s (tensile) moduli in NITI materials. 

2.5 Harmonic plane wave propagation 

2.5.1 General 

For elastic plane waves traveling in a nearly incompressible TI (NITI) material, the assumed plane 

wave solution: 

𝑢𝑖 = 𝑢0𝑚𝑖exp[𝐼(𝐾 𝑛𝑗𝑥𝑗 − 𝜔𝑡)],     (2.33) 

satisfies the equation of motion (EOM): 

𝜕𝜎𝑖𝑗

𝜕𝑥𝑖
=  𝜌

𝜕2𝑢𝑗

𝜕𝑡2  .     (2.34) 

Here 
𝜕𝜎𝑖𝑗

𝜕𝑥𝑖
 is the divergence of the second order stress tensor, 𝜎𝑖𝑗, 𝑢0 is the amplitude of the 

displacement,  𝑚𝑖 = [𝑚1 𝑚2 𝑚3]T is the polarization direction of the displacement, 𝑛𝑖 =

 [𝑛1 𝑛2 𝑛3]T is the propagation direction, 𝐾 is the wavenumber, 𝐼 is the imaginary number 

(√−1), 𝜔 is the excitation frequency, and 𝜌 is the density (Holzapfel, 2000, pp. 144-145). 

Substitution of the assumed solution (Eq. 2.34) and the constitutive law (Eq. 2.2) into the EOM 

results in the eigenvalue problem: 

𝑄(𝒏) ∙ 𝒎 = 𝜌𝑐2𝒎,   or  𝑄𝑖𝑗𝑚𝑗 = 𝜌𝑐2𝑚𝑖    (2.35) 
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where 𝑸 is the acoustic tensor with Cartesian components 𝑄𝑖𝑗 = 𝐶𝑝𝑖𝑞𝑗𝑛𝑝𝑛𝑞, 𝐶𝑝𝑖𝑞𝑗 are the 

elements of the elasticity tensor and 𝑐 is the wave speed. The solution of this eigenvalue problem 

yields three eigenvalues 𝜆 =  𝜌𝑐2 and eigenvectors 𝑚𝑖. 

2.5.2 Wave speeds in an isotropic medium 

For the isotropic case, the acoustic tensor is: 

𝑸 = [
𝜆𝐿 + 2μ 0 0

0 𝜇 0
0 0 𝜇

].     (2.36) 

Assuming a wave propagation direction of 𝑛𝑖 = [1 0 0]T, there are three eigenvalues 

corresponding to three independent wave polarization directions,  𝑚1 = [1,0,0] 𝑚2 = [0,1,0] 

and 𝑚3 = [0,0,1], which are given by: 

𝛬1 = 𝜌𝑐1
2 = (𝜆𝐿 + 2𝜇),     𝛬2 =  𝜌𝑐2

2 =  𝜇,     𝛬3 =  𝜌𝑐3
2 = 𝜇.   (2.37a-c) 

Wave speeds through an isotropic material can then be shown to be: 

𝑐1
2 =

(𝜆+2𝜇)

𝜌
,       𝑐2

2 = 𝑐3
2 = 

𝜇

𝜌
.    (2.38a-b) 

Where 𝑐1 corresponds to the longitudinal wave speed through an isotropic medium and 𝑐2 and 𝑐3 

both correspond to shear wave speeds. Since the material is isotropic, given two separate wave 

polarizations (𝑚2 and 𝑚3), the shear wave speed is equivalent. 

2.5.3 Wave speeds and polarizations in a transversely isotropic medium 

Without loss of generality, we assume the propagation direction remains in the 1-2 plane and can 

be defined by 𝑛𝑖 = [cos(휃) sin(휃) 0]T for a transversely isotropic solid. Substituting 𝑛𝑖 and 

the elastic tensor terms from Eqs. 2.8-2.9 gives the acoustic tensor in the form of: 
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𝑸 = 

[
 
 
 (𝜅 +

4𝜇

3
+

16𝜇𝜁

9
) cos2(휃) + 𝜇(1 + 𝜙) sin2(휃) (𝜅 +

𝜇

3
+ 𝜇𝜙 −

8𝜇𝜁

9
) cos(휃) sin (휃) 0

(𝜅 +
𝜇

3
+ 𝜇𝜙 −

8𝜇𝜁

9
) cos(휃) sin (휃) (𝜅 +

4𝜇

3
+

16𝜇𝜁

9
) sin2(휃) + 𝜇(1 + 𝜙) cos2(휃) 0

0 0 𝜇(1 + 𝜙) cos2(휃) + 𝜇 sin2(휃)]
 
 
 

.(2.39) 

In the limit of 𝜅 → ∞ (i.e., for an incompressible material), the eigenvalues are given by: 

Λ1 = 𝜌𝑐𝑠
2 =  𝜇(1 + 𝜙 cos2 휃),    𝛬2 =  𝜌𝑐𝑓

2 =  𝜇(1 + 𝜙 cos2 2휃 + 휁 sin2 2휃), 

𝛬3 =  𝜌𝑐𝑝
2 → ∞,     (2.40a-c) 

where 𝑐𝑠 is the slow shear wave speed, 𝑐𝑓 is the fast shear wave speed, and 𝑐𝑝 is the longitudinal 

wave speed. The wave speeds approach these approximations closely for finite values of bulk 

modulus representative of soft tissue (within 1-2% for 𝜅 ≈ 100𝜇; Tweten et al., 2015). The 

corresponding eigenvectors 𝑚𝑖 are the polarization directions: 𝑚1 = 𝑚𝑠, 𝑚2 = 𝑚𝑓, 𝑚3 = 𝑚𝑝. 

The slow and fast shear wave polarization directions can also be defined by the following 

relationship: 

𝑚𝑠 =
𝒏×𝒂

|𝒏×𝒂|
 and 𝑚𝑓 = 𝒏×𝒎𝒔,     (2.41a-b) 

where 𝒂 indicates the plane of isotropy (fiber direction). The wave polarizations, and 

propagation directions, and fiber orientation are shown relative to a transversely isotropic solid in 

Figure 2.1. 
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Figure 2.1: The propagation direction (denoted by unit vector 𝒏) and polarization directions (unit vectors 

𝒎𝒔and 𝒎𝒇) of slow and fast shear waves, respectively, in an incompressible, transversely isotropic, elastic 

material. The unit vector 𝒂 denotes the normal to the plane of isotropy. (Reproduced from: Schmidt et al., 

2016) 

 

Note that, as required in linear elasticity: 

     𝜈21 =
𝐸2

𝐸1
𝜈12;    𝑐44 =

𝑐33−𝑐32

2
.     (2.42a-b) 

In the case of tensile isotropy (휁 = 0):  

 𝐸1 = 𝐸2 =
9𝜅𝜇

3𝜅+𝜇
 ;   𝜈12 = 𝜈12 = 𝜈2 =

3𝜅−2𝜇

2(3𝜅+𝜇)
.    (2.43a-b) 

As  𝜅 → ∞:   𝐸1 = 𝐸2 = 3𝜇;  𝜈12 = 𝜈12 = 𝜈2 =
1

2
.    (2.44a-b) 

In the case of shear isotropy (𝜙 = 0):   

𝜇1 = 𝜇2 = 𝜇.      (2.45) 

In the incompressible limit (𝜅 → ∞) the components of the compliance matrix approach finite, 

well-defined limits that correspond clearly to standard engineering constants (Table 2.1). 
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Common nomenclature Current nomenclature 

[Δ =
𝜇(4𝜁+3)

9𝜅
 ]  

Incompressible limit 
( 𝜅 → ∞, Δ → 0 ) 

Quasi-transverse 
(QT) shear wave 

Fast shear wave 𝑐𝑠
2 =

 𝜇

𝜌
(1 + 𝜙 cos2 휃)  

Pure transverse  
(PT) shear wave 

Slow shear wave 𝑐𝑓
2 =

 𝜇

𝜌
(1 + 𝜙 cos2 2휃 +

휁 sin2 2휃)    
𝑐11 𝜅 + 𝜇 (

4

3
+

16𝜁

9
)  ∞ 

𝑐22, 𝑐33 𝜅 + 𝜇 (
4

3
+

4𝜁

9
)  ∞ 

𝑐12, 𝑐13, 𝑐21, 𝑐31 𝜅 − 𝜇 (
2

3
+

8𝜁

9
)  ∞ 

𝑐23, 𝑐32  𝜅 − 𝜇 (
2

3
−

4𝜁

9
)  ∞ 

𝑐44, 𝜇2, 𝜇𝑇 , 𝜇⊥ 𝜇  𝜇 

𝑐55, 𝑐66,𝜇1,𝜇𝐿 , 𝜇∥ 𝜇(1 + 𝜙)  𝜇(1 + 𝜙) 

𝐸1 𝜇(4𝜁+3)

1+Δ
   𝜇(4휁 + 3)   

𝐸2 𝜇(4𝜁+3)

1+𝜁+Δ
  

𝜇(4𝜁+3)

1+𝜁
   

𝜈12 1−2Δ

2+2Δ
   

1

2
    

𝜈21 1−2Δ

2(1+𝜁)+2Δ
   

1

2(1+𝜁)
    

𝜈23, 𝜈23, 𝜈2 1+2𝜁−2Δ

2(1+𝜁)+2Δ
   

1+2𝜁

2(1+𝜁)
  

Table 2.1: Common nomenclature and relationship to nomenclature in this study. 

2.6 Shear wave propagation in media under finite 

deformation 
Thus far, shear waves have been described while propagating in an undeformed material, 

dependent on the elasticity tensor. Characterizing material that is highly deformed, however, is 

of interest when studying the material properties of tissues under injurious conditions. When 

describing the behavior of a hyperelastic material described by strain energy density function, the 

elasticity tensor of that material depends on the deformation gradient tensor; thus deformation 
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influences shear wave speeds. This topic is further discussed in Chapter 5 with analytical and 

computer simulation results.  

2.7 Imaging Methods and Analysis 

2.7.1 Introduction 

The previous sections of this chapter have been devoted to the theoretical explanation of 

propagating waves in a soft, elastic solid; this section describes a method to visualize these shear 

waves experimentally. Few methods exist to noninvasively measure three-dimensional strain 

within materials (Kolsky, 1963). MRE is one such method to quantify material deformations in 

three dimensions. 

2.7.2 Magnetic resonance imaging (MRI) 

MRI signal is acquired from the spin precession of hydrogen nuclei in a large (fixed) magnetic 

field, usually referred to as the 𝑩𝟎 field. Spins are modulated by the magnetic field gradients 

located within the large magnet bore, and the modulated frequency and phase of the precessions 

are correlated with spatial location in the magnetic field. These techniques are most frequently 

used for anatomical imaging of biological tissue, however, manipulation of spin precession 

amplitude and phase can also be used to measure tissue displacement and motion, through phase 

contrast imaging. Diffusion (of H1 protons) within biological tissue can also be imaged utilizing 

phase contrast, in a method known as diffusion tensor imaging (DTI). 

2.7.3 Magnetic resonance elastography (MRE) 

In an MRE study, displacements from harmonic motion applied to a sample are measured from 

phase image “snapshots” of the propagating wave. To perform this, the magnetic field within the 

MRI scanner is modulated via the gradient field of the magnet in sync with the harmonic motion 
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applied to the sample (Muthupillai et al., 1995a). An example MR pulse diagram is shown in 

Figure 2.2. 

 

Figure 2.2: A modified spin-echo MRE pulse diagram. (Clayton et al., 2011a) 

As MRE is a phase-contrast imaging method, phase accumulated must be converted to a non-

arbitrary displacement unit. From a typical MRE sequence, each voxel in the image space will 

have a vector of motion-induced phase, 𝝋(𝑥1, 𝑥2, 𝑥3), proportional to displacement, 

𝒖(𝑥1, 𝑥2, 𝑥3), obtained from the MRE sequence (Muthupillai et al., 1995a). The 3D position of a 

material element of a substance such as water with nuclear spin (a “spin-packet”) is given by: 

𝒓 = 𝒓𝟎 + 𝒖      (2.46) 

and: 

𝒖 = 𝒖𝟎  cos (𝜔𝑡 − 𝒌 ∙ 𝒓𝟎 + 휃),    (2.47) 

where 𝒖0, 𝒓0, 𝜔, 𝒌 and 휃 are the vibration displacement (m), the initial position of the spin-

packet (m), vibration frequency (rad/s), spatial frequency vector (rad/m), and the vibration phase 
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(rad) respectively. It follows (Atay et al., 2008; Muthupillai et al., 1995a) that the component of 

the MR phase vector in the direction of the gradient, 𝑮, is:  

𝜑𝐺(𝒓𝑜 , 휃) = 𝛾 ∫ (𝑮 ∙ 𝒓)𝑑𝑡
2𝜋𝑁 𝜔⁄

0
=

𝛾𝜋𝑁(𝑮𝟎∙𝒖𝟎)

𝜔
cos (휃 − 𝒌 ∙ 𝒓𝟎),  (2.48) 

where 𝑮 = 𝑮𝟎cos (𝜔𝑡) (Gauss/m or T/m) is the motion-encoding magnetic field gradient, 

applied in a sinusoidal fashion, 𝛾 (rad/s/T) is the gyro-magnetic ratio of water, and 𝑁 is the 

number of motion-encoding gradient cycles used in the specific MRE sequence. Equation 2.48 

can be simplified to the form of a proportional constant, 𝐶, directly relating MR phase to 

displacement: 

𝒖(𝒓𝟎, 휃) = 𝐶𝝋(𝒓𝟎, 휃).    (2.49) 

Because of the sequential method (one direction at a time, 𝑖 = 1, 2, 3) in which the gradients are 

applied during the sequence, the coefficient of proportionality (m/rad) can be expressed in terms 

of the 𝑖𝑡ℎ direction: 

𝐶𝑖 = 
𝑢max,𝑖

𝜑max,𝑖
=

𝜔

𝛾𝜋𝑁𝐺0,𝑖
,     (2.50) 

Here 𝐺𝑜,𝑖 is the gradient amplitude in the respective direction. Example MRE experimental and 

simulated data are shown in Figures 2.3 and 2.4, respectively. 
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Figure 2.3: Experimental MRE displacement data acquired in gelatin/glycerol (isotropic, Okamoto et al., 

2011) at 200 Hz mechanical actuation. 

 

 

Figure 2.4: Simulated harmonic displacement data in a material representing gelatin (𝝁 = 1.1 kPa, 𝝆 = 1100 

kg/m3) at 200 Hz mechanical actuation. 

2.7.4 Estimation of material parameters in MRE 

Local frequency estimation 

For isotropic materials, shear wavelength (𝜆) in an infinite mechanically isotropic medium is 

directly related to the shear modulus (𝜇): 

𝜆 =  
1

𝑓
√

𝜇

𝜌
,       (2.51) 
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and with rearranging gives:  

𝜇 =  𝜌(𝑓𝜆)2,       (2.52) 

where 𝑓 is the frequency of the wave and 𝜌 is the material density. Local frequency estimation 

(LFE), which relies on estimating the local spatial frequency of shear wave propagation, 

provides a simple, approximate method for the estimation of material properties from MRE data 

(Knutsson et al., 1994; Manduca et al., 1996). Local frequency estimates are found by applying a 

series of spatial filters, which are a product of radial and directional components. Assuming only 

shear waves are imaged, the shear wavelength is found from the dominant wavenumber (𝑘) in 

the imaging domain (length 𝐿): 

𝜆 =
𝐿

𝑘
.      (2.53) 

Referring to example MRE simulated data in Figure 2.4, we can show results from the 

application of LFE in Figure 2.5. 

 

Figure 2.5: Simulated harmonic displacement data in a material representing gelatin (𝝁 = 1.1 kPa, 𝝆 = 1100 

kg/m3) at 200 Hz mechanical actuation. 
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Local direct inversion 

Displacement fields acquired by an MRE sequence can be fitted to the elastic wave equations. 

This method is known as direct inversion (and for regional estimates, local direct inversion or 

LDI; Okamoto et al., 2011). LDI can be used to fit experimental data to an isotropic, linear 

viscoelastic model using the correspondence principle (Clayton et al., 2011a). In this approach, 

the shear modulus, 𝜇, is replaced by a complex parameter, 𝜇∗: 

 

𝜇 = 𝜇∗(𝑖𝜔) = 𝜇′(𝜔) + 𝑖𝜇′′(𝜔),    (2.54) 

where 𝜇′ refers to the shear storage modulus, 𝜇′′ refers to the shear loss modulus, and 𝜔 is the 

frequency of the wave. The linear, isotropic, locally homogeneous, viscoelastic Navier equation 

is expressed as: 

(𝜇′ + 𝑖𝜇′′)∇2𝑼(𝑥, 𝑦, 𝑧, 𝜔) =  −𝜌𝜔2𝑼(𝑥, 𝑦, 𝑧, 𝜔),   (2.55) 

where 𝜌 is the material density, 𝑼 refers to the shear wave displacement field acquired during an 

MRE experiment (after excluding displacements due to rigid body motion and longitudinal 

waves), and ∇2 refers to the Laplacian operator. Typically, inversion is performed by total-least 

squares fitting, fitting data within a kernel of voxels (i.e., 7x7x7 voxels). Referring to example 

MRE simulated data in Figure 2.4, we can show results from the application of LFE in Figure 

2.6. 
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Figure 2.6: Simulated harmonic displacement data in a material representing gelatin (𝝁′ = 1.1 kPa, 𝝆 = 1100 

kg/m3) at 200 Hz mechanical actuation. (a) Shear storage modulus, 𝝁’. (b) Shear loss modulus, 𝝁’’. 

2.8 Summary 
Continuum mechanics and dynamics theory have been introduced in this chapter as background 

for the remainder of this dissertation. Steady-state harmonic wave equations of motion are 

derived. From the constitutive relationships for isotropic and transversely isotropic, linear, elastic 

materials, plane wave solutions in a given propagation direction are found from the 

corresponding acoustic tensor. The extension of these methods to nonlinear materials is 

introduced briefly. Finally, relevant imaging methods and corresponding material parameter 

estimation techniques are discussed.  

Plane wave solutions for a transversely isotropic material are used to describe and characterize 

fibrous materials in Chapter 3. In Chapter 4, the behavior of shear waves in transversely isotropic 

material is used to characterize ex vivo white matter brain tissue, comparing data from 

experiments to results from analogous finite element models to account for non-idealities in the 

experiment (i.e.: sample size). In Chapter 5, plane wave solutions are derived for deformed, 
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nonlinear materials and compared to a finite element simulation and experimental methods are 

proposed. 
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Chapter 3: Magnetic resonance 

elastography of slow and fast shear waves 

illuminates differences in shear and tensile 

moduli in anisotropic tissue 
 

 

3.1 Overview 
In this chapter, the anisotropic shear and tensile modulus of soft fibrous tissue is characterized 

using MRE. In contrast to most MRE studies, in which tissue isotropy is assumed and a single 

shear, or tensile modulus is estimated, this study relies on an incompressible, transversely 

isotropic (ITI) material model. Such a material is characterized by three parameters: minimum 

shear modulus (μ), shear anisotropy (𝜙 =  
μ1

μ⁄ − 1) and tensile anisotropy (휁 = 𝐸1/𝐸2  −  1). 

Two types of shear waves were visualized using MRE: “fast” (or “quasi-transverse”) and “slow” 

(or “pure transverse”) shear waves. These waves were analyzed for a given propagation direction 

to estimate anisotropic parameters μ , 𝜙, and  휁 in two fibrous soft materials: muscle tissue 

(turkey breast) ex vivo and aligned fibrin gels. As expected, the speed of slow shear waves 

depended on the angle between fiber direction and propagation direction. Fast shear waves were 

observed when the deformations due to wave motion induced stretch in the fiber direction. 

Finally, MRE estimates of anisotropic mechanical properties in turkey breast were compared to 

estimates from direct mechanical tests. 

 



35 

 

The material presented in this chapter is published in the Journal of Biomechanics (Schmidt et 

al., 2016). 

3.2 Introduction 
Accurate characterization of soft tissue material properties is important to medical clinicians and 

researchers. The identification of parameters for soft tissue is especially relevant to traumatic 

brain injury (TBI) research, as it will enable more accurate mechanical modeling and simulation 

of TBI. Magnetic resonance elastography (MRE) is a technique for non-invasive estimation of 

material parameters in soft tissues. In MRE, shear waves are excited in the soft tissue; the 

resulting shear wave speed is measured and used to estimate material parameters. MRE was 

originally developed using isotropic, elastic material models (Muthupillai et al., 1995b; 

Muthupillai and Ehman, 1996) and similar isotropic, elastic or viscoelastic models have been 

used to characterize tissues such as liver (Asbach et al., 2008; Klatt et al., 2010a; Mariappan et 

al., 2009), breast (Sinkus et al., 2005a), and brain (Atay et al., 2008; Clayton et al., 2011a; Feng 

et al., 2013a; Green et al., 2008; Johnson et al., 2013; Murphy et al., 2013; Sack et al., 2008). 

However, since biological tissue is often anisotropic (Feng et al., 2013b), techniques used in 

MRE should be extended to account for directionally-dependent material properties.  

 

For a summary of elastography studies utilizing anisotropic material models, refer to Chapter 1, 

specifically section 1.3.2 and material parameter estimation using MRE. 

 

While recent studies have illustrated the plausibility of different approaches to estimate 

parameters for TI material models, several key issues remain to be addressed. In most studies, 
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the performance of the anisotropic inversion algorithm has not been validated, either by using 

data from simulations or from phantoms with known anisotropic properties. The notable 

exception is the study of Qin and co-workers (Qin et al., 2013), which found close agreement 

between MRE and direct measurements of shear anisotropy. Most importantly, in prior 

experimental work, the criterion that both slow (pure transverse, or PT) and fast shear (quasi-

transverse, or QT) waves must be present (at significant amplitudes, with multiple directions) in 

the estimation region in order to estimate accurately all three ITI parameters (Tweten et al., 

2015) was not explicitly met. Many studies did not take into account the effects of tensile moduli 

on the fast shear-wave speed.  

 

In this study, we explicitly separate wave fields into fast and slow components in multiple 

propagation directions. We estimate the two separate wave speeds occurring in transversely 

isotropic soft tissues and show how these wave speeds can be used to estimate the three elastic 

material parameters for a linear ITI model. 

3.3 Methods 

3.3.1 Theory: fast and slow shear-wave speeds in elastic, incompressible, 

transversely isotropic materials 

In a linear ITI material model, there are three independent material parameters: shear modulus µ, 

shear anisotropy 𝜙 =  
μ1

μ⁄ − 1, and tensile anisotropy 휁 =
𝐸1

𝐸2
⁄ − 1 (other parameters, which 

are linear combinations of these, can also be chosen). “Slow” (PT) shear waves in ITI materials 

exhibit displacements perpendicular to both the wave propagation direction, 𝒏, and the normal to 

the plane of isotropy (nominally the fiber direction), 𝒂. The unit vector in the direction of 
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displacement, or polarization direction, of the slow wave can be shown to be (Rouze et al., 2013; 

Tweten et al., 2015): 

𝒎𝒔 = 𝒏×𝒂/|𝒏×𝒂|.      (3.1) 

(The special case when 𝒏 and 𝒂 are parallel, is discussed below). Since the slow shear-wave 

polarization is always perpendicular to the fiber direction, it does not stretch the fibers and wave 

speed depends only on the baseline shear modulus, μ, shear anisotropy, 𝜙, and the angle, 휃, 

between 𝒏 and 𝒂:  

𝑐𝑠
2 = (

μ
𝜌⁄ )(1 +  𝜙 cos2 휃).     (3.2) 

The polarization direction of a  “fast” (QT) shear wave is perpendicular to both the propagation 

direction and the slow shear wave polarization direction and lies in the plane defined by 𝒏 and 𝒂 

(Rouze et al., 2013; Tweten et al., 2015): 

𝒎𝒇 = 𝒏 ×𝒎𝒔      (3.3) 
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Figure 3.1: The propagation direction (denoted by unit vector 𝒏) and polarization directions (unit vectors 

𝒎𝒔and 𝒎𝒇) of slow and fast shear waves, respectively, in an incompressible, transversely isotropic, elastic 

material. The unit vector 𝒂 denotes the normal to the plane of isotropy. 

Fig. 3.1 shows the relationship between 𝒎𝒔, 𝒎𝒇, 𝒏 and 𝒂. Deformations associated with fast 

shear waves induce stretch in the fiber direction, and the speed of the fast shear wave thus 

depends on the tensile anisotropy, ζ (Tweten et al., 2015): 

𝑐𝑓
2 = (

μ
𝜌⁄ )(1 +  𝜙 cos2 2휃 +  휁 sin2 2휃).    (3.4) 

Note that when the propagation direction 𝒏 is parallel to the fiber direction 𝒂, Eq. 3.1 and Eq. 3.3 

are undefined, 휃 = 0, and there is only one wave speed.  

To extend the theory above to viscoelastic materials, the correspondence principle (Flügge, 

1975) may be invoked, in which the complex shear modulus, μ∗ = μ′ + 𝑖μ" , describes the 

relationship between harmonic stress and strain in the plane of isotropy. If dissipative effects are 

due to fluid motion, and thus approximately isotropic, the loss factor 휂 = μ"/μ′ would govern 

waves in all directions. In this study, each material is studied at a single frequency, so that μ 
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represents the magnitude of the complex modulus |μ∗|, and 𝜙 and 휁 the anisotropy in moduli, at 

that frequency. 

3.3.2 Experiments: slow and fast shear waves in cylindrical and cube 

specimens 

Two different fibrous, biological materials, turkey breast and magnetically aligned fibrin gel, 

were studied to assess wave speed differences in tissue based on fiber orientation. Two sample 

geometries, cylindrical and cube, were used for each material (Fig. 3.2). (1) Turkey breast was 

acquired from a retail butcher and tested 3-5 days post-mortem. Samples were cooled during 

cutting and handling. (2) Fibrin gels with magnetically aligned fibrils were produced in the lab. 

Human plasminogen-free fibrinogen (EMD Millipore, Billerica, Massachusetts, USA, product 

no. 34157) and thrombin (Sigma-Aldrich, St. Louis, MO, product no. T4648) were mixed and 

polymerized following steps outlined in Namani et al. (2012). Polymerization and alignment of 

the fibrin-thrombin mixture was performed within the bore of an 11.7 T MRI magnet 

(Agilent/Magnex, Santa Clara, CA). Polymerization time was 90 minutes total; 60 minutes semi-

immersed in a custom built thermal chamber filled with ice at 0° C, and the remaining 30 

minutes in the same bath while being warmed with water tubing at 40°C. 
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Figure 3.2: Schematic diagrams of: (a) cylindrical specimen with axial excitation; (b) cube specimen with 

tangential excitation in a plane parallel to the fiber direction to induce “fast” shear waves. (c) cube specimen 

with tangential excitation perpendicular to the dominant fiber direction to induce “slow” shear waves. (d) 

photograph of cylindrical turkey breast specimen embedded in gelatin (corresponding to panel a). (e) 

photograph of experimental setup for cube turkey breast (corresponding to panel b; actuator on left). (f) 

photograph of a cylindrical sample placed in RF coil with actuator on right. 

Cylindrical (45 mm diameter) samples of both turkey breast and fibrin gel were embedded in a 

gelatin mixture including food grade gelatin (Knox) and 50% / 50% water/glycerol (Okamoto et 

al., 2011a) in a cylindrical container (48 mm inner diameter; Fig. 3.2 (a, d, f)). Sample thickness 

ranged from 13-25 mm and the remaining length of the cylinder was filled with the gelatin 
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mixture. Samples were imaged at ambient (~20 oC) temperature. A 3-mm diameter Delrin rod 

embedded in the center of the specimen provided axial excitation. A piezoelectric actuator 

(Model APA100M-NM, CEDRAT Technologies, Meylan, France) powered by a low-current, 

high-voltage amplifier (LA75C, Cedrat Techologies, Meylan, France) was used to excite 

harmonic vibrations of the axial rod. This setup produced shear waves with approximately radial 

propagation (𝒏 ≈ 𝒆𝒓).  

Turkey breast cube samples consisted of a ~25x25x25mm3 cube of tissue embedded in gelatin in 

a 31x31x25 mm3 (LxWxH) plastic container, Fig. 3.2 (b ,c ,e). The tissue cubes were cut at a 

~45º angle relative to the fiber direction and placed in the container so that fibers were oriented 

~45º downward from the top surface. Aligned fibrin gel cube samples were produced by 

polymerizing the samples directly in a 20x20x20 mm3 hollow Delrin cube tilted at an angle of 

45º from the 𝑩0 field. An epoxy composite paddle with 80 grit sandpaper was pressed onto the 

top surface of the sample as shown in Fig. 3.2 (e) and horizontal excitation was applied using the 

piezo actuator described above, producing shear waves propagating downward (𝒏 ≈ −𝒆𝒚). 

Frequencies of actuation were chosen to produce multiple wavelengths in the specimen, and 

multiple voxels per wavelength. For turkey breast, a consistent 800 Hz was chosen across all 

experimental specimens. For fibrin gels, 600 Hz was chosen for cubic specimens and 200 Hz 

was chosen for cylindrical specimens. Two excitation cases (Fig. 3.2 (b, c)) were applied to each 

cube sample. In one case (Fig. 3.2 (b)) the actuation direction, 𝒎,  was aligned with 𝒎𝒔 = 𝒏×𝒂 

to induce slow shear waves and in the other case (Fig. 3.2 (c)) the actuation was aligned with 

𝒎𝒇 = 𝒏 ×𝒎𝒔 to induce fast shear waves.  
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Imaging was performed using a 4.7 T magnet (Oxford Instruments, Oxfordshire, UK) with an 

Agilent/Varian DirectDrive imaging system. Images of shear-wave propagation in ex vivo turkey 

breast and aligned fibrin gel were acquired using previously-described spin-echo MRE 

sequences (Clayton et al., 2011a). MRE imaging parameters were: voxel size = 1.0 mm isotropic 

(all cylindrical samples, turkey breast cubes), voxel size = 0.5 mm (fibrin gel cubes), TR = 1000 

ms, TE = 28-39 ms. Image data were interpolated to 0.5x0.5x1.0 mm and 0.25x0.25x0.5 mm 

resolution for analysis. Multiple (2-8) sinusoidal motion encoding cycles of gradient strength 10-

12 G/cm were synchronized with motion to induce phase contrast proportional to displacement. 

Eight temporal samples were acquired per sinusoidal excitation period, by incrementing the 

phase delay between the imposed vibration and acquisition. To verify the average fiber 

orientation in turkey breast, diffusion tensor imaging (DTI) was performed in the same imaging 

session as MRE (30 directions, b=2050 s/mm2). Figure 3.3 shows a three-dimensional diffusion 

tensor field to indicate the fiber orientation inside a representative cube turkey breast sample. 

The relatively sparse networks of aligned fibrils in fibrin gels do not constrain water diffusion 

and thus DTI was not performed on the fibrin gels. Instead the direction of the magnetic field 

during the magnetic aligning process was physically marked on the sample container and was 

noted during all tests. 
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Figure 3.3: Fiber orientation estimated by DTI in (a) cylindrical and (b) cube specimens of turkey breast. 

Maximum principal diffusion direction vectors (cyan) are superimposed on fractional anisotropy maps (FA, 

grey) for each voxel. 

 

For comparison with MRE, estimates of viscoelastic shear modulus from dynamic shear testing 

(DST) were obtained in separate circular samples of turkey breast following techniques in (Feng 

et al., 2013b; Namani et al., 2012). DST was performed on 𝑁=33 turkey breast samples with an 

average sample thickness of 3.91 ± 0.68 mm and sample diameter of 15.3 ± 1.0 mm in both 

parallel and perpendicular orientations of turkey breast and averaged over the frequencies of 30-

40 Hz. This limited frequency range was chosen to avoid inertial effects (shear waves) in the 

sample. The displacement amplitude for DST in this frequency range was 25 μm, corresponding 

to strain magnitudes in the range from 0.005 – 0.01 (0.5% - 1.0%). 

3.3.3 Image analysis: characterization of anisotropic wave propagation 

First, for a simple measure of anisotropy, radially-propagating shear waves in anisotropic 

cylindrical specimens were fitted to ellipses (Fig. 3.4). Peaks of the elliptical wavefront in 

multiple directions were manually picked on the 2D image of axial (𝑤) displacement in the xy 
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plane, in five contiguous slices from each sample. Ellipses were fitted using an algorithm that 

minimized the squared-error between the curves and the picked points (Fitzgibbon et al., 1999). 

 

Figure 3.4: Wave propagation in axially-excited, cylindrical specimens. (a-c) Representative images of 

elliptical waves exhibiting direction-dependent propagation with different wave speeds in different directions. 

(a) Representative sample #1 of turkey breast, 800 Hz; (b) Representative sample #2 of turkey breast, 800 Hz; 

(c) aligned fibrin gel, 200 Hz. (d) Circular waves in (isotropic) gelatin, 200 Hz. (e) Ellipses were fitted to the 

wave images (white and black lines in b-d) and the average ratios of their semi-axes are shown for the 

different materials. 

Second, directional filtering was used to isolate slow and fast shear waves in specific 

propagation and polarization directions. For each propagation direction, 𝒏, and fiber orientation 

vector 𝒂, two shear waves exist, with polarization directions 𝒎𝒔  and 𝒎𝒇 obtained from Eq. 3.1 

and Eq. 3.3. The displacement field is separated into components of slow and fast shear waves 

by performing a dot product between the displacement field and the normalized slow and fast 



45 

 

polarization directions: 𝑢𝑠 =  𝒖 ∙ 𝒎𝒔  and 𝑢𝑓 = 𝒖 ∙ 𝒎𝒇 (Tweten et al., 2015). The displacement 

components 𝑢𝑠 and 𝑢𝑓 were then directionally filtered about the propagation direction, 𝒏, using 

directional filters with a cos2 dependence on angle (Knutsson et al., 1994; Manduca et al., 2003). 

For cylindrical samples, wave fields were directionally filtered in 16 different directions, at 

angles of  휃0𝑚 =
𝑚𝜋

8
 (𝑚 = 1,2, … ,16) from the x-axis in the xy-plane normal to the cylinder 

axis, using a spatial filter defined by:  

𝑓(휃) = {cos2 4(휃 − 휃0𝑚),   
0

|휃 − 휃0𝑚| ≤ 𝜋/8
|휃 − 휃0𝑚| > 𝜋/8

    (3.5) 

In these analyses, the unit vector 𝒂 (the normal to the plane of isotropy, or fiber axis, which 

determines the polarization directions, 𝒎𝒔 and 𝒎𝒇, and the angle, 휃) was estimated from the 

average of the major axes of the fitted ellipses for each sample. For comparison, the dominant 

fiber orientation was also estimated from the average maximum principal diffusion eigenvector, 

measured by DTI, of each voxel in the relevant slices. Figs. 3.5 (b, c) and 3.6 (c, d) show 

examples of directionally filtered waves in cylindrical and cube samples, respectively. From 

directionally filtered wave fields, peaks and valleys were selected manually to capture the 

wavelength. The wavelength in each of the 16 directions was averaged over 5 representative 

slices. Values of average wave speed as a function of angle, 휃, were fitted to Eq. 3.2 using a 

weighted, least-squares fitting algorithm to estimate the slow wave-speed parameters, μ and 𝜙. 
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Figure 3.5: Wave propagation in a cylindrically aligned fibrin gel (200 Hz actuation) specimen, illustrating 

analysis by directional filtering. (a) Elliptical waves exhibiting direction dependent propagation with different 

wave speeds in different directions. (b-c) Displacement field after directional filtering in each of two 

propagation directions specified by angle, θ, from the dominant fiber direction. (b) θ = 0º and (c) θ = 90º. 

 

 

 

Figure 3.6: Wave propagation in a cube specimen of aligned fibrin with dominant fiber direction at 45° from 

horizontal (Figures 3.1(b,c)), illustrating analysis by directional filtering.  (a) Excitation (600 Hz) in the 𝒎𝒇 

direction (with a component along the fibers, as in Figure 3.1(b)) leads to predominantly downward-

propagating fast shear waves. (b) Excitation (600 Hz) in the 𝒎𝒔 direction, perpendicular to the fibers, as in 

Figure 3.1(c), leads to predominantly downward-propagating slow shear waves. Panels (c,d): Directionally 

filtered waves in the [0 -1 0] direction corresponding to panels (a,b) respectively. 
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To characterize dissipative (viscous) effects, attenuation per wavelength was found from the 

ratios of amplitudes of successive peaks in directionally filtered waves in both experimental 

displacement data and in simulated displacement fields (Tweten et al, 2015). The method is 

illustrated in Figure 3.7. To avoid boundary effects, ratios were estimated only for cases in which 

multiple wavelengths were present, for peaks that were at least a half wavelength from the 

boundary (this restriction limited attenuation measurements to slow shear waves). The loss factor 

휂 = μ"/μ′  was estimated from the attenuation ratio using standard formulae (Auld, 1990).The 

attenuation ratio, 𝑟,  is related to the loss factor, 휂 by the following equations (Auld, 1990): 

휂 =
2 𝛾

1−𝛾2,   𝛾 =
−ln (𝑟)

2𝜋
.    (3.6a-b)  
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Figure 3.7: Shear wave attenuation. (a) Wave propagation (200 Hz) in a cylindrical specimen of aligned fibrin 

gel. (b) Directionally filtered slow-wave (𝒖𝒔, 𝜽 = 𝟗𝟎°) displacement in the fibrin specimen shown in (a), as a 

function of radial position. Markers show successive peaks used for attenuation ratio. (c) Wave propagation 

in a finite element (COMSOL) simulation of an ITI material excited at 200 Hz with estimated parameters for 

fibrin gel, including a loss factor of 𝜼 = 0.2. (d) Directionally filtered slow-wave (𝒖𝒔, 𝜽 = 𝟗𝟎°) displacement in 

the simulation described in (c). (e) Wave propagation (800 Hz) in a cylindrical specimen of turkey breast. (f) 

Directionally filtered slow-wave (𝒖𝒔, 𝜽 = 𝟗𝟎°) displacement in the turkey breast specimen shown in (e). (g) 

Wave propagation in a finite simulation of an ITI material excited at 800 Hz, with estimated parameters for 

turkey breast, including a loss factor of 𝜼 = 0.4. (h) Directionally filtered slow-wave (𝒖𝒔, 𝜽 = 𝟗𝟎°) 
displacement in the simulation described in (g). 

3.4 Results 

3.4.1 Imaging experiments 

Wave patterns consistent with a transversely isotropic (TI) material model were observed in both 

cylindrical and cube samples. Axially-excited cylindrical samples (actuation in the 𝒎𝒔 direction) 

exhibited the slow shear-wave patterns predicted by mathematical models (Tweten et al., 2015). 

Elliptical waves were observed in specimens with a dominant fiber orientation (Fig. 3.4 (a, b, c)), 

and circular waves were observed in isotropic gel (Fig. 3.4 (d)), in planes perpendicular to the 

cylinder axis (Fig. 3.2 (a)). For ellipses fitted to radially-propagating wavefronts in axially 

excited cylindrical specimens, the ratio of major semi-axes and minor semi-axes was used to 
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describe shear anisotropy.  The average ratio of semi-axes was found to be 1.65 ± 0.24 for turkey 

breast (800 Hz, n=4), 1.37 ± 0.14 for aligned fibrin (200 Hz, n = 3), and 1.03 ± 0.01 for isotropic 

gelatin (200 Hz, n = 3). 

 

Analysis of the directionally-filtered wave speeds in cylindrical specimens (Fig 3.8 and Fig. 

3.10(a, c)) revealed dependence of slow shear-wave speed, 𝑐𝑠, on the angle between fiber 

orientation and propagation direction, 휃 (Fig. 3.5).  The observed dependence is consistent with 

theoretical predictions based on Eq. 2 (red curves in Fig 3.8) with fitted parameters. The 

parameters estimated for turkey breast were found to be μ = 33.1 ± 11.4 kPa and 𝜙 = 1.3 ±

 0.7 for turkey breast (800 Hz, n = 4). For aligned fibrin gel, μ = 1.1 ± 0.5 kPa and 𝜙 = 1.1 ±

 0.2 (200 Hz, n = 3). Close agreement between average fiber direction estimated from DTI 

(turkey breast) or magnetically induced alignment direction (fibrin) and the direction of fastest 

shear-wave propagation confirms that aligned fibers produce mechanical anisotropy. 
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Figure 3.8: Average (± std. deviation) slow shear-wave speeds (blue *) plotted vs the angle between 

propagation direction and the horizontal axis of the cylinder, in cylindrical specimens. (a) Representative 

sample #1 of turkey breast (800 Hz). (b) Representative sample #2 of turkey breast (800 Hz). (c) Aligned 

fibrin gel (200 Hz). (d) Gelatin (200 Hz). Each plot is for a single sample; average values for each direction 

are computed over 5 slices. Theoretical curves (red lines) are obtained from Eq. 3.2 using values of 𝝁 and 𝝓 

estimated by weighted, least-squares fitting for each sample. 
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Figure 3.9: Wave propagation visualized by MRE in cube samples with different directions of excitation 

relative to fiber orientation. Fibers are oriented approximately 45° from horizontal as in Figure 2(b,c). Top 

panels (a,b) show fast and slow wave propagation in turkey breast actuated at 800 Hz and bottom panels (c,d) 

show aligned fibrin actuated at 600 Hz. Left panels (a,c): Actuation in the 𝒎𝒇  direction with a component 

along the fibers (as in Figure 3.2(b)) leads to downward-propagating, fast shear waves. Right panels (b,d): 

Actuation in the 𝒎𝒔 direction, perpendicular to the fibers (as in Figure 3.2(c) leads to downward-

propagating, slow shear waves. 
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Figure 3.10: Summary of shear-wave speeds in turkey breast (a, b) and aligned fibrin (c, d) at different angles 

θ of propagation direction relative to fiber direction. (a) Slow shear-wave speed in cylindrical turkey breast 

specimens (800 Hz, N = 4 samples). Estimated material parameters: 𝝁 = 𝟑𝟑. 𝟏 ± 𝟏𝟏. 𝟒 kPa,  𝝓 = 𝟏. 𝟑 ± 𝟎. 𝟕 

(b) Fast and slow shear-wave speeds in cube specimens (800 Hz, N=5). Estimated parameters:  𝝁 = 𝟑𝟑. 𝟐 ±
𝟏𝟔. 𝟕, 𝜻 = 𝟗. 𝟐 ± 𝟒. 𝟗. (c) Slow shear-wave speeds in a cylindrical fibrin specimen (200 Hz, N=3). Estimated 

material parameters: 𝝁 = 𝟏. 𝟏 ± 𝟎. 𝟓 kPa, 𝝓 = 𝟏. 𝟏 ± 𝟎. 𝟐 (d) Average fast and slow shear-wave speeds in a 

cube specimen of aligned fibrin (600 Hz, N=1). Estimated parameters: 𝝁 = 𝟒. 𝟕 kPa, 𝜻 = 𝟐. 𝟕. 

 

In cube specimens, strong evidence for the importance of both slow and fast shear waves is 

provided by the dependence of propagation speed on polarization direction. Polarization 
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direction was controlled by actuation direction. When the actuation direction was in the plane 

containing the fibers and at an angle of ~45° from the fiber axis in this plane, displacements were 

induced in the 𝒎𝒇 direction. In this case, a substantial component of stretch is in the direction 

parallel to the fibers, the cubes exhibited primarily fast shear waves (Figs. 3.6(a) and 3.9(a,c)). In 

contrast, when the polarization direction was perpendicular to the fibers, in the 𝒎𝒔 direction, the 

cube exhibited slow shear waves (Figs. 3.6(b) and 3.9(b,d)). The difference between fast and 

slow shear wave speed in this sample is largely due to tensile anisotropy, characterized by the 

parameter 휁. This parameter was estimated from the ratio between slow and fast shear-wave 

speeds (Fig 3.10(b,d)), using Eqs. 3.2 and 3.4. Because Eqs. 3.2 and 3.4 contain three unknown 

parameters (after measuring the slow and fast wave speed and θ=45°), the average value of 𝜙 

estimated from cylindrical specimens was used to solve for both μ and 휁. For turkey breast 

cubes, the estimated parameters are μ = 32.2 ± 16.8 kPa and 휁 = 9.2 ± 4.9 (800 Hz, n = 5) 

and for aligned fibrin gel the estimated parameters are μ = 4.5 kPa and  휁 = 2.7 (200 Hz, n = 1). 

 

The attenuation per wavelength (ratio between successive peaks) for slow shear waves in turkey 

breast was 𝑟 = 0.27 ± 0.18, corresponding to a loss factor of 휂 = μ"/μ′ = 0.43 ± 0.17 (Auld, 

1990). In fibrin the attenuation per wavelength was  𝑟 = 0.50 ± 0.21 (휂 = 0.22 ± 0.11) and in 

gelatin the attenuation ratio was  𝑟 = 0.67 ± 0.13 (휂 = 0.13 ± 0.06). No statistically significant 

differences in attenuation per wavelength were found for different directions of propagation in 

MRE. 
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Parameter estimates are summarized in Table 3.1.  

 Turkey breast Aligned fibrin gel 

 

Cylinder  
(800 Hz, N=4) 

Cube  
(800 Hz, N=5) 

Cylinder  
(200 Hz, N=3) 

Cube  
(600 Hz, N=1) 

μ  
kPa 33.1 ± 11.4 32.2 ± 16.8 1.1 ± 0.5 4.7 

ϕ 1.3 ± 0.7 NA* 1.1  ± 0.2 NA* 

ζ  NA 9.2 ± 4.9  NA 2.7 

η 0.43 ± 0.17 0.22 ± 0.11 
Table 3.1: Summary of incompressible, transversely isotropic (ITI) material parameter estimates from MRE 

of turkey breast muscle tissue and aligned fibrin gel. Parameters are: baseline shear modulus, μ; shear 

anisotropy, 𝝓; tensile anisotropy, 𝜻; loss factor, 𝜼 .(* To estimate 𝜻 in cube specimens, 𝝓 was set to the value 

measured in cylindrical specimens.) 

The amplitudes of slow and fast shear waves turkey breast and fibrin are summarized in Table 

3.2. 

 Turkey breast Aligned fibrin gel 

 

Cylinder 
(800 Hz, N=4) 

Cube  
(800 Hz, N=5) 

Cylinder  
(200 Hz, N=3) 

Cube  
(600 Hz, N=1) 

us 
(μm) 6.3 ± 1.2 4.9 ± 2.4 4.9 ± 0.7 2.2 

uf 
(μm) NA 3.7 ± 2.7 NA 3.4 
Table 3.2: Average amplitudes of displacements in slow (𝒖𝒔) and fast (𝒖𝒇) shear waves observed in cylindrical 

and cube specimens. 

3.4.2 Direct mechanical characterization 

Parallel and perpendicular shear moduli for turkey breast (𝑁 =  33) were averaged over the 

frequencies from 30-40 Hz using DST. The storage modulus was found to be 𝜇∥
′ =4.8 ± 1.6 kPa 

when fibers were aligned parallel to the direction of imposed shear displacement and 𝜇⊥
′ = 3.2 ± 

1.1 kPa when fibers were aligned perpendicular to the shear displacement.  The loss modulus 

was 𝜇∥
′′ =2.2 ± 0.7 kPa for the parallel orientation and 𝜇⊥

′′ =1.1 ± 0.3 kPa for the perpendicular 

orientation. The ratio between parallel and perpendicular moduli 𝜇∥
′/𝜇⊥

′ =1.5 ± 0.3 for storage 
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modulus, 𝜇∥
′′/𝜇⊥

′′ =2.0 ± 0.3 for loss modulus, and 𝜇∥/𝜇⊥=1.6 ± 0.3 (𝜙 = 0.6 ± 0.3) for the 

magnitude. Fig. 3.11 summarizes these data. 

 

Figure 3.11: Storage (elastic) and loss (viscous) components of the complex shear modulus μ∗ = μ′ + 𝒊μ′′ of 

turkey breast (N=33, 30-40 Hz) measured by direct mechanical testing (DST). The ratio of the storage moduli 

was 𝝁∥
′/𝝁⊥

′ =1.5 ± 0.3, the ratio of the loss moduli was 𝝁∥
′′/𝝁⊥

′′ =2.0 ± 0.3, and the ratio of the magnitudes was 

𝝁∥/𝝁⊥ =1.6 ± 0.3 (𝝓 = 𝟎. 𝟔 ± 𝟎. 𝟑). 

 

3.5 Discussion 
In this experimental study, shear waves were imaged using MR elastography procedures in both 

muscle tissue ex vivo (turkey breast) and aligned fibrin gel. In axially-excited cylindrical 

samples, slow shear waves were found to propagate with elliptical wave fronts through both 

transversely isotropic materials, and with circular wave fronts in an isotropic medium (gelatin). 

In cube samples excited by tangential vibration on one face, measurements of slow and fast shear 

waves with differing polarization direction showed the effects of tensile anisotropy on wave 

speed. These results confirm that MRE can detect anisotropic shear moduli and tensile moduli in 

these two prototypical soft, fibrous, materials.  
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Direct mechanical tests (DST) in the current study confirmed mechanical anisotropy in turkey 

breast. Values of the shear anisotropy ratio from DST (turkey breast 𝜙~0.6, or 𝜇∥/𝜇⊥~1.6  at 

30-40 Hz) were comparable to values estimated from MRE (𝜙~1.3, or  𝜇∥/𝜇⊥~2.3, at 800 Hz). 

While both tests give ratios of shear modulus near 2, the fact that MRE estimates of anisotropy at 

800 Hz are about 40% higher than DST at 30-40 Hz must be acknowledged. This difference may 

reflect limitations of each method. Accuracy and precision of MRE estimates are limited by the 

practical challenges of wavelength estimation from discretely sampled data with limited 

resolution. Results from DST may be affected by slip, nonlinearity or non-affine deformation. 

Alternatively, shear anisotropy may truly depend on frequency; the frequency ranges of the 

instruments in this study precluded a direct test of this possibility, but it is a topic for future 

investigation. Although DST of turkey breast was done at much lower frequencies (30-40 Hz) 

than in MRE (800 Hz), the values of the baseline storage modulus (𝜇~4 kPa at 30 Hz and 𝜇~33 

kPa at 800 Hz) are consistent with the expected increase in modulus with frequency in 

viscoelastic muscle tissue. Both DST and MRE estimates of 𝜇 are consistent with a previous 

MRE study of the viscoelastic properties of bovine muscle ex vivo, in which estimates of 

(isotropic) shear modulus increase from 𝜇~12 kPa at 200 Hz to 𝜇~35 kPa at 800 Hz (Riek et al., 

2011). 

 

In a previous study of aligned fibrin (Namani et al., 2012a), DST also detected anisotropy in 

shear (𝜙~0.9, at 20-40 Hz). This result is similar to estimates of shear anisotropy of aligned 

fibrin from MRE in the current study (𝜙~0.6 from measured wavelengths at 200 Hz). Also, the 

tensile anisotropy parameter for aligned fibrin estimated from MRE (휁~2.1 at 600 Hz) in this 
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study is comparable to the tensile anisotropy estimated from asymmetric indentation of aligned 

fibrin (휁~3.5, quasi-static) in previous work (Namani et al., 2012a).   

 

The current results demonstrate the ability to both (1) characterize two distinct shear-wave types 

in soft transversely isotropic materials using MRE, and (2) use these shear wave measurements 

to estimate three elastic parameters. Notably, tensile anisotropy can cause large differences 

between slow and fast shear-wave speeds. Both fast and slow shear waves exhibit direction-

dependent propagation speed. For slow shear waves, only shear anisotropy causes this directional 

dependence; tensile anisotropy plays no role in slow shear wave speed. In contrast, the 

directional dependence of fast shear wave speed is due to both shear anisotropy and tensile 

anisotropy. The estimation of mechanical parameters by directional filtering and isolation of 

separate shear-wave components is robust to noise (Tweten et al., 2015), since it does not rely on 

multiple numerical derivatives.  

 

Romano et al. (2012, 2014) also used directional filters to isolate shear wave components. These 

authors analyzed wave speeds for a set of propagation and polarization directions aligned with a 

specific fiber tract, and estimated five to nine components of the elasticity tensor.  For nearly-

incompressible materials, elements of the elasticity tensor will have widely varying magnitude, 

as some elements approach infinity due to the contribution of the bulk modulus (see Appendix 

A). In the current approach, only three parameters (𝜇, 𝜙, and 휁) are sought, which for 

incompressible materials, completely specify the compliance tensor. An advantage of the current 
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approach is that components of the compliance tensor converge to finite values as the bulk 

modulus approaches infinity.  

 

The current material model is constrained by the assumptions of linear elasticity and 

incompressibility. Neither dissipation (viscosity, or complex shear modulus) nor nonlinearity is 

addressed comprehensively. The deformations in the current study are small (<1% strain) and 

thus linear theory is applicable. Though the focus of the current study is on elastic anisotropy, 

viscoelastic effects are clearly important for describing the complete response of tissue (Clayton 

et al., 2011b; Green et al., 2008; Qin et al., 2013). Dissipative effects are often attributed to fluid 

viscosity and approximated as isotropic, in which case the directional dependence of shear wave 

speeds can be attributed to anisotropy of elastic moduli. While this model was not rigorously 

tested in these materials, our observations of wave attenuation in MRE are consistent with an 

approximately isotropic loss factor (Fig. 3.7). Current estimates of loss factor from attenuation of 

waves in MRE in turkey breast (휂 =0.43) are similar to those observed in prior studies of muscle 

(휂 ≈0.4, Riek et al., 2011), as well as to the ratios of loss and storage moduli estimated by DST 

(Figure 3.10). Current estimates from MRE in fibrin (휂 =0.22) approximate those from a prior 

study of fibrin (휂 ≈0.2; Namani et al., 2012). The estimated loss factor in gelatin (휂 =0.13) also 

agrees with prior observations (휂 ≈0.1; Okamoto et al., 2011).  The elastic constants estimated 

here may be interpreted as effective moduli at the given experimental frequency. In future work, 

complex moduli could be determined as functions of frequency.  
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The current study focused on the physics of wave propagation in ITI materials, and hence 

simple, manual methods were used to estimate wavelength and wave speed. This approach was 

chosen to separate the characterization of physical phenomena from the performance of 

automated algorithms. Future studies and related work (Tweten et al., 2015) will address the 

development of robust, automated methods for estimating wavelengths of slow and fast shear 

waves in TI materials.  

 

Samples of roughly uniform material were used in this study. The current approach, in which the 

wavelength is estimated and averaged over five slices and then the average substituted into the 

equations to estimate the shear moduli, is adequate for globally homogenous materials, such as 

ex vivo specimens and phantoms. In actual tissue measurements in vivo, tissue homogeneity may 

only be assumed very locally. More work is needed to address parameter estimation in 

heterogeneous materials such as brain tissue in vivo. In such materials, it is critically important 

that both slow and fast shear waves propagating in multiple directions are present in a given 

volume, in order to obtain valid estimates of transversely anisotropic material properties in that 

region. 

3.6 Conclusion 
Both slow and fast shear waves propagate in soft, fibrous, materials and can be imaged by MRE. 

Shear-wave speed depends on the angles between propagation direction, polarization direction, 

and fiber direction. Three elastic parameters may be estimated from these data, allowing for 

concise characterization of nearly-incompressible, transversely isotropic materials. Such material 
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characterization can lead to improved modeling of white matter in the brain and a greater 

understanding of TBI. 
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Chapter 4: Measurement of anisotropic 

mechanical properties in porcine brain white 

matter ex vivo using magnetic resonance 

elastography 
 

 

4.1 Overview 
In this chapter, methods established in Chapter 3 to characterize anisotropic shear moduli were 

applied to white matter brain tissue ex vivo. These results have particular value for use in finite 

element modeling of brain biomechanics and traumatic brain injury (TBI). The current finding of 

anisotropy in white matter (WM) brain tissue adds to existing work on this topic in the literature, 

however, this study employs a unique implementation based on magnetic resonance elastography 

(MRE). “Slow” (pure transverse) shear waves are propagated at 100 Hz, 200 Hz and 300 Hz 

through sections of ex vivo porcine brain tissue including both WM and grey matter. Shear waves 

were found to propagate with elliptical fronts, consistent with TI material behavior. Regions of 

interest (ROI) were created to find local shear wavelengths parallel and perpendicular to the fiber 

orientation. Finite element (FE) simulations of a TI material with a range of plausible shear 

modulus (𝜇2) and shear anisotropy parameters (𝜙) were performed and the results were analyzed 

in the same fashion as the experimental case. Parameters of the FE simulations which most closely 

matched each experiment were taken to represent the mechanical properties of that particular 

sample. Using this approach, WM in the ex vivo porcine brain was found to be mildly anisotropic 

in shear with estimates of minimum shear modulus (actuation frequencies listed in parenthesis): 
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𝜇2 =1.04 ± 0.12 kPa (at 100 Hz), 𝜇2 =1.94 ± 0.29 kPa (at 200 Hz), and 𝜇2 =2.88 ± 0.34 kPa (at 

300 Hz) and corresponding shear anisotropy factors of 𝜙 =0.27 ± 0.09 (at 100 Hz), 𝜙 =0.29 ± 

0.14 (at 200 Hz) and 𝜙 =0.34 ± 0.13 (at 300 Hz). Future MRE studies will focus on tensile 

anisotropy, which will require both slow and fast shear waves for accurate estimation. 

The material presented in this chapter is published in the Journal of the Mechanical Behavior of 

Biomedical Materials (Schmidt et al., 2018). 

4.2 Introduction 
Traumatic brain injury (TBI) is prevalent in the United States (Coronado et al., 2011) and 

worldwide. During TBI, impacts to the head lead to large skull accelerations, and brain tissue is 

deformed in tension and shear (Bayly et al., 2005; Margulies and Thibault, 1992). Accurate 

models are needed to fully understand the mechanism of tissue damage from impacts. Finite 

element (FE) models are often proposed as a method to predict injurious conditions (Ueno et al., 

1995; Zhang et al., 2004). These methods require accurate knowledge of brain tissue properties 

in shear and tension, including their directional properties.  

 

The response of brain tissue in shear was observed to be anisotropic under both small (Feng et 

al., 2013b) and large deformations (Feng et al., 2017); these authors applied a transversely 

isotropic model to interpret their data. Velardi et al. (2006) studied the experimental behavior of 

ex vivo porcine brain tissue in extension and proposed an anisotropic, hyperelastic constitutive 

model to explain their data. Prange and Margulies (2002) studied ex vivo porcine and human 

brain tissue and found a directional dependence in WM. Ning et al. (2006) characterized 
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brainstem experimental data as a transversely isotropic, viscoelastic material and compared 

observed behavior to the predictions of a corresponding numerical model. 

 

MRE allows the estimation of mechanical properties in soft tissue from images of shear waves 

(Muthupillai et al., 1995a). MRE was originally developed using isotropic, elastic material 

models, which have evolved to include viscoelastic effects. Such isotropic models, either elastic 

or viscoelastic, have been applied in MRE studies involving liver (Asbach et al., 2008; Klatt et 

al., 2010a; Mariappan et al., 2009), breast (Sinkus et al., 2007) and brain (Atay et al., 2008; 

Clayton et al., 2011b; Green et al., 2008; Johnson et al., 2013). While most MRE studies assume 

“local homogeneity” of material properties, tissue heterogeneity has also been explored by Van 

Houten et al. (2001), using an inversion technique known as non-linear inversion. 

 

The possibility of mechanical anisotropy in biological tissues should also be addressed by MRE. 

A transversely isotropic (TI) model is the simplest anisotropic model, with a single fiber 

orientation defining a plane of isotropy. Five parameters are required to completely define a 

general elastic TI material, while three parameters are sufficient to define an incompressible TI 

material. Recently, several MRE studies based on anisotropic material models have been 

performed. Most of this work has focused on estimation of two different shear moduli in planes 

parallel and perpendicular to the fiber orientation (2-parameter models). Sinkus et al. (2005) has 

published studies of shear anisotropy in breast tissue; Green et al. (2013), Wuerfel et al. (2010), 

Papazoglou et al. (2006), Qin et al. (2013) have studied muscle tissue. Shear anisotropy has also 
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been estimated in anisotropic biomaterials: Qin et al. (2013) studied anisotropic phantoms of a 

composite material and Namani et al. (2009) studied aligned fibrin gels. 

 

More complete transversely isotropic models account for both shear and tensile anisotropy. 

Romano et al. (2012) estimated five stiffness parameters in brain white matter corticospinal 

tracts utilizing spatial-spectral filters, Helmholtz decomposition, and waveguides. Three-

parameter models have recently emerged as more compact, but still accurate, models of soft 

tissue, which is nearly incompressible. Guo et al. (2015) estimated three parameters in skeletal 

muscle using inversions of the curl of the displacement field. Tweten et al. (2017, 2015) used 

finite element (FE) simulations to establish basic requirements for estimation of three material 

parameters. Schmidt et al. (2016) measured both “slow” and “fast” shear waves in muscle tissue 

ex vivo and aligned fibrin gels, and used complementary information in these fields to estimate 

all three material parameters.  

 

In the human brain, Romano et al. (2012) obtained estimates of five anisotropic stiffness 

parameters in corticospinal tracts in human subjects in vivo, but such estimates remain 

speculative since parameter values have not been confirmed by direct mechanical test or 

comparison to simulation. Qualitatively, however, anisotropy of WM has been detected by MRE 

in vivo in the human brain by Anderson et al. (2016), who used multiple excitation methods and 

showed that estimates of isotropic material parameters depended on the directional properties of 

the wave field. Still missing are clear estimates of a minimal set of intrinsic, anisotropic material 
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parameters for WM brain tissue, in which confidence has been established by comparison to 

direct test and simulations. 

 

The goal of the current study is to quantify the anisotropic shear properties of ex vivo WM using 

MRE, by estimating parameters of simulations to fit experimental data. Shear waves were 

visualized and measured in ex vivo porcine WM embedded in gelatin (experiment) and in 

numerical (FE) simulations of shear waves in a TI material embedded in an isotropic material. 

Results from simulations were compared to experiment to estimate anisotropic shear moduli over 

multiple frequencies. By comparing experimental wave fields to numerical simulations that 

incorporate material anisotropy in a sub-domain of a finite-size sample, typical assumptions 

underlying estimates of material properties (i.e., an unbounded domain with uniform, isotropic 

properties) are not necessary. The results indicate mild, but non-negligible, mechanical 

anisotropy of WM brain tissue in shear. 

4.3 Methods 

4.3.1 Theory 

In an incompressible TI, linear, elastic material model, valid for small deformations, the three 

independent material parameters can be defined by shear modulus, 𝜇2, shear anisotropy, (𝜙 =

 
𝜇1

𝜇2
⁄  − 1), and tensile anisotropy (휁 =  

𝐸1
𝐸2

⁄ − 1), where 𝜇1 is the shear modulus that 

governs shear in planes containing the dominant fiber axis (the normal to the plane of isotropy, 

𝒂), 𝜇2 is the minimum shear modulus governing shear in the plane of isotropy (normal to the 

fiber axis), 𝐸1 is the tensile modulus in the fiber direction and 𝐸2 is the tensile modulus in 

directions perpendicular to fiber axis (Jones, 1998; Schmidt et al., 2016; Spencer, 1984; Tweten 
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et al., 2015). Two types of shear waves, dependent on these parameters, are possible in 

incompressible TI materials: (i) “slow” (pure transverse) waves, where the polarization of the 

shear wave, 𝒎𝒔, is perpendicular to both the wave propagation direction, 𝒏, and the fiber 

direction, 𝒂; and (ii) “fast” (quasi-transverse) waves, where the polarization of the shear wave, 

𝒎𝒇, is perpendicular to the polarization of the slow shear wave, and lies in the plane defined by 

𝒏 and 𝒂. Wave speeds of slow and fast shear waves can be defined, respectively, by the 

following expressions (Schmidt et al., 2016; Tweten et al., 2015):  

𝑐𝑠
2 = (

𝜇2
𝜌⁄ ) (1 + 𝜙 cos2 휃),     (4.1) 

𝑐𝑓
2 = (

𝜇2
𝜌⁄ )(1 + 𝜙 cos2 2휃 + 휁 sin2 2휃).    (4.2) 

In the simplest viscoelastic model of TI material behavior, dissipation can be modeled by an 

isotropic loss factor 휂, so that each real-valued, elastic modulus, for example 𝜇2, is replaced by a 

complex-valued, viscoelastic modulus 𝜇2
∗ = 𝜇2

′ + 𝑖𝜇2
′′, where 휂 = 𝜇2

′′/𝜇2
′. 

4.3.1 Experiments 

4.3.1.1 Sample preparation 

Disk-shaped samples (~42mm diameter, ~14 mm thick), consisting of both WM and GM, were 

dissected from the corpus callosum and associated superior cortical GM in female domestic pigs 

(N=8, age 3 months, 40-45 kg) immediately after euthanasia (Fig.4.1, a-d). Samples were 

embedded in gelatin mixed with 50% water and 50% glycerol (Okamoto et al., 2011b) in a 

cylindrical container (48 mm inner diameter) The embedded samples were punctured axially by 

a 3-mm diameter plastic rod (Fig. 4.1,e). A piezoelectric actuator (APA150M, Cedrat 

Technologies, Meylan, France) powered by a low-current, high-voltage amplifier (LA75C, 

Cedrat Techologies, Meylan, France) was used to provide harmonic vibrations of the plastic rod 
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in the central axis (z) at 100, 200, and 300 Hz, generating radially-propagating shear waves (𝒏 ≈

 𝒆𝑹). This preparation does not probe tensile anisotropy (no “fast” shear waves are produced). 

This is because shear wave propagation is normal to fiber orientation, producing no stretch along 

the fiber direction. 

 

Figure 4.1: (a-b) T1-weighted (T1W) in vivo anatomical images from prior work (Bayly et al., unpublished) 

showing tissue volume used for current study (red dashed outlines). (c) T1W images of ex vivo sample used in 

the current study. Fiber orientation is left-to-right. (d) Photo of ex vivo sample of brain tissue used for this 

study. (e) Apparatus for MRE experiments: tissue embedded in gel inside cylindrical container, excited by 

harmonic motion of a central axial stinger. 

4.3.1.2 Imaging 

Images of shear-wave propagation in the disk-shaped WM/GM samples were acquired using 

previously-described spin-echo MRE sequences (Clayton et al., 2011; Schmidt et al., 2016). 

Imaging was performed at 4.7 Tesla at room temperature (~21°C) with an Agilent/Varian 

DirectDrive imaging system. MRE imaging parameters were: voxel size = 1.0 mm isotropic, TR 
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= 1100 - 1300 ms, TE = 30-47 ms. Multiple (1-3) sinusoidal motion encoding cycles of gradient 

strength 10-12 G/cm were synchronized with motion to induce phase contrast proportional to 

displacement. Eight temporal samples were acquired per sinusoidal excitation period, by 

incrementing the phase delay between the imposed vibration and acquisition. Anatomical (spin-

echo, T1-weighted, TE = ~10ms, TR = 1000 ms, 2 averages) MRI was performed (Fig. 4.1, c) to 

identify the boundaries of the brain tissue sample and to distinguish white matter and gray 

matter. Diffusion weighted images (30 directions, b=3000 s/mm2) were acquired over the same 

volume to confirm the myelinated axon orientation. Time from euthanasia to the start of the 

experiments was ~1-2 h. 

4.3.1.3 Computational modeling and simulations 

A 3D, finite-element (FE) model of the MRE experiment was created using COMSOL™ 

Multiphysics 5.1. The model consists of a cylindrical slab (42 mm diameter, 14 mm thick) 

representing brain tissue embedded in a cylinder of gelatin (48 mm diameter, 48 mm long). The 

inclusion was assigned TI material properties with a single fiber direction and the gelatin was 

assigned isotropic properties (Fig. 4.2). Axial harmonic excitation of 25 μm was provided at 100, 

200, and 300 Hz on the inner radius (1.5 μm) of the model. Assigned properties of the inclusion 

were: baseline storage modulus, 𝜇2, varied from 0.5 – 1.5 kPa (at actuation frequency of 100 

Hz), 1.2 – 2.5 kPa (at 200 Hz), 2 – 5 kPa (at 300 Hz), a loss factor, 휂 = 0.5, typical of brain tissue 

(Feng et al., 2013b), density, 𝜌= 1000 kg/m3. Shear anisotropy, 𝜙, was varied from 0 – 0.6. 

Tensile anisotropy (nonzero 휁) was not included as 휁 does not affect pure transverse (“slow”) 

shear waves induced by excitation normal to fiber direction. The material properties assigned to 

gelatin were: shear storage modulus, 𝜇 = 1.0, 1.1, and 1.2 kPa (Okamoto et al., 2011b) at 100, 
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200, and 300 Hz actuation frequencies respectively; loss factor, 휂 = 0.1; and density, 𝜌 = 1100 

kg/m3. Loss factors taken from prior studies were varied over a limited range to check that 

attenuation of wave amplitudes in simulations was similar to experiment. The parameters 𝜇2 and 

𝜙 of the FE simulations with shear wave propagation most similar to the MRE experiment were 

taken as the estimates of 𝜇2 and 𝜙 within the selected slices of the ex vivo tissue sample. 

 

Figure 4.2: FE model (COMSOLTM Multiphysics v5.1) showing axial (𝒘) displacement. A disk-shaped 

inclusion representing transversely isotropic (TI) WM is enclosed in an isotropic soft material representing 

gelatin. Inclusion: 𝝁𝟐 = 2.0 kPa, 𝝁𝟏 = 2.6 kPa (𝝓=0.30),  𝜼 = 0.5, 𝝆 = 1000 kg/m3. Surrounding gelatin: 𝝁= 1.1 

kPa, 𝜼 = 0.1, 𝝆 = 1100 kg/m3. Actuation frequency: 200 Hz. The black arrow points in the direction normal to 

the TI material’s plane of isotropy (i.e., the fiber axis, 𝒂). 

4.3.1.4 Analysis of experimental and simulated image data 

The Fourier transform of the displacement data from all of the 8 acquisition phases was found 

using the FFT, and the coefficients at the fundamental harmonic were extracted, producing a 

three-dimensional field of Fourier coefficients. Data were then smoothed (Gaussian smoothing 

with a 3x3x3 voxel convolution kernel and a standard deviation of 1) in 3D. For estimation of 

apparent shear modulus and shear wavelength, the curl of the smoothed 3D displacement field 

was expected to eliminate effects of longitudinal waves. 
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As a simple measure of anisotropy, radially-propagating shear waves in WM were fitted to 

ellipses (see Fig. 4.3). Peaks of elliptical wave fronts were manually picked on a 2D image of 

axial (𝑤) displacement in the xy plane (interpolated in the xy plane from 1 mm resolution to 0.5 

mm resolution), in 3 contiguous slices within slices containing WM from each sample. The 

various FE simulations (across a plausible range of baseline shear moduli and shear anisotropy) 

were also subjected to the same analysis, except that peaks of elliptical wave fronts were picked 

from 3 contiguous, central slices by an automated 2D method. Points picked either manually or 

by automated method were fitted using an algorithm that minimized the squared-error between 

the ellipses and the picked points (Fitzgibbon et al., 1999). The ratio, 𝑅, between ellipse semi-

axis lengths was recorded for each experimental sample or FE simulation, along with the angle 

of the longer semi-axis. 
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Figure 4.3: Shear-wave propagation in WM brain tissue (experiment, top row) and transversely isotropic FE 

models (simulation, bottom row) with fitted ellipses outlined. (a-c) MRE images of shear wave propagation in 

WM at (a)100 Hz, (b) 200 Hz, and (c) 300 Hz. Shear-wave fronts are fitted by ellipses (black or white). The 

boundary of the tissue sample is outlined by a thin dotted white line. (d) Shear-wave propagation in a slice 

containing only gelatin at 300 Hz. (e-g) Shear wave propagation in FE simulations with similar mechanical 

properties to the experiment: (e) 100 Hz, 𝝁𝟐 = 1100 Pa, 𝝓 = 0.30; (f) 200 Hz, 𝝁𝟐 = 1600 Pa, 𝝓 = 0.45; (g) 300 

Hz, 𝝁𝟐 = 2300 Pa, 𝝓 = 0.35. (h) Shear-wave propagation in the isotropic/gelatin portion of the FE model at 

300 Hz. 

The apparent complex shear modulus 𝜇∗ = 𝜇′ + 𝑖𝜇′′ was estimated in both MRE experiments 

and FE simulations, using local direct inversion (LDI) of the three components of the curl of the 

displacement field (Okamoto et al., 2011b). To express these parameters in terms of kinematic 

features of the wave field, analogous to elliptical shape, storage modulus estimates were 

converted to local shear wavelength, defined as 𝜆+ =
1

𝑓
√

𝜇′

𝜌
. To quantify directional variations in 

wavelength maps from LDI, regions of interest (ROIs, see Fig. 4.4) were defined by squares 

centered at equal distances from the cylinder axis, in directions parallel and perpendicular to the 

longer semi-axis. 
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Figure 4.4: Apparent shear modulus in WM brain tissue and transversely isotropic (TI) FE models. Regions 

of interest (ROIs) parallel (∥) and perpendicular (⊥) to fitted ellipse semi-major axis are highlighted. (a-c) 

Maps of apparent shear modulus at (a)100 Hz, (b) 200 Hz, (c) 300 Hz, estimated from MRE data in slices 

containing brain tissue. (d) Maps of apparent shear modulus at 300 Hz, estimated from MRE data in slices 

containing only gelatin. (e-g) Maps of apparent shear modulus estimated using data from FE simulations with 

mechanical properties matched to the experiment: (e) 100 Hz: 𝝁𝟐 = 1100 Pa, 𝝓 = 0.30; (f) 200 Hz: 𝝁𝟐 = 1600 

Pa, 𝝓 = 0.45; (g) 300 Hz: 𝝁𝟐 = 2300 Pa, 𝝓 = 0.35. (h) Maps of apparent shear modulus at 300 Hz, estimated 

using data from the isotropic/gelatin portion of the FE model. 

4.3.1.5 Dynamic shear testing (DST) 

For comparison with MRE, estimates of viscoelastic shear modulus (𝜇1
∗ and 𝜇2

∗) were also 

obtained by dynamic shear testing (DST) (Feng et al., 2013b; Namani et al., 2012b). Samples 

consisting of predominantly WM brain tissue (N = 10) acquired from the corpus callosum and 

samples consisting of predominantly GM brain tissue (N=10) acquired from the region superior 

to the corpus callosum within the frontal and parietal lobes of the brain were excised from 3 

different female domestic pigs (age 3 months, 40-45 kg). The mean ± std. deviation sample 

thickness was 2.75 ± 0.63 mm and the sample diameter was 13.39 ± 3.42 mm in WM samples, 

and in GM the average sample thickness was 3.37 ± 0.84 mm and a sample diameter of 14.93 ± 

1.31 mm. Samples were tested in shear both parallel and perpendicular to the WM fiber axis 
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(determined visually), and in two arbitrary perpendicular directions in GM. Shear modulus 

estimates were averaged over the frequency range from 20 to 30 Hz. This range was chosen to 

avoid inertial effects (shear waves) within the sample (Feng et al., 2013b). 

4.4 Results 

4.4.1 MRE experiments and FE simulations exhibit elliptical shear wave 

propagation 

MRE experiments were performed on cylindrical brain samples from eight pigs. Example shear 

wave images from a representative MRE experiment, and from the corresponding FE simulation 

found to best approximate this particular MRE experiment are shown in Fig. 4.3. Shear wave 

patterns are consistent with theoretical predictions based on wave speeds in a uniform, 

unbounded, TI material (Tweten et al., 2015). Elliptical waves were observed in regions with 

known white matter (corpus callosum). Circular waves were observed in slices containing only 

isotropic gelatin (Fig. 4.3,d). 

4.4.2 Estimated local wavelength comparisons between experiment and FE 

models 

Each MRE experiment was matched individually to the FE simulation with shear wave 

propagation that most resembled that of the experiment, in terms of both (1) local shear 

wavelength in parallel and perpendicular ROIs and (2) the ratio of elliptical semi-axis fit to shear 

wave fronts. Normalized root mean squared error (NRMSE) was found between local 

wavelength (𝜆+) estimates in experiment and simulation, in both parallel (𝑁𝑅𝑀𝑆𝐸𝜆1
) and 

perpendicular (𝑁𝑅𝑀𝑆𝐸𝜆2
) ROIs, in the 8 image slices of the experimental sample that contained 

the most WM (closest to the center of the corpus callosum), and in the middle 8 slices of the TI 

inclusion of the FE models. Normalized RMS error (𝑁𝑅𝑀𝑆𝐸𝑅) was also found between the 
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ellipse axis ratio (𝑅) of the MRE experiment and FE simulations for the 3 slices in which ellipses 

were fitted. These three NRMSE estimates were combined to identify the FE simulation that 

most closely represented the specific experiment. The NRMSEs of each wavelength and the 

ellipse ratio were weighted and summed to provide an overall objective function that reflected 

both metrics (local wavelength and ellipse shape) equally. The following weighting scheme was 

used for this study: 

𝑁𝑅𝑀𝑆𝐸𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
1

4
𝑁𝑅𝑀𝑆𝐸𝜆1

+
1

4
𝑁𝑅𝑀𝑆𝐸𝜆2

+
1

2
𝑁𝑅𝑀𝑆𝐸𝑅.  (4.3) 

Fig. 4.5 shows surfaces of NRMSE from the comparison between all FE simulations and a single 

representative MRE experiment.  These surfaces show (i) the wavelength error between 

simulations and experiment in the perpendicular ROI (𝑁𝑅𝑀𝑆𝐸𝜆2
, Fig. 4.5, a), (ii) wavelength 

error in the parallel ROI (𝑁𝑅𝑀𝑆𝐸𝜆1
, Fig. 4.5, b), (iii) the error between ellipse axis ratios 

(𝑁𝑅𝑀𝑆𝐸𝑅, Fig. 4.5, c), and (iv) a plot showing the weighed NRMSE combining all estimates 

into one weighted estimate. Parameter estimates for all samples (N=6 for 100 Hz, and N=8 for 

200 and 300 Hz) were analyzed statistically and results are shown in Fig. 4.6. 
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Figure 4.5: Parameter estimation by comparison of experiment to simulation. Results from inversion of data 

from MRE experiments are matched to results of inversion of data from a library of FE simulations 

performed with a range of plausible transversely isotropic (TI) material parameters. Results from ⊥ and 

∥  ROIs are compared separately to identify effects of anisotropy. (a) Normalized RMS error (NRMSE) 

between wavelength (𝝀𝟐) estimates from experimental data and TI FE simulations in the ⊥ ROI. (b) NRMSE 

between wavelength (𝝀𝟏) estimates from experimental data and FE simulations in the ∥ ROI. (c) NRMSE 

between the ratio of semi-axes of ellipses fitted to shear-wave fronts in the experimental data and FE 

simulations. (d) Weighted total NRMSE between experiment and FE models (weighted sum of wavelength 

NRMSEs and axis ratio NRMSE). 
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Figure 4.6: Summary of shear modulus and shear anisotropy estimates in WM brain tissue. (a) Shear moduli 

in planes parallel (𝝁𝟏) and perpendicular (𝝁𝟐) to fiber orientation. (b) Shear anisotropy (𝝓 = 𝝁𝟏 𝝁𝟐⁄ − 𝟏). 

Solid bars (100 Hz, 200 Hz, 300 Hz) represent results from MRE/FE analysis. Cross-hatched bars (20-30 Hz) 

show results obtained by direct mechanical testing (DST). Lines across plots with stars indicate statistical 

significance (* P < 0.05, ** P < 0.005). Curly bracketed lines signify Friedman tests across 100 Hz, 200 Hz, 

and 300 Hz. Straight lines signify Wilcoxon signed rank tests between two sets of data. 

 

WM in the ex vivo porcine brain was found to be anisotropic in shear with estimates of minimum 

shear modulus shown in Table 4.1. The shear modulus in planes parallel to fibers, 𝜇1, was 

significantly larger than shear modulus in the plane of isotropy, 𝜇2 (Wilcoxon signed rank test) at 

100, 200, and 300 Hz (P < 0.05, P < 0.05, P < 0.05, respectively). Both shear moduli showed 

significant increases with actuation frequency (𝜇2: P < 0.005;  𝜇1: P < 0.005; Friedman test) as 

expected for viscoelastic materials. Notably the increase in the anisotropy factor 𝜙 was also 

statistically significant (P < 0.05).  
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4.4.3 Dynamic shear testing (DST) results 

Shear moduli in planes parallel and perpendicular to the fiber axis for WM brain tissue (N=10) 

were estimated in a frequency range from 20 to 30 Hz using DST. This frequency range is as 

high as possible, while avoiding instrument resonances and inertial effects in the sample. The 

storage modulus was estimated to be 𝜇′‖= 0.61 ±  0.06 kPa when fibers were aligned parallel to 

the direction of imposed shear displacement and 𝜇⊥
′  = 0.54 ± 0.08 kPa when fibers were aligned 

perpendicular to shear displacement. The loss modulus was 𝜇‖
′′ = 0.34 ± 0.05 kPa for the parallel 

orientation and 𝜇⊥
′′ = 0.30 ± 0.05 kPa for the perpendicular orientation. The mean (± std. dev.) 

ratio between paired parallel and perpendicular moduli was  
𝜇‖

′

𝜇⊥
′⁄  = 1.14 ± 0.08 for storage 

modulus, and  
𝜇‖

′′

𝜇⊥
′′⁄  = 1.11 ± 0.06 for loss modulus. Shear moduli from two perpendicular 

arbitrary directions (denoted as 𝑎 and 𝑏, since there is no reference fiber direction) in GM brain 

tissue (N=12) were averaged over frequencies from 20 to 30 Hz using DST. The storage modulus 

was found to be 𝜇′𝑎= 0.49 ±  0.09 kPa in one direction of imposed shear displacement and 𝜇𝑏
′  = 

0.50 ± 0.11 kPa when the shear displacement was imposed in the perpendicular direction. The 

loss modulus was 𝜇𝑎
′′ = 0.20 ± 0.05 kPa for the first orientation and 𝜇𝑏

′′ = 0.23 ± 0.06 kPa for the 

second orientation.  In GM, the ratio between moduli in these two arbitrary, perpendicular 

directions, was  
𝜇𝑎

′

𝜇𝑏
′⁄  = 0.99 ± 0.12 for storage modulus and  

𝜇𝑎
′′

𝜇𝑏
′′⁄  = 0.94 ± 0.21 for loss 

modulus. Wilcoxon signed rank test statistical analysis was performed to show WM 𝜇1 and 𝜇2 

shear moduli to be significantly different than each other (storage modulus: P < 0.005, loss 

modulus: P < 0.005). Similar statistical analysis showed GM 𝜇𝑎 and 𝜇𝑏 shear moduli to be not 

significantly different (storage modulus: P = 0.38, loss modulus: P = 0.084). 
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Frequency [Hz] 𝝁𝟐 [kPa] 𝝓 

100 1.04 ± 0.12 0.27 ± 0.09 

200 1.94 ± 0.29 0.29 ± 0.14 

300 2.88 ± 0.34 0.34 ± 0.13 

Table 4.1: A summary of the findings in Chapter 4 using MRE. Baseline shear moduli (𝝁𝟐) and the shear 

moduli anisotropy factor (𝝓) for three experimental actuation frequencies (100, 200, and 300 Hz) are shown. 

The data are also expressed in Figure 4.6 (non cross-hatched bars). 

4.5 Discussion and Conclusions 
In this study, slow shear waves were imaged using MR elastography techniques in WM ex vivo 

brain tissue. In centrally-excited, cylindrical samples, outwardly propagating slow shear waves 

exhibited elliptical wave fronts and local wavelengths that depended on the direction of 

propagation, consistent with TI behavior (Schmidt et al., 2016). Baseline shear moduli and shear 

anisotropy of ex vivo porcine WM brain tissue were estimated by comparing experimental shear 

wave data to simulations of shear waves in TI materials. 

 

MRE and direct mechanical tests (DST) in the current study both indicated the presence of mild 

shear anisotropy in porcine WM brain tissue. Shear modulus estimates obtained by fitting the 

current MRE results with FE simulations (shear modulus magnitudes 1.0 kPa at 100 Hz, 1.9 kPa 

at 200 Hz, and 2.9 kPa at 300 Hz) were larger than estimates obtained by DST (average shear 

modulus magnitude ~ 0.65 kPa). These trends are consistent with the expected increase in 

modulus with increase in actuation frequency in viscoelastic biological tissue. Shear anisotropy 
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factors (𝜙) of 0.25-0.35, estimated by fitting the current MRE studies with FE simulations, were 

roughly double those observed by DST in the current study, but closer to the shear anisotropy 

factors observed by DST (Feng et al., 2013b) in ovine corpus callosum WM. Differences may 

reveal limitations of each method, but we particularly note limitations of DST. DST estimates 

can be affected by sample flatness, normal force, order of testing (which direction is tested first), 

slip, nonlinearity, or non-affine deformation. MRE estimates of parameters are limited by the 

practical challenges of image resolution (discretization of shear waves) and domain size (which 

limits the number of wavelengths). Both methods potentially obscure local variations on a scale 

smaller than the wavelength of a shear wave (for our MRE experiments this was ~5 – 10 mm), or 

the size of the DST sample (~13-15 mm). Shear anisotropy may also depend on frequency. 

Differences between shear anisotropy estimates from MRE and DST are similar to those found in 

previous studies involving muscle tissue (Schmidt et al., 2016). Given the limitations of each 

method, we believe that the shear anisotropy estimates from MRE, which are also consistent with 

simulation and visual observations of wavefronts, are more accurate. It should be noted that these 

results do not validate or prove the ability of this model to predict behavior in another situation, 

but illustrate the ability of this model, with these parameters, to explain the current observations. 

 

While the focus of this study is on MRE estimation of material properties, we note that the 

current estimates of material properties from DST in the porcine brain between 20 - 30 Hz are 

comparable to those from previous DST studies on ex vivo ovine brain (Feng et al., 2013b). 

Shear storage modulus in planes parallel to the fiber orientation in WM were very similar 

between the two studies, while shear storage modulus perpendicular to the fiber axis is ~20% 
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larger in the current study, leading to the lower shear anisotropy ratio observed by DST in the 

current study. Both studies found GM to be isotropic by DST, while Feng et al. (2013) found a 

lower modulus in GM. Both studies found similar, approximately isotropic, loss factors, in both 

GM and WM by DST.  

 

Taking into account differences in frequency and anatomical region, the current parameter 

estimates from MRE may be compared to results in the literature obtained by direct mechanical 

testing. Arbogast and Margulies (1998) studied porcine WM brain tissue (brainstem) using DST 

from frequencies ~20 – 200 Hz, spanning much of the range of the MRE experiment. They found 

shear modulus values at 100 and 200 Hz similar to ours (~1.7 – 2.25 kPa) and shear anisotropy 

ratio similar to the current estimate (𝜙~0.3). It should be noted that Arbogast and Margulies 

(1998) used a much higher strain (2.5 – 7.5 %) than was applied in either the current DST or 

MRE tests. Hrapko et al. (2008) studied porcine brain (corona radiata, acquired within three 

different directional planes) using rotational rheometry within the frequency range of 1 – 10 Hz. 

The shear anisotropy ratio in the corpus callosum region, estimated in the current MRE-based 

study is similar to the corresponding estimate from Hrapko et al. (2008) (~0.3 vs ~0.2 – 0.4, 

respectively), despite the significant difference in actuation frequency (100 – 300 Hz vs 1 – 10 

Hz, respectively). Average shear moduli from Hrapko et al. (2008) are consistent with our DST 

estimates ( ~0.4 – 0.6 kPa at 1 – 10 Hz vs ~0.65 kPa at 20 – 30 Hz, respectively).  

 

The anisotropy estimated in the current study is mild (i.e., not an order of magnitude) and not as 

large as what might be expected given the diffusion anisotropy of brain WM. The degree of 
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anisotropy is also smaller than the level assumed in recent modeling studies (Giordano et al., 

2014). The level of anisotropy is consistent with the magnitude of the directional dependence of 

shear moduli observed by Anderson et al. (2016). 

 

 The current study is limited by the assumption that the tissue is linearly viscoelastic with loss 

factors typical of brain (휂 ≈0.5) and gelatin (휂 ≈0.1). Loss factors were not optimized by fitting, 

but provided attenuation of shear waves similar to that observed in experiments. The assumption 

of incompressibility may introduce some errors in the current study and in vivo studies, due to 

the actual slight compressibility of tissue and the consequent existence of longitudinal waves 

(although the curl operation is intended to eliminate longitudinal waves from the MRE analysis). 

The assumption of an unbounded, uniform domain is not necessary because the FE model 

includes bounded sub-domains with different properties. It should be noted, however, that shear 

waves traveling through WM tissue may be influenced by nearby GM, as perfect segmentation 

between tissue types was not possible. Structural anisotropy of the experiment as a whole does 

affect wave motion, and thus may influence estimates of material anisotropy (intrinsic) based on 

global features of wave propagation (elliptical axis ratio). Local estimates of wavelength should 

not be strongly affected. Manual identification of points on ellipses may also introduce 

imprecision. Importantly, we have made no attempt to quantify the tensile anisotropy, which is 

likely to exist and to be important in brain behavior, but which is not manifested under these 

experimental conditions. Future studies will focus on: (i) complementary estimates of tensile 

anisotropy of WM using MRE with “fast” or quasi-transverse/QT shear waves which introduce 

fiber stretch; and (ii) estimation of shear and tensile anisotropy in the human brain in vivo. 
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4.6 Conclusions 
White matter in the porcine brain ex vivo was found to be mildly anisotropic in shear using MRE. 

Anisotropic material parameters were estimated from the parameters of FE simulations that most 

closely matched data from MRE experiments. These material parameter estimates enhance our 

understanding of the mechanical properties of WM in brain tissue ex vivo, and provide 

confidence in our future ability to estimate anisotropic mechanical properties of WM in the 

intact, living brain. Ultimately, MRE-derived estimates of anisotropic properties of WM in vivo 

will lead to improved computational models of brain biomechanics and deeper understanding of 

TBI. 
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Chapter 5: Probing mechanical 

nonlinearity of soft tissue: a path forward 

using MRE 

 

5.1 Overview: Nonlinear mechanical characterization of 

soft tissues 
In this chapter, a preliminary theoretical and computational study is presented to demonstrate the 

potential of MRE to probe nonlinear material behavior. This study is performed to assess the 

feasibility of future experimental studies, and to guide the development of appropriate 

procedures. The effect of nonlinear deformation on shear waves and thus MRE experiments is 

shown analytically and via finite element simulation using an assumed nonlinear constitutive 

model. Finally, a possible experimental apparatus and protocol are presented, along with 

proposed post-processing methods. 

5.2 Significance 
Elastographic methods such as MRE have been shown to be useful for non-invasive 

characterization of biological tissues (Manduca et al., 2001). Almost no published elastographic 

studies, however, characterize soft tissue past the linear regime. Elastographic methods are 

appropriate for human studies since small magnitude tissue strains are safe. In phantoms, tissue 

surrogate biomaterials, or ex vivo tissue, however, mechanical characterization can be performed 

past the linear regime. This is important because, for example, injury thresholds in brain tissue 

have been found to exceed 0.2 strain in neural tissue (optic nerve; Bain and Meaney, 2000). 
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MRE can also be used to study nonlinear behavior of tissue surrogate materials or ex vivo tissue. 

Studying nonlinear behavior of soft tissues by MRE could eliminate some of the difficulties 

associated with direct mechanical tests of soft materials, especially slippage when gripping 

tissue, ambiguous and/or heterogeneous contact between the tissue and the instrument, and 

environmental factors like tissue dehydration. This chapter describes the potential use of MRE to 

study nonlinear properties of soft tissue. 

5.3 Nonlinear deformation effects on shear waves 

5.3.1 Brief theoretical review 

In prior studies (Chatelin et al., 2013; Gasser et al., 2006; Meaney, 2003)  soft tissues have been 

modeled as hyperelastic or hyper-viscoelastic materials. In a hyperelastic material model, the 

stress-strain relationship is derivable from a strain-energy density function (Ogden, 1997). The 

first hyperelastic models developed were Neo-Hookean and Mooney-Rivlin solids, developed to 

describe the behavior of rubber under large deformations (Mooney, 1940; Rivlin, 1948). In this 

study, we will start with a Neo-Hookean material model, and extend it to include contributions to 

the strain energy from higher order powers of the first invariant (𝐼1), i.e. by the selecting the 

Yeoh material model (Martins et al., 2006). We will derive theoretical shear wave speeds from 

the acoustic tensor that governs infinitesimal shear waves superimposed on finite deformations.  

 

In terms of the material parameters used in the commercial software, ABAQUS (“ABAQUS 

Documentation, Dassault Systemes,” 2014), a Neo-Hookean strain energy density is defined as: 

𝑊 = 𝐶10(𝐼1̅ − 3) +
1

𝐷1
(𝐽 − 1)2,     (5.1) 
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where 𝑊 is the strain energy per unit of reference volume; 𝐶10 and 𝐷1 are the material 

parameters. Given the deformation gradient tensor F = 𝜕𝒙
𝜕𝑿⁄  (𝐹𝑖𝑅 =

𝜕𝒙𝒊

𝜕𝑋𝑅
 ), 𝑪 =  𝑭𝑻𝑭 , 𝐼1 =

trace(𝑪), 𝐼1 = det (𝑪) , and   𝐽 = det 𝐅 =  𝐼3
1 2⁄

,  𝐼1̅ is the first deviatoric strain invariant defined 

as: 𝐼1̅ = �̅�1
2 + �̅�2

2 + �̅�3
2 where the deviatoric stretches 𝜆�̅� = 𝐽−

1

3𝜆𝑖; 𝜆𝑖 are the principal stretches, 

and 𝐽 is the volume ratio. The initial shear modulus and bulk modulus (which govern small 

deformations with respect to the un-deformed reference configuration) are given by: 

𝜇0 = 2𝐶10, and 𝐾0 =
2

𝐷1
.      (5.2) 

The neo-Hookean material model is readily extended to the Yeoh material model. The Yeoh 

strain energy potential is implemented in ABAQUS (“ABAQUS Documentation, Dassault 

Systemes,” 2014) as: 

𝑊 = 𝐶10(𝐼1̅ − 3) + 𝐶20(𝐼1̅ − 3)2 + 𝐶30(𝐼1̅ − 3)3 +
1

𝐷1
(𝐽𝑒𝑙 − 1)

2
+

1

𝐷2
(𝐽𝑒𝑙 − 1)

4
+

1

𝐷3
(𝐽𝑒𝑙 − 1)

6
 

 (5.3a) 

where 𝐶20, 𝐶30, 𝐷2 and 𝐷3 are higher order material parameters. For simplicity, in this study we 

set 𝐶20 = 0 and neglect higher order volumetric terms involving 𝐷2 and 𝐷3, so 𝑊 becomes:  

𝑊 = 𝐶10(𝐼1̅ − 3) + 𝐶30(𝐼1̅ − 3)3 +
1

𝐷1
(𝐽𝑒𝑙 − 1)

2
.   (5.3b) 

In nonlinear materials, the equation of motion  
𝜕

𝜕𝑥𝑗
𝜎𝑖𝑗  = 𝜌

𝑑2𝑢𝑖

𝑑𝑡2
 can be linearized and written for 

incremental motion, with 𝑢𝑖 = 𝑢0𝑖 + �̃�𝑖 , where the “0” subscript indicates the deformation 

applied to reach an operating point (finite strain) and “~” indicates the incremental motion 

(linearization about a point). The incremental constitutive law for an elastic solid can then be 

written as:  
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𝜎𝑖𝑗 = 𝜎0𝑖𝑗 + 𝐴0𝑖𝑗𝑘𝑙휀0̃𝑘𝑙,     (5.4) 

where 𝐴0𝑖𝑗𝑘𝑙 is the incremental elasticity tensor, and the incremental strain can be written as: 

휀0̃𝑘𝑙 =
1

2
(
𝜕�̃�𝒌

𝜕𝑥𝑙
+

𝜕�̃�𝒍

𝜕𝑥𝑘
).      (5.5) 

Note that Cartesian coordinates are used throughout. The incremental elasticity tensor has the 

form: 

𝐴0𝑖𝑗𝑘𝑙 =
𝜕2𝑊

𝜕𝐹𝑗𝑅𝜕𝐹𝑙𝑆
𝐹𝑖𝑅𝐹𝑘𝑆,     (5.6) 

The nominal deformation gradient tensor in simple shear can be expressed as a matrix in 

Cartesian coordinates: 

𝐅 = [
1 𝛼 0
0 1 0
0 0 1

]  where  𝛼 = tan(휃) =
𝑢0

𝑑
,    (5.7) 

where 𝛼 defines the magnitude of the imposed simple shear, 휃 is the angle of the imposed simple 

shear, and 𝑑 is the length of the side of the solid.  

 

For simulations of simple shear, strains on the material will be expressed in terms of engineering 

strain 𝛾12 = 2휀12. The FE simulation software ABAQUS provides results in terms of logarithmic 

strain: 

휀12
𝑙𝑜𝑔

= ln(𝐕),      (5.8) 

where the left stretch tensor, 𝐕 = √F∙F𝑇. 

We will use the logarithmic engineering shear strain to describe finite deformations: 

𝛾12
𝑙𝑜𝑔

= 2휀12
𝑙𝑜𝑔

.      (5.9) 
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For infinitesimal strain in ideal simple shear, α = 𝛾12
𝑙𝑜𝑔

. As 𝛼 increases, there will be small 

differences between 𝛼 and 𝛾12
𝑙𝑜𝑔

; for the largest 𝛼 used in this model (0.20), the difference is 

~0.6%.  Figure 5.1 demonstrates the deformation and strains applied to a solid (a) and the 

dynamic, incremental deformation (b).  

 

 

Figure 5.1: Free-body diagram of a solid undergoing two deformations. (a) a static, finite deformation of a 

solid body to a specified operating point (𝒖𝟎; corresponding to experimental displacement on the order of 

millimeters). (b) a superimposed dynamic deformation (�̃�) associated with incremental displacements on the 

order of micrometers. The angle, 𝜽, represents the angle of imposed shear. 

To extend this theory to a propagating plane wave we start with the equation: 

�̃�(x, 𝑡) = �̃�𝑎exp[𝐼𝛫(n ∙ x − 𝑐𝑡)] = �̃�𝑎  𝐦 exp(𝐼𝜔𝑡 − 𝛫 n ∙ x),  (5.10) 

where 𝐼 refers to the imaginary number (√−1), wave propagation is designated by the unit 

vector, n, and the polarization direction (direction of particle motion) is specified by the vector 

m, where �̃�𝑎 = �̃�𝑎𝐦. The propagation speed 𝑐 =  𝜔 𝑘⁄  (m/s), where 𝐾 is the wavenumber 

(rad/m) and 𝜔 is frequency (rad/s). Substituting this equation into the equation of motion: 

𝜕

𝜕𝑥𝑗
(𝐴0𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑙
) = 𝜌

𝜕2�̃�𝑖

𝜕𝑡2
,     (5.11) 

we have the following eigenvalue problem: 

𝐴0𝑖𝑗𝑘𝑙𝑛𝑗𝑛𝑙𝑚𝑘 = 𝜌𝑐2𝑚𝑖  or  𝑄𝑖𝑘𝑚𝑘 = 𝜌𝑐2𝑚𝑖.   (5.12) 
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Here the Cartesian components of the acoustic tensor are  𝑄𝑖𝑘 = 𝐴0𝑖𝑗𝑘𝑙 𝑛𝑗𝑛𝑙. The eigenvalue 

problem may be solved to find the wave propagation speeds (𝑐2) and polarization directions (m) 

of plane wave solutions. The deviatoric incremental acoustic tensor is determined by the material 

parameters and is shown below for a Yeoh material model with a wave propagation vector, 𝐧 =

[0 1 0], indicating a downward propagating wave in the y direction and at a finite shear strain 

quantity 𝛼:  

𝑄 = 

[
 
 
 
 2𝐶30𝛼

6 + 30𝐶30𝛼
4 +

2

3
𝐶10𝛼

2 + 2𝐶10 −
4

3
𝛼(9𝐶30𝛼

4 + 𝐶10) 0

−
4

3
𝛼(9𝐶30𝛼

4 + 𝐶10) 8 (𝐶30𝛼
6 + 𝐶30𝛼

4 +
2

9
𝐶10𝛼

2 +
𝐶10

3
+

𝜅

8
) 0

0 0
2

3
(𝛼2 + 3)(3𝐶30𝛼

4 + 𝐶10)]
 
 
 
 

. (5.13) 

For the wave propagation vector indicated above, and in the limit as the bulk modulus 

approaches infinity, the following eigenvalues are found: 

𝜆1 = 𝜌𝑐𝑙
2 → ∞, 𝜆2 = 𝜌𝑐𝑠

2 =
2

3
(𝛼2 + 3)(3𝐶30𝛼

4 + 𝐶10) and 𝜆3 = 𝜌𝑐𝑓
2 = 2𝐶30𝛼

6 + 30𝐶30𝛼
4 +

2

3
𝐶10𝛼

2 + 2𝐶10,   (5.14a-c) 

where 𝜌 is the density of the material, 𝑐𝑠 and 𝑐𝑓 refer to the slow (also known as “pure 

transverse) and fast (“quasi-transverse”) shear wave speed respectively, and 𝑐𝑙 refers to the 

longitudinal wave speed.  

 

5.3.2 Finite element simulations of nonlinear deformations and MRE 

To gain more intuitive understanding of the theory of waves in nonlinear materials and insight 

into the application of nonlinear material models to a MRE experiment, finite element (FE) 

models of shear waves in deformed samples were created. The FE models were assigned a Yeoh 

hyperelastic material model and were of a physical size similar to that studied in MRE 

experiments (Schmidt et al., 2016). Practically, to perform nonlinear MRE studies, two 

deformations must occur in series. First, a relatively large finite deformation is imposed to strain 
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the solid to a specified operating point (Figure 5.1a). Second, a small dynamic excitation is 

applied to produce (infinitesimal) shear waves superimposed on the finite deformation (Figure 

5.1b), similar to the procedure in a traditional elastography experiment (Schmidt et al., 2016). 

 

A 3D FE model of the proposed experiment was created using ABAQUS CAE 6.14-2. The 

model consists of a 15x15x15 mm3 cube representing mechanically isotropic soft tissue. The 

cube was assigned nominal soft tissue properties (Table 5.1) in a Yeoh material model. The 

properties (𝐶30) were selected such that the shear stiffness will increase approximately by three-

fold at 0.2 strain, compared to its properties in the undeformed reference configuration. The steps 

of the model were defined as follows: 

• Step 0, the initial boundary conditions were applied to the model:  

o The top (Y=d=15 mm) face was fixed (assigned values of zero to U1, U2, U3; 

corresponding to displacements in the X, Y, and Z directions, respectively) 

o  The bottom (Y=0) was fixed in the Y and Z directions for the duration of the 

studies (assigned values of zero to U2 and U3).  

o The other sides of the cube remained free. 

• Step 1, the large deformation (millimeter magnitude) step was implemented with the 

following boundary conditions:  

o the bottom (Y=0) surface was given a displacement of [0, 0.75, 1.50, 2.25, 3.0] 

mm corresponding to imposed simple shearing strains of [0, 0.05, 0.10, 0.15, 

0.20]. 

• Step 2, the superimposed shear waves displacements (micrometer magnitude) were 

induced in the model by the following boundary conditions:  
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o the application of oscillating micrometer displacements in the X-direction of 

U1=2.5x10-5 meters at a frequency of 600 Hz (steady-state dynamics, frequency 

domain) on the bottom surface (Y=0) of the cube after the displacements in Y 

and Z were fixed. 

Figure 5.2 shows the different steps and the U1 (in the X direction) deformations encountered in 

each step. 

 

Yeoh parameters:   Intended units (SI; meter) 

 C10 500 Pa 

 C20 0 -- 

 C30 50000 -- 

 D1 1 x 10-5 -- 

 D2 100000 -- 

 D3 100000 -- 

    

Density  1000 kg/m3 

Viscoelastic parameters:    

 Re[g1*]  0.0159 -- 

 Im[g1*]  1 x 10-5 -- 

 A 1 -- 

 Re[k1*] 1 x 10-5 -- 

 Im[k1*] 1 x 10-5 -- 

 B 1 -- 
Table 5.1: Material parameters assigned to the FE model. The column on the right indicates the intended 

units of the parameters. Large values for 𝑫𝟐 and 𝑫𝟑 are chosen to neglect higher order volumetric terms (see 

Equation 5.3b). 
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Figure 5.2: Deformations applied to the 15mm3 model in step 0 (a), step 1 (b), and step 2 (c). Step 0, the initial 

step, does not involve any displacements or strains on the material. Step 1, the deformation of the solid to the 

operating point involves finite strain, and displacements on the order of mm. Step 2, the incremental 

displacement involves harmonic displacements on the order of µm at 600 Hz. 

Figure 5.3 shows the strain distribution and deformations in the different steps of the simulation 

across the array of simulations performed.  
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Figure 5.3: (first column) Logarithmic shear strain (𝜸𝟏𝟐
𝒍𝒐𝒈

) and (second column) displacement in the FE model 

after the imposed deformation of step 1. (third column) Shear waves in the model from step 2 at a frequency 

of actuation of 600 Hz. Rows (a-e) correspond to applied finite displacements of [0, 0.75, 1.50, 2.25, 3.0] mm 

and thus to the targeted imposed strains (𝜶) of [0, 0.05, 0.10, 0.15, 0.20]. 
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Figure 5.4: Stress and strain in the center of the FE model during the large deformation step (step 1). (a) Half 

of the model is displayed (cut plane is the YX plane). All data in (b) and (c) are from the element highlighted 

in red in the middle (in X, Y, and Z directions) of the model. (b) Shear stress as a function of shear strain. 

Note the increase of stress as the strain is increased. (c) The derivative of the data in (b) showing the 

instantaneous (tangent) shear modulus at different strain states. Data are compared to theoretical predictions 

(blue line). 

5.3.3 Data analysis 

We aim to detect either (1) a change in shear wavelength if using local frequency estimation 

(LFE) inversion (Knutsson et al., 1994) or manual measurement (Schmidt et al., 2016) or (2) a 

change in apparent shear modulus estimated by local direct inversion (LDI) methods (Okamoto 

et al., 2011b). In the finite element study above, parameters were chosen so the change in 

material properties was evident at 𝛼~0.2 strain. Figure 5.5 shows the change in shear 

wavelength (a) and shear moduli (b) with shear strain (0 to ~0.2). 
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Figure 5.5: Overview of logarithmic strain from ABAQUS (left column), estimates of shear modulus from 

local frequency estimation inversion (center column), and estimates of shear modulus local direct inversion 

(right column). Rows (a) – (e) represent differing operating points: applied strains of [0, 0.05, 0.10, 0.15, 0.20], 

respectively. The box within the deformed cube represents the area in the xy plane where data were averaged. 
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Figure 5.6: Results of shear wave inversion in a deformed cube of Yeoh material, compared to theoretical 

predictions. Shear wavelength and shear modulus increase with finite deformation. Each black “x” 

represents averages in the boxed region of the corresponding panel in Figure 5.5: either the middle column 

(local frequency estimation, LFE, Knutsson et al., (1994)) or right column (local direct inversion, LDI, 

Okamoto et al., (2011b)). (a) Shear wavelength, estimated by LFE, increases with finite deformation. (b) 

Shear modulus, estimated by LDI, increases with finite deformation. 

 

5.4 Proposed experimental methods 

5.4.1 Overview 

The experimental execution of this study poses several challenges. First, consistent finite 

deformation of tissue is required. Researchers performing mechanical tests on biological tissue 

must account for the viscoelastic relaxation of the tissue after a force is applied. In effect, 

relaxation would cause the tissue to seem less stiff over the course of an MRE study (on the 

order of minutes). Thus, it is important that the large finite deformation is applied semi-

harmonically, such that the tissue only stays stationary in a deformed state for less than its 

relaxation time, before releasing the deformation back to the un-deformed state and repeating the 

process. 

 

To achieve a consistent displacement, an automated and controlled mechanism for finite 

deformation is necessary. Any apparatus operating within an MRI scanner must not contain 

ferrous materials, and should minimize non-ferrous metal in the bore of the scanner as well. 



96 

 

MRE studies on a similar sample size (Schmidt et al., 2016) typically use an actuator capable of 

producing displacements on the order of tens of micrometers at frequencies of 50 – 2000+ Hz. 

However, these actuators are not capable of achieving displacements on the order of 3 – 5 mm, 

needed to impose finite strains. Thus, two separate actuators must be used in this study, one 

providing the large deformation and another providing the smaller “superimposed” deformation 

for MRE studies.  

 

Hydraulics are a plausible way to transfer deformations from a computer-controlled actuator 

from an area outside the MRI scanner to the sample inside the scanner bore. This apparatus could 

be used in combination with the existing actuator used for MRE studies. Figure 5.7 shows the 

block diagram of a proposed system. 
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Figure 5.7: Overview of the proposed experimental design, including the locations of components with respect 

to the MRI console and high magnetic field found in and around the MR magnet. Blue components refer to 

the mechanism for finite deformation (using tubing for transferring the deformation from the control room to 

the MRI scanner). Green components refer to the mechanism to induce superimposed waves, which is similar 

to the actuation used in many MRE studies. 

5.4.2 Experimental apparatus 

The sample must be centered within the MRI bore; a concept drawing of the sample holder is 

shown in Figure 5.8. The large deformations will be imposed via the syringe (left) and the small 

superimposed deformations induced by the piezoelectric actuator (right). The piezoelectric 

actuator will be connected to the sample by the rod attached to the sample surface, and the large 

finite deformation will be applied by flow to the syringe, causing the syringe plunger to engage 

with a deformable sample container.   
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Figure 5.8: Concept drawing of a sample holder to be housed within the MR magnet bore. The system must 

deform the sample in shear to a specified operating point (displacements on order of mm), and induce shear 

wave deformations at high frequency (displacements on order of µm). The syringe on the right provides the 

large deformation and the piezoelectric actuator attached to the rod on the left provides high frequency, 

small-amplitude shear wave excitation (typically used in small animal and phantom MRE studies; Clayton et 

al., 2011; Schmidt et al., 2016). 

 

A prototype of the deformable sample container is shown in Figure 5.9. The deformable 

container is made from a 3D printed material (PLA) and is in the shape of a cube. The cube in 

Figure 5.9 (a) is printed as shown and the finished product in Figure 5.9 (b) is formed by melting 

PLA to bond two sides of the cube together. The cube is capable of deforming to an imposed 

shear strain of 𝛼~0.2 − 0.3. 

 

 

 



99 

 

 

Figure 5.9: Sample holder (deformable cube) prototype. (a) CAD drawing of the deformable cube. (b) the 

finished sample holder cube; deformable by the application of force in the direction of the black arrow.  

To supply the fluid pressure and thus deformation of the cube via the syringe, the syringe must 

be moved a consistent amount in a cyclic fashion. Figure 5.10 shows the linear actuator attached 

to a syringe to supply the necessary fluid pressure to actuate the corresponding syringe located 

within the MRI scanner (through tubing). The setup is held in position by a rigid piece of 

aluminum. The linear actuator (Actuonix 16-50-63-6-R) is controlled by a generic Arduino (Uno 

R3) microcontroller via attachment to the 5V, GND, and digital pulse-width modulated (PWM) 

terminals.  Depending on the length of the PWM pulse (1000 – 2000 µm), the actuator can be 

moved from home (0 mm) to extended position (50 mm), respectively.  

 

The scanner and MRE sequences require a trigger to synchronize the superimposed shear 

deformations with the imaging gradients. The micro-controller would communicate with the 

scanner when the sample is able to be scanned (when the sample is at the intended operating 

point) and when it should not be scanned (when the linear actuator and syringe are moving). 

Thus, the microcontroller will then “pass-through” the function generator’s relatively high 

frequency signal during the specified intervals. This functionality is detailed in Figure 5.11. 
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Figure 5.10: Proposed apparatus to provide finite deformation within MR scanner. Linear actuator (left) 

connected to a syringe filled with fluid (right) – intended to stay within the MRI control room. The syringe is 

attached by tubing to the corresponding syringe within the apparatus in Figure 5.7. The linear actuator is 

controlled by a micro-controller. 

 

 

 

 

Figure 5.11: A micro-controller (Arduino Uno R3) can combine input signals and output pulses to control 

scanning. (a) The function generator that drives the piezoelectric actuator can provide a TTL signal at the 

vibration frequency (e.g., 100 Hz), as input to the micro-controller. (b) An analogous TTL signal can be 

provided by the finite deformation mechanism as input to the micro-controller. The signal is 5V when the 

deformation has been performed and the sample is in-position and 0V otherwise. (c) A combination of these 

signals (AND operator), will be output from the micro-controller to trigger the scanner. 
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5.4.3 Experimental protocol 

The MRE protocol for this study resembles the other MRE studies detailed in this thesis, 

particularly in Chapter 3. A modified spin-echo MRI sequence (Feng et al., 2013a) will be used,  

triggered only when the large deformation has been performed and the syringe is not in motion 

(see Section 5.4.2). An MRE actuation frequency should be selected which allows the 

appropriate amount of shear wavelengths to be visible in the sample during both the un-deformed 

study as well as when the tissue is stretched and the stiffness (and thus shear wavelength) is 

increased. For example, a frequency of 500-600 Hz should suffice if the tissue nominal linear 

shear modulus is 1000 Pa (see the FE study in Section 5.3.3). Analysis of the 3D displacement 

fields should proceed in a similar fashion to 5.3.3. 

5.5 Conclusions 
This chapter describes a method to measure shear waves and estimate nonlinear material 

parameters in soft tissue using MRE. Theoretical wave speeds were computed for shear waves 

superimposed on finite deformations in a standard, nonlinear, hyperelastic (Yeoh) material.  

Corresponding FE models were created with an initial finite shear strain and superimposed shear 

waves. Using the assumed material model, the superimposed shear waves had longer 

wavelengths when the material was under higher finite strains, consistent with analytical 

predictions. Finally, an experimental protocol was proposed to perform this experimental 

measurement in soft tissues and biomaterials. The results of this study could potentially provide 

useful information to compare with direct mechanical tests of the nonlinear properties of white 

matter in the brain. 
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Chapter 6: Summary, Conclusions, and 

Future Directions 

 

 
This thesis focuses on the application of MR elastography to extend our understanding of fibrous 

soft tissues, especially white matter in the brain. Experimental methods were established to use 

MR elastography to characterize nearly incompressible, transversely isotropic linear elastic 

materials. Experimental methods were also proposed, along with simulation and analytical work, 

to extend these methods to the nonlinear regime.  

6.1 Summary of Work 
The original specific aims of the dissertation are below. Over the last year, the dissertation scope 

has been modified slightly, in part to facilitate a pilot project on MRE in the mouse liver, funded 

by industry (Genentech). However, significant progress on each Aim has been achieved. The 

findings achieved during each of the aims are summarized shortly below each aim. 

Aim 1: Develop a method to identify separate contributions of anisotropic shear and tensile 

moduli to the wave propagation in fibrous materials such as ex vivo muscle tissue and aligned 

fibrin gels. 

A method was developed to characterize the shear and tensile moduli of fibrous tissues using 

MR elastography. The separate contributions of the anisotropic shear and tensile moduli were 

found by estimating the wave speed of two separate shear waves. These efforts are described in 
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Chapter 3. This study was the first to separate and estimate two separate shear waves in fibrous 

materials in this field.  

Aim 2: Estimate the shear and tensile anisotropic parameters of ex vivo white matter. 

Using the methods developed in Aim 1, anisotropic shear moduli of white matter ex vivo were 

estimated. Finite element models were created with plausible material properties and compared 

to experimental data. Using this “inverse” FE modeling approach, anisotropic shear moduli 

parameters were estimated for ex vivo porcine brain tissue. These results are discussed in Chapter 

4. 

Aim 3: Study the non-linear behavior of ITI tissue and tissue surrogates by imaging wave 

(infinitesimal) motion superimposed on larger (finite) deformations. 

The non-linear behavior of an isotropic, hyperelastic (Yeoh material), was studied analytically 

and via finite element simulation. A corresponding experimental method and apparatus was 

proposed for future MRE studies of nonlinear behavior. 

6.2 Limitations 

6.2.1 MRI and MRE resolution 

MRI offers lower imaging resolution than optical imaging and computed tomography. MRI has 

various advantages, however, including three-dimensional volume imaging and lack of exposure 

to ionizing radiation. The resolution of material property estimates from MRE is dependent on, 

and limited by, shear wavelength. To verify the existence of shear waves and obtain accurate 

estimates of shear wavelength in an MRE experiment, at a minimum, 7-8 voxels/wave must be 

present. Typically, spatial resolution on the order of 1/4 to 1/3 of the shear wavelength is 
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achievable, as needed to estimate the wavelength. In addition, estimates from MRE are 

frequently smoothed or averaged over a larger number of voxels. 

6.2.2 Transverse isotropy as a model for fibrous tissues 

The simplest model for anisotropic materials is transverse isotropy. In a transversely isotropic 

material, a single dominant fiber axis defines its symmetry, and properties are invariant with 

respect to rotations about this axis. As shown in Chapter 2, incompressible transversely isotropic 

materials can be described by three material parameters. Many biological tissues, especially 

white matter brain tissue contain a variety of fiber orientations within a small volume. Here these 

materials are approximated by models with a single fiber orientation. In Chapter 4, great effort 

was required to find white matter within the ex vivo porcine brain that most satisfied this 

assumption. 

6.2.3 Assumption of material incompressibility 

As noted in Chapter 2, the ability of three material parameters to describe transversely isotropic 

material behavior is based on the assumption of incompressibility. Most biological tissue is 

known to be slightly compressible, which leads to the existence of longitudinal waves in the 

material. Steps are taken to minimize the effects of these waves, including the use of the curl 

operator in isotropic materials or directional filtering. Because of their much longer wavelength, 

much of the displacement due to longitudinal motion at frequencies typically studied in this work 

(longest length scale < 5 cm), can be separated from the much shorter shear waves by simple 

high-pass spatial filtering. 
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6.3 Future directions 

6.3.1 Orthotropic material models  

Orthotropy allows for the characterization of materials with more than one fiber orientation. As 

explained in 6.2.2, biological tissues frequently exhibit diverse fiber orientations. Allowing for 

more fiber orientations would allow for characterization of more white matter regions within the 

brain. 

6.3.2 Noncontact excitation 

The use of acoustic radiation force (ARF) as the source of mechanical actuation for MRE studies 

would open an exciting frontier. In many of the studies described in Chapter 3 and 4, because of 

the proximity to contact with the actuation rod (punctured through the sample), much of the 

sample could not be characterized. In addition, with the existing apparatus, the sample cannot be 

repeatedly studied in different orientations. Acoustic radiation force, in contrast, would allow 

repeated excitation of motion deep in the material. 

6.3.2 MRE applied to estimate nonlinear material properties 

As outlined in Chapter 5, MRE has not yet been used to characterize the nonlinear properties of 

soft tissue. By combining a relatively large finite deformation with an incremental deformation 

found in MRE, nonlinear properties could be characterized. This technique might  resolve the 

disparate results of the many direct mechanical characterization studies of soft tissue. MRE 

avoids several of the most important and challenging difficulties associated with direct 

mechanical tests, such as gaining traction on a soft tissue specimen and imposing consistent 

deformations (e.g., simple shear) consistent with the theory behind each method. 
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6.4 Conclusion 

Soft tissue mechanical properties have been of interest to medicine for centuries. Their potential 

applications include insight into disease, improving the performance and reliability of implants, 

and increasing the accuracy of simulations of injury mechanics, especially TBI. Biological 

tissues exhibit complex behavior, such as material anisotropy and nonlinearity at finite strain, 

that should be taken into account. These complexities are addressed in this dissertation through 

the application of novel experimental MRE techniques and finite element analysis. The results 

from these studies increase our understanding of wave propagation through fibrous soft tissue 

and advance our ability to characterize these materials throughout development, aging, injury, 

and disease.  
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