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Abstract 

Surgical simulation plays an important role in the training, planning and evaluation of many surgical procedures. 

It requires realistic and real-time simulation of soft tissue deformation under interaction with surgical tools. 

However, it is challenging to satisfy both of these conflicting requirements. On one hand, biological soft tissues 

are complex in terms of material compositions, structural formations, and mechanical behaviours, resulting in 

nonlinear deformation characteristics under an external load. Due to the involvement of both material and 

geometric nonlinearities, the use of nonlinear elasticity causes a highly expensive computational load, leading to 

the difficulty to achieve the real-time computational performance required by surgical simulation. On the other 

hand, in order to satisfy the real-time computational requirement, most of the existing methods are mainly based 

on linear elasticity under the assumptions of small deformation and homogeneity to describe deformation of soft 

tissues. Such simplifications allow reduced runtime computation; however, they are inadequate for modelling 

nonlinear material properties such as anisotropy, heterogeneity and large deformation of soft tissues. In general, 

the two conflicting requirements of surgical simulation raise immense complexity in modelling of soft tissue 

deformation. 

This thesis focuses on establishment of new methodologies for modelling of soft tissue deformation for surgical 

simulation. Due to geometric and material nonlinearities in soft tissue deformation, the existing methods have 

only limited capabilities in achieving nonlinear soft tissue deformation in real-time. In this thesis, the main focus 

is devoted to the real-time and realistic modelling of nonlinear soft tissue deformation for surgical simulation. 

New methodologies, namely new ChainMail algorithms, energy propagation method, and energy balance 

method, are proposed to address soft tissue deformation. Results demonstrate that the proposed methods can 

simulate the typical soft tissue mechanical properties, accommodate isotropic and homogeneous, anisotropic and 

heterogeneous materials, handle incompressibility and viscoelastic behaviours, conserve system energy, and 

achieve realistic, real-time and stable deformation. In the future, it is projected to extend the proposed 

methodologies to handle surgical operations, such as cutting, joining and suturing, for topology changes 

occurred in surgical simulation. 
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1. Introduction 

Modelling and simulation of soft tissue deformation is a fundamental research topic in surgical simulation. In 

general, surgical simulation requires realistic and real-time simulation of soft tissue response to tool-tissue 

interactions [1, 2]; however, it is challenging to satisfy both of these conflicting requirements.  

 

1.1 Challenge of Modelling of Soft Tissue Deformation 

 Challenge of realistic simulation. The challenge of realistic simulation manifests itself in the context of 

surgical simulation as the accurate results of material characterisation of in vivo biological tissues, mesh 

generation of organ models, and numerical solutions to soft tissue behaviours [3]. In order to simulate 

realistic soft tissue mechanical behaviours, the material properties of living tissues need to be characterised. 

Such properties are patient-specific, and it can be difficult to predict the mechanical behaviours of in vivo 

tissues. Further, the geometry of anatomical models must be acquired from patient-specific medical images, 

and the problem domain must be discretised. This process is still not fully automated, requiring significant 

manual work in image segmentation and mesh generation. Finally, numerical issues for soft tissue 

simulation must be overcome. Most biological soft tissues exhibit anisotropic and heterogeneous stiffness 

and are nearly incompressible, which can lead to ill-conditioned problems during simulation. The ill-

conditioned problems have a high condition number which measures the sensitivity of the output of a 

function to changes in the input. Such problems can be numerically expensive to solve and may lead to 

inaccuracy or even failure of simulation. Boundary conditions, which provide additional constraints of state 

variables at the boundary of the problem domain, are also difficult to define due to complex tissue 

compositions and interactions between organs. 

 Challenge of real-time simulation. A simulation that is mechanically realistic, but not interactive would 

not fit for surgical simulation. The challenge of real-time simulation manifests itself as the high solution 

speed to tool-tissue interactions. Soft tissue response must be computed in a short time to achieve the 

required update rate of visual displays and haptic devices for real-time user interactions with virtual organs. 

The update rate required for visual feedback is at least 30 Hz for the rendered graphics to appear as 

continuous motion to the human sensory system, while a much higher update rate is required for haptic 

feedback, requiring a solution to be obtained at least 1,000Hz for stable and smooth tactile rendering from 

the haptic device with which the user moves the virtual surgery tools [4]. Due to nonlinear characteristics of 

soft tissues, the solutions are often computationally expensive to obtain. The need for real-time 

computation, however, often requires simplifications of the problem that adversely affect the simulation 

accuracy [5].  
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In all, the realistic and real-time characteristics of surgical simulation not only pose challenges to each aspect 

but also affect each other mutually since performance improvement on one aspect is mainly achieved to the 

detriment of the other.  

 

1.2 Contributions and Outline 

In this thesis, new methodologies are proposed to address soft tissue deformation for surgical simulation. 

Mainly, the new proposed methodologies focus on addressing (1) nonlinear soft tissue deformation, (2) 

anisotropic, heterogeneous and viscoelastic soft tissue material properties, and (3) real-time computational 

performance. The detailed contribution of each proposed methodology is presented at the beginning of each 

chapter. 

The rest of the thesis is organised as follows: 

 Chapter 2 reviews the state-of-the art deformable models for soft tissue modelling for surgical 

simulation.  

 Chapter 3 presents new ChainMail algorithms for soft tissue deformation, namely the time-saving 

volume-energy-conserved ChainMail algorithm, ellipsoid bounding region-based ChainMail algorithm, 

and neural dynamics-based ChainMail algorithm. 

 Chapter 4 presents energy propagation method for soft tissue deformation, namely the energy 

propagation method, neural dynamics-based energy propagation method, and neural dynamics-based 

stable simulation of soft tissue deformation. 

 Chapter 5 presents energy balance method for soft tissue deformation. 

 Chapter 6 discusses the deformable models for soft tissue deformation and outlines the remaining 

challenges for soft tissue modelling in surgical simulation. 

 Chapter 7 concludes the thesis with summaries of proposed methodologies and presents possible 

avenues of future work. 
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2. Literature Review 

In this chapter, a review on the deformable models developed for interactive surgical simulation is presented. 

The deformable models are divided into three basic categories: (i) the heuristic modelling approach; (ii) 

continuum-mechanical approach; and (iii) others. The first category includes heuristic deformable models that 

are derived from rather straight forward modelling schemes for the geoemtry of soft tissues, allowing for the 

inclusion of elastic properties. The second category includes deformable models that consider the deformation 

of soft tissues from the viewpoint of continuum mechanics and decribe the mathematical terms by equations of 

solid mechanics. Based on the ultisation of mesh, this category is further divided into mesh-based methods and 

meshless methods. Lastly, the third category includes deformable models that are based on other concepts for 

soft tissue deformation, such as neural network technique, machine learning, data-driven approach, and fibre 

and fluid technique.  

 

2.1 Heuristic Modelling Approach 

Deformable models presented in this category are derived from rather straight forward modelling schemes. 

Namely, the geometrically-based models, mass-spring models, and ChainMail algorithm are presented. The 

main advantage of these deformable models is their computational efficiency, which can meet the real-time 

computational requirement of surgical simulation. However, these models generally suffer from ambiguity in 

detemination of model parameters to reproduce the mechanical behaviours of soft tissues. 

 

2.1.1 Geometrically-based Models 

In the early efforts of modelling of soft tissue deformation for surgical simulation, various geometrically-based 

approaches, such as free-form deformation (FFD) [6] and deformable splines [7], were studied owing to their 

computational advantages. In 1986, Sederberg and Parry proposed a lattice-based FFD technique [6] which 

deforms a soft tissue surface model by deforming the parametric parallelepiped lattice in which the model is 

imbedded, based on the manipulation of control points in a free-form manner (see Fig. 2.1(a)). As the position 

of control points changes, the surface of the free-form lattice is deformed using a tensor product trivariate 

Bernstein polynomial to determine the displacement at each point on the lattice surface. Global and local 

deformations can be obtained through the manipulation of control points. Cover et al. [7] studied a deformable 

spline technique for soft tissue deformation and applied the technique in the simulation of laparoscopic gall-

bladder surgery. It induces deformation on a soft tissue surface model by defining a potential energy function, 

which is proportional to the degree of elastic deformation, and minimising the potential energy with respect to 
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the displacement of control points, obtaining the corresponding deformation state (see Fig. 2.1(b)). Although the 

geometrically-based models are often fast for interactive soft tissue deformation, they do not provide a realistic 

simulation of soft tissue mechanical behaviours to meet the physical accuracy requirement of surgical 

simulation, since the deformation process is carried out indirectly via the manipulation of control points and 

may bear little or no resemblance to the physically-based deformation. As such, the geometrically-based models 

have been mainly superseded by physically-based deformable models, which consider physical properties of 

materials and physical dynamics to improve simulation accuracy and obtain a satisfactory degree of physical 

realism. 

  

(a) (b) 

Figure 2.1 (a) Deformed state of an FFD lattice with control points [6]; and (b) deformed surface using 

deformable splines [7]. 

 

2.1.2 Mass-Spring Models 

Mass-spring model (MSM) [8, 9] is a popular deformable model based on the principle of dynamics for soft 

tissue deformation. It is widely used for modelling of soft tissue deformation, such as in the simulation of 

surgical repair of heart valves [9], and surveyed well in the literature [10-13]. As illustrated in Fig. 2.2, the basic 

idea of MSM is it considers a soft tissue model as a network of lumped masses connected via elastic springs. 

The dynamics of soft tissue deformation are governed by the non-rigid mechanics of motion, in which the 

internal force at a mass point is due to the sum of spring forces exerted on the point by the connected elastic 

springs. The positions of mass points are obtained by considering balance of force through time integration 

schemes in the temporal domain. MSM is simple in implementation and efficient in computation, making it an 

effective means for modelling of soft tissue deformation for interactive surgical simulation. Soft tissue 

mechanical properties, such as heterogeneity, nearly incompressibility, and time-dependent viscoelasticity, can 

be realised by techniques such as the modification of spring stiffness constants [14], utilisation of penalty forces 

[15], and incorporation of mechanical dampers [16], respectively. The literature on soft tissue deformation using 
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MSM is abundant, and various improvements were proposed to facilitate the capabilities of MSM. Compared to 

the conventional MSM where elastic springs are governed by the linear Hooke’s law, Basafa and Farahmand 

[17] employed a piecewise nonlinear spring model with a two-step expression of force-displacement 

relationship for modelling of nonlinear soft tissue deformation in laparoscopic surgery. They considered the 

typical force-displacement relationship of a soft biological tissue made by a nonlinear “toe” region at small 

deformation and a linear region at large deformation and formulated the spring force accordingly. Qin et al. [18] 

facilitated MSM by constructing a multilayered MSM based on the layered structure of biological soft tissues 

and applied the technique in the virtual orthopedic surgery. Choi et al. [16, 19, 20] devised a force propagation 

MSM for virtual-reality (VR) based medical learning. The basic idea of the force propagation MSM is it 

considers the process of soft tissue deformation as a process of force propagation among the mass points on a 

per-node basis [19]. A penetration depth is employed to limit the range of force propagation for the benefit of 

computational efficiency; the optimum value of the penetration depth is determined based on the criteria that no 

noticeable changes in shape is detected as the penetration depth is further increased beyond a certain value. 

Duan et al. [8] applied deformable constraints to MSM to directly manipulate the position of mass points to 

satisfy a set of predefined geometric and volume constraints for the nonlinear force-displacement characteristics 

and nearly incompressibility of soft tissues.   

 

Figure 2.2 A portion of a MSM: points of lumped masses   is connected via a network of elastic springs of 

stiffness   [13]. 

 

Despite the improved physical realism offered by the principle of dynamics, MSM suffers from a number of 

deficiencies that limit its model accuracy for soft tissue deformation. In general, mass-spring systems are not 

convergent as the mesh is refined, meaning the solution of deformation does not converge on the true solution 

[10]. Instead, the geometrical structure and topological arrangement of elastic springs heavily influence the 

deformation behaviours of the model and may introduce artificial anisotropy and heterogeneity [21], giving rise 

to stability and accuracy issues [3]. Further, the nonlinear stress-strain relationship of soft biological tissues is 

difficult to be reproduced accurately by MSM, since the mechanical behaviour of individual springs and 
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dampers cannot be simply related to the constitutive laws governing the mechanical behaviours of the model, 

regardless of linear Hookean or nonlinear springs, since the internal nodal force is determined by the sum of the 

spring forces, which are dependent only on the position of neighbouring points, spring rest lengths and spring 

stiffness constants. Owing to this, optimisation algorithms such as the Simulated Annealing (SA) [22] and 

Genetic algorithms (GA) [23] are often employed for optimisation of spring stiffness constants by fitting the 

deformation of MSM to some reference data to achieve certain global mechanical behaviours. However, 

parameter optimisation is a tedious task, and the results of a particular optimisation may no longer be valid if 

model topology arrangement and boundary conditions are changed. In all, the popularity of MSM in surgical 

simulation is mainly attributed to its simple mesh structure, easy programmability, and low computational 

complexity; as the evolution of MSM already reached its peak [11], the application of MSM in surgical 

simulation may be superseded by other deformable models that have higher physical realism with real-time 

computational efficiency. 

 

2.1.3 ChainMail Algorithm 

Compared to MSM, ChainMail algorithm [24, 25] is a more simplified approach for soft tissue deformation. In 

the early years of computer graphics, objects were commonly represented by surface-based polygonal models; 

despite their computational efficiency, these surface models are less accurate than modelling of objects’ volume 

for soft tissue deformation [5]. ChainMail algorithm was proposed under this background, which considers the 

volumetric nature of human organs with a deformation law derived from MSM, forming a linked volume to 

describe the volumetric behaviours of soft tissues [25]. The basic unit in ChainMail algorithm is called the chain 

element, which occupies the position of a voxel in a linked volume model. Each chain element enforces a 

geometric bounding region formed by geometric limits to each of its neighbouring chain elements. The position 

of a chain element will be adjusted to satisfy the geometric constraints only if the position is outside of the 

bounding region enforced by its neighbours (see Fig. 2.3). This position adjustment mechanism is further 

followed by a relaxation scheme that minimises the global potential energy of the system. ChainMail algorithm 

is unconditionally stable and can simulate various soft tissue mechanical behaviours, such as the nonlinear 

force-displacement relationship, hysteresis, and stress relaxation [26]. One significant advantage of ChainMail 

algorithm is its computational efficiency afforded by the position adjustment mechanism, and hence it has been 

used extensively in the modelling of large medical volume deformation consisting of millions of voxels, each of 

which stores important information related to patient-specific tissues and organs [27-29]. Such large volumetric 

datasets cannot be interactively deformed by conventional deformable models; even with significant model 

processing, the computational complexity of these conventional approaches limit the resolution of the captured 

medical datasets to only a small fraction that is usually several orders of magnitude lower, resulting in an 

inevitable loss of details of the source data [27].  
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(a) (b) (c) 

Figure 2.3 Deformation of ChainMail algorithm: (a) a chain element (black) at undeformed state; (b) the chain 

element is moved along the path of the arrow; and (c) its neighbouring chain elements are moved to satisfy 

geometric constraints between elements, leading to the deformed state. 

 

Since its inception, ChainMail algorithm has seen numerous variants that improve its physical accuracy and 

computational performance. Schill et al. [30] presented an enhanced ChainMail to simulate the vitreous humor 

in the eye, a substance that is heterogeneous and highly deformable. The enhanced ChainMail extends the 

traditional ChainMail to the modelling of heterogeneous materials. Park et al. [31] proposed a shape-retaining 

3D ChainMail, or S-Chain in short, for real-time haptic rendering. Haptic forces are calculated based on the idea 

that the reflection force is proportional to the sum of distances of all moved chain elements. To address the issue 

of geometric degradation due to shear distance limit in the traditional ChainMail, Wang and Fenster [32] studied 

a restricted 3D ChainMail, which replaces the shear distance limit by an angular shear limit expressed in degree, 

confining the movement of a chain element within a ChainMail bounding trapezium or frustum in 2D and 3D, 

respectively. Li et al. [33] proposed a surface ChainMail for web-based surgical simulation, which enhances the 

traditional ChainMail by defining the stretching, compressing and shear limits using a strain limit expressed 

relative to the rest length between two chain elements. Further, Li and Brodlie [34] also devised a generalised 

ChainMail that can be applied to any type of grid. The chain elements can be arbitrarily positioned and linked to 

any number of neighbouring chain elements, extending the range of applications of ChainMail algorithm. To 

achieve more accurate deformation with physical meanings, Wang and Lu [35] presented an adaptive S-Chain, 

utilising an energy-based wave propagation on the surface of the object, whereas the inner volume is deformed 

by the S-Chain. Based on the generalised ChainMail, Levin et al. [36] proposed a ChainMail-mass-spring 

hybrid model. The ChainMail constraints are employed for checking constraint violations, and spring forces are 

calculated once the ChainMail constraints are satisfied. Duysak and Zhang [37] presented a mass-spring chain 

model, combining the strengths of both MSM and ChainMail algorithm. They applied the ChainMail constraints 

to a surface triangular mesh, confining the movement of a spring within a ChainMail bounding region made by 
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super elastic limit, rigid limit, minimum spring length and maximum spring length. Neubauer studied a Direct 

Volume Deformation ChainMail algorithm, or Divod ChainMail in short, for direct volume deformation [38]. 

Rodriguez et al. [29] proposed an SP-ChainMail which implements ChainMail algorithm on the Graphics 

Processing Unit (GPU). This method can achieve a speed gain of higher than 20x when using a modern GPU 

compared to that of the traditional ChainMail. The SP-ChainMail was further extended by the heterogeneous 

SP-ChainMail [27] to simulate heterogeneous materials and handle multiple concurrent deformations.   

Thanks to various improvements made to the ChainMail algorithm, it has been applied to many medical 

applications such as the arthroscopic knee surgery [39], intra-ocular surgery [40], web-based surgical 

simulations [33, 34], prostate brachytherapy simulation [41], virtual endoscopy applications [38], training 

simulators with respiratory components [42], angioplasty simulation [43], percutaneous transhepatic cholangio-

drainage (PTCD) simulation [28] and image-based palpation simulation [44]. Despite various applications in the 

field of surgical simulation, the main limitation of ChainMail algorithm stems from the arbitrary selection of 

parameters for geometric constraints [45, 46]. Further, since the ChainMail relies solely on elements’ position 

rather than the equations of motion to determine elements’ displacement, the dynamic behaviours of soft tissues 

are difficult to realise. 

 

2.1.4 Other Heuristic Approaches  

Other deformable modelling methods such as the shape matching technique coupled with position-based solver 

[47] were also studied for soft tissue deformation. Shape matching is a geometrically motivated approach based 

on finding the least squares optimal rigid transformations between two sets of points with a prior knowledge of 

correspondence [48]. Similar to ChainMail algorithm, the shape matching technique also directly manipulates 

the position of points to satisfy a set of geometric constraints, and it is numerically stable. However, this method 

relies on determination of an optimal cluster stiffness coefficient for accurate soft tissue deformation, rather than 

considering material properties of soft tissues.   

 

2.2 Continuum-Mechanical Approach 

Different from the heuristic models that assume a discrete representation of soft tissue models for deformable 

modelling, continuum-mechanical methods consider a soft tissue model as a continuum medium based on the 

continuum mechanics of solid and employ constitutive laws to account for the complex mechanical behaviours 

of soft tissues. The solution procedure of these methods typically involves the consideration of minimisation of 

overall potential system energy and/or other fundamental physical balance laws to determine unknown field 
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variables over the problem domain. The typical solution methods in this category can be divided into two sub-

categories based on the utilisation of object mesh, such as the finite element methods (FEM) and boundary 

element methods (BEM) in the mesh-based methods, and meshfree total Lagrangian explicit dynamics 

(MTLED) algorithm and smoothed particle hydrodynamics (SPH) in the meshless methods.   

 

2.2.1 Mesh-based Methods 

FEM is a typical method for simulation and analysis of soft tissue deformation in surgical simulation, which 

requires explicit construction of object mesh to approximate the constitutive laws governing the mechanical 

behaviours of soft tissues. In FEM, an approximated discrete representation of the soft tissue under study can be 

obtained by dividing the soft tissue model into a number of elementary building components called finite 

elements, forming a finite element mesh of tetrahedrons or hexahedrons that conforms to the problem domain 

(see Fig. 2.4). The constitutive laws are approximated with respect to each finite element and satisfied at an 

element level. The individual equations of finite elements under external loads are assembled into a large system 

of equations that represents the mechanical behaviours of the soft tissue model, from which nodal displacements 

are determined [49]. Soft tissue material properties, such as the Young’s modulus and Poisson’s ratio, can be 

obtained by experimental measurements and directly integrated into the parametric constitutive laws for finite 

element calculation. Thanks to its physical accuracy, FEM is popular in the computational biomechanics [50] 

and has been applied successfully to a wide range of biomechanical modelling of soft tissues, such as the 

modelling of soft tissue deformation in image-guided hepatic surgery [51], computer-integrated neurosurgery 

[52], whole-body medical image registration [53], and interventional electrocardiology procedures [54]. 

Although FEM can achieve high model accuracy, such accuracy is generally obtained at the expense of high 

computational cost of problem solutions, leading to great challenges for interactive soft tissue deformation.  

 

Figure 2.4 The problem domain is divided into a number of finite elements    [55]. 
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2.2.1.1 Simplification of FEM 

To meet the real-time computational performance for surgical simulation, various techniques were proposed to 

simplify the computational complexity of FEM. Explicit FEM [10] is often employed for soft tissue 

deformation, in which the masses and the internal and external forces are lumped to the nodes, leading to block 

diagonal mass and damping matrices through which the computation can be performed at an element level, 

allowing simple implementation and easy parallel computation [56]. Bro-Nielsen and Cotin studied a fast finite 

element (FFE) model [57] which simplifies the computational complexity of FEM using matrix condensation 

[55]. By condensing the full system matrix describing the behaviours of object volume to a new matrix that 

involves only the variables of surface nodes while preserving the original physical characteristics of the 

volumetric model, the computational time for the volumetric deformation can be reduced to the computational 

time of a model only involving the surface nodes of the mesh, leaving only the displacement of the boundary 

nodes as unknowns [58]. Despite the improved computational efficiency, this simplification significantly 

degrades the simulation accuracy. Cotin et al. [59] applied a pre-computation technique to the linear FEM to 

achieve real-time computational performance for hepatic surgery simulation; they pre-computed the equilibrium 

solutions of a linear FEM model and applied the principle of superposition to determine nodal positions at 

interactive rates. However, the pre-computed elementary deformations are only valid for a given configuration 

of the stiffness matrix. Cotin et al. [60] also proposed a tensor-mass model (TMM) which incorporates the 

concept of shape functions of FEM into the formulation of internal forces and obtains nodal positions in a mass-

spring fashion. The TMM simplifies the computational complexity of FEM to the complexity of MSM while 

retaining the calculation of internal forces to be independent of mesh topology. BEM [61, 62] simplifies FEM 

complexity by formulating the weak form of the principle of virtual work into a surface integral form based on 

the assumption of an isotropic and homogeneous material interior. Owing to this assumption, the deformation 

solution is reduced to the solution of boundary integration equation on the surface mesh only, which 

significantly facilitates the computational performance. However, BEM only works for objects whose interior is 

composed of an isotropic and homogeneous material [11], and hence it cannot accommodate the anisotropic and 

heterogeneous characteristics of soft tissues. Wang et al. [63] applied BEM into a surgical simulation for haptic 

deformation of soft tissues and surgical cutting. Zhu and Gu [62] applied BEM into a mass-spring constraint 

model, which uses BEM to determine the global deformation and MSM to interactively simulate the dynamic 

behaviours of soft tissues. Inspired by the geometric constraints used in the heuristic approach, Tang and Wan 

[64] studied a strain-limiting FEM for virtual surgical training. They reduced FEM complexity of solving a 

system of equations to solving a set of geometric constraints by using a series of strain-limit constraints on the 

principle strains of the strain tensor. They also employed a multi-resolution hierarchy mesh structure to facilitate 

the global convergence of the constrained system. Despite the computational advantage of this method, the 

utilisation of strain limits adversely confines the deformation range of finite elements. Liu et al. [65] coupled 

FEM computation of strain energy density function with MSM internal force calculation for modelling of soft 
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tissue deformation. The spring force calculation in this model is derived from the strain energy density at 

neighbouring points, which is determined from the strain energy of a tetrahedron in the finite element mesh; soft 

tissue mechanical behaviours can be reflected by various forms of strain energy density function. Goulette and 

Chen [66] presented a hyperelastic mass links (HEML) algorithm for fast computation of soft tissue 

deformation. HEML is derived from the framework of FEM but calculates nodal positions via a mass-spring 

fashion based on local displacements. They obtained a speed gain more than 40x by HEML compared to 

standard TMM.   

 

2.2.1.2 Total Lagrangian Formulation 

Considering the frame of reference, FEM employs two formulations which are the updated Lagrangian 

formulation and the total Lagrangian formulation for determination of unknown value of state variables [67]. In 

the updated Lagrangian formulation, all variables are referred to the current configuration of the system, i.e. 

from the end of the previous time step. The advantage of this formulation is the simplicity of incremental strain 

description and low internal memory requirements [52]; however, it requires a re-calculation of spatial 

derivatives in each time step, since the reference configuration is changing with time. This re-calculation 

process can be computationally expensive and not suitable for real-time computational performance of surgical 

simulation. Compared to the updated Lagrangian formulation, the total Lagrangian formulation considers all 

variables referred to the initial configuration of the system. Contrary to the incremental strain description, the 

strain formation in the total Lagrangian formulation leads to correct results after a load cycle and no error 

accumulation occurs [68]. Most important, it permits that all derivatives with respect to spatial coordinates to be 

pre-calculated and stored [69], since the initial configuration is explicitly defined and does not change with time. 

Based on this, Miller et al. [56] presented a total Lagrangian explicit dynamics (TLED) finite element algorithm 

for soft tissue deformation, achieving fast solution calculation through the pre-computation of spatial 

derivatives, element-level computation, and explicit time integration. Given these three important attributes of 

TLED, it can be easily parallelised on GPU to take advantage of hardware parallel computation. Taylor et al. 

[69] achieved a high-speed TLED solution method with a GPU parallel computing and obtained a speed gain up 

to 16.8x compared to the equivalent Central Processing Unit (CPU) implementations. Later, Taylor et al. [70] 

achieved a speed gain of 56.3x using NVDIA Compute Unified Device Architecture (CUDA) implementation, 

which was subsequently integrated into the GPU-based finite element package NiftySim [71]. The GPU-

accelerated TLED has been applied successfully to the simulation of neurosurgical procedures [67, 72], whole-

body computed tomography (CT) image registration [53], and its computational potential utilising a wide range 

of GPUs has also been analysed in [73]. Szekely et al. [68] applied the total Lagrangian formulation-based FEM 

into the simulation of uterus deformation. Also based on the total Lagrangian formulation, Marchesseau et al. 

[74] presented a multiplicative Jacobian energy decomposition (MJED) approach for discretising hyperelastic 
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materials on linear tetrahedral meshes. The key idea of this approach is to decouple in the strain energy, the 

invariants of the right Cauchy-Green deformation tensor from the Jacobian, so as to avoid matrix inversions and 

complex derivate expressions, leading to a faster matrix assembly than the standard FEM. MJED is fully general 

and requires the user to provide a decomposition of the strain energy into simple terms. With this formulation, 

pre-computation can be performed to speed-up the assembly of stiffness matrices. Mafi and Sirouspour [75] also 

studied a total Lagrangian formulation-based FEM algorithm coupled with GPU-based implicit dynamics for 

soft tissue deformation. The GPU-based solution addresses the real-time computational challenges in both areas 

of FEM matrices construction and solving the system matrix resulting from implicit integration.   

 

2.2.1.3 Model Reduction 

In addition, model reduction techniques [76] have also been applied to FEM for achieving improved 

computational efficiency. The essential idea of model reduction technique is to employ a set of global basis that 

is, in a statistical sense, the best suited to reproduce the complete models, by which the full system response is 

projected onto a smaller dimensional subspace, leading to a reduction in the number of degrees of freedom for 

solution calculation. This is in sharp contrast with standard FEM, which employs general purpose, piecewise 

polynomial shape functions to approximate the solutions in the Galerkin framework [77]. The solution 

procedure is made up by two steps: an offline step, in which the response of the organ to prescribed loads is 

extracted to construct a meta-model and stored in the memory, and an online step, in which the model is 

interpolated for any other load state to perform a reduced-model simulation with less degrees of freedom. 

Niroomandi et al. [78] studied a model reduction technique based on the proper orthogonal decompositions 

(POD) for simulation of palpation of human cornea with surgical tools. Despite the improved computational 

efficiency, the reduced model is actually linear since no updating of the tangent stiffness matrix is performed, 

resulting in higher strains in comparison with a standard FEM model. Owing to this deficiency, Niroomandi et 

al. [79] coupled POD with a nonlinear solver, the asymptotic numerical method (ANM), constructing a 

geometrically nonlinear reduced-order model for soft tissue deformation. Later, Niroomandi et al. [80] 

generalised their POD approach by considering a parametric problem using proper generalised decomposition 

(PGD) to simulate live deformation due to interactions with surgical scalpels. As a generalisation of PODs, the 

resulting PGD solution is expressed as a finite sum of separable functions that provides a meta-model for the 

problem, and this meta-model can then be applied in real time to obtain the response of the system at kilohertz 

rates. Radermacher and Reese [81] also facilitated the computational performance of POD by using discrete 

empirical interpolation methods (DEIM). The conventional model reduction techniques show a limited 

reduction in computational time for nonlinear problems, since the reduced equation system still requires 

evaluations of all finite element quantities at each Gauss point. As an additional treatment, their method further 

reduces the nonlinear terms by an empirical interpolation based on a small number of interpolation indices. They 
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obtained a speed gain of 10x compared to the classical POD methods without empirical interpolation. A review 

of the model reduction techniques can be found in [82].  

 

2.2.1.4 Element-related Issues 

When applying the mesh-based methods to the computation of soft tissue deformation, it is important to 

consider element-related issues to avoid numerical deficiencies. In order to satisfy the computational 

requirement of surgical simulation, the finite element models must use numerically efficient low-order elements, 

such as the eight-node linear under-integrated hexahedrons or four-node linear tetrahedrons [72]. However, it is 

known that the standard formulation of these elements exhibits numerical deficiencies that need to be handled in 

order to maintain numerical accuracy. The eight-node linear under-integrated hexahedrons exhibit the zero 

energy mode, where individual elements are deformed while the overall mesh is undeformed, resulting in 

hourglass-like element shapes referred to in the literature as hourglassing. Joldes et al. [83] proposed an efficient 

hourglass control algorithm based on the total Lagrangian formulation to eliminate the zero energy mode (see 

Fig. 2.5). The standard formulation of the four-node linear tetrahedrons exhibits artificial stiffening when 

simulating nearly incompressible materials such as biological soft tissues, referred to in the literature as 

volumetric locking [71]. Joldes et al. [84] addressed this issue by using an improved average nodal pressure 

(IANP) linear tetrahedron formulation (see Fig. 2.6).  

 

(a) (b) (c) 

Figure 2.5 Hourglass control in a deformed column: (a) undeformed shape; (b) deformed shape without 

hourglass control; and (c) deformed shape with hourglass control [83]. 
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(a) (b) 

 

(c) (d) 

Figure 2.6 Volumetric locking control in a deformed cylinder: (a) undeformed shape with prescribed nodal 

displacements; (b) locking tetrahedral elements; (c) average nodal pressure (ANP) elements; and (d) IANP 

elements; color bars show the position difference of surface nodes to the reference solution using hexahedral 

elements [84]. 

 

2.2.2 Meshless Methods 

Despite the popularity and high level of accuracy of finite element-based methods in the computation of soft 

tissue deformation for surgical simulation, the results of these simulations rely heavily on the quality of the 

object mesh that discretises the model geometry. Given the considerations of physical accuracy and numerical 

convergence, a good quality mesh is always required. However, owing to the complex geometry of a human 

organ, it is very hard to build a good quality mesh automatically. An experienced analyst is often required to 

manually create a quality mesh, consuming valuable human time. It is evident in [85] that a good hexahedral 

mesh took more than two months to be generated by an experienced analyst, which is a major bottleneck in the 

efficient generation of patient-specific models to be used in real-time simulation of surgical procedures [85]. 
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Even if a good quality mesh is generated, the solution method may still fail in the case of large deformation 

where elements become highly distorted during the loading process, leading to element inversions [86] with 

zero or negative Jacobians [4]. 

 

2.2.2.1 Meshless Total Lagrangian Explicit Dynamics 

Compared with mesh-based methods, meshless methods [85, 87-89] conduct object deformation without 

involving mesh topology of the discretised soft tissue model, overcoming the degradation of mesh quality of 

mesh-based methods at large deformation. It uses a set of particles (mass points) dispersed arbitrarily in the 

problem domain and interpolates state variables of each particle through consideration of state variables at 

neighbouring particles. Based on the total Lagrangian formulation where pre-computation can be performed, 

Horton et al. [85] proposed a meshless total Lagrangian explicit dynamics (MTLED) algorithm in the element-

free Galerkin (EFG) framework. Numerical integration is conducted through the theory of moving least-squares 

(MLS) with the aid of hexahedral background integration cells that are not conformed to the simulation 

geometry (see Fig. 2.7). As in the TLED finite element algorithm, MTLED applies pre-computation of all 

derivatives with respect to spatial coordinates of each integration cell and uses the deformation gradient to 

determine the full system matrix at each time step. With equal number of nodes, the presented MTLED runs at 

half the speed of a hexahedral-based TLED simulation but three times faster than a similar tetrahedral-based 

simulation [85]. However, the standard meshless shape functions are generally not polynomials and are 

constructed using support nodes located beyond the boundary of integration cells, making numerical 

integrations in the meshless method more challenging. Further, the use of hexahedral background integration 

cells in MTLED may induce volume inaccuracies when the hexahedral cells are intersected by a domain 

boundary due to the complex geometry of a human organ. Zhang et al. [90] addressed these issues in the 

framework of MTLED by coupling the finite element shape functions with MLS to impose essential boundary 

conditions and employing tetrahedral background integration cells to improve the accuracy of volumetric 

integration. Zou et al. [91] employed a radial point interpolation method (RPIM) for easy enforcement of 

essential boundary conditions, since its shape functions have the Kronecker delta function peoperty. They 

applied the technique into a neurosurgical simulation. To further improve the numerical accuracy of MTLED, 

Chowdhury et al. [92] studied a modified MLS (MMLS) algorithm which uses the second-order polynomial 

basis to generate more accurate approximations of deformation fields for randomly distributed nodes. For the 

same size of supporting domain, the MMLS can generate more accurate results than the classical MLS of linear 

basis, and it is computationally more efficient since the radius of influence need not to be as large as that of in 

the classical MLS with quadratic basis. Despite the advantage of MTLED in handling large deformation of soft 

tissues, it should not be used when reaction forces and displacement of individual nodes are needed, since the 

method is accurate in terms of overall reaction forces but not quite as good with individual displacements or 
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forces [85].  

 

Figure 2.7 A meshless geometry: nodes (·) are dispersed arbitrarily in the problem domain with background 

integration points (+) [85]. 

 

2.2.2.2 Smoothed Particle Hydrodynamics and Point-Collocation-based Method of Finite Spheres 

Different from MTLED which uses a grid of background cells for numerical integration, smoothed particle 

hydrodynamics (SPH) and point-collocation-based method of finite spheres (PCMFS) were also studied for soft 

tissue deformation. In these methods, the particles in the problem domain have an associated smoothing distance 

over which the state variables are interpolated by a kernel function (see Fig. 2.8) by considering state variables 

at neighbouring particles. Palyanov et al. [93] presented a predictive-corrective incompressible SPH (PCISPH) 

algorithm package named Sibernetic for biological soft tissue simulation, while Raucsh et al. [94] employed a 

normalized total Lagrangian SPH, taking its natural ability of creating material discontinuities for modelling of 

soft tissue damage and failure. De et al. [21] applied a localised linear PCMFS model for real-time soft tissue 

deformation based on the assumption that the surgical tool-tissue interaction is local and the deformation field 

dies off rapidly with increase in distance from the surgical tool tip. Later Lim and De [4] extended the localised 

linear PCMFS by considering geometric nonlinearity which enhances the response of linear model with 

nonlinear deformation in the local neighbourhood of surgical tool-tip. To further extend PCMFS to 

accommodate nonlinear characteristics of soft tissues, Banihani et al. [95] applied the POD technique to PCMFS 

with consideration of hyperelastic materials. Despite the advantage of meshless methods in handling large 

deformation and discontinuities, the meshless methods generally have difficulty in handling sparely sampled 

regions [96], and their accuracy heavily relies on the proper placement of sampled nodes [21, 85].   
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Figure 2.8 A kernel function: (right) the kernel’s weight distribution; and (left) projection of the kernel function 

onto the 2D plane to illustrate the radius of influence (in this case three times the particle distance δ [94]). 

 

2.3 Other Modelling Approaches 

Apart from the above-mentioned modelling methods for soft tissue deformation for surgical simulation, a few 

other methods based on different concepts were also studied for soft tissue deformation. Zhong et al. [97] 

proposed a cellular neural network (CNN) approach, taking its real-time computational performance for 

interactive soft tissue deformation. Soft tissue deformation is carried out from the viewpoint of potential energy 

propagation, in which the mechanical load of an external force applied to soft tissues is considered as the 

equivalent potential energy, according to the law of conservation of energy, and it is propagated in the soft 

tissues through CNN-based neural propagation. De et al. [98] also studied a neural network technique of 

machine learning for soft tissue deformation. The computational process is divided into an offline and online 

phase, in which the offline phase pre-computes the response of a FEM model subject to prescribed 

displacements and optimises the coefficient of neurons through training of a radial basis function network 

(RBFN); the online phase reconstructs the deformation field using the trained RBFN. The concept of machine 

learning for computation of soft tissue deformation was further explored by Lorente et al. [99] for modelling of 

liver deformation during breathing. In this approach, deformation data are used to feed a supervised machine 

learning model to find a mapping function of the input variables that can approximate the known outputs. This 

mapping function is constructed and capable of generating an output, in this case the deformation, for future 

unseen inputs, in this case the prescribed displacements. Therefore, the performance of machine learning model 

is highly dependent on the collected data and the chosen learning algorithm. Similarly, Bickel et al. [100] 

studied a data-driven approach based on a linear co-rotational FEM for soft tissue deformation. They captured 

the deformations of a real object and presented each of them as a spatially varying stress-strain relationship in 

the FEM model. Material properties are then interpolated from these stress-strain relationships in the strain-

space. Different from the aforementioned approaches, Costa [101] presented a fast deformation model based on 

the principle of Pascal and conservation of volume to simulate deformation of soft tissues formed by fibres and 
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fluid. By using the conservation of volume to represent the nearly incompressibility of soft tissues, the volume 

displacement in one direction directly causes the displacement of any surface in the opposite direction. This 

approach is particular fast since the variation of liquid pressure within a confined object is constant for the liquid 

inside the object, according to the principle of Pascal, and it has the same value for all vertices. However, this 

method is only valid for objects filled with fluids and does not exhibit any dynamic behaviours.  

 

2.4 Numerical Time Integrations 

Modelling of soft tissue deformation for surgical simulation often requires the modelling of dynamic behaviours 

of soft tissues, leading to the need of integrating dynamic equations in the temporal domain. The integration 

scheme chosen affects the numerical stability, which is also an important factor that needs to be considered in 

surgical simulation. Currently, the dynamics of soft tissue deformation is commonly obtained by numerical time 

integration schemes such as the explicit [60, 66] or implicit [3, 102] integrations. In both schemes, the second-

order ordinary differential equation governing the dynamics of soft tissue deformation is transformed into a 

coupled set of two first-order systems by introducing a proxy velocity vector  ̇, i.e. 

{
 ̈  

 ̇

 

 ̇  
 

 

 

(2.1) 

where  ̈,  ̇ and   are the acceleration, velocity and displacement vectors of a point. 

To determine a solution of time-continuous Eq. (2.1), the time-dependent variables  ̇  and  ̈  need to be 

discretised using a finite difference technique via time increments to determine estimates of the continuous 

variables [103]. By choosing different finite difference techniques, such as the forward or backward finite 

difference estimates, an explicit or implicit integration scheme can be obtained [104]. 

 

2.4.1 Explicit Integration 

In the explicit integration, variables in the future state are explicitly determined from their current state of 

known values via a numerical time-stepping algorithm. An explicit scheme using forward finite difference 

estimation can be written as 
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{
 

  ̈  
 ̇ +  −  ̇ 

  

 ̇  
  +  −   

  

→ { ̇
 +    ̇     ̈ 

  +         ̇  

(2.2) 

where the right superscript denotes the current and future time points at   and     , respectively, and    is the 

time step size. 

The explicit integration is easy to implement and computationally efficient, since variables in the future state are 

obtained explicitly based on the current state of known values only, which does not require inversion of stiffness 

matrix at each time step [55]. It is also well suited for distributed parallel computing, since most of the 

deformation methods for soft tissue deformation employ the mass lumping technique, by which the global 

system of equations can be split into independent equations for the nodes, allowing each node to be assigned to 

one processor in the parallel computer and calculation to be performed independently. Despite the improved 

computational efficiency and simple implementation, the explicit integration exhibits a number of shortcomings. 

Most important, the solution of explicit integration is only conditionally stable, meaning a careful selection of 

time step size is needed for the simulation, otherwise explodes numerically, to be stable [11]. The mathematical 

evaluation of stability of integration schemes can be conducted using the Dahlquist’s test equation [105] 

 ̇  𝜆                   (2.3) 

where the analytic solution of this equation is the exponential         
   . 

An integration scheme that yields a bounded solution to Eq. (2.3) is said to be stable. Eq. (2.3) is only bounded 

when    𝜆   . Using the explicit integration, Eq. (2.3) can be approximated as 

 ̇  
  + −   

  
 𝜆   

(2.4) 

which can be further rearranged into  

  +  𝜆           𝜆    +    (2.5) 

where the condition for   +  to be not increased indefinitely is 

|  𝜆  |    (2.6) 

It can be seen from Eq. (2.6) that the explicit integration is only conditionally stable, and the critical time step 

   is obtained by    
 

| |
. In soft tissue deformation, the maximum time step size that can be used for stable 

simulation is associated with the largest eigenvalue of the stiffness matrix and to the mass and damping values 

[60, 106]. Various estimations of the critical time step size for stable simulation of soft tissues in explicit 
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integration were studied, such as the critical time step for linear FEM [107], TLED [56] and meshless method 

[86]. Due to the stiff equations raised from the nearly incompressibility of biological soft tissues, the maximum 

time step is often restricted to a small value. Further, considering the soft tissues’ viscoelastic effects further 

decreases the maximum value of the time step size. Owing to these, the solutions of explicit integration to soft 

tissue deformation usually require more iterations per simulation frame, resulting in inefficient computation.     

To address the inefficient computation resulted from using small time steps in explicit integration, various 

techniques were studied. Cotin et al. [60] applied a fourth-order Runge-Kutta explicit integration method for 

discretising the temporal domain and achieved a larger time step, about 10x larger than the forward Euler 

method, leading to a speed gain of 2x for surgical simulation. Fierz et al. [103] studied a shape matching 

technique to improve the time step size in the explicit integration. In this approach, under a given desired 

simulation time step, the ill-shaped elements that cannot be simulated stably are handled specially via a non-

physics-based geometric shape matching technique, whereas the remaining well-shaped ones are simulated with 

a standard deformation model. The elements that require special treatment are identified by computing the 

eigenmodes of the elements while considering the mutual interactions with neighbouring elements. This hybrid 

approach enables taking a larger time step than using an explicit integration alone, and the total computational 

costs per frame are significantly lowered. Taylor et al. [108] presented a reduced order explicit dynamics 

scheme to improve the time step limit. In this approach, the full model configuration is projected onto a low 

dimensional generalised basis prior to integration of the equilibrium equations, and hence the time integration is 

performed on a reduced basis, leading to a much larger time step than that of the full system for stable 

simulation. Despite all the efforts mentioned above, the conditional stability of explicit integration cannot be 

completely eliminated by these approaches. 

 

2.4.2 Implicit Integration 

Compared to explicit integration, the implicit integration is unconditionally stable. In the implicit integration, 

variables in the future state are determined by considering variables both in the current and future states, leading 

to a system of equations in which unknown state variable values are implicitly given as solutions. An implicit 

scheme using the backward finite difference estimation can be written as 

{
 

  ̈  
 ̇ −  ̇ −  

  

 ̇  
  −   −  

  

 

(2.7) 

By writing the index of   by  →      and  −   →  , the time-continuous variables  ̈ ,  ̇  and   can be 

estimated as 
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{ ̇
 +    ̇     ̈ +  

  +         ̇ +   
(2.8) 

Similar to the stability verification of the explicit integration using the Dahlquist’s test equation, Eq. (2.3) can be 

approximated using the implicit integration as 

  +  𝜆    +    →   +  
  

  − 𝜆   
 

  
  − 𝜆    + 

 
(2.9) 

where   +  will not be increased indefinitely if 

| − 𝜆  | ≥   (2.10) 

Equation (2.10) is always true since    𝜆   ; therefore, the implicit integration is unconditionally stable for 

any arbitrarily chosen time step [105]. This attribute provides a unique strength to the implicit integration in 

handling collisions occurred in tool-tissue interactions and the stiff equations raised from the nearly 

incompressibility of soft tissues, which enhances the simulation by using a large time step without loss of 

numerical stability. The time step size is limited only by the considerations of numerical convergence and 

accuracy. Despite unconditional stability, the downside of implicit integration is that it is computationally more 

expensive than the explicit counterpart. It requires the solution of a nonlinear system of equations at each load 

step, which is usually solved by an iterative method based on the Newton-Raphson method through a sequence 

of solutions of linear equations. The linear system equations can either be solved by directly computing the 

inverse or a factorisation of the system matrix or iteratively solving a system of algebraic equations based on an 

initial estimate, both of which lead to an increase in computational time. Mafi and Sirouspour [75] studied and 

compared the performance of an element-by-element and conventional preconditioned conjugate gradients 

(PCG) solvers for solving the system equations. It was shown that the element-by-element PCG outperforms the 

conventional solver at small number of iterations. In implicit integration, iterations also need to be performed 

for each time step in order to control the numerical errors and prevent divergence [56]. Further, numerical 

dissipation can become dominant for large time steps, and the computed solution accuracy deteriorates when a 

large time step is used in low-order schemes [103].  

Compared between the two integration schemes, the system response is more global within the implicit 

approach, whereas the response of the explicit integration to applied forces is only propagated from a node to 

the whole mesh after multiple iterations [55]. Although the explicit integration can be computationally efficient 

at finding solutions than the implicit integration thanks to not solving a large system of equations, the time 

discretisation error will usually accumulate in the explicit scheme [68]. Further, in the case of large deformation 

of soft tissues, elements can become distorted and ill-conditioned, leading to a reduction in the critical time step 

size in the explicit integration [52], whereas the implicit integration still remains stable. Explicit integration also 

tends to converge more slowly than the implicit counterpart, since it is only conditionally stable. Joldes et al. 
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facilitated the convergent rate of explicit integration using a dynamic relaxation (DR) scheme [109], and it was 

further improved by the adaptive DR [110]. The main idea of DR algorithm is to increase the convergence rate 

towards the final, deformed state by including a mass proportional numerical damping while sacrificing 

numerical accuracy in the path along which the deformed state is reached. The proposed DR is computationally 

efficient in that the main parameters of DR algorithm can be pre-computed. Compared to explicit integration, 

the implicit integration also helps to obtain robust and realistic behaviours when simulating user tool-tissue 

interactions, whereas the explicit integration with a much lower time step and large frame rate results in very 

damped motions [74]. Moreover, the explicit integration does not guarantee that, at each time step, the residual 

vector is minimised, and hence it cannot ensure that the external and internal forces are balanced [3], whereas 

the accuracy of the equilibrium equation can be controlled in the implicit integration [111]. 
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3. New ChainMail Algorithms 

In this chapter, three new ChainMail algorithms are proposed to improve the modelling realism and 

computational performance of traditional ChainMail algorithms. Chapter 3.1 first presents an overview of the 

traditional ChainMail, followed by three new ChainMail algorithms presented in Chapters 3.2, 3.3 and 3.4, 

respectively. The novelties of the proposed ChainMails are presented as follows: 

 Time-Saving Volume-Energy-Conversed ChainMail Algorithm (Chapter 3.2): The proposed method 

can (i) accommodate various material properties; (ii) improve computational performance for isotropic and 

homogeneous materials; and (iii) conserve volume and strain energy. 

 Ellipsoid Bounding Region-based ChainMail Algorithm (Chapter 3.3): The proposed method can (i) 

overcome the conflict of the concept of principle strains in continuum mechanics to control the movement 

of chain elements; (ii) conserve linear and angular momentums and improve deformation realism; and (iii) 

enable model dynamics for dynamic soft tissue deformation. 

 Neural Dynamics-based ChainMail Algorithm (Chapter 3.4): The proposed method can (i) avoid the 

complex computation of elasticity; (ii) simulate soft tissues’ nonlinear deformation and the typical 

mechanical behaviours; and (iii) simulate the dynamics of soft tissue deformation via neural dynamics of 

the cellular neural network. 

 

3.1 Traditional ChainMail Algorithm 

From the perspective of continuum mechanics of elasticity, the traditional ChainMail algorithm [24, 34] is 

equivalent to a spring system. As shown in Fig. 3.1, a spring of length    at the rest state can be compressed to a 

minimum compression length      or extended to a maximum extension length     . Therefore, the movement 

of the spring is bounded by these two limits. 

 

Figure 3.1 A spring of rest length    can be compressed to a minimum length      or extended to a maximum 

length     . 
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Traditional ChainMail algorithms, such as the 3D ChainMail [24] and the generalised ChainMail [34], employ 

geometric limits, forming a box-shaped bounding region (    ), to control the movement of chain elements in 

the object. As illustrated in Fig. 3.2, for any two connected chain elements   and   with their respective positions 

denoted by              and             , the         for chain element   with respect to chain element   is 

defined by geometric limits           ,            and           , which are the maximum allowable moving distances 

of chain element   in the  ,   and   directions, respectively.  

 

Figure 3.2 The         is a box-shaped bounding region defined by three geometric limits            (red), 

           (green) and            (blue) for chain element   with respect to chain element  , with their positions 

denoted by    and   , respectively. 

 

The         for chain element   with respect to chain element   is given by 

        {                    ;                     ;                     } (3.1) 

where         ,          and          are the minimum compressions, and         ,          and          are the 

maximum extensions in the  ,   and   axis directions, respectively.  

With the three geometric limits, the minimum compression          and maximum extension          are 

expressed as 

                 −            

                              

(3.2) 

which may be further formulated according to the generalised ChainMail [34] as 
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            𝛼        − 𝛽(           ) 

            𝛼         𝛽(           ) 

(3.3) 

where 𝛼   , 𝛼    and 𝛽 are the material parameters; and      ,       and       are geometric distances between 

chain elements   and   with respect to the x, y and z axes at the rest state, respectively, i.e.       |  −   |, 

where the symbol “|∙|” denotes the modulus of a vector component. The minimum compression and maximum 

extension in the other two directions, i.e.         ,         ,          and         , can be expressed in a similar 

manner.  

The minimum compression and maximum extension along an axis direction define the limits of compression 

and extension of a chain element along this axis direction. If any of these limits is violated, the chain element 

violating the limit will be moved in the corresponding axis direction to maintain its position within the     , 

such that the projection of the chain link connecting the two chain elements on that axis direction is always 

bounded by the two limits. Consider the chain element   is now moved from position    to a new position 

  
               and enforces a new         . The          for chain element   with respect to the new position 

  
  of chain element   can be written in a similar manner as Eq. (3.1), and it is given by 

         {                      ;                       ;                       } (3.4) 

The minimum compression           and maximum extension           in the   axis direction of the new          

can be calculated by 

              𝛼        − 𝛽(           ) 

              𝛼         𝛽(           ) 

(3.5) 

If    is outside of the limits defined by Eq. (3.5), the chain element   will be adjusted in the   axis direction such 

that 

if (  <          )                  

if (  >          )                  

(3.6) 

where        is the   component of the new position   
                        of chain element   adjusted from   , 

due to the movement of chain element   from position    to   
 , which is illustrated in Fig. 3.3. The position 

adjustments in the other two axis directions are performed in a similar manner.  
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Figure 3.3 The position of chain element   is adjusted from    to   
  to satisfy the          enforced by the chain 

element   at its new position   
  which is moved from   . 

 

The position adjustments of the traditional ChainMails result in a deformation that is propagated in the object 

from the chain element being manipulated to the others via chain links. The deformation propagation between 

chain elements in 1D is illustrated in Fig. 3.4. 

 

Figure 3.4 Propagation of deformation in a 1D ChainMail model, where the      is indicated by a black box: 

(top) the rest state; (middle) maximally extended; and (bottom) minimally compressed. 

 

3.2 Time-Saving Volume-Energy-Conserved ChainMail Algorithm 

Traditional ChainMails employ constant values for material parameters 𝛼   , 𝛼    and 𝛽 throughout the entire 

volumetric object, leading to the failure in accommodating nonlinear material properties such as anisotropy and 

heterogeneity. In addition, despite various improvements on the traditional ChainMails [27, 29], the method still 

lacks the capability in modelling of soft tissues’ incompressibility and relaxation behaviours, due to the lack of 

volume and strain energy conservation. Therefore, a new ChainMail algorithm named time-saving volume-

energy-conserved (TSVE) ChainMail is proposed in this chapter to address these issues. The proposed algorithm 

enables the use of different material properties for chain elements to accommodate various materials. Based on 

the new     , a time-saving scheme is developed to improve computational performance for isotropic and 

homogeneous materials. The proposed algorithm can also conserve volume and strain energy.  
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3.2.1 New Box-Shaped Bounding Region 

The minimum compression          and maximum extension          in the   axis direction of the new         in 

the proposed TSVE-ChainMail are defined as 

                 −
𝛼  𝛼 

 
(                 ) 

                  
𝛼  𝛼 

 
(                 ) 

(3.7) 

where 𝛼  and 𝛼  are the material parameters of chain elements   and  , respectively, and they are corresponded 

to the spring stiffness   of the material.  

For isotropic and homogeneous materials, where 𝛼  𝛼  𝛼, the above equations may be simplified to 

              − 𝛼      − 𝛼              

               𝛼       𝛼              

(3.8) 

Anisotropic and heterogeneous materials can be modelled by setting different parameter values in different 

directions and different regions, respectively, which were unable to achieve with the traditional ChainMails. 

 

3.2.2 Time Saving Scheme for Isotropic and Homogeneous Materials 

A time saving scheme (TSS) is developed for isotropic and homogeneous materials of constant material 

parameter 𝛼, where each chain element can be considered only once in every iteration, leading to improved 

computational efficiency. Consider three general cases of chain elements’ movement illustrated in Fig. 3.5: 
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(a) (b) (c) 

Figure 3.5 Chain element   is moved from    to a new position   
  (blue arrow) while others follow its 

movement; the rest state is shown in black, whereas the new positions are shown in red; the solid line indicates 

that the two chain elements are connected and one is moved directly with respect to the other, whereas the 

dotted line indicates that the elements are connected but one does not move with respect to the other. 

 

 Case (1): Following   ’s movement to   
 , chain elements   and   are moved to   

  and   
 , respectively (see 

Fig. 3.5(a)). Then   
  and   

  stay within their respective     s;  

 Case (2): Following   ’s movement to   
  in Case (1), chain element   is moved to   

  (see Fig. 3.5(b)). 

Then   
  and   

  stay within their respective     s;  

 Case (3): In addition to   ,   ,    and   ’s movements, chain element   is moved to   
  following   ’s 

movement to   
 , and chain element   is moved to   

  following   ’s movement (see Fig. 3.5(c)). Then   
  

and   
  stay within their respective     s. 

 

3.2.2.1 Proof of Case (1) 

Case (1) will be verified if   
                        stays within the           with respect to   

 , and   
  stays 

within the           with respect to   
 . Since the exact positions of   

  and   
  are unknown, the maximum and 

minimum limits (two limits),       
                                    and       

                                    of 

  
 , are used for verification of Case (1). Denote the           at the two limits of   

  by          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Thus, 

         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  {        𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅;         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅;         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (3.9) 

Substituting              −   − 𝛼       𝛼              into the lower limit       ≥               

  − 𝛼      − 𝛼              to replace     yields 
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      ≥          −   − 𝛼       𝛼                − 𝛼      − 𝛼              (3.10) 

Using geometric distance       |  −   | , at lower limit                     , the above equation may be 

simplified to 

      ≥             − 𝛼      − 𝛼                           − 𝛼      − 𝛼             

         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(3.11) 

A similar calculation can be made for           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, and for          . 

Therefore, it is demonstrated that   
  always stays within the           with respect to   

 , and vice versa.  

 

3.2.2.2 Proof of Case (2) 

Case (2) will be verified if   
                        stays within the           with respect to   

 , and   
  stays 

within the           with respect to   
 . Denote the           at the two limits of   

  by          
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Thus,  

         
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  {        𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅;         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅;         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (3.12) 

Consider the lower limit       ≥                    − 𝛼      − 𝛼             ; substituting        by 

                   𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ −   − 𝛼       𝛼              from Eq. (3.11) yields 

      ≥         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ −   − 𝛼       𝛼                − 𝛼      − 𝛼              (3.13) 

Using the geometric distance, the above equation may be simplified to 

      ≥         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    − 𝛼      − 𝛼              (3.14) 

Based on Eqs. (3.6) and (3.11),       ≥           and       ≥         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. At the lower limit of       ,         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

         . Further, at lower limit                     . Thus, 

      ≥             − 𝛼      − 𝛼                           − 𝛼      − 𝛼             

         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(3.15) 

A similar calculation can be made for the other boundary limits, and for          . Therefore, it is demonstrated 

that   
  stays within the           with respect to   

 , and vice versa.  
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3.2.2.3 Proof of Case (3)   

Case (3) will be verified if   
                        stays within the           with respect to   

 , and   
  stays 

within the           with respect to   
 . Denote the           at the two limits of   

  by          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Thus, 

         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  {        𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ;         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ;         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅        

           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(3.16) 

Similar to the determination of         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ in Eq. (3.15), the calculation of         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  can be represented by 

        𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅               − 𝛼      − 𝛼              (3.17) 

Substituting                    𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −   − 𝛼       𝛼              into Eq. (3.15) yields 

      ≥         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −   − 𝛼       𝛼                − 𝛼      − 𝛼              (3.18) 

Similar to       ≥         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ in Eq. (3.15),       ≥         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . At lower limit of       ,         𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅           . 

Further, at lower limit                     . Thus, 

      ≥             − 𝛼      − 𝛼             

              − 𝛼      − 𝛼                      𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(3.19) 

A similar calculation can be made for the other boundary limits, and for          . Therefore, it is 

demonstrated that   
  stays within the           with respect to   

 , and vice versa.  

 

3.2.2.4 Three Remarks 

From the above three proofs, the following three remarks can be drawn. For any three neighbouring chain 

elements A, B and C: 

 [Remark 1] if A and B are moved with respect to C, then A and B stay within their respective     s (the 

case of   
 ,   

 and   
  in Fig. 3.5(a)). 

 [Remark 2] if only A is moved with respect to C while B and C have been previously moved as per 

Remark 1, then A and B stay within their respective     s (the case of   
 ,   

 and   
  in Fig. 3.5(b)). 

 [Remark 3] if A and C as well as B and C have been previously moved as per Remark 2, then A and B stay 

within their respective     s (the case of   
 ,   

 and   
  in Fig. 3.5(c)). 
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The three remarks demonstrate that the chain elements always satisfy the     s with respect to each other in 

isotropic and homogeneous materials. Therefore, each chain element can be considered only once at each 

iteration, saving computational time. It should be noted that boundary conditions can be enforced by specifying 

displacement values to chain elements at the boundary of the problem domain. 

 

3.2.3 Volume and Strain Energy Conservation 

Since most biological soft tissues are nearly incompressible [112], and there is a change in strain energy when 

soft tissues are deformed by an external force, the conservation of volume and strain energy are enforced by 

using a position adjustment    for realistic soft tissue deformation. This position adjustment is derived based on 

the conditions of conservation of volume and energy [113, 114]. 

    
𝑤    𝟎 …     

∑ 𝑤 ‖∇  
   𝟎 …     ‖

 
 
 = 

∇  
   𝟎 …      

(3.20) 

   𝟎 …       𝑣𝑜 𝑢 𝑒  𝟎           
 

 
‖   −  𝟎 ∙     −  𝟎 ×    −  𝟎  ‖ − 𝑉  

(3.21) 

   𝟎 …       𝑒 𝑒𝑟𝑔   𝟎           
 

 
∑   ‖  −  i‖ −   𝑐
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(3.22) 

where 𝑤  and 𝑤  are the inverse of masses of respective chain elements;   ∙  is the condition, the condition of 

conservation of volume  𝑣𝑜 𝑢 𝑒  𝟎           and energy  𝑒 𝑒𝑟𝑔   𝟎           are employed;  𝟎          

are the four vertices of a tetrahedron;  ∇  
  ∙  is the gradient vector of   ∙  at position   ; the symbol “‖∙‖” 

denotes the modulus of a vector; 𝑉  is the volume of the tetrahedron at rest state;    is the stiffness associated 

with chain element  ;    is the barycentre of the tetrahedron; and   𝑐
  is the rest length of  i  

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 

 

3.2.4 Results 

A prototype surgical simulation system has been implemented with the proposed TSVE-ChainMail. 

Experiments are conducted to evaluate the performance of the proposed method in terms of soft tissue material 

properties, computational time, and volume and strain energy conservation. 
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3.2.4.1 Isotropic and Homogeneous, Anisotropic and Heterogeneous Deformations 

Fig. 3.6 illustrates the deformations of an isotropic and homogeneous, an anisotropic and a heterogeneous 

material. The cube model is deformed evenly for an isotropic and homogeneous material in Fig. 3.6(a), 

deformed more significantly in one direction than the others in Fig. 3.6(b), and deformed differently at different 

regions in Fig. 3.6(c). 

   

(a) (b) (c) 

Figure 3.6 (a) Isotropic and homogeneous, (b) anisotropic and (c) heterogeneous deformations. 

 

3.2.4.2 Computational Performance 

The computational performance is evaluated on an Intel(R) Core(TM) i7-4700 CPU@3.40 GHz PC running 

Visual Studio 2015 in debug mode. Experiments are conducted under same conditions to compare the timing 

performances with and without the use of TSS for isotropic and homogeneous materials. As illustrated in Fig. 

3.7, the computational time with the use of TSS is less than that without TSS for isotropic and homogeneous 

materials. A computational gain of 29.4% is achieved for real-time visual refresh rate (30 Hz) in terms of the 

number of moved chain elements.  
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Figure 3.7 Computational time of the proposed ChainMail with and without TSS for isotropic and homogeneous 

materials. 

 

3.2.4.3 Volume Conservation 

Volume conservation has been achieved with the proposed ChainMail. As shown in Fig. 3.8, the proposed 

ChainMail conserves the object’s volume considerably better than the traditional ChainMails which has a 

significant volume loss after deformation. The volume change after deformation was 0.71% for the TSVE-

ChainMail, whereas it was 14.31% for the traditional ChainMails. 

  

(a) (b) 

Figure 3.8 Comparison between the (a) proposed TSVE-ChainMail and (b) traditional ChainMails in terms of 

volume conservation.  
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3.2.4.4 Soft Tissue Deformation and Strain Energy Conservation 

Interactive deformation of virtual human organs with force feedback has been achieved with the proposed 

method. Fig. 3.9(a) illustrates the deformation process of a volumetric kidney model by a virtual probe. The 

strain energy conservation is presented in Figs. 3.9(b)-(d): the kidney model returned to its original state with 

the proposed ChainMail, whereas the traditional ChainMails failed to do so. It is also noticed that a significant 

visual improvement has been achieved with the proposed method. 

 

 

 

(a) prototype surgical simulation system (b) virtual kidney model at the rest state 

 
 

  

(i) force applied (ii) force released (i) force applied (ii) force released 

(c) TSVE-ChainMail (d) Traditional ChainMails 

Figure 3.9 Comparison between the two ChainMails in terms of strain energy conservation: the kidney model 

with the TSVE-ChainMail can return to its original state once the external force is released, whereas the 

traditional ChainMails fails to do so. 

 

3.3 Ellipsoid Bounding Region-based ChainMail Algorithm 

In previous chapter, the traditional ChainMail algorithms are improved by considering material properties and 
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volume and strain energy conservation [45]. Despite improved modelling realism, the ChainMail algorithm still 

suffers from three major deficiencies such as (i) the conflict of the concept of principle strains in continuum 

mechanics; (ii) the violation of linear and angular momentum conservation; and (iii) the lack of model dynamics 

in the temporal domain, leading to limited modelling realism.  

In this chapter, the above three deficiencies of the ChainMail algorithm are addressed. Unlike the traditional 

ChainMails using the box-shaped bounding region, the proposed method defines an ellipsoid-shaped bounding 

region according to the concept of principle strains in continuum mechanics to control the movement of chain 

elements. Based on the ellipsoid-shaped bounding region, new position adjustment rules are developed, leading 

to conservation of linear and angular momentums and improved deformation realism. Further, rather than based 

on a static update process for deformation in the traditional ChainMails, the proposed method integrates 

temporal-domain model dynamics to enable ChainMail algorithm to handle dynamic behaviours for soft tissue 

deformation. Isotropic and homogeneous, anisotropic and heterogeneous materials can be easily accommodated 

by simple modification of strain limits. Experimental results demonstrate that the proposed ChainMail can 

simulate the typical mechanical behaviours of soft tissues, accommodate isotropic and homogeneous, 

anisotropic and heterogeneous materials, and handle large deformation. The proposed ChainMail requires only 

small computational time, capable of achieving real-time performance. 

 

3.3.1 Three Deficiencies of the Traditional ChainMail Algorithm 

Traditional ChainMail algorithm is easy to implement and computationally inexpensive; however, it suffers 

from three major deficiencies, resulting in limited physical accuracy.  

 

3.3.1.1 First Deficiency 

First, the      used in the traditional ChainMails conflicts with the concept of principle strains in continuum 

mechanics. For a given state of strain at a point  , if the relative extension (i.e. strain)   is of extremum in a 

direction             , then   is the principle strain at point  , and   is the principle strain direction associated 

with  . The principle strain   can be obtained by solving 
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where    ,     and     are the normal strains parallel to the  ,   and   axes, respectively, and 𝛾  , 𝛾   and 𝛾   

are the shear strains in the   ,    and    planes, respectively. 

The principle strain direction   associated with principle strain   can be obtained by substituting   into the 

following equation and solving for   ,    and   . 
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(3.24) 

In order to solve the above equations,   ,    and    must satisfy the following condition [115] 

  
    

    
    (3.25) 

However, the      used in the traditional ChainMails violates the above condition. Consider a point in the 

       , its   component can be expressed by 

             −              (3.26) 

The maximum extension          and minimum compression          in the   axis direction of the         are 

reached when      and − , respectively. Similarly, the limits in the other two directions are reached when 

   ±  and    ± . Therefore, the boundary of the      where the maximum extension and minimum 

compression occur may be written as 

   {
 
− 

while      ∈ [−   ] 

   {
 
− 

while      ∈ [−   ] 

(3.27) 
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   {
 
− 

while      ∈ [−   ] 

Eq. (3.25) represents a unit sphere, whereas Eq. (3.27) a cube in 3D. As shown in Fig. 3.10, in 2D with     , 

Eq. (3.25) represents a unit circle and Eq. (3.27) a square with unit length and width. Therefore, it can be seen 

that the      (red square) used in the traditional ChainMails does not comply with the condition of principle 

strains (blue circle). 

 

Figure 3.10 The      and the condition of principle strains in 2D in terms of    and   : the red square 

indicates the     , whereas the blue circle indicates the condition of principle strains. 

 

3.3.1.2 Second Deficiency 

The second deficiency of the traditional ChainMails is that the position adjustments violate the conservation of 

linear and angular momentums. The conservation of linear momentum, conservation of angular momentum, and 

conservation of mass are the three fundamental laws of mechanics [116], and they must be satisfied at every 

point in the problem domain. The conservation of mass is automatically satisfied in the ChainMail since the 

Lagrangian description is used. The conservation of linear momentum and conservation of angular momentum 

[117] are satisfied if 

∑     

 

    

(3.28) 

∑  ×     

 

   

(3.29) 

where     denotes the position adjustment vector for chain element  ;    is the mass of chain element  ; and    

is the vector from chain element   to an arbitrary common rotation centre. 
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As illustrated in Fig. 3.11, chain element   is adjusted from position    to   
  to maintain its position within the 

        . However, the adjustment is only applied to the   component of    due to   >          , where 

         <   <          , resulting in the failure of conserving linear and angular momentums, i.e. 

           ≠   

  ×        ×     ≠   

(3.30) 

 

Figure 3.11 The linear and angular momentums are not conserved in the traditional ChainMails. 

 

The failure in conserving linear and angular momentums introduces the so-called ghost forces which act like 

external forces dragging and rotating the object, resulting in unrealistic deformation [117]. 

 

3.3.1.3 Third Deficiency 

Finally, the traditional ChainMail algorithms cannot achieve model dynamics in the temporal domain. The 

deformation process in the traditional ChainMails is achieved by a static update process, which is solely 

calculated from the displacement field without consideration of the effect of model dynamics in the temporal 

domain. It does not involve physical model dynamics to evolve the position of chain elements through 

numerical time integration of velocities and accelerations. 

 

3.3.2 Proposed Ellipsoid ChainMail Bounding Region 

Similar to the      used in the traditional ChainMail algorithms, the proposed ellipsoid ChainMail bounding 
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region (    ) is a geometric bounding region used to control the movement of chain elements in the object. 

Consider two chain elements   and   connected by a chain link    , the bounding region is established for chain 

element   with respect to chain element   such that the position    of chain element   is always bounded within 

this region. Accordingly, the length of chain link     is always bounded by the limits defined by this region. 

Let point             be the barycentre of the bounding region. Geometric limits           ,            and            

are used to define the dimensions of the bounding region in the axis directions. The boundary of the bounding 

region can be expressed by 

                  

                  

                  

(3.31) 

Substituting the above equation into Eq. (3.25) yields 

(
 −   
          

)

 

 (
 −   
          

)

 

 (
 −   
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(3.32) 

The ellipsoid represented by Eq. (3.32) defines the bounding region        , and it is given by 

(
 −   
          

)

 

 (
 −   
          

)

 

 (
 −   
          

)

 

    
(3.33) 

where         stands for the ellipsoid ChainMail bounding region for chain element   with respect to chain 

element   (see Fig. 3.12). 

 

Figure 3.12 The ellipsoid ChainMail bounding region         for chain element   with respect to chain element 

  at the rest state: point   is coincident with   , and the three geometric limits            (red),            (green) and 

           (blue) define the dimensions of the bounding region in the axis directions. 
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The three geometric limits           ,            and            are defined by a strain limit with reference to the length 

of chain link     at the rest state, i.e. 

𝐬       
 𝛆    (3.34) 

where 𝐬                                      ;    
  is the length of chain link     at the rest state; and 𝛆    

                       is the strain limit with all components in positive values, and it defines the limits of chain link 

that can be extended or compressed in the axis directions. 

The position of chain element   must always be bounded within the        . In other words, the length of chain 

link     must always be bounded by the limits of this region. As illustrated in Fig. 3.13, let      and      be the 

limit points that define the maximum extension length and minimum compression length of chain link    . The 

limit points       and      can be represented by 

       𝜆�̂�   

      − 𝜆�̂�   

(3.35) 

where �̂�       𝑢      𝑢     𝑢  is the unit vector of chain link    , and 𝜆 is the Lagrange multiplier; and they are 

given by 

�̂�   
 i 𝐣
⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖ i 𝐣
⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

  
(3.36) 

𝜆  
 

√(
    𝑢

          
)
 

 (
    𝑢

          
)
 

 (
    𝑢

          
)
 

 
(3.37) 

The detailed derivation of 𝜆 is given in Appendix A. 

 

Figure 3.13 The         intersects with the infinite line in the direction of chain link     at points      and     , 

which define the maximum extension and minimum compression lengths of chain link    . 
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Once the limit points      and      are determined, the maximum extension length      and minimum 

compression length      of chain link     can be written as 

     ‖ i    
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 

     ‖ i  𝐢 
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 

(3.38) 

Therefore, the length of chain link     must always be bounded by the two lengths, i.e. 

     ‖ i 𝐣
⃗⃗ ⃗⃗ ⃗⃗  ⃗‖       (3.39) 

The      enables controlling the strain of a chain link independently from the chain link direction, as the 

dimensions of the      are defined in the axis directions. In addition, anisotropic and heterogeneous materials 

can be modelled by setting different values of strain limit in different directions and different regions, 

respectively. Further, as the      is established according to the condition of principle strains, it overcomes the 

conflict of      with the concept of principle strains in continuum mechanics. 

 

3.3.3 New Position Adjustment Rules 

With the maximum extension and minimum compression lengths of a chain link, the movement of a chain 

element does not affect its connected neighbouring elements if the length of the chain link is within these two 

lengths. However, position adjustments will be applied if the chain link is extended or compressed beyond the 

two limits. 

Consider the chain element   is moved from position    to a new position   
 . To construct the new         , the 

centre point   of bounding region          needs to be determined. Since the          is constructed for chain 

element   with respect to the new position of chain element  , the centre point   can be determined from   
  in 

the direction of chain link with rest length of the chain link as distance, i.e. 

    
     

 �̂�     (3.40) 

where �̂�         𝑢      𝑢      𝑢  is the unit vector of chain link      and is given by 

�̂�    
 i

* 𝐣
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖ i
* 𝐣

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖
  

(3.41) 

Fig. 3.14 illustrates the determination of centre point   for the extension and compression of chain link     . 
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(a) (b) 

Figure 3.14 Determination of centre point   of          when chain link      is (a) extended or (b) compressed. 

 

Once the centre point   is determined, the new          can be established according to Eq. (3.33) by specifying 

the strain limit. Subsequently, limit points      and      can be calculated from Eq. (3.35) by identifying the 

intersection points between the boundary of          and the infinite line of chain link     . Fig. 3.15 illustrates 

the determination of limit points      and      with reference to Fig. 3.14. 

  

(a) (b) 

Figure 3.15 Construction of the          at centre point  : limit points      and      are determined by 

identifying the intersection points between the boundary of          and the infinite line of chain link      when 

the chain link      is (a) extended or (b) compressed. 
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With limit points      and      determined, the maximum extension length      and minimum compression 

length      of chain link      can be calculated as 

     ‖ i
*    

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 

     ‖ i
*  𝐢 

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 

(3.42) 

As mentioned previously, the movement of chain element  , from    to   
 , does not affect chain element   if the 

length of chain link      is within the two lengths. However, position adjustments will be applied if the chain 

link      is extended or compressed beyond the two lengths. Unlike the traditional ChainMails where position 

adjustment is applied to chain element   only, the proposed ChainMail applies position adjustments to both 

chain elements   and   to adjust the length of chain link      back to the maximum extension      and minimum 

compression     , i.e. 

(i) if (‖ i
* 𝐣

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ >     )  ‖ i
** j

*⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖       

(ii) if (‖ i
* 𝐣

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ <     )  ‖ i
** j

*⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖       

(3.43) 

where   
   and   

  are the adjusted positions of   
  and   , respectively, and they are expressed by 

  
     

       

  
          

(3.44) 

where      and      are the position adjustment vectors applied to chain elements   and  , respectively. The      

and      for case (i) in Eq. (3.43) are defined as 

     𝜆  �̂�    

     𝜆  �̂�    

(3.45) 

where 𝜆   and 𝜆   are the Lagrange multipliers calculated by 

𝜆   −
𝑤 

𝑤  𝑤 

(    − ‖ i
* 𝐣

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖) 

𝜆   
𝑤 

𝑤  𝑤 

(    − ‖ i
* 𝐣

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖) 

(3.46) 
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where 𝑤  and 𝑤  are the inverses of their respective masses, i.e. 𝑤       and 𝑤      , for weighting the 

adjustments for chain elements   and  . 

The      and      for case (ii) in Eq. (3.43) can be calculated in a similar manner by replacing      with      in 

Eq. (3.46). It can be concluded from Eqs. (3.45) and (3.46) that by weighting position adjustments      and      

with the masses of chain elements   and   and further projecting them on the infinite line of chain link     , both 

linear and angular momentums are conserved during the position adjustment process (see Appendix B for 

detailed proof). 

As illustrated in Figs. 3.16(a) and (b), which correspond to Figs. 3.15(a) and (b), the length of the chain link      

exceeds the maximum extension length      in Fig. 3.16(a) and is under minimum compression length      in 

Fig. 3.16(b). Position adjustments      and      are applied to move   
  to   

   and    to   
 , respectively. It can 

be seen that the new position   
  of chain element   automatically falls onto the boundary of the new            

enforced by chain element   at the new position   
  . The length of the chain link, otherwise exceeds or under the 

calculated lengths, is adjusted back to the maximum extension      and minimum compression     . It should 

be noted that boundary conditions can be enforced by specifying displacement values to the related chain 

elements at the boundary of the problem domain. 

 
 

(a) (b) 

Figure 3.16 Position adjustments      and      are applied to move chain element   from   
  to   

   and chain 

element   from    to   
 , respectively, to adjusted the length of the chain link back to the (a) maximum extension 

     or (b) minimum compression     . 
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3.3.4 Model Dynamics 

As mentioned previously, traditional ChainMails only use the displacement field for deformation calculation, 

leading to a static update process without consideration of model dynamics in the temporal domain. In the 

proposed method, a displacement-based formulation is established by calculating velocities and accelerations 

from the resultant position adjustments to enable the proposed ChainMail to handle model dynamics. 

Let    and   
  be the positions of chain element   before and after position adjustment. The velocity vector 𝐯  and 

the acceleration vector    are calculated as 

𝐯  
  

 −   

  
 

   
𝐯 
  

 

(3.47) 

where    is the time step. 

Further, nodal force 𝐟  at chain element   of mass    can be calculated according to the Newton’s second law of 

motion, i.e. 

𝐟       (3.48) 

 

3.3.5 Results and Discussion 

Experiments are conducted to investigate the performance of the proposed method in terms of soft tissue 

mechanical behaviours, and isotropic and homogeneous, anisotropic, heterogeneous and large deformations. 

Comparison and analysis with the traditional ChainMails and deformation results from commercial FEM 

software package are conducted. Further, haptic feedback has been achieved with the proposed method for 

surgical simulation, and its performance is also evaluated and discussed. 

 

3.3.5.1 Mechanical Behaviours 

Experiments are conducted to verify the typical mechanical behaviours of soft tissues, such as the nonlinear 

force-displacement relationship, hysteresis and stress relaxation [112]. The nonlinear force-displacement 

relationship is examined using a compression test with a displacement occurred at the contact point. Three 

materials modelled with strain limit values of    0.1, 0.3 and 0.5 were tested, and the feedback force was 

calculated when the displacement was increased at a constant rate. Fig. 3.17 illustrates the variation of force 
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with respect to displacement for the three materials. It can be seen that the proposed ChainMail is capable of 

modelling the nonlinear force-displacement relationship of soft tissues due to the use of nonlinear bounding 

region of ellipsoid shape and associated position adjustments. 

 

Figure 3.17 Nonlinear force-displacement relationship exhibited by the proposed ChainMail. 

 

The hysteresis effect, in which the variation of force with respect to displacement follows two distinct paths 

during loading and unloading, is examined using the proposed method. A material modelled with strain limit 

value of    0.3 was tested. The feedback force was calculated when the displacement was increased at a 

constant rate from zero to a maximum value and down to zero again. The loading process was the same as the 

compression process in Fig. 3.17, whereas the unloading process was calculated by restoring the displacement 

occurred at the contact point to the initial value at the rest state (i.e. zero). As shown in Fig. 3.18, the variation of 

force with respect to displacement during loading and unloading followed two distinct paths, demonstrating that 

the observed behaviour is in good agreement with the hysteresis effect measured in living tissues [112]. 
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Figure 3.18 Hysteresis effect exhibited by the proposed ChainMail. 

 

The stress relaxation is also examined by maintaining a constant displacement at the contact point and observing 

the variation of feedback force with respect to time. A material modelled with strain limit value of    0.3 was 

tested. As shown in Fig. 3.19, the feedback force decreased asymptotically towards a minimum value. This is 

similar to the tissue relaxation response observed from living tissues [112]. 

 

Figure 3.19 Stress relaxation exhibited by the proposed ChainMail. 

 

3.3.5.2 Isotropic and Homogeneous, Anisotropic and Heterogeneous Deformations 

Soft tissues are highly complex in terms of material compositions; therefore, the capability to handle different 

materials is essential for producing realistic soft tissue deformation. The deformations of three isotropic and 

homogeneous materials under tension and compression are illustrated in Fig. 3.20. The three materials are 
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modelled by a volumetric cubic model containing 1,331 chain elements with strain limit values of    0.1, 0.3 

and 0.5. 

 

 

 

   

   

(a) (b) (c) (d) 

Figure 3.20 Volumetric deformations of three isotropic and homogeneous materials using a common strain limit 

to all chain elements: (a) the rest state; the strain limit value is (b) 0.1, (c) 0.3 and (d) 0.5; the top row illustrates 

compressive deformations, whereas the bottom row illustrates tensile deformations. 

 

The deformation of an anisotropic material has been achieved with the same volumetric cubic model by setting 

different values of strain limit in different directions, whereas the deformation of a heterogeneous material has 

been achieved by setting different values of strain limit to chain elements at different regions. A comparison of 

deformations of isotropic and homogeneous, anisotropic and heterogeneous materials is illustrated in Fig. 3.21. 
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 (a) (b) (c) 

Figure 3.21 Volumetric deformations of (a) isotropic and homogeneous, (b) anisotropic and (c) heterogeneous 

materials: strain limit value is (a) 0.2 for all chain elements; (b) 0.2 for the black chain elements in the 

horizontal direction and 0.4 for the blue chain elements in the vertical direction; and (c) 0.1, 0.2 and 0.4 for the 

green, black and blue chain elements, respectively; and 0.2 for the red contact chain element in (a), (b) and (c). 

 

Compared to the isotropic and homogeneous deformation shown in Fig. 3.21(a), the anisotropic deformation 

shown in Fig. 3.21(b) demonstrates that the model is deformed more significantly in the horizontal direction 

around the deformation area, whereas the heterogeneous deformation shown in Fig. 3.21(c) demonstrates that 

the model is deformed differently at different regions due to different strain limit values. 

 

3.3.5.3 Comparison of Deformation and Computational Time with Traditional ChainMails 

Trials are conducted to compare the proposed ChainMail with the traditional ChainMails under the same 

conditions. The effect of conserving linear and angular momentums is presented in Fig. 3.22 using shear 

deformations modelled by the proposed method and traditional ChainMails. It can be seen that the traditional 

ChainMail algorithms produced unrealistic deformation behaviours due to not conserving linear and angular 

momentums. 
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(a) (b) 

Figure 3.22 Comparison of deformations between the (a) proposed ChainMail and (b) traditional ChainMails in 

terms of the conservation of linear and angular momentums; the strain limit is set to    0.1 for both methods. 

 

Further, it can also be seen from Fig. 3.22 that the deformed shape produced by the proposed method behaves 

nonlinearly, whereas the traditional ChainMails behave only linearly. The nonlinear deformation is attributed to 

the use of nonlinear bounding region of ellipsoid shape and associated position adjustments. Additional 

comparisons are presented in Fig. 3.23. The proposed ChainMail exhibits significantly more volumetric 

behaviours than that of the traditional ChainMails. With the proposed method, Fig. 3.23(a) shows that the side 

faces of the cubic model shrank inwards due to the tensile deformation on the top face, and Fig. 3.23(c) shows 

that the bottom side of the cylinder model followed the movement of the tensile deformation on the top side. 

With above deformation examples, all of the deformations exceed 10% of the original mesh size. This 

demonstrates that the proposed method can accommodate large deformation of soft tissues. 
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(a) (b) (c) (d) 

Figure 3.23 Comparison of deformations between the proposed ChainMail method (top row) and the traditional 

ChainMails (bottom row): (a) cube extension; (b) cube compression; (c) cylinder extension; and (d) cylinder 

compression. 

 

Trials are also conducted to compare the computational time of the proposed method with the traditional 

ChainMails under same conditions. The computational time was evaluated on an Intel(R) Core(TM) i5-2500k 

CPU@4.30 GHz and 8 GB RAM PC without efforts on optimising codes or hardware acceleration. Fig. 3.24 

shows the computational time of both methods. The proposed ChainMail consumed more time than the 

traditional ChainMails due to the additional computation of the nonlinear bounding regions and the associated 

position adjustments. Real-time performance of 30 Hz was achieved with around 46,900 moved chain elements 

by the proposed method. The computational performance can be further improved by ChainMail GPU 

implementation [29]. 
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Figure 3.24 Comparison of computational time between the proposed ChainMail and traditional ChainMail 

algorithms. 

 

It can also be seen from Fig. 3.24 that the computational time of the proposed method is only related to the 

number of moved chain elements rather than the model size, and it increased nearly linearly with the increase of 

the number of moved chain elements. This behaviour is attributed to the position adjustment rules, since 

position adjustments will only be applied if the chain link is extended or compressed beyond the calculated 

lengths.  

 

3.3.5.4 Comparison of Deformation with FEM from Commercial Analysis Package 

Experiments have been conducted to compare the deformation of the proposed ChainMail with those from 

commercial FEM analysis package. The FEM deformation is conducted by CATIA V5R21 with settings 

illustrated in Fig. 3.25(a). The volumetric cube is of size 20mm x 20mm x 20mm with its bottom surface 

constrained, and external compressive force is applied to the yellow contact area on the top surface in the 

normal direction. Isotropic and homogeneous soft tissue materials (Poisson’s ratio 𝜈     7 [112], Young’s 

modulus   3 5   Pa [118] and mass density         kg/m
3
 [119]) were employed for the FEM simulation. 

The strain limit is set to    0.1 for all chain elements in the proposed ChainMail. It can be seen from Figs. 

3.25(b) and (c) that the deformation produced by the proposed method is in good agreement with those from the 

commercial FEM software package. The mean absolute displacement error is around 0.105 mm (9.7%). 
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Isometric view 

 
 

View on    plane 

(a) (b) (c) 

Figure 3.25 Comparison of deformations between the proposed ChainMail and FEM from commercial software: 

(a) FEM settings; (b) proposed ChainMail algorithm; and (c) FEM reference solution. 

 

3.3.5.5 Soft Tissue Deformation with Haptic Feedback 

A PHANToM haptic device from Geomagic has been integrated with the proposed ChainMail for interactive 

soft tissue deformation with haptic feedback. Fig. 3.26 shows an interactive deformation of a virtual volumetric 

human liver with haptic feedback. Deformation and feedback forces were calculated using the proposed method, 

with the calculated deformation rendered graphically on the monitor for visual feedback, and the calculated 

forces output to the PHANToM device for haptic feedback.  



 

55 
 

  

Figure 3.26 Interactive deformation of a virtual human liver model with haptic feedback via the virtual probe. 

 

Fig. 3.27 illustrates deformations of the virtual human liver from different viewing angles. 

   

Figure 3.27 Deformations of the volumetric human liver model from different viewing angles. 

 

As illustrated in Fig. 3.28, the haptic update rate decreased with the increase of the number of moved chain 

elements. The haptic update rate of at least 1,000 Hz for real-time force feedback is achieved with around 4,100 

moved chain elements. When the computational speed cannot meet the haptic refresh update requirement, force 

extrapolation [120] was employed to improve the realism of force feedback by generating missing forces from 

the previous calculation loop. 
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Figure 3.28 Haptic performance of the proposed ChainMail, the haptic update rate of at least 1,000 Hz for real-

time force feedback is achieved with around 4,100 moved chain elements. 

 

3.4 Neural Dynamics-based ChainMail Algorithm 

As mentioned previously, surgical simulation requires not only realistic soft tissue deformation but also real-

time computational performance. Given the fast computational advantage of neural networks, which would be 

able to achieve the real-time computational performance required by surgical simulation, a neural dynamics-

based ChainMail algorithm is proposed. The proposed neural dynamics-based ChainMail formulates the 

problem of elastic deformation into cellular neural network activities to avoid the complex computation of 

elasticity. It combines the ChainMail position adjustment mechanism with nonlinear cellular neural dynamics 

for soft tissues’ nonlinear deformation and the typical mechanical behaviours. It endows the principle of 

continuum mechanics to the neural network for soft tissue simulation by formulating the local connectivity of 

cells in the cellular neural network as the local position adjustments of ChainMail, through which the dynamic 

behaviours of soft tissue deformation are transformed into the neural dynamics of cellular neural network. The 

proposed method not only can model nonlinear soft tissue deformation via the nonlinear characteristics of neural 

dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to 

simulate soft tissue deformation. 

 

3.4.1 Neural Dynamics 

The proposed method employs the cellular neural network (CNN) [121], which is a local-interconnected array-

computing structure. The neuron in the CNN is called cell, which is a nonlinear dynamic processing unit 

consisting of capacitors, resistors and current sources of linear and nonlinear types. Cells are locally connected 



 

57 
 

and interact only with their nearest neighbours [122]; cells that are not directly connected affect each other 

indirectly via the global propagation effect of CNN [123].  

The CNN can be applied to any type of geometric grid of any dimension. Consider a geometric grid shown in 

Fig. 3.29, points   and   at positions    and    are occupied by cells      and     , respectively. 

 

Figure 3.29 A CNN on an irregular grid: the spatial positions of    and    are occupied by cells      and     , 

respectively. 

 

To describe the interaction range between cells, the neighbourhood  𝑟    of cell      is firstly defined by 

 𝑟    {    |  𝑔             𝑟} (3.49) 

where 𝑟 is a positive integer number denoting the number of edges between cells      and     . 

The dynamic behaviours of cell      are governed by the following equations 

 
       

  
 −

 

𝑅 

       ∑ 𝐴  ;         

    ∈ 𝑟   

 ∑ 𝐵  ;    𝑢 

    ∈ 𝑟   

 𝐼  

(3.50) 

       
 

 
 |        | − |      −  |   ≥  ; |      |   ; | 𝑢 |    

(3.51) 

where   is the cell capacitance, which can be set to   for simplicity; 𝑅  is the cell resistance; 𝐼  is the current 

source; 𝑟 is 1 in our case; 𝐴  ;    is the feedback template which defines the interactions between neighbouring 

cells, whereas 𝐵  ;    is the control template which characterises the influence of input on the cell;  𝑢    ,        

and        are the cell input, state and output at time  ;        is a nonlinear sigmoid function of       , and it is 

bounded by a constant  . 
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Without cell input  𝑢 , Eq. (3.50) is reduced to an autonomous CNN [124] whose governing equation is given 

by 

       

  
 −

 

𝑅 

       ∑ 𝐴  ;         

    ∈ 𝑟   

 𝐼  

(3.52) 

 

3.4.2 ChainMail Formulation of Local Connectivity of Cells 

The CNN and ChainMail share common characteristics. Under the given initial conditions and external inputs, 

the dynamic behaviours of the proposed CNN are described by the local connectivity of cells. Similarly, the 

behaviours of ChainMail are also described by the local position adjustments under the same conditions. Further, 

similar to the CNN output, which is bounded by the constant  , the movement of a chain element is bounded by 

the maximum extension and minimum compression lengths. The position of a chain element will be adjusted 

locally only if the two lengths are violated, to keep the chain link between the two chain elements within the 

geometric bounding region. Therefore, in the proposed method, the local connectivity of cells in the CNN is 

formulated according to the local position adjustments of ChainMail. As mentioned previously, from the 

perspective of continuum mechanics of elasticity, the ChainMail can be viewed as a spring system in which a 

spring’s length is bounded by its minimum compression and maximum extension lengths. Accordingly, the 

formulation of CNN’s local connectivity as the ChainMail local position adjustments enables the CNN 

dynamics to follow the principle of continuum mechanics for soft tissue deformation. 

For the sake of conciseness, the minimum compression    
    and the maximum extension    

    of the ChainMail 

algorithm are calculated by 

   
      − 𝛼    

  

   
       𝛼    

  

(3.53) 

where 𝛼 is the material parameter whose value is set according to the spring stiffness  ; and    
  is the initial 

length of the chain link connecting chain elements   and  . The minimum compression    
    and maximum 

extension    
    of the ellipsoid bounding region-based ChainMail can be easily incorporated into the proposed 

neural dynamics model by substituting Eq.(3.53) by Eq. (3.42).   

Thus, the current length     between the current positions of chain elements   and   is bounded by 
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    (3.54) 

Define the position adjustments for chain elements   and   to be     and    . As illustrated in Fig. 3.30, position 

adjustments are applied to both chain elements to adjust the current length     back to    
    or    

    if the current 

length is less than the minimum compression length or larger than the maximum extension length. The 

adjustments of    
    are expressed by Eq. (3.55). The adjustments of    

    can be expressed similarly by 

substituting    
    with    

   . 

    
 

 
(‖  −   ‖ −    

   )
  −   

‖  −   ‖
 

    −
 

 
 ‖  −   ‖ −    

    
  −   

‖  −   ‖
 

(3.55) 

 

 

 

(a) (b) 

Figure 3.30 Position adjustments     and     are applied to chain element positions    and    to adjust the 

current length between the two chain elements back to the (a) minimum compression length    
    and (b) 

maximum extension length    
   . 

 

For the purpose of conciseness, consider a simple case where a chain element is connected with four neighbours 

as illustrated in Fig. 3.31. 
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Figure 3.31 A grid with four local connections: chain element   at position    is connected with four 

neighbouring chain elements at positions   
 ,   

 ,   
  and   

  with distances in-between denoted by   ,   ,    

and   , respectively. 

 

The net adjustment for chain element   can be expressed by the sum of the adjustments applied to position    

∑    𝜇   
  𝜇   

  𝜇   
  𝜇   

 −  𝜇  𝜇  𝜇  𝜇     
(3.56) 

where 

𝜇  
 

 
(
(  −    

     )

  

𝛿 
    

(  −    
     )

  

𝛿 
   ) ;       3   

(3.57) 

where 

   ‖  
 −   ‖ 

𝛿 
    {

 ;  if (  >    
     )

 ;  if (      
     )

 

𝛿 
    {

 ;  if (  <    
     )

 ;  if (  ≥    
     )

 

(3.58) 

By associating cell state        with chain element position   , the feedback template 𝐴 of the proposed CNN 

can be expressed as 
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𝐴  (

 𝜇  

𝜇 

 

𝑅 

−  𝜇  𝜇  𝜇  𝜇  𝜇 

 𝜇  

) 

(3.59) 

In case that chain element   is connected to any number of neighbouring chain elements, the net adjustment for 

chain element   can be expressed by the sum of the adjustments applied to position   , i.e. 

∑    ∑ 𝜇  

  ∈     

  − ∑ 𝜇  

  ∈     

   

(3.60) 

where       is the set of neighbouring chain elements of chain element  , and 𝜇   is given by 

𝜇   
 

 
(
(   −    

   )

   

𝛿  
    

(   −    
   )

   

𝛿  
   ) 

(3.61) 

where 

    ‖  −   ‖ 

𝛿  
    {

 ;  if (   >    
   )

 ;  if (       
   )

 

𝛿  
    {

 ;  if (   <    
   )

 ;  if (   ≥    
   )

 

(3.62) 

Similar to Eq. (3.59), the feedback template 𝐴 can be written as 

𝐴  ;    𝜇   

𝐴  ;    
 

𝑅 

− ∑ 𝜇  

    ∈ 𝑟   

 

(3.63) 

 

3.4.3 Current Source, Initial and Boundary Conditions  

When soft tissues are deformed, there is a displacement experienced at the region of contact. Hence, the current 

source 𝐼  is set to the input displacement at the contact point  , whereas its value is set to zero at other points. 

The initial condition for the CNN is the position of chain elements at the rest state. The boundary condition in 

the proposed method is the Dirichlet boundary condition which enforces fixed position to the related chain 
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elements of the problem domain at all times, and it is achieved by employing fixed-state cells.  

 

3.4.4 Results 

Trials are conducted with the proposed method to evaluate its performance in terms of soft tissues’ nonlinear 

deformation and the typical mechanical behaviours.  

 

3.4.4.1 Nonlinear Deformation 

Fig. 3.32 compares the deformations of a rectangular plane (21 x 21 nodes) between the proposed CNN and 

traditional ChainMails. It can be seen that the deformation produced by the proposed CNN in Fig. 3.32(a) 

behaves nonlinearly while the traditional ChainMails in Fig.3.32(b) shows a linear deformation of pyramid 

shape.  

  

(a) (b) 

Figure 3.32 Deformations of a plane by (a) the proposed CNN and (b) traditional ChainMails: the deformation 

produced by the proposed CNN shows nonlinear behaviours, whereas it shows only linear behaviours with the 

traditional ChainMails. 

 

3.4.4.2 Mechanical Behaviours 

Trials are also conducted to verify the proposed CNN against the soft tissues’ typical mechanical behaviours, 

such as the nonlinear force-displacement relationship, hysteresis and stress relaxation [112]. Nonlinear force-

displacement relationship is examined using a compression test with a displacement occurred at the contact 

point. Fig. 3.33(a) demonstrates the nonlinear force-displacement relationship (𝛼 = 0.1, 0.5 and 0.9). Hysteresis 

is examined using the same compression test for loading, while the unloading is achieved by resorting the chain 

links between chain elements to their initial lengths (𝛼 = 0.5). It can be seen from Fig. 3.33(b) that the variation 

of force with respect to displacement follows two distinct paths during loading and unloading, this behaviour is 
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similar to the hysteresis effect measured from living biological tissues [112]. Stress relaxation is also examined 

by maintaining a constant displacement at the contact point (𝛼 = 0.5). As shown in Fig. 3.33(c), the internal 

force decreases asymptotically towards a minimum value. This behaviour is in agreement with the stress 

relaxation observed from real soft tissues [112]. 

   

(a) (b) (c) 

Figure 3.33 (a) Nonlinear force-displacement, (b) hysteresis and (c) stress relaxation observed from the 

proposed method. 

 

3.4.4.3 Soft Tissue Deformation 

The proposed CNN has been integrated into a prototype surgical simulation for interactive deformation of 

virtual human organs with haptic feedback.  Fig. 3.34 illustrates the prototype surgical simulation system with a 

comparison of deformations modelled by the proposed CNN and traditional ChainMails. The volumetric human 

liver model contains 5,762 mass points and 20,255 tetrahedrons, and it is deformed via a virtual haptic probe. It 

can be seen that the proposed CNN generates a better deformation shape than the traditional ChainMails. 

    

(a) (b) (c) (d) 

Figure 3.34 Interactive deformation of the human liver model: (a) the interactive simulation system; (b) the 

initial state of the volumetric liver model; (c) the deformation by the proposed CNN; (d) the deformation by the 

traditional ChainMails. 
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4. Energy Propagation Method 

In this chapter, a novel neural dynamics-based energy propagation method is proposed for realistic, real-time 

and stable soft tissue deformation. The realistic, real-time and stable soft tissue deformation is addressed in 

Chapters 4.1, 4.2 and 4.3, respectively. The novelties of the proposed method are presented as follows: 

 Proposed Energy Propagation Method (Chapter 4.1): The proposed method can (i) accommodate 

various soft tissue material properties; and (ii) achieve nonlinear soft tissue deformation. 

 Neural Dynamics-based Energy Propagation Method (Chapter 4.2): The proposed method can 

achieve real-time computational performance for surgical simulation. 

 Neural Dynamics-based Stable Simulation of Soft Tissue Deformation (Chapter 4.3): The proposed 

method can achieve stable simulation for soft tissue deformation. 

 

4.1 Proposed Energy Propagation Method 

In this chapter, an energy propagation method based on the Poisson propagation of potential energy is presented 

for modelling of nonlinear soft tissue deformation for surgical simulation. The proposed method considers 

external forces as physical input, compared to the input displacement in ChainMail algorithms. It carries out soft 

tissue deformation from the viewpoint of potential energy propagation, in which the mechanical load of an 

external force applied to soft tissues is considered as the equivalent potential energy, according to the law of 

conservation of energy, and is further propagated in the volume of soft tissues based on the principle of Poisson 

energy propagation. The proposed method combines Poisson propagation of mechanical load and non-rigid 

mechanics of motion to govern the dynamics of soft tissue deformation. A finite volume scheme is developed 

for discretisation of Poisson equation on 3D volume mesh. Results demonstrate that the proposed method is not 

only able to handle isotropic and homogeneous, anisotropic and heterogeneous materials, but also able to 

accommodate nonlinear deformation of soft tissues. 

 

4.1.1 Theory of Energy Propagation 

Biologically, soft tissues are complex in terms of material compositions, structural formations, and 

biomechanical behaviours. In continuum mechanics of solid, a soft tissue model can be considered as a 

continuum medium [55]. When a soft tissue previously at rest state is subject to an external force, the tissue is 

deformed. According to the non-rigid mechanics of motion, the dynamics of soft tissue deformation is governed 

by the Lagrange’s form of continuum mechanics, i.e. 
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𝜕  

𝜕  
 𝛾

𝜕 

𝜕 
 

𝛿𝑊   

𝛿 
 𝐟      

(4.1) 

where   is the position vector of a point with mass density   and damping coefficient 𝛾; 𝐟      is the external 

force applied to the point at time  ; and 𝑊    is the net instantaneous potential energy at the point to cause the 

soft tissue deform away from its rest state. 

It can be seen from Eq. (4.1) that soft tissue deformation is the consequence of the distribution of mechanical 

load of an external force applied to the tissue. When a soft tissue model is deformed under an external force, 

there is a displacement occurred. The mechanical load of an external force is propagated and distributed among 

masses of the soft tissue in the form of strain energy according to tissue’s material properties, leading to an 

energy distribution to deform the soft tissue away from its rest state [125]. Under a given external force, the 

energy distribution is determined by soft tissue material properties and boundary conditions. Therefore, the 

deformation of soft tissues is actually a process of energy propagation [126]. 

Poisson equation provides a natural manner for describing energy propagation. The spatiotemporal-continuous 

Poisson equation with a continuous energy source in a continuum medium is described by a nonlinear second-

order partial differential equation (PDE) 

𝜕𝜑

𝜕 
 𝑄  ∇ ∙   ∇𝜑  

(4.2) 

where 𝜑  is the scalar potential function at the considered point at time  ; 𝑄  is the source function which 

describes the potential density; ∇ ∙ is the divergence operator;   is the constitutive coefficient of the point; and ∇ 

is the gradient operator. 

The Poisson equation has been extensively used to study various problems in mechanics of elastic solid, such as 

the displacement field of elastic solids under torsion loading [127]. In the Poisson equation, the constitutive 

coefficient is equivalent to the modulus constant of an elastic material, which describes the physical behaviours 

of the material. The source to generate energy in the field is similar to the mechanical load applied to the soft 

tissue. The strain energy stored and distributed in the soft tissue to cause deformation is similar to the optimal 

Poisson distribution of potential energy. Therefore, the energy propagation occurred in the process of soft tissue 

deformation can be considered as a Poisson energy propagation process with an energy source at the contact 

point, through which the mechanical load is treated as the equivalent potential energy and further propagated 

among masses of the soft tissue based on the Poisson equation, leading to an optimal energy distribution for soft 

tissue deformation. 

Since the mechanical load is applied to the soft tissue in the direction of applied force, the energy source in the 

Poisson equation should be directional. Accordingly, Eq. (4.2) is further written into a vector form  
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𝜕𝛗

𝜕 
 𝐐  ∇ ∙  𝛒∇𝛗  

(4.3) 

where 𝛗 is the vector form of potential function, whose magnitude is the potential energy of the point at time  ; 

𝐐 is the vector form of energy source; and 𝛒 is the matrix of constitutive coefficients. 

As mentioned previously, when a soft tissue model is deformed by an external force, the mechanical load is 

applied in the direction of the external force and is further stored in the soft tissue in the form of strain energy. 

Therefore, the energy source in the Poisson equation can be formulated as the strain energy density in the 

direction of the applied force, i.e. 

𝐐  ∫𝛔   𝛆 
 

‖ ‖
 

(4.4) 

where 𝛔 and 𝛆 are the stress and strain at the point; and   is the external force with magnitude of ‖ ‖. Since the 

mechanical load only occurs at the point where an external force is applied, the obtained energy source 𝐐 is set 

at the contact point only, whereas its value is set to zero at other points. By substituting Eq. (4.4) into Eq. (4.3), 

it can be seen that soft tissue deformation is described as the Poisson energy propagation, leading to an energy 

distribution for soft tissue deformation governed by Eq. (4.1).  

Since the rest state of the soft tissue is stress-free, the initial condition is the zero potential at all mass points of 

the solution domain. The boundary condition for solving Eq. (4.3) is realised by the Dirichlet boundary 

condition, in which a specified potential function is enforced to the related points on the problem domain 

boundary at all times. 

 

4.1.2 Numerical Discretisation 

The proposed Poisson equation is continuous in both space and time. In order to analyse the potential energy 

field developed from energy propagation, both spatial and temporal domains need to be discretised. The spatial 

continuous Poisson equation is approximated using an edge-based median-dual finite volume method [128]. The 

spatial domain is discretised into a number of non-overlapping control volumes, over which the conservation of 

energy is enforced in a discrete sense. As illustrated in Fig. 4.1, the control volume is formed by employing a 

median-dual mesh connecting edge-midpoints, face-centroids, and centroid of a geometric enclosure around a 

mass point. The geometric enclosure can be of any geometric shapes such as triangles or quadrilaterals in 2D 

and tetrahedrons, hexahedrons, prisms or pyramids in 3D. Numerical integration is performed by looping all of 

the edges in the discretised spatial domain where potential functions are calculated with respect to each mass 

point.  
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Figure 4.1 Median-dual control volumes: the tetrahedron          is divided into four hexahedrons of equal 

volumes by connecting edge-midpoints    , face-centroids      and centroid of tetrahedron      . A portion of 

the median-dual control volume of point    is represented by the hexahedron                             . 

The control volume    of point    is the union of all such hexahedrons that share the point. 

 

For the purpose of conciseness, a scalar form of the proposed Poisson equation is considered for discretisation. 

The discretisation of the vector form can be achieved by discretising each scalar component. Recall the Poisson 

equation and write in an integral form for point    enclosed by its control volume    yields 

∫  
𝜕𝜑 

𝜕 
 𝑄  

𝛺𝑖

   ∫ ∇ ∙    ∇𝜑  
𝛺𝑖

   
(4.5) 

Applying Gauss’s divergence theorem to above equation yields 

∫  
𝜕𝜑 

𝜕 
 𝑄  

𝛺𝑖

   ∫    ∇𝜑  
𝑆𝑖

∙      
(4.6) 

where   is the outward unit normal vector to the infinitesimal surface element    on the boundary surface    of 

control volume   . 

Rewriting Eq. (4.6) in a discrete form for point    yields 
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𝜕𝜑 

𝜕 
 𝑄  

 

  

∑    ∇𝜑  ∙    

  ∈     

 

(4.7) 

where       is the set of neighbouring points of   , and     is the surface area projection in the direction of the 

unit normal vector     of     which is a common surface shared by control volumes    and   . 

Considering point    and its neighbouring point    with four quadrilateral boundary surfaces          and    

illustrated in Fig. 4.2, the     can be calculated by 

                        (4.8) 

 

Figure 4.2 Boundary surface    , comprising surfaces   ,   ,    and    with unit normal vectors   ,   ,    and 

  , respectively, attached to the edge     connecting points    and    with its mid-point denoted by    . 

 

The boundary surface    of the control volume    enclosing point    is the union of all such boundary surfaces 

attached to the edge     that connects point    and its neighbouring point   . Therefore, the numerical 

integration can be performed by looping all of the edges in the discretised spatial domain. 

The   ∇𝜑  in Eq. (4.7) is the flux on the boundary surface, and it can be approximated by considering linear 

interpolation of the constitutive coefficients and potential functions along the edge and evaluated at the edge 

mid-point [129]. Hence,   ∇𝜑  may be represented by   ∇𝜑 |   
 at the edge mid-point    , i.e. 
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  ∇𝜑 |   
 

  ∇𝜑    ∇𝜑 

 
 

(4.9) 

where    and    are the constitutive coefficients, and 𝜑  and 𝜑  are the potential functions at respective points. 

Isotropic and homogeneous materials can be achieved by employing a common constitutive coefficient   

throughout the entire volumetric soft tissue model, whereas anisotropic and heterogeneous materials can be 

achieved by setting different values of constitutive coefficients to mass points at different directions and 

different regions, respectively.  

To calculate ∇𝜑  and ∇𝜑  in Eq. (4.9), Gauss’s divergence theorem is once again employed 

∫ ∇𝜑 
𝛺𝑖

   ∫ 𝜑 
𝑆𝑖

∙      
(4.10) 

Similar to Eqs. (4.7) and (4.9), simplifying Eq. (4.10) yields 

∇𝜑  
 

  

∑
𝜑  𝜑 

 
   

  ∈     

 

(4.11) 

The calculation of ∇𝜑  in Eq. (4.9) can be performed in a similar manner. The control volume    at point    can 

be calculated by taking the sum of volumes over all hexahedrons that share the point. Due to the use of median-

dual mesh, the volume 𝑉 𝑢   of a hexahedron is simply one fourth of the volume 𝑉 𝑒  of a tetrahedron in the 

tetrahedral mesh. The 𝑉 𝑢   of other geometric enclosures such as hexahedron, prism and pyramid are 

 

 
𝑉 𝑒  

 

 
𝑉 𝑟    and 

 

  
𝑉  𝑟    , respectively [130]. 

The temporal derivative 𝜕𝜑  𝜕  at point    in Eq. (4.7) is approximated by a first-order explicit forward time 

stepping scheme, i.e. 

𝜕𝜑 

𝜕 
≅

𝜑       − 𝜑    

  
 

(4.12) 

where    is the time step, and 𝜑     and 𝜑        are the potential functions of point    at time   and     , 

respectively. 

 

4.1.3 Results 

Trials are conducted with the proposed method to evaluate its performance in terms of (1) isotropic and 
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homogeneous, anisotropic and heterogeneous deformations; (2) nonlinear force-displacement relationship; (3) 

soft tissue deformation; and (4) computational performance.  

 

4.1.3.1 Isotropic and Homogeneous, Anisotropic and Heterogeneous Deformations 

Isotropic and homogeneous, anisotropic and heterogeneous deformations can be achieved with the proposed 

method by using the property of constitutive coefficient. Fig. 4.3 illustrates the deformation of an isotropic and 

homogeneous material at 20 iterations. The volumetric cylinder model in Fig. 4.3(a) contains 441 mass points 

(mass density      , damping constant 𝛾      and constitutive coefficient      5 ) and 1,469 

tetrahedrons, and it is deformed by a compressive force applied to the surface of the cylinder in the normal 

direction. It can be seen that the cylinder is deformed evenly for an isotropic and homogeneous material in Fig. 

4.3(b). 

 

 

 

 

 

  

  

 (a) (b) 

Figure 4.3 Deformation and potential energy distribution (coloured) of an isotropic and homogeneous material: 

(a) the rest state of the cylinder and (b) the deformed state of the cylinder under a compressive force. 

 

Fig. 4.4 illustrates the deformations of an anisotropic and a heterogeneous material along with the deformation 
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comparison with the homogeneous material at the same iteration. The anisotropic material has the same material 

parameters as the homogeneous material except that the constitutive coefficient values are different in different 

directions (constitutive coefficient        in the direction of   axis). Compared to the isotropic and 

homogeneous deformation in Fig. 4.4(a), the anisotropic material in Fig. 4.4(b) is deformed more significantly 

in the direction of   axis around the deformation area. The heterogeneous material in Fig. 4.4(c) with different 

constitutive coefficient values at different regions is deformed differently according to the constitutive 

coefficient values (constitutive coefficient        in the direction of   axis at the right portion of the cylinder, 

whereas the constitutive coefficient      5 at the left portion of the cylinder). 

 

 

 

 

 

   

   

 (a) (b) (c) 

Figure 4.4 Comparison of deformation and potential energy distribution (coloured) of an isotropic and 

homogeneous, an anisotropic and a heterogeneous material: (a) the homogeneous material is deformed evenly 

around the deformation area; (b) the anisotropic material is deformed more significantly in the direction of   

axis around the deformation area; and (c) the heterogeneous material is deformed differently according to the 

constitutive coefficient values. 

 

4.1.3.2 Nonlinear Force-Displacement Relationship 

Trials are conducted to verify the nonlinear force-displacement relationship of the proposed method. Three 
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materials with three different damping coefficients (𝛾     , 4   and 6  ) were examined using a compression 

test. Results in Fig. 4.5 show that the displacement varied nonlinearly with the applied force. The nonlinear 

force-displacement relationship further reveals that the proposed method is capable of accommodating nonlinear 

deformation of soft tissues.  

 

Figure 4.5 Nonlinear force-displacement relationship observed from the proposed method. 

 

4.1.3.3 Soft Tissue Deformation 

Trials are also conducted on a virtual human kidney model and a lung model to demonstrate soft tissue 

deformation for surgical simulation. The kidney model consists of 1,378 mass points and 4,691 tetrahedrons, 

and the human lung model consists of 1,706 mass points and 5,414 tetrahedrons. Figs. 4.6 and 4.7 illustrate the 

kidney and lung deformations and their associated distributions of potential energy by the proposed method at 

25 iterations, respectively.  

 

 

 

 

 

 



 

73 
 

  

 

 

 

 

  

(a) (b) 

Figure 4.6 Deformation and potential energy distribution (coloured) of a human kidney model from different 

views: (a) the deformed states of the kidney, and (b) the distribution of potential energy of the kidney under a 

compressive force. 

 

  
 

(a) (b) 

Figure 4.7 Deformation and potential energy distribution (coloured) of a human lung model: (a) the deformed 

state of the lung, and (b) the distribution of potential energy of the lung under a compressive force. 
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4.1.3.4 Computational Performance 

Trials are conducted to evaluate the computational performance of the proposed method in terms of visual and 

haptic feedbacks on an Intel(R) Core(TM) i7-4770 CPU@3.40 GHz and 8 GB RAM memory PC. It can be seen 

from Fig. 4.8(a) that the computational time for visual feedback is increased with the increase of mesh points. 

The visually satisfactory refresh rate of 30 Hz (33 ms) to maintain a realistic visual feedback is achieved with 

around 1,200 mesh points. However, under the same conditions, the computational time of linear FEM [55] is 

1.04 s, demonstrating that the proposed method has a better computational performance than linear FEM. 

The PHANToM haptic device requires forces to be updated at the rate of at least 1,000 Hz for realistic force 

feedback. As it can be seen from Fig. 4.8(b), the force update rate above 1,000 Hz is achieved with around 350 

mesh points. When the computational speed cannot meet the haptic refresh update requirement, force 

extrapolation [120] was employed to improve the realism of haptic feedback by generating missing forces from 

previous calculation loop. 

  

(a) (b) 

Figure 4.8 Computational performance of the proposed method: (a) visual feedback; and (b) haptic feedback. 

 

4.1.4 Remarks 

In the proposed method, the nonlinear soft tissue deformation is formulated as a process of energy propagation, 

in which the mechanical load is propagated and distributed in the soft tissue in the form of strain energy to 

deform the soft tissue away from its rest state. To analyse the propagation and distribution of mechanical load, 

the proposed method formulates the propagation of mechanical load from the viewpoint of Poisson energy 

propagation. By formulating the energy source as the strain energy density, based on the law of conservation of 
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energy, the soft tissue deformation is described as a Poisson propagation of mechanical load that is applied to 

the soft tissue to cause deformation. 

The proposed method is connected with the classical continuum mechanics in the sense that it considers a soft 

tissue model as a continuum medium, whose deformation is due to the distribution of strain energy as described 

by the non-rigid mechanics of motion of continuum mechanics. Further, the proposed method is based on the 

balance of mechanical energy for soft tissue deformation. The soft tissue deformation is due to the strain energy, 

which is further due to the external mechanical load. Therefore, the energy source is formulated as the strain 

energy density in the direction of the applied force at the contact point. 

Compared to other deformation methods based on linear elasticity to describe soft tissue deformation, the 

proposed method can achieve nonlinear force-displacement relationships, and hence handle nonlinear 

deformation of soft tissues. Different from the method based on geometric nonlinearity [131] for nonlinear 

deformation, the proposed method achieves nonlinear deformation with the nonlinear force-displacement 

relationship. Unlike the method based on material nonlinearity [56] for soft tissue deformation, the proposed 

method does not require pre-computation and can handle not only isotropic and homogeneous but also 

anisotropic and heterogeneous materials by simply changing the constitutive coefficient value of mass points. 

 

4.2 Neural Dynamics-based Energy Propagation Method 

To simulate soft tissue deformation, the deformation behaviours of soft tissues and their dynamics need to be 

solved at all times. Given the computational advantage of cellular neural network afforded by the collective and 

simultaneous computing nature of neural cells, which would be suitable for the real-time computational 

requirement of surgical simulation, the cellular neural network is employed in the proposed method for real-time 

simulation of soft tissue deformation. 

 

4.2.1 Cellular Neural Network 

Solving Eqs. (4.1) and (4.3) using traditional solving algorithms is a time-consuming task. The discretisation of 

spatial-continuous Eqs. (4.1) and (4.3) leads to a sparse system of equations that is usually solved by traditional 

solving algorithms such as the Gaussian elimination or Gauss-Seidel iteration. However, traditional solving 

algorithms involve an iterative solution process, leading to an expensive computational cost, especially in the 

case of volumetric objects with a large number of mass points.  
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Compared to traditional solving algorithms, CNN offers an incomparable computational advantage owing to the 

collective and simultaneous computing nature of cells. As mentioned in Chapter 3.4, CNN is a locally 

interconnected analogue array-computing structure made of cells. Each cell is a time-continuous nonlinear 

dynamic processing unit consisting of capacitors, resistors and current sources of linear and nonlinear types 

[132]. Cells are locally connected and exchange information only with their neighbours [122], while cells that 

are not directly connected affect each other indirectly via the global propagation effect of CNN [123]. The 

computational advantage, nonlinear cell dynamics, spatial local interactions and global propagation behaviours, 

make CNN a natural choice for solving Eqs. (4.1) and (4.3) for real-time nonlinear deformable modelling. It has 

been evident in literature that the CNN solutions represent excellent approximations to many nonlinear PDEs 

[133] and dynamic systems [134]. Further, CNN solutions are continuous in time and continuous and bounded 

in value [135]. The transient state can also be physically modelled through the time-continuous nature of CNN, 

whereas it is only modelled through numerical time integrations in MSM and FEM. 

Recall the dynamics of a cell described by the following equations and conditions [121]: 

Cell state 

  

       

  
 −

 

𝑅 

       ∑ 𝐴  ;         

    ∈ 𝑟   

 ∑ 𝐵  ;    𝑢    

    ∈ 𝑟   

 𝐼  

(4.13) 

Cell output 

        (      )  
 

 
 |        | − |      −  |   ≥   

(4.14) 

Conditions 

|      |   ; | 𝑢 |    (4.15) 

where       …     and  ≥   is the number of cells in the network; for the  th cell     ,  𝑢    ,        and 

       denote the input, state and output of the cell at time  ;   , 𝑅  and 𝐼  are the capacitance of cell capacitor, 

resistance of cell resistor and current of cell current source; 𝐴  ;    is the feedback template that defines the 

interactions of cell      with neighbouring cell     , and 𝐵  ;    is the control template that characterises the 

influence of input of neighbouring cells on the cell state;   is the saturation voltage of the voltage-controlled 

source [136]; and  𝑟    is the set of connected neighbouring cells of cell      within a radius 𝑟 , which is 

defined as 

 𝑟    {    |  𝑔             𝑟} (4.16) 
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where 𝑟 is a positive integer number defining the local interaction range of cell     . For the sake of simplicity 

without loss of generality, the case of the smallest neighbourhood, i.e. 𝑟    is considered. 

 

4.2.1.1 CNN Formulation of Energy Propagation 

The space-continuous Poisson equation is discretised in a similar way in Chapter 4.1.2 by subdividing the 

spatial domain of a soft tissue model into a number of non-overlapping control volumes with computational 

points located at centres, over which the conservation of energy is enforced in a discrete sense. The control 

volume is formed by employing a dual mesh connecting edge-midpoints, face-centroids, and centroid of a 

geometric enclosure around a computational point. The geometric enclosure can be of any shape such as 

triangles or quadrilaterals in 2D and tetrahedrons, hexahedrons, prisms or pyramids in 3D. The control volume 

   of a point   at position    in a tetrahedral and hexahedral mesh is illustrated in Fig. 4.9. 

  

(a) (b) 

Figure 4.9 The control volume    of point   at position    is shown in grey in a (a) tetrahedral mesh and (b) 

hexahedral mesh, with its enveloping boundary surface denoted by   ; the neighbouring point of point   is 

denoted by   at position    and the midpoint of the edge between points   and   is denoted by    . 

 

For the purpose of conciseness, a scalar form of the Poisson equation is considered for discretisation, while the 

discretisation of the vector form can be achieved similarly for each scalar component. The discrete Poisson 

equation for point   enclosed by its control volume    can be written as 
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∫  
𝜕𝜑    

𝜕 
 𝑄  

𝛺𝑖

   ∫ ∇ ∙    ∇𝜑     
𝛺𝑖

   
(4.17) 

Applying Gauss’s divergence theorem, the above equation yields 

∫  
𝜕𝜑    

𝜕 
 𝑄  

𝛺𝑖

   ∫   ∇𝜑    
𝑆𝑖

∙      ∫   (
∂𝜑   

∂ 
)
 𝑆𝑖

   
(4.18) 

where   is the outward unit normal vector at boundary surface   . 

Writing the first term in Eq. (4.18) in a discrete form for point   yields 

(
𝜕𝜑    

𝜕 
 𝑄 )   ∫   (

∂𝜑   

∂ 
)
 𝑆𝑖

   
(4.19) 

which can be further arranged to 

𝜕𝜑    

𝜕 
 

 

  

∫   (
∂𝜑   

∂ 
)
 𝑆𝑖

  − 𝑄  
(4.20) 

where    is the volume of the control volume of point  . 

Considering the neighbouring points of point  , a straightforward approximation of Eq. (4.20) may be written as 

𝜕𝜑    

𝜕 
 

 

  

∑ [
  𝜑    −   𝜑    

   
∑   

 ∈𝑆    

]

 ∈    

− 𝑄  

(4.21) 

where      is the set of connected neighbouring points of point  ;     is the distance between points   and  ; and 

      is the set of surfaces attached to the edge between points   and   with each surface denoted by   . 

Recalling the governing equation of cell state in Eq. (4.13), without cell input  𝑢   , Eq. (4.13) is simplified to 

an autonomous CNN [124] whose dynamic behaviour is written as 

  

       

  
 −

 

𝑅 

       ∑ 𝐴  ;         

    ∈ 𝑟   

 𝐼  

(4.22) 

Rearranging the discrete Poisson equation in Eq. (4.21) yields 
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𝜕𝜑    

𝜕 
 −

 

  

∑ [
  

   
∑   

 ∈𝑆    

]

 ∈    

𝜑     
 

  

∑ [
  

   
∑   

 ∈𝑆    

] 𝜑    

 ∈    

− 𝑄  

(4.23) 

It can be seen that Eqs. (4.22) and (4.23) are remarkably similar. Therefore, the discrete Poisson equation is 

mapped onto the CNN array by associating the parameters of the autonomous CNN with the parameters of the 

Poisson equation such that 

    ;        𝜑    ;         𝜑    ;  𝐼  −𝑄  

𝐴  ;    
 

𝑅 

−
 

  

∑ [
  

   
∑   

 ∈𝑆    

]

 ∈    

 

𝐴  ;    
  

     
 ∑   
 ∈𝑆    

 

(4.24) 

To fully define the autonomous CNN, the initial and boundary conditions must be specified. The initial 

condition is realised by associating the initial potential energy with the initial state of the cell, i.e. 

       𝜑      (4.25) 

The Dirichlet boundary condition is realised by using fixed-state cells which enforce a specified potential energy 

to the related cells at the boundary of the problem domain at all times, i.e. 

   𝑏    𝜑  (4.26) 

where    𝑏    denotes the state of a cell at the boundary of the solution domain at time  . 

Similarly, a three-layer CNN can be constructed for the vector form of the Poisson equation to compute the 

three components of the potential vector. The time evolution of the CNN array directly provides the solution to 

the Poisson equation, leading to the optimal distribution of mechanical load for soft tissue deformation. 

 

4.2.1.2 CNN Formulation of Non-Rigid Mechanics of Motion 

As mentioned previously, CNN represents good approximations to many dynamic systems, such as the 

mechanical vibrating system, which can be efficiently and effectively solved by CNN [134]. Therefore, CNN is 

not only used to solve the nonlinear Poisson equation for energy propagation in the object, but it is also used to 

solve the non-rigid mechanics of motion for dynamic simulation of soft tissue deformation. The non-rigid 
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mechanics of motion can be discretised in the same manner as the spatial discretisation of the Poisson equation. 

The discrete non-rigid mechanics of motion for point   can be written as 

  

𝜕   

𝜕  
 𝛾 

𝜕  

𝜕 
 

𝜕𝑊    

𝜕  

 𝐟        
(4.27) 

The 𝜕𝑊     𝜕   at point   can be calculated from the energy distribution resulted from the Poisson 

propagation. Considering point   and its neighbouring point   with potential energy 𝜑  and 𝜑 , respectively, the 

gradient vector of 𝑊     at position    with respect to point   at position    can be calculated by 

𝜕𝑊       

𝜕  

 −
|𝜑 − 𝜑 |

‖  −   ‖

  −   

‖  −   ‖
 

(4.28) 

Hence, the 𝜕𝑊     𝜕   at point   can be calculated by 

𝜕𝑊    

𝜕  

 ∑
𝜕𝑊       

𝜕  
 ∈    

 − ∑
|𝜑 − 𝜑 |

‖  −   ‖

  −   

‖  −   ‖ ∈    

 

(4.29) 

where      is the set of connected neighbouring points of point  . 

Substituting Eq. (4.29) into Eq. (4.27) yields 

  

𝜕   

𝜕  
 −𝛾 

𝜕  

𝜕 
 ∑

|𝜑 − 𝜑 |

‖  −   ‖

  −   

‖  −   ‖ ∈    

 𝐟        

(4.30) 

The equation of motion for the entire system can be obtained by assembling Eq. (4.30) for all the mass points in 

the object. The resultant system of equations can be written as 

 
𝜕  

𝜕  
 −𝐃

𝜕 

𝜕 
 𝐊    

(4.31) 

where   is the mass matrix with   as diagonal components; 𝐃  is the damping matrix with 𝛾  as diagonal 

components; 𝐊 is the stiffness matrix encoding potential energy at neighbouring points;   is the position of 

individual points; and   is the force vector representing the external force which can be either constant or 

variable with time. 

Eq. (4.31) is the second-order in the temporal domain, whereas the original CNN is only the first-order, an 

augmented CNN [134], which introduces a new capacitor    in the cell output and a new template    ;    in the 

cell state, is employed to account for the second-order term. With the augmented CNN, the dynamics of a cell 

     is described by the following equations 
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    ∈ 𝑟   

 ∑ 𝐵  ;    𝑢    

    ∈ 𝑟   
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(4.32) 

  

       

  
 

 

 
 |        | − |      −  |   ≥   

(4.33) 

For the sake of conciseness, consider the one-dimensional case of Eq. (4.31). The position, velocity and external 

force are associated with cell output       , state        and input  𝑢     with respective templates   

 − 𝐊,    − 𝐃 and    − . The cell capacitances    and    are both set to 1, whereas the cell current 

source 𝐼  is set to 0 for all cells. In the general 3D case, a three-layer augmented CNN can be constructed by 

CNN modelling of each scalar component to compute the three components of the displacement and velocity 

vectors.  

To fully define the augmented CNN, three initial conditions: initial position       , velocity        and 

external force  𝑢    , need to be specified. The Dirichlet boundary condition is realised by using fixed-state and 

fixed-output cells which enforce a fixed position to the related cells at the boundary of the solution domain at all 

times, i.e. 

   𝑏       𝑏       (4.34) 

where    𝑏    and    𝑏    denote the state and output of a cell at the boundary of the problem domain at time  . 

 

4.2.2 Results 

Simulations, experiments and comparisons have been conducted to investigate the performance of the proposed 

method in terms of (1) mechanical behaviours, (2) isotropic and homogeneous, anisotropic and heterogeneous 

deformations, (3) human organ deformation, (4) comparison with the surface model method [137], and (5) 

computational performance. Interactive soft object deformation with haptic feedback has also been achieved 

with the proposed method. 

 

4.2.2.1 Mechanical Behaviours 

Experiments are conducted to verify the mechanical behaviours of the proposed method against those of real 

soft tissues. Fig. 4.10 shows the experimental setup, where compression tests are conducted on a lamb kidney to 

measure the force-displacement data. A digital force gauge whose displacement is controlled and recorded by a 
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micrometer barrel is used to apply a compressive force to the lamb kidney. The kidney specimen is placed in a 

plastic tray with oil applied to the interface of plastic tray and tissue to minimise friction. The tray is constrained 

from sliding by using a small weight placed inside. The compressive force is applied perpendicularly to the 

surface of the kidney. Meanwhile, for the purpose of comparison analysis, simulation trials were also conducted 

under the same conditions as the experimental analysis to simulate the mechanical behaviours of kidney tissues. 

Kidney tissue density      5  kg/m
3
 [47] and electrical conductivity     3  were used in the simulation 

trials. 

 

Figure 4.10 Experimental setup for measurement of force-displacement data of biological soft tissues. 

 

Fig. 4.11 illustrates the simulated mechanical behaviours against the experimental mechanical behaviours. It can 

be seen that the simulated results are in agreement with the experimental curve and both deformations varied 

nonlinearly with the applied forces. This demonstrates that due to the nonlinearity of CNN dynamics, the 

proposed method can achieve nonlinear force-displacement relationship of biological soft tissues. The nonlinear 

force-displacement relationship further reveals that the proposed method can accommodate nonlinear 

deformation of soft tissues. 
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Figure 4.11 Comparison between the simulated and experimental soft tissue mechanical behaviours: both 

deformations vary nonlinearly with the applied forces. 

 

4.2.2.2 Isotropic and Homogeneous, Anisotropic and Heterogeneous Deformations 

As mentioned previously, the constitutive coefficient is equivalent to the elastic constant of an elastic material, 

which describes the physical behaviours of the material. Therefore, various material properties such as isotropic 

and homogeneous, anisotropic and heterogeneous materials can be modelled using the property of constitutive 

coefficient. Fig. 4.12 shows the deformation of an isotropic and homogeneous material under an external force 

applied to the centre of the top surface in the normal direction. The material is of a volumetric box shape 

containing 845 mass points with damping constant 𝛾  3   and constitutive coefficient        for all points. 

The distribution of potential energy and resultant deformation are illustrated in Fig. 4.12.  
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(a) (b) 

  

(c) (d) 

Figure 4.12 Volumetric deformation of an isotropic and homogeneous material with constitutive coefficient 

       at all points: (a) the rest state; (b) the distribution of potential energy; and (c) and (d) the respective 

deformation in different views. 

 

With the same volumetric model and under the same loading conditions, the deformation of an anisotropic 

material is achieved by setting the constitutive coefficient to different values in different directions (       

and      at the red and black points), whereas the deformation of a heterogeneous material is achieved by 

setting the constitutive coefficient to different values at different regions (      ,      and      at the red, 

white and black points). The anisotropic and heterogeneous deformations and their associated distributions of 

potential energy are shown in Fig. 4.13.  
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.13 Volumetric deformations of an anisotropic and a heterogeneous material: (a) the constitutive 

coefficient        and      at the red and black points, respectively, in the anisotropic material; (b) and (c) 

the distribution of potential energy in the anisotropic material and associated anisotropic deformation; (d) the 

constitutive coefficient       ,     , and      at the red, white and black points, respectively, in the 

heterogeneous material; and (e) and (f) the distribution of potential energy in the heterogeneous material and 

associated heterogeneous deformation. 

 

Compared to the distribution of potential energy and homogeneous deformation shown in Fig. 4.12, the 

potential energy in the anisotropic material is distributed more significantly in the direction of red points with 

higher constitutive coefficient values, and hence the material is deformed more significantly along this direction 

around the deformation area (see Figs. 4.13(a)-(c)). Similarly, due to different constitutive coefficient values at 

different regions, the potential energy in the heterogeneous material is distributed differently, and thus the 

material is deformed differently in these regions (see Figs. 4.13(d)-(f)). With above deformation examples, all of 

the deformations exceed 10% of the original mesh size. Along with the nonlinear force-displacement 

relationship demonstrated in Fig. 4.11, it shows that the proposed method can achieve nonlinear large 
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deformation of soft tissues, whereas other modelling methods based on linear elasticity can only handle small 

deformation. 

 

4.2.2.3 Soft Tissue Deformation with Haptic Feedback 

A prototype surgical simulation system has been implemented with the proposed method for interactive soft 

tissue deformation with haptic feedback. As illustrated in Fig. 4.14, the prototype simulation system is a multi-

thread platform with three threads for deformation simulation, haptic feedback, and visualisation. The 

visualisation thread is in charge of rendering the simulation scene using the OpenGL graphics library on the 

display monitor to provide users with visual feedback. The deformation simulation thread carries out the 

deformation calculation. Based on the geometry and material properties of the soft tissue model, the deformation 

of the soft tissue is calculated through the CNN modelling of propagation of mechanical load and non-rigid 

mechanics of motion. Finally, the manipulation and force feedback are achieved by the haptic thread via a 

PHANToM haptic device from Geomagic supported by the OpenHaptic toolkit. The user can manipulate objects 

via the virtual haptic probe of the PHANToM haptic device and interactively deform the virtual soft tissue 

model with force feedback. Fig. 4.15 shows an interactive deformation of a virtual volumetric human liver 

model with haptic feedback. 

 

Figure 4.14 System overview of the prototype surgical simulation system with haptic feedback. 
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Figure 4.15 Interactive deformation of a virtual human liver via the virtual haptic probe. 

 

Fig. 4.16 illustrates the deformation of a virtual human liver model by the proposed method. 

 

 

 

 

 

  

(b) (c) 

  

(a) (d) (e) 

Figure 4.16 Deformation of a volumetric human liver model: (a) the rest state; (b) and (c) the distribution of 

potential energy; and (d) and (e) the liver deformation in different views. 
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4.2.2.4 Visual and Haptic Performances 

The proposed method is programmed in C++ and implemented on an Intel(R) Core(TM) i7-5500U CPU@2.40 

GHz and 4 GB RAM memory PC without hardware acceleration. With one external stimulus, the computational 

time utilising different numbers of points is illustrated in Fig. 4.17. It can be seen that the computational time is 

increased with the increase in numbers of mass points. The visually satisfactory refresh rate of 30 Hz (33 ms per 

iteration) to maintain a realistic visual feedback is achieved with a volumetric model of around 1,500 mesh 

points. Since the minimum requirement for correct visualisation of an object is around 600 points [138], it is 

more than sufficient to provide realistic visual feedback with the proposed method. However, under the same 

conditions, the computational time per iteration for linear FEM [57] is 1.1 s. This demonstrates the proposed 

method has a much better computational performance than linear FEM. The computational performance of the 

proposed method can be further improved by CNN hardware implementation [139] and adaptive technique 

[140]. 

 

Figure 4.17 Visual performance: the visually satisfactory refresh rate of 30 Hz (33 ms) is achieved with around 

1,500 mesh points. 

 

The PHANToM haptic device requires forces to be updated at the rate of at least 1,000 Hz for realistic force 

feedback. As it can be seen from Fig. 4.18, the force update rate is above 1,000 Hz when the number of points is 

around 500 mesh points. When the computational speed cannot meet the haptic refresh update requirement, 

force extrapolation [120, 141] is employed to improve the realism of haptic feedback by generating missing 

forces from the previous calculation loop. 
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Figure 4.18 Haptic performance: the force update rate of 1,000 Hz for realistic force feedback is achieved with 

around 500 mesh points. 

 

4.3 Neural Dynamics-based Stable Simulation of Soft Tissue Deformation 

In addition to the requirements of real-time computational performance and physical realism for soft tissue 

simulation, numerical stability of integration in the temporal domain also plays a key factor in interactive 

surgical simulation. Currently, the mechanical dynamics of soft tissue deformation is achieved by numerical 

time integrations such as the explicit or implicit integrations; however, the explicit integration is stable only 

under a small time step, whereas the implicit integration is computationally expensive despite the 

accommodation of a large time step. In this chapter, the proposed neural dynamics-based methodology is 

demonstrated that it can achieve stable simulation of soft tissue deformation thanks to the nonlinear 

characteristics of CNN. It can achieve good accuracy at a small time step, while still remaining stable at a large 

time step, both achieved with the computational efficiency of the explicit integration. 

 

4.3.1 Nonlinear Template of Neural Dynamics 

As shown in Fig. 4.19, cell output        is represented by a nonlinear function  (      ) with the following 

nonlinear properties 

  (      )          , if |   | <   

  (      )          , if |   | ≥   

(4.35) 
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Figure 4.19  Characteristics of the nonlinear voltage-controlled source in the CNN:  (      ) is a nonlinear 

function of       , and   is the saturation voltage of the voltage-controlled source. 

 

The saturation voltage   of the nonlinear voltage-controlled source in the proposed CNN controls the maximum 

output of a cell. Since the augmented CNN is second-order in the temporal domain and is used for modelling the 

dynamics of soft tissue deformation where the cell output is associated with point position, the saturation 

voltage   actually controls the maximum velocity of point movement. This property can be used to achieve 

stable soft tissue simulation.  

 

4.3.2 Results 

Simulations and comparisons are conducted on (1) a mass-spring-damper system and (2) soft tissue deformation 

to investigate the performance of the proposed method in terms of stable dynamic simulation. 

 

4.3.2.1 Mass-Spring-Damper System 

To demonstrate the performance of the proposed CNN model, consider a simple mass-spring-damper system 

illustrated in Fig. 4.20(a), where a weight with mass   at position    −  m is connected to the origin at 

     m by a spring with stiffness   and rest length    and a damper with damping coefficient  . The weight 

undergoes a damped vibration in the   direction. The parameters are set to       kg,       N/m,    , 

     m and initial velocity    −5  m/s. Fig. 4.20(b) illustrates the solutions calculated by the explicit 

integration under different time steps in comparison with analytical solution as reference. It can be seen that at a 



 

91 
 

small time step (e.g.          s) the explicit integration can achieve a good approximation which is almost 

identical to the reference solution. However, the solutions become unstable and diverge at a large time step (e.g. 

       s). 

 

 

 

(a)  

 

 

 

 

 

 

(b)  

Figure 4.20  (a) A simple mass-spring-damper system with mass  , stiffness   and damping coefficient  ; and 

(b) solutions of explicit integration with different time steps. 

 

With the above same time steps, the CNN solutions shown in Fig. 4.21(a) are better than those of the explicit 

integration. At a small time step (e.g.          s), the CNN solution (  5  ) is almost identical to the 

reference solution. At a large time step (e.g.        s), unlike the unstable behaviour of the explicit 

integration, the CNN solution remains stable. A more clear illustration can be seen from Fig. 4.21(b), which 

demonstrates that the CNN solution is stable whereas the explicit integration’s solution is divergent at a large 

time step.  
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(a)  

 

 

 

 

 

 

(b)  

Figure 4.21  (a) A comparison between the explicit integration and CNN; and (b) the CNN solution remains 

stable at a large time step. 

 

Trials with three different   values (saturation voltage   5,   and  ) were also conducted to examine the 

effect of   on the CNN solution. As illustrated in Fig. 4.22(a), the CNN solutions are converged for various   

values at a small time step, and they all have a good approximation to the reference solution. Among them, the 

CNN solutions with   5 and     are much better than that with    . This is because the cell state       

is always in the region of   (      )           of the nonlinear voltage-controlled source. With the smaller 

value    , the cell state       falls into the region of   (      )           of the nonlinear voltage-

controlled source, leading to a damped velocity for position calculation. Hence, the results are affected at a 

small time step with smaller displacements than the reference solution (see the case of     in Fig. 4.22(a)). 

However, as shown in Fig. 4.22(b), at a large time step, the smaller the value of   is, the better the CNN 
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solution is, and thus the better the soft tissue deformation is. The above demonstrates that a smaller   value is 

preferred to ensure numerical accuracy while maintaining stability at a large time step. 

 

 

 

 

 

 

(a)  

 

 

 

 

 

 

(b)  

Figure 4.22  Comparisons between different   values in the proposed CNN at (a) a small time step and (b) a 

large time step. 

 

4.3.2.2 Soft Tissue Deformation 

Trials are also conducted on a cubic volumetric model of 1,331 mass points and 6,000 tetrahedrons, with side 

faces fixed (see Fig. 4.23(a)) subjected to an applied force on the top surface in the normal direction, to evaluate 

the performance of the proposed CNN in terms of simulating soft tissue deformation. The mass matrix  , 

damping matrix 𝐃 and stiffness matrix 𝐊 are initialised according to the formulation proposed by Duan et al.[8], 

where the mass density   and Young’s modules   were set to 1,060 kg/m
3
 [119] and 3,500 Pa [118] of the soft 
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tissue material properties, respectively. Both CNN and explicit integration were conducted under the same 

conditions with     used in the CNN. As shown in Fig. 4.23(b), both methods yield identical results at the 

small time step         s. However, as shown in Fig.4.23(c), the solution of the explicit integration becomes 

unstable at the large time step        s, whereas the CNN solution remains stable in Fig. 4.23(d). This 

demonstrates that the CNN not only inherits the accuracy of the explicit integration at a small time step but also 

overcomes the unstable problem of the explicit integration at a large time step. It should be mentioned that the 

computational time of one iteration for both CNN and explicit integration are similar which is around 2 ms. 

  

(a) (b) 

  

(c) (d) 

Figure 4.23 Comparison between the proposed CNN and explicit integration at a small and large time step: (a) 

cubic volumetric model at rest state; (b) both solutions at a small time step         s; (c) explicit integration 

at a large time step        s; and (d) CNN solution at a large time step        s. 

 

Trials were also conducted on a human kidney model with a mesh size of 1,378 nodes and 4,691 tetrahedrons to 

evaluate the performance of the proposed CNN in terms of stable soft tissue simulation. Both CNN and explicit 

integration were conducted under same conditions with     used in the CNN. As shown in Fig. 4.24(b), both 

methods yield identical results at the small time step          s. However, as shown in Fig. 4.24(c), the 
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solution of the explicit integration becomes unstable at the large time step        s, whereas the CNN solution 

remains stable in Fig. 4.24(d).  

  

(a) (b) 

  

(c) (d) 

Figure 4.24  Comparison between the proposed CNN and explicit integration both at a small and large time step: 

(a) volumetric kidney model at rest state; (b) both solutions at a small time step          s; (c) explicit 

integration at a large time step        s; and (d) CNN solution at a large time step        s. 
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5. Energy Balance Method 

In this chapter, a novel methodology is presented for modelling of soft tissue deformation for surgical 

simulation, from the standpoint of work-energy balance based on the law of conservation of energy. The work 

done by an external force is always balanced against the strain energy due to the internal force of an object. A 

position-based incremental approach is established, in which the work-energy balance is achieved via an 

iterative position increment process for the new equilibrium state of the object. The position-based incremental 

approach is further combined with non-rigid mechanics of motion to govern the dynamics of soft tissue 

deformation. The proposed method employs nonlinear geometric and material formulations to account for 

nonlinear soft tissue deformation. Soft tissue material properties can be accommodated by specifying strain 

energy density functions. Integration with a haptic device is achieved for soft tissue deformation with haptic 

feedback for surgical simulation. Experimental results demonstrate that the deformations by the proposed 

method are in good agreement with those by the commercial package of finite element analysis. Isotropic and 

anisotropic deformations, as well as soft tissue viscoelastic behaviours, can be accommodated by the proposed 

methodology via strain energy density functions. 

 

5.1 Formulation of Energy Balance Method 

As mentioned previously, surgical simulation requires both realistic and real-time performances of soft tissue 

deformation. To this end, the proposed energy balance method (EBM) conducts soft tissue deformation via a 

position-based increment in an iterative process to achieve work-energy balance for new equilibrium state of 

soft tissues. It employs the concept of strain energy to incorporate both geometric and material nonlinear 

formulations for soft tissue deformation. Soft tissue constitutive models of material properties such as 

compressibility and incompressibility, isotropy and anisotropy, and viscoelasticity are also developed and 

integrated with the proposed EBM via strain energy density functions. 

 

5.1.1 Theory 

The proposed EBM is based on the law of conservation of energy to balance the input energy with stored energy 

under the condition that there is no energy loss to the environment. For a time continuous domain  , the law of 

conservation of energy states that 

𝜕𝑊  

𝜕 
−

𝜕𝑊𝑜𝑢 

𝜕 
 

𝜕𝑊  𝑜𝑟𝑒 

𝜕 
 ∈   

(5.1) 
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where 𝑊   is the input energy, 𝑊𝑜𝑢  is the lost energy, and 𝑊  𝑜𝑟𝑒  is the stored energy in the domain   at time 

 . 

It can be seen from Eq. (5.1) that soft tissue deformation is actually a process of work-energy balance. When a 

soft tissue is subject to an external force, the soft tissue experiences deformation. As per the law of conservation 

of energy, if there is no energy loss to the environmental surroundings, the work done by the external force can 

be considered as the input energy 𝑊   supplied to the soft tissue, and it is balanced against the stored energy 

𝑊  𝑜𝑟𝑒 , i.e. the strain energy 𝑊  𝑟   , which describes the energy to deform the soft tissue away from its natural 

state under the internal force. The work-energy balance of soft tissue deformation can be written as 

∫  𝑒  ∙  𝑒  
Γ𝑓

 Γ𝑓  𝑊  𝑟    ∫     ∙     
Ω

   
(5.2) 

where   represents the whole geometry of the soft tissue with its natural boundary denoted by Γ𝑓,  𝑒   and  𝑒   

are the external force and displacement, respectively,      and      are the internal force and displacement, 

respectively, and the symbol “∙” represents the dot product of two vectors. 

Hence, from the viewpoint of work-energy balance, the deformation process of soft tissues can be treated as a 

process of applying the work done by the external force to the soft tissue and subsequently balancing this work 

with the strain energy due to internal force. 

For hyperelastic materials, the internal force can be described by the gradient of strain energy with respect to 

deformation. Consider a particle   at position   , the internal force 𝐟        exerted on particle   is described by 

𝐟        −
𝜕𝑊  𝑟       

𝜕  

  
(5.3) 

As per the principle of virtual work in continuum mechanics [117], in order to guarantee that both linear and 

angular momentums are conserved during soft tissue deformation, the position increment     of particle   due to 

internal force 𝐟        can be defined as 

    −𝑤 𝜆 
𝜕𝑊  𝑟       

𝜕  

 
(5.4) 

where 𝑤        is the inverse mass, and 𝜆  is the Lagrange multiplier of particle  .  

If the variation of internal force is small within the time step, the strain energy of displacement     under 

internal force 𝐟        for particle   can be calculated as 
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𝑊  𝑟        𝐟       ∙     (5.5) 

Substituting Eqs. (5.3) and (5.4) into Eq. (5.5) and solving for the Lagrange multiplier 𝜆  yield 

𝜆  
𝑊  𝑟       

𝑤 ‖
𝜕𝑊  𝑟       

𝜕  
‖
  

(5.6) 

where the symbol “‖∙‖” represents the modulus of the gradient vector of strain energy at a given point. 

Since a soft tissue model is discretised into a number of finite elements with particles (nodes) joining together, 

the position increment of a particle can be calculated by taking the sum of position increments contributed from 

all the neighbouring elements of this particle. Let       be the set of neighbouring elements joining at particle  , 

       an element joining at particle   with       ∈      . For element       , the Lagrange multiplier 𝜆    for 

position increment       contributed by element        can be determined by 

𝜆    
𝑊     

∑ 𝑤   ‖
𝜕𝑊       

𝜕    
‖
 

 ∈  𝑇𝑘  𝑖  

 
(5.7) 

where 𝑊      is the strain energy of element       ;           is the set of particles in element       ; and 

𝑤    and      denote the inverse mass and position vector of particle   in element       , respectively.  

Based on Eq. (5.7), the position increment       contributed by element        can be written as 

      −𝑤 

𝑊     

∑ 𝑤   ‖
𝜕𝑊 (    )

𝜕    
‖

 

 ∈ (𝑇𝑘  𝑖 )

𝜕𝑊     

𝜕  

 
(5.8) 

The net position increment     of particle   is calculated by taking the sum of       from all the neighbouring 

contributing elements       ∈       of particle  , i.e. 

    ∑      

𝑇𝑘  𝑖 ∈𝑇  𝑖 

 

(5.9) 

 

5.1.2 Discretisation 

Since the variation of strain energy is zero of an element in the absence of external force, Eq. (5.8) holds only 

when an external force exists to seek a new equilibrium state for the entire system. To determine the position 
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increment     of particle   in Eq. (5.9), it is necessary to determine the strain energy and associated gradient 

vector at each node, as shown in Eq. (5.8).  

Consider a soft tissue model discretised using four-node linear tetrahedral elements. Let   ,   ,    and    

denote the four nodes of a tetrahedral element   . The gradient vector of the strain energy at each node can be 

determined by 

[
𝜕𝑊     

𝜕  

𝜕𝑊     

𝜕  

𝜕𝑊     

𝜕  

] 

 𝑉 [
𝜕𝛹     

𝜕  

𝜕𝛹     

𝜕  

𝜕𝛹     

𝜕  

] 

 𝑉  ∙  ∙
𝜕 

𝜕 
 

 𝑉 𝐃 ∙ 𝐃𝐗
− ∙  ∙ 𝐃𝐗

−T 

𝜕𝑊     

𝜕  

 −∑
𝜕𝑊     

𝜕  

 

 

 = 

 

(5.10) 

where 𝑉  is the volume, 𝛹  is the strain energy density,   is the deformation gradient, and   is the second Piola-

Kirchhoff stress of element    (see Chapter 5.2); 𝐃  and 𝐃𝐗 are the deformed and undeformed shape matrices of 

the tetrahedron with respect to the local coordinates, which are defined by 

𝐃  [  −     −     −   ] 

𝐃𝐗  [𝐗 − 𝐗 𝐗 − 𝐗 𝐗 − 𝐗 ] 

(5.11) 

where 𝐗 is the position vector of a particle in the undeformed configuration, and   is the position vector of the 

particle in the deformed configuration.  

 

5.1.3 Model Dynamics 

To achieve physical animation, the dynamics of discretised soft tissue model need to be solved at each time step 

during the simulation. Explicit time integration [60] and implicit time integration [102] are the two popular 

numerical schemes to evolve model dynamics in the temporal domain. The explicit integration is easy to 

implement and computationally efficient since it does not require the calculation of stiffness matrix inversion for 

model update. However, the time step in the explicit integrations is limited by a critical value to achieve stable 
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solutions. The implicit integration does not suffer from numerical instability, but it requires the calculation of 

stiffness matrix inversion or solving a linear system of equations at each iteration, leading to an expensive 

computational load. The explicit symplectic integration [142] is also a numerical integration scheme. It can 

achieve energy conservation via a high-order approximation, but at the cost of additional computational 

complexity. 

For the sake of simplicity and fast computation, the proposed EBM is proceeded in time using a first-order 

explicit forward scheme. Since the explicit scheme is only conditionally stable, precautions need to be taken for 

the time step to ensure numerical stability. The critical time step   𝑐𝑟 can by determined by [56] 

  𝑐𝑟  
𝐿𝑒

𝑐
 

(5.12) 

where 𝐿𝑒 is the smallest characteristic length of an element in the mesh, and 𝑐 is the dilatational wave speed. 

The algorithm of the proposed EBM is shown in Fig. 5.1. At each time step   , the new position of particle   is 

first calculated by considering the external force only, which is equivalent to applying the work done by the 

external force to the soft tissue 

  
 +  ←   

    (𝐯 
    

𝐟𝑒  
 

  

) 
(5.13) 

where   
 +   and   

  are the positions of particle   at time      and  , respectively; 𝐯 
  is the velocity of 

particle   at time  , 𝐟𝑒  
 
 is the external force applied to particle   at time  , and    is the mass of particle  .  

The work-energy balance can be achieved in only one iteration if only one finite element is considered; 

however, since the soft tissue object is discretised into a number of finite elements, it leads to an iterative 

process to achieve work-energy balance for the entire soft tissue model. With the new position of particle   

given by Eq. (5.13), the equilibrium state is sought by satisfying the work-energy balance iteratively via the 

position increment     applied to each particle  , i.e.  

  
 +  ←   

 +       (5.14) 

where     is calculated based on Eq. (5.9) by considering position increment       from neighbouring 

tetrahedral elements       . 

The new velocity 𝐯 
 +   of particle   at time      is calculated once the new equilibrium state is reached. The 

𝐯 
 +   is calculated by 
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𝐯 
 +  ←

  
 +  −   

 

  
 

(5.15) 

  

Figure 5.1 EBM algorithm. 

 

5.2 Strain Energy Density 

The strain energy density is a measure of strain energy stored in a small volume element in the material. The 

strain energy density at a particle can be expressed by 

𝛹  ∫ 𝝈
𝜺

 𝜺 
(5.16) 

where 𝝈 and 𝜺 are the stress and strain at the particle. 

Since the strain energy is zero when the object is at the rest state, it is straightforward to measure the variations 

of stress and strain at the particle with reference to the rest state. The stress and strain at the particle can be 

expressed by the second Piola-Kirchhoff stress   and Green-Saint Venant strain  . The Green-Saint Venant 

strain   can be calculated by 

  
 

 
  − 𝐈  

(5.17) 

where 𝐈 is the identity matrix of the second rank, and   is the right Cauchy-Green deformation tensor given by 

   T ∙  , where   is the deformation gradient given by 

  
𝜕 

𝜕𝐗
 

(5.18) 
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The gradient vector of strain energy density at a given particle in the deformed configuration can be determined 

by 

𝜕𝛹

𝜕 
  ∙  − ∙

𝜕𝛹

𝜕 
∙
𝜕 

𝜕 
  ∙  ∙

𝜕 

𝜕 
  

(5.19) 

 

5.2.1 Isotropic Materials 

Various soft tissue materials can be applied to the proposed EBM method. For the purpose of conciseness, let us 

first consider an isotropic hyperelastic material. Its strain energy density can be described as a function of the 

invariants of the right Cauchy-Green deformation tensor, i.e. 

𝛹  𝛹 𝐼  𝐼  𝐼   (5.20) 

where 𝐼 , 𝐼  and 𝐼  are the three invariants of the right Cauchy-Green deformation tensor  , which are given by 

𝐼  tr   ; 𝐼  
 

 
[[tr   ] − tr    ];  𝐼  d t    

(5.21) 

where tr ∙  and d t ∙  denote the trace and determinant of a matrix. 

The second Piola-Kirchhoff stress   can be calculated in terms of the strain energy density 𝛹 and right Cauchy-

Green deformation tensor   

   
𝜕𝛹

𝜕 
  (

𝜕𝛹

𝜕𝐼 

𝜕𝐼 
𝜕 

 
𝜕𝛹

𝜕𝐼 

𝜕𝐼 
𝜕 

 
𝜕𝛹

𝜕𝐼 

𝜕𝐼 
𝜕 

) 
(5.22) 

with relations [143]: 

𝜕𝐼 
𝜕 

 𝐈; 
𝜕𝐼 
𝜕 

 𝐼 𝐈 −  ; 
𝜕𝐼 
𝜕 

 𝐼 𝐈 − 𝐼      
(5.23) 

 

5.2.2 Compressibility 

When there is a certain compressibility involved in the deformation of materials, the strain energy density may 

be decomposed into a volumetric part 𝛹𝑣𝑜  and an isochoric part 𝛹  𝑜 [71], i.e. 

𝛹  𝛹  𝑜 𝐼 ̅ 𝐼 ̅  𝛹𝑣𝑜  𝐽  (5.24) 
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where 𝐼 ̅ and 𝐼 ̅ are the invariants of the isochoric part of the right Cauchy-Green deformation tensor and 𝐽 is the 

volume ratio. 𝐼 ̅, 𝐼 ̅ and 𝐽 can be calculated by 

𝐽  d t   ; 𝐼 ̅  tr  ̅ ;  𝐼 ̅   
 

 
[[tr  ̅ ] − tr  ̅  ] 

(5.25) 

where  ̅ is the isochoric part of the right Cauchy-Green deformation tensor given by  ̅  𝐽−    .   

 

5.2.3 Anisotropy 

Anisotropic materials, which exhibit directional-dependent behaviours, can also be accommodated via a 

modified strain energy density function. Employing a unit vector    in the rest state to describe local fibre 

direction [143], the strain energy density can be expressed by 

𝛹  𝛹 𝐼  𝐼  𝐼  𝐼  𝐼5  (5.26) 

where 𝐼 , 𝐼  and 𝐼  are the invariants of the right Cauchy-Green deformation tensor   given by Eq. (5.21); and 𝐼  

and 𝐼5 are the two additional invariants, which arise from the anisotropy introduced by the local fibre. 𝐼  and 𝐼5 

along with their derivatives with respect to   can be calculated by [143] 

𝐼    ∙  ∙   ;  𝐼5    ∙   ∙    

𝜕𝐼 
𝜕 

   ⊗   ;  
𝜕𝐼5
𝜕 

   ⊗ ∙      ∙  ⊗    

(5.27) 

where ⊗ represents the tensor outer product. 

The corresponding second Piola-Kirchhoff stress   can be expressed by 

   [
𝜕𝛹

𝜕𝐼 
𝐈  

𝜕𝛹

𝜕𝐼 
 𝐼 𝐈 −    

𝜕𝛹

𝜕𝐼 
 𝐼 𝐈 − 𝐼       

𝜕𝛹

𝜕𝐼 
  𝟎 ⊗ 𝟎 

 
𝜕𝛹

𝜕𝐼5
  𝟎 ⊗  ∙  𝟎   𝟎 ∙  ⊗  𝟎 ] 

(5.28) 

 

5.2.4 Viscoelasticity 

Biological soft tissues exhibit time-dependent mechanical behaviours which are often referred to as viscoelastic 

behaviours [112]. In the proposed method, a time-dependent strain energy density function �̂� [70] is adopted to 
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simulate the viscoelastic behaviours of soft tissues. The time-dependent strain energy density function is 

expressed in the form of a convolution integral, i.e. 

�̂�  ∫ 𝛼  − 𝑠 
𝜕𝛹

𝜕𝑠
  𝑠

 

 

 
(5.29) 

where   is time and 𝛼    is a relaxation function expressed in terms of a Prony series, i.e. 𝛼    𝛼  

∑ 𝛼  
−   𝑖 

 =  with positive constants 𝛼 , 𝛼  and   . By imposing condition 𝛼  ∑ 𝛼 
 
 =   , 𝛼    can be 

further written as 

𝛼     −∑𝛼 ( −  −   𝑖)

 

 = 

   
(5.30) 

Accordingly, the second Piola-Kirchhoff stress   is modified as 

 ̂   
𝜕�̂�

𝜕 
 ∫ 𝛼  − 𝑠 

𝜕 

𝜕𝑠
  𝑠

 

 

 ∫ [ −∑𝛼 ( −    −    𝑖)

 

 = 

]
𝜕 

𝜕𝑠
  𝑠

 

 

  −∑𝜸 

 

 = 

 

(5.31) 

where 𝜸  is a time-dependent term given by 

𝜸  ∫ 𝛼 ( −    −    𝑖)
𝜕 

𝜕𝑠
  𝑠

 

 

 
(5.32) 

Eq. (5.32) can be converted into an incremental update 𝜸 
  𝐴  

  𝐵 𝜸 
 −   applied at each time step    with 

constant coefficients 𝐴  and 𝐵  determined by 𝐴  
   𝑖

   + 𝑖 
 and 𝐵  

 𝑖

   + 𝑖 
. 

 

5.2.5 Material Models 

In our simulation, two isotropic and one anisotropic constitutive models are developed and integrated with the 

proposed EBM. They are the Saint Venant-Kirchhoff model, Neo-Hookean model and anisotropic Neo-

Hookean model. The viscoelasticity can be incorporated into each model by employing the time-dependent 

strain energy density function and associated second Piola-Kirchhoff stress given by Eqs. (5.29) and (5.31), 

respectively. 
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5.2.5.1 Saint Venant-Kirchhoff Model 

The strain energy density function of the Saint Venant-Kirchhoff model is expressed by 

𝛹  
𝜆

 
[tr   ]  𝜇tr     

(5.33) 

where 𝜆 and 𝜇 are the Lamé coefficients, which can be expressed by the Young’s modulus   and Poisson’s ratio 

  as 𝜆  
 𝑣

  +𝑣   − 𝑣 
 and 𝜇  

 

   +𝑣 
. 

The second Piola-Kirchhoff stress   is expressed by 

  𝜆 tr   𝐈   𝜇    (5.34) 

 

5.2.5.2 Neo-Hookean Model 

The strain energy density function of the compressible Neo-Hookean model [73] is expressed by 

𝛹  
𝜇

 
 𝐼 ̅ − 3  

𝜅

 
 𝐽 −     

(5.35) 

where 𝜅 is the bulk modulus, which can be expressed by the Young’s modulus   and Poisson’s ratio   as 

𝜅  
 

   − 𝑣 
.  

The second Piola-Kirchhoff stress   is expressed by 

  𝜇𝐽−   𝐈  (−
 

3
𝜇𝐽−   𝐼  𝜅𝐽 𝐽 −   )  −    

(5.36) 

 

5.2.5.3 Anisotropic Neo-Hookean Model  

The strain energy density function of the Neo-Hookean model is modified to account for the anisotropy 

introduced by the preferred local fibre direction. The modified strain energy density function for the anisotropic 

Neo-Hookean model is written as  

𝛹  
𝜇

 
 𝐼 ̅ − 3  

𝜂

 
 𝐼 ̅ −     

𝜅

 
 𝐽 −     

(5.37) 
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where 𝜂 is a material parameter with the unit of Pa, and it is set to 𝜂   𝜇 according to [70]; and 𝐼 ̅ is related to 

𝐼  by 𝐼 ̅  𝐽−   𝐼 . For simplicity and as a common practical feature of anisotropic models for soft tissues [70], 

only 𝐼 ̅ is considered in the anisotropic Neo-Hookean model while 𝐼5̅ is omitted. 

The second Piola-Kirchhoff stress   corresponding to the anisotropic Neo-Hookean model can be expressed by 

  𝜇𝐽−   𝐈  (−
 

3
𝜇𝐽−   𝐼  𝜅𝐽 𝐽 −   )  −  𝐽−   𝜂 𝐼 ̅ −   (   

𝐼 
3
 − ) 

(5.38) 

where      ⊗   . 

 

5.3 Results and Discussion 

A prototype surgical simulation system has been implemented with the proposed EBM for soft tissue 

deformation. Simulations, experiments, and comparison analysis have been conducted to investigate the 

performance of the proposed method in terms of the following aspects: (i) the work-energy balance effect; (ii) 

compression, extension and shear tests in comparison with the simulations using a commercial package of finite 

element analysis; (ii) anisotropic deformation and the effect of viscoelasticity; and (iii) the computational 

performance and human organ deformation with haptic feedback. 

 

5.3.1 Verification of Work-Energy Balance 

To demonstrate the work-energy balance for the equilibrium state of object deformation, let us consider the 

deformation of a beam under an external tensile force. The beam is 2 m in length with a square cross-section of 

0.2 m x 0.2 m, and it is modelled by an isotropic Neo-Hookean material model. The mass density of 1,000 

kg/m
3
, Young’s modulus   = 3,000 Pa and Poisson’s ratio   = 0.49, which reflect the mechanical properties of 

human brain [56], were used for the simulation. The beam was constrained at the left-side face, while the entire 

right-side face was subject to a tensile force of 0.8 N in the positive x direction. As illustrated in Fig. 5.2, the 

work done by the tensile force is supplied to the beam from its right-side face. The work is balanced iteratively 

against the strain energy due to the internal force to find the new equilibrium state of the beam. After 2,000 

iterations, the relative energy difference (RED) is nearly zero, which means the equilibrium state is reached. 
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Figure 5.2 Strain energy of a beam, where the left-side face of the beam is constrained while a tensile force in 

the positive x direction is applied to the entire right-side face: the top image (in full blue colour) shows the rest 

state of the beam; the rest images show the strain energy distributions (coloured) at iterations 1, 5, 10, 20, 50, 

100, 200, 500, 1,000 and 2,000; the beam reaches the equilibrium state after 2,000 iterations. 

 

As mentioned previously, since the soft tissue model is made up of a number of finite elements, it leads to an 

iterative process to achieve work-energy balance for the entire soft tissue model. Fig. 5.3 illustrates the work-

energy balance effect during the iterative solution process. It can be seen from Fig. 5.3(a) that the initial 

difference between the work done by the external force and strain energy due to internal force is around 23 J 

where only the effect of the external force is considered. The energy difference is subsequently reduced via the 

iterative position-based incremental process to achieve work-energy balance, i.e. zero difference. Fig. 5.3(c) 

shows a detailed view of Fig. 5.3(a), with a particular focus on the first 100 iterations. It can be seen that the 

energy difference is reduced substantially within the initial small number of iterations and then gradually 

converges to zero. Fig. 5.3(b) and (d) illustrate the RED for the total 2,000 iterations and first 100 iterations, 

respectively. It can be seen that the energy difference drops drastically at the initial stage, leading to 7.0% RED 
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at 20 iterations. However, after 20 iterations, the decrease of energy difference becomes slow, leading to only 

2.5% RED at 100 iterations achieved at the cost of 80 more iterations. Further, Fig. 5.4 illustrates the maximum 

error for displacement    in the x direction by the proposed method with reference to ABAQUS (Version 6.14-

1) finite element analysis. The maximum displacement error is 0.00532 m (9.112%) at 20 iterations and 0.00169 

m (2.892%) at 100 iterations. These demonstrate the condition of energy balance can be satisfied at a high level 

of accuracy with a certain number of iterations, but further improvement of accuracy is limited at a large cost of 

numerical iterations. Therefore, an appropriate number of iterations can be selected to achieve a balance 

between numerical accuracy and computational performance for surgical simulation. In order to further analyse 

the condition of energy balance, the number of iterations was selected as 20 in the following simulations, where 

the results further verify the above conclusion. 

 
 

(a) (b) 

  

(c) (d) 

Figure 5.3 Energy difference between the strain energy and external work with respect to the number of 

iterations: (a) energy difference for the total 2,000 iterations; (b) relative difference for the total 2,000 iterations; 

(c) a detail view of (a) for the first 100 iterations; and (d) a detail view of (b) for the first 100 iterations. 
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(a) (b) 

Figure 5.4 Maximum errors for displacement    in the x direction by the proposed EBM: (a) in displacement; 

and (b) in percentage. 

 

5.3.2 Compression, Extension and Shear Deformations 

The proposed EBM is verified by comparing the compression, extension and shear deformations against those 

obtained using ABAQUS finite element analysis package. A Neo-Hookean model with a mass density of 1,000 

kg/m
3
, Young’s modulus   = 3,000 Pa and Poisson’s ratio   = 0.49 were used for all cases. The parameters     

and    used in the ABAQUS to define the Neo-Hookean model were calculated from the Young’s modulus   

and Poisson’s ratio  . Figs. 5.5 and 5.6 illustrate the compression and extension deformations of a cylinder. The 

cylinder is 2 m in length with radius of 0.5 m at the rest state. It is deformed by constraining the left-side face 

while moving the entire right-side face 0.4 m in the negative z direction in Fig. 5.5 and positive z direction in 

Fig. 5.6. The comparisons with ABAQUS results in terms of displacements at nodes on the red line are 

illustrated in Figs. 5.5(c) and 5.6(c), where the red line is the intersection between the XZ plane and cylindrical 

face, and the coordinate system is located at the centre point of cylinder’s left-side face. The resultant RED is 

4.6% for the compression deformation and 4.5% for the extension deformation. The maximum error, mean error 

and root mean square error (RMSE) are 0.00388 m (7.721%), 0.00206 m (3.539%) and 0.00232 m (4.152%) for 

the compression deformation, and 0.00202 m (7.766%), 0.00104 m (2.439%) and 0.00119 m (3.054%) for the 

extension deformation. 
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(a)  (b)  

 

(c) 

Figure 5.5 Compression of a cylinder: (a) undeformed state, where the intersection line between XZ plane with 

cylindrical face is highlighted in red; (b) deformed state; and (c) comparison with ABAQUS results in terms of 

displacement    in the x direction at the nodes on the red line highlighted in (a). 
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 (a) (b) 

 

(c) 

Figure 5.6 Extension of a cylinder: (a) undeformed state, where the intersection line between XZ plane with 

cylindrical face is highlighted in red; (b) deformed state; and (c) comparison with ABAQUS results in terms of 

displacement    in the x direction at the nodes on the red line highlighted in (a). 

 

Fig. 5.7 illustrates the shear deformation of a cube. The cube is 2 m in length, width, and height. It is deformed 

by constraining the bottom face while moving the entire top face 0.5 m in the positive z direction. The 

comparison with ABAQUS results in terms of displacements at nodes on the red line is shown in Fig. 5.7(c), 

where the red line is the intersection between the plane     m and the right face of the cube, and the 

coordinate system is located at the intersection point of the bottom, left and back faces. The resultant RED is 

7.4%. The maximum error, mean error and RMSE are 0.01464 m (7.945%), 0.00847 m (3.825%) and 0.00976 

m (4.603%), respectively. 
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(a) (b) 

 

(c) 

Figure 5.7 Shear deformation of a cube: (a) undeformed state, where the intersection line between plane     

m and right face of the cube is highlighted in red; (b) deformed state; and (c) comparison with ABAQUS results 

in terms of displacement    in the z direction at the nodes on the red line highlighted in (a). 

 

It can be seen from Figs. 5.5(c), 5.6(c) and 5.7(c) that the deformations obtained from the proposed EBM are in 

good agreement with those obtained from ABAQUS finite element analysis. 

 

5.3.3 Anisotropic Deformation 

As mentioned in Chapter 5.2.3, anisotropic deformation can be achieved via a preferred local fibre direction   . 

To demonstrate anisotropic deformation, let us consider the deformation of a cubic model with the preferred 

local fibre direction    [   ] using the anisotropic Neo-Hookean model. The cube is 2 m in length, 

width, and height, with a mass density of 1,000 kg/m
3
, Young’s modulus   = 3,000 Pa and Poisson’s ratio   = 
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0.49. It is deformed by constraining the bottom face while moving the entire top face 0.3 m in both positive and 

negative   directions to extend and compress the cube. Fig. 5.8 shows the comparison of deformations between 

the isotropic and anisotropic models, where REDs are 7.3% and 7.4% for the isotropic extension and 

compression, respectively, whereas REDs are 7.5% and 7.6% for anisotropic extension and compression, 

respectively. With no preferred fibre direction in the isotropic model (𝜂   ), the expansion and contraction in 

the   and   directions are uniform as shown in Figs. 5.8(a) and 5.8(c), respectively. In Figs. 5.8(b) and 5.8(d), 

by setting the local fibre direction in the anisotropic model as    [   ], which leads to an increase in 

stiffness in the z direction, the expansion and contraction in the z direction become much smaller, while in the   

direction become larger than the isotropic deformation (see the green and red regions in Figs. 5.8(b) and 5.8(d)). 

 

 

 

 

 

 

 

 

 

  

(a) (c) 

  

(b) (d) 

Figure 5.8 Comparison of isotropic and anisotropic deformations: (a) compressed isotropic model; (b) 

compressed anisotropic model with preferred local fibre direction    [   ]; (c) extended isotropic 

model; (d) extended anisotropic model with preferred local fibre direction    [   ]. Colour maps 

indicate the relative magnitude of displacement (  
    

 )
   

. 

 

(m) 
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5.3.4 Viscoelastic Effect 

The viscoelastic behaviours of soft tissues can also be achieved by the proposed EBM via the time-dependent 

strain energy density function discussed in Chapter 5.2.4. To demonstrate the viscoelasticity effect simulated by 

the proposed EBM, a single Prony series term was selected for simplicity and set with parameters 𝛼    5 and 

     5  [70]. A material of cubic shape with the same dimensions as that in Chapter 5.3.3 is deformed by a 

test protocol of stress-relaxation type. The bottom face of the cube is constrained while compressing the entire 

top face in the negative   direction for 0.5 s by a displacement of 0.3 m and further holding at the displacement 

for 4.5 s. It can be seen from Fig. 5.9 that the reaction forces at the bottom face show a distinct delay resulting 

from stress relaxation. This response is similar to the tissue relaxation observed from living tissues [112]. It is 

also observed that the increased stiffness in the anisotropic model results in greater reaction forces than the 

isotropic model. The resultant RED is 7.4% for isotropic and 7.6% for anisotropic model. 

 

Figure 5.9 Reaction forces at the bottom face of the cube over time: the simulated reaction forces show a distinct 

delay, which is similar to the tissue relaxation observed from living tissues. 

 

5.3.5 Soft Tissue Deformation with Haptic Feedback 

The proposed EBM is integrated with a PHANToM haptic device from Geomagic for interactive soft tissue 

deformation with haptic feedback. Users can deform a virtual human organ model via the virtual haptic probe. 

The organ deformation and associated internal forces are calculated by the proposed EBM. Subsequently, the 

internal forces are output to the PHANToM device for haptic feedback, and the calculated deformation is 

rendered on the monitor for visual feedback. Fig. 5.10 shows an interactive deformation of a virtual volumetric 

human liver model with haptic feedback. 
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Figure 5.10 Interactive deformation of a virtual human liver model via the haptic probe. 

 

The virtual human liver model is discretised into a tetrahedral mesh consisting of 1,106 nodes and 5,096 

tetrahedrons using the open-source mesh generator ‘TetGen’ with built-in mesh quality control functions [144]. 

However, a four-node linear tetrahedral element can be stiff, known as volumetric locking, for nearly 

incompressible materials such as soft tissues. To address this issue, the tetrahedral mesh was further improved 

by averaging a volumetric element over adjacent nodes [71]. The liver model is modelled using the Neo-

Hookean material with a mass density of 1,060 kg/m
3
, Young’s modulus   = 3,500 Pa and Poisson’s ratio   = 

0.49, which approximate the mechanical properties of human liver [8, 118]. The virtual liver model is 

constrained at the lower-left region with both pulling-up and dragging-down forces applied to the upper-right 

and bottom-right regions, respectively, to deform the liver away from its natural state. Fig. 5.11 shows 

deformations of the virtual human liver model and the associated strain energy distributions. The resultant RED 

is 6.2%. 
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(a) 

  

 

 

 

(b) (c) 

 

 

 

(d) (e) 

Figure 5.11 Deformations of a virtual human liver model and their associated strain energy distributions: (a) 

undeformed state; (b) deformed state of the liver with pulling-up forces applied to the upper-right region; (c) 

deformed state of the liver with dragging-down forces applied to the bottom-right region; (d) and (e) 

comparisons of the deformed states in (b) and (c) with the undeformed state in (a), respectively. 

 

5.3.6 Computational Performance 

The proposed EBM is programmed in C++ and evaluated on an Intel(R) Core(TM) i7-4770 CPU@3.40 GHz 

and 8 GB RAM memory PC. The CPU solution time utilising different numbers of tetrahedrons is illustrated in 

Fig. 5.12. From Fig. 5.12, it can be seen that the computational time is almost linear with the number of 

tetrahedrons. The solution time of the anisotropic model is slightly higher than that of the isotropic model due to 

the computation of additional terms in the strain energy density function and second Piola-Kirchhoff stress of 

the anisotropic model. It is also noticed that the update of time-dependent term 𝜸 for viscoelasticity further 

contributes 1 ms to the total computational time at each time step. The computational performance can be 

further improved by multi-core CPU implementation, GPU acceleration [73, 75] or adaptive technique [140]. 
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Figure 5.12 Computational performance: CPU solution time for isotropic and anisotropic models.  

 

The PHANToM haptic device requires forces to be updated at the rate of at least 1,000 Hz for realistic force 

feedback. As it can be seen from Fig. 5.13, the force update rate is above 1,000 Hz when the number of 

tetrahedrons is around 500 in the case of the isotropic material and 200 in the case of the anisotropic material. 

The number of tetrahedrons in the case of the anisotropic model is slightly less than that of the isotropic model 

due to the computation of additional terms in the strain energy density function and second Piola-Kirchhoff 

stress of the anisotropic model. When the computational speed cannot meet the haptic refresh update 

requirement, force extrapolation [120] was employed to improve the realism of haptic feedback by generating 

missing forces from the previous calculation loop. 

 

Figure 5.13 Haptic performance: haptic update rate of 1,000 Hz for realistic force feedback is achieved with 

around 500 tetrahedrons in the case of the isotropic material and 200 in the case of the anisotropic material. 
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5.4 Remarks 

The proposed EBM provides a new means for modelling of soft tissue deformation for surgical simulation. 

Compared to MSM, ChainMail algorithm and position-based dynamics approach with shape matching, the 

proposed EBM is based on the continuum mechanics of elasticity to describe deformation of soft tissues, 

capable of accommodating both geometric and material nonlinearities involved in soft tissue deformation. The 

anisotropy and viscoelasticity can be easily incorporated in the proposed EBM via the constitutive laws, 

whereas it is difficult to achieve such incorporation by MSM, ChainMail and position-based dynamics 

approach. Compared to BEM, the proposed EBM can also exhibit anisotropic and viscoelastic behaviours of soft 

tissues. Compared to FEM based on linear elasticity and geometric nonlinear TMM, the proposed EBM can 

achieve both geometric and material nonlinearities. Compared to FEM based on model reduction [80, 145], the 

proposed EBM does not require offline pre-computation. Further, it accounts for full system energy for work-

energy balance, whereas the model reduction technique involves a projection from the full system space into a 

smaller subspace, leading to a loss of system energy. The proposed EBM also preserves system energy via 

work-energy balance. 
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6. Discussion 

This thesis presents three new methodologies, namely the new ChainMail algorithms, energy propagation 

method, and energy balance method, for modelling of soft tissue deformation in surgical simulation. The 

proposed ChainMail algorithms improve the traditional ChainMails by accommodating various material 

properties, conserving volume and strain energy, conserving linear and angular momentums, and enhancing 

computational performance. Energy propagation method provides a new perspective for conducting soft tissue 

deformation, i.e., it considers soft tissue deformation as a process of energy propagation; nonlinear material 

properties are accommodated via the nonlinear energy propagation and modification of parameter coefficients. 

Energy balance method conducts soft tissue deformation from the perspective of energy conservation, and it can 

accommodate fast simulation of geometric and material nonlinearities. Among the three new methodologies, the 

choice of a suitable methodology for soft tissue deformation depends on the situation of surgical simulation 

developed. ChainMail algorithms exhibit higher solution speed to soft tissue deformation but are achieved at the 

cost of physical accuracy. They are well capable for modelling deformation of medical volumes containing large 

data sets. Energy propagation method and Energy balance method, on the other hand, are more suitable for soft 

tissue deformation where physical accuracy is concerned. Since it does not require pre-computation, Energy 

propagation method may be employed where topology changes are encountered. Energy balance method is more 

suitable for generic surgical simulation and clinical analysis where conservation of energy is considered.   

Topology changes due to surgical operations such as cutting and tearing is a requirement in surgical simulation 

that further complicates deformable modelling. These operations are difficult to achieve within the constraint of 

real-time performance as topology changes, often involve mesh and surface reconstruction, need to be 

calculated and updated. In ChainMail algorithms, topology changes can be accommodated by removing the 

chain links that are encountered along the path of the cutting tool as it passes through soft tissues [42]. In energy 

propagation method, topology changes can be accommodated by identifying the break point to break an edge 

using a threshold value of energy; subsequently, new points will be introduced according to the transition of 

energy to form new control volumes and boundaries to achieve optimal energy distribution. In energy balance 

method, topology changes can be accommodated by removing or splitting finite elements or employing 

extended FEM (X-FEM) technique. For a thorough discussion, readers are referred to the survey [163] on topic 

of physically-based simulation of cuts in deformable models.  

Overall, among various deformable models proposed for modelling of soft tissue deformation, it is obvious that 

there is no single deformable model that can address the realistic and real-time surgical simulation. Instead, they 

are developed in different ways to meet specific needs. Despite the computational advantage of the 

geometrically-based models, these models are seldom or no longer used for soft tissue deformation due to their 

non-physics-based nature. MSM is often used when computational efficiency is preferred to model accuracy, 
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and it has been used in many commercially available surgical simulators [146, 147]. However, a more accurate 

model is needed in order to be compatible with clinical use, provided the added computational complexity is 

acceptable. In addition, the optimisation process in MSM is a time-consuming task and may lead to failure if the 

prior assumed condition is changed. The ChainMail algorithm is well suited to the modelling of interactive 

deformation of large medical volumes, where other deformation models cannot achieve real-time computational 

performance. The shape matching approach can be used for stable simulation of soft tissue deformation, thanks 

to its unconditional stability [47]. It needs to be noted that these models generally exhibit difficulties in 

determination of model parameters to be associated with constitutive laws governing the mechanical behaviours 

of soft tissues, and hence they can only produce a physically plausible simulation.  

Higher model accuracy can be achieved by the continuum-based approach despite the increased computational 

complexity. FEM is often employed if physical accuracy is concerned. Most simplifications made to FEM to 

facilitate its computational performance inevitably compromise its model accuracy and limit its capability in 

handling various material properties. Although real-time computational performance can be achieved with the 

total Lagrangian-based FEMs, they are generally only suitable for the modelling of soft tissue response that does 

not involve topology changes, such as surgical cutting and tearing. The results of pre-computation at the initial 

configuration would become invalid when a topology-changing cut is introduced to the system. Model reduction 

is a promising technique for real-time simulation of soft tissue deformation; however, most of the models 

developed using this scheme require an offline and an online computation, which may pose challenges at 

simulation of topological changes. Despite recent progress [145] in the framework of model reduction that 

topological changes are handled by X-FEM for the incorporation of discontinuities in the displacement field, the 

offline computation generally assumes a certain model behaviour that may lead to inaccuracy if the model is 

changed during online simulation. In addition, it is also important to consider the element-related issues when 

using mesh-based methods due to the use of low-order finite elements. The hourglass control algorithm and 

locking-free tetrahedrons should be used to mitigate numerical inaccuracies. When simulating large deformation 

and discontinuities in soft tissue deformation, the meshless methods are often preferred to the mesh-based 

methods, since they can conduct deformation without explicit construction of nodal connectivity which can 

avoid most of the element-related issues, such as element distortion and element inversion. Meanwhile, it also 

avoids the process of mesh generation, facilitating the clinical integration of the computer-assisted surgery [96]. 

However, the accuracy of the meshless methods is heavily dependent on the distribution of particles in the 

problem domain, and it is only accurate in terms of global reaction force but not so for local reaction force.   

The emerging of neural network approach and machine learning could also perform an important position in 

realistic and real-time surgical simulation. The continuum-mechanical models generally consider the soft tissues 

as a continuum medium whose behaviours are governed by constitutive laws expressed by PDEs. Despite the 

high accuracy achieved by the continuum-based methods, it is arguably that soft tissues are more complex than 
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idealised continuum models, both in material compositions and structure formations. The machine learning 

technique, on the other hand, seeks for a mapping function through training of a supervised neural network to 

generate an output (deformation) for future unseen inputs (prescribed displacements). The soft tissue mechanical 

behaviours are encoded implicitly in the trained coefficients of the nerual network. Owing to the recent 

advancement in artificial intelligence and open-source package such as the TensorFlow [148], many different 

soft tissues can be employed for the training of nerual networks. However, it needs to be noted that the 

simulated results are highly dependent on the learning algorithm chosen. 

Table 1. Comparison of main categories of deformable models 

Deformable model Accuracy Speed Remark 

Geometrically-based * **** Lack of deformable physics  

MSM *** **** Generic simulation, such as surgical training 

ChainMail * ***** Large medical volumes 

FEM ***** *** Good for scientific analysis 

Meshless method **** *** Large deformation and discontinuities 

Machine learning **** **** Rely on training samples and learning algorithms 

Data-driven **** **** Require patient-specific data 

Scheme: * is the lowest whereas ***** is the highest. 

Given the wide varieties and variations of deformable models for surgical simulation, Table 1 summaries the 

capabilities of the aforementioned approaches in terms of physical accuracy and computational performance. It 

can be used as reference to make up an appropriate deformation strategy according to different surgical 

simulation conditions. 

To verify the physical accuracy of the deformable models for surgical simulation, most models compared their 

deformation solutions with those of the FEM reference solutions, such as the solution of conmerically available 

ABAQUS [149] using implicit solver with hybrid formulation of linear elements [85]. However, given that 

finite element modelling is an approximation method in itself, the accuracy of its results heavily relies upon the 

quality of its input [5].  Kerdok et al. [5] presented a Truth Cube which set the practical physical standards for 

validation of real-time soft tissue deformation models. A cube of silicone rubber with a pattern of embedded 

Teflon spheres is undergone uniaxial compression and spherical indentation tests, and the cube is scanned by a 
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CT scanner (see Fig. 6.1). The volumetric displacement results, along with details of the cube construction and 

boundary conditions in the two loading tests served as the physical standard for model validation. Despite the 

available data for validation, it needs to be noted that the Truth Cube has a regular geometry and well-

characterised material properties and loading conditions, but the surgical simulation needs to handle with 

conditions that are vastly different, involving large deformation, irregular shapes and complex materials. 

 

(a) (b) 

 

(c) (d) 

Figure 6.1 (a) A CT scan of a centre vertical slice for spherical indentation in undeformed, initial configuration; 

(b) deformation of the cube under 30% nominal strain; (c) the trajectory and locations of the internal spheres 

where blue represents no indentation, green represents 22% nominal strain case, and yellow represents 30% 

nominal strain case; and (d) the surface for the 30% strain case. 

 

To be compatible with clinical use, the deformable models must use patient-specific properties of tissues; 

however, they are significant difficult to determine for human tissues. The first reason is the evident difficulty in 

carrying out quantitative empirical measurements of human tissues (such as liver) in vivo. Second, there are 

always uncertainties in patient-specific properties of tissues since the mechanical properties of soft tissues 

obtained through in vivo and in situ measurements are different than the similar properties obtained through in 

vitro measurements [150]. However, despite these reasons, it is still possible to determine deformation of soft 
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tissues during surgery without the knowledge of patient-specific properties of tissues. As evident in [151], the 

computational biomechanics problems can be reformulated in such as a way that the results are weakly sensitive 

to the variation in mechanical properties of simulated tissues. In particular, the problems can be formulated into 

(i) pure-displacement and displacement zero traction problems whose solutions in displacement are weakly 

sensitive to mechanical properties of the considered continuum; and (ii) problems that are approximately 

statically determinate and therefore their solutions in stresses are weakly sensitive to mechanical properties of 

constituents [151]. It showed that reasonably accurate results can be expected for the brain tissues while using 

even the simplest constitutive model without the knowledge of patient-specific properties.  

In general, deformable models play a fundamental role in the development of surgical simulation and could lead 

to a wide impact to the development of computer integrated surgery (CIS) system in the near future [1]. 

Currently, simulation software suites, such as the Simulation Open Framework Architecture (SOFA) [152], 

finite elements for biomechanics (FEBio) [153, 154], and open-source finite element toolkit (NiftySim) [71], 

have enabled a wide range of medical applications (see Fig. 6.2), such as interactive training system for 

interventional electrocardiology procedures [54], preoperative trajectory planning for percutaneous procedures 

[155], modelling of biomechanics of human liver during breathing [99], and biomechanically guided prone-to-

supine image registration of breast magnetic resonance images (MRI) [156]. The development of deformable 

models have also facilitated the development of many medical applications such as tele-surgery for robotic 

surgery training [157], Chinese acupuncture training system [158], modelling of needle insertion [159], 

computer-assisted interventions [160, 161], and myringotomy simulation [162]. Further, the benefits of tissue 

modelling are useful not only for training, planning, and practice of surgical procedures, but also for optimising 

surgical tool design, creating “smart” instruments capable of assessing pathology or force-limiting novice 

surgeons, and understanding tissue injury mechanisms and damage thresholds [163, 164]. Despite recent 

progress in deformable modelling, the issues on error control [111] and clinical validation [12] still remain 

largely open topics, which could further facilitate the integration of CIS into clinical use and lead to more 

clinical impact.  
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(a) (b) 

 

(c) 

Figure 6.2  (a) An interactive training system for interventional electrocardiology procedures [54]; (b) a 

simulation scene of trajectory planning for percutaneous procedures [155]; and (c) a stereo pair showing MRI 

derived vasculature beneath the visible resected tissue surface [161]. 
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7. Conclusions and Future Work 

In this thesis, new methodologies are proposed for realistic and real-time soft tissue deformation for surgical 

simulation. The thesis presents the challenges existed in soft tissue deformation in Chapter 1, followed by the 

literature review on methodologies for realistic and real-time soft tissue deformation in Chapter 2. New 

methodologies are proposed regarding the ChainMail algorithm in Chapter 3, energy propagation method in 

Chapter 4, and energy balance method in Chapter 5 for soft tissue deformation. Finally, the methodologies for 

soft tissue deformation are discussed in Chapter 6 while outlining the remaining challenges of soft tissue 

modelling in surgical simulation. The proposed new methodologies are summarised below, followed by the 

proposed research of future work.   

 

7.1 Proposed Methodology Summary 

 Time-Saving Volume-Energy-Conversed ChainMail Algorithm (Chapter 3.2): This method allows 

different materials to be assigned to different chain elements to handle various material behaviours. A 

time-saving scheme is developed to improve computational efficiency for isotropic and homogeneous 

materials, and volume and strain energy conservation are proposed for realistic soft tissue deformation. 

Results demonstrate that the proposed method can not only handle isotropic and homogeneous, anisotropic 

and heterogeneous materials but also model soft tissues’ incompressibility and relaxation behaviours. 

 Ellipsoid Bounding Region-based ChainMail Algorithm (Chapter 3.3): This method employs an 

ellipsoid-shaped bounding region to control the movement of chain elements in the object. The      

complies with the concept of principle strains in continuum mechanics. It controls the strain of a chain link 

in the coordinate directions, independently from the chain link directions in the object mesh. New position 

adjustment rules are established based on the     , leading to conservation of linear and angular 

momentums. Subsequently, temporal-domain model dynamics are derived from the position adjustment 

for dynamic simulation of soft tissue deformation. Experimental results demonstrate that the proposed 

ChainMail can not only reproduce the typical mechanical behaviours of soft tissues, but also handle large 

deformation. Isotropic and homogeneous, anisotropic and heterogeneous materials can be accommodated 

by simply changing the strain limit values. The proposed method also outperforms the traditional 

ChainMails, and the deformation results are in good agreement with those from commercial FEM software. 

 Neural Dynamics-based ChainMail Algorithm (Chapter 3.4): This method achieves the nonlinear 

deformation of soft tissues via the nonlinear neural dynamics of CNN through the formulation of local 

connectivity of cells as the local position adjustments of ChainMail. Results demonstrate that the proposed 

method can produce soft tissues’ nonlinear deformation as well as the typical mechanical behaviours. 
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 Proposed Energy Propagation Method (Chapter 4.1): This method formulates soft tissue deformation 

as the Poisson process of energy propagation to avoid complex and expensive computation of nonlinear 

elasticity. It combines Poisson propagation of mechanical load with non-rigid mechanical dynamics to 

govern the dynamics of soft tissue deformation. It also develops a finite volume scheme for spatial 

discretisation of Poisson equation on irregular volumetric soft tissue meshes. Simulation results 

demonstrate that the proposed method can not only reproduce the nonlinear force-displacement 

relationship and handle nonlinear deformation of soft tissues, but also accommodate isotropic and 

homogeneous, anisotropic and heterogeneous materials by simple modification of constitutive coefficient 

value of mass points. 

 Neural Dynamics-based Energy Propagation Method (Chapter 4.2): This method employs CNN 

modelling of physical propagation of mechanical load and non-rigid mechanics of motion to achieve real-

time computational performance, owing to the collective and simultaneous computing nature of cells. 

Simulations and experimental results show that the proposed method exhibits nonlinear force-

displacement relationship, leading to the achievement of nonlinear large deformation for soft tissue 

modelling. Further, it can accommodate not only isotropic and homogeneous but also anisotropic and 

heterogeneous materials by simple modification of constitutive coefficient value of mass points. 

Interactive soft tissue deformation with haptic feedback is also achieved with the proposed method. 

 Neural Dynamics-based Stable Simulation of Soft Tissue Deformation (Chapter 4.3): This method 

models the dynamic behaviours of soft tissues via the nonlinear neural dynamics of CNN by formulating 

the local connectivity of cells as the discrete non-rigid motion equation. Experimental results demonstrate 

that the proposed method can achieve good accuracy at a small time step and still remains numerically 

stable at a large time step while maintaining the computational efficiency of the explicit integration. 

 Energy Balance Method (Chapter 5): This method formulates the process of soft tissue deformation as a 

process of work-energy balance, based on the law of conservation of energy, in which the work done by an 

external force is balanced against the strain energy done by the internal force. A novel position-based 

incremental approach is developed to achieve the work-energy balance by iteratively applying position 

increments for the equilibrium state of soft tissues. The position-based incremental approach is combined 

with non-rigid mechanics of motion to govern the dynamics of soft tissue deformation. Soft tissue 

deformation with haptic feedback is achieved with the proposed EBM. Simulations and experimental 

results demonstrate that the deformations of the proposed EBM are in good agreement with those by the 

commercial package of finite element analysis. Various soft tissue material properties, including isotropy, 

anisotropy, and viscoelasticity, can be modelled by specifying strain energy density functions. Further, the 

computational time of the proposed EBM is small, capable of achieving real-time performance for surgical 

simulation. 
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7.2 Future Work 

 Time-Saving Volume-Energy-Conversed ChainMail Algorithm (Chapter 3.2): Future research work 

will focus on extending the proposed method to deal with complex surgical operations such as cutting, 

joining, tearing and suturing, which involve model topology change in addition to model deformation. 

Advanced algorithms will be developed in the future to model the complex surgical operations. Further, 

the current time-saving scheme is applied only to the isotopic and homogeneous materials; it is projected 

to extend the scheme to the modelling of anisotropic and heterogeneous materials in the future. 

 Ellipsoid Bounding Region-based ChainMail Algorithm (Chapter 3.3): Future research work will 

focus on two aspects for improvement of the proposed method. The deformation behaviors are related to 

the selection of strain limits. The better the selection of strain limits is, the better the deformation results 

are. It is expected to develop an optimisation algorithm such as the Simulated Annealing and Genetic 

algorithm to optimise the selection of strain limits to further improve the modelling realism. The second 

aspect of future work is the global validation of the simulated deformation against in vivo data of soft 

tissues. The measurement of in vivo soft tissue behaviors would be of great value for a thorough validation 

but is much more challenging to achieve experimentally. A minimally invasive in vivo measurement will 

be established in the future to acquire mechanical data of soft tissues for full validation of the simulated 

deformation. 

 Neural Dynamics-based ChainMail Algorithm (Chapter 3.4): Future research will be devoted to three 

aspects for enhancement of the proposed method. One is the scalability. Algorithms will be developed to 

map multiple chain elements to one single neural cell to expand the proposed method to accommodate the 

increase of chain elements. Another is material parameter determination. Optimisation algorithms will be 

developed to determine optimal material parameters for the nonlinear properties of soft tissues to further 

improve the modelling realism. Lastly is to generalise the ChainMail algorithm; investigations will be 

conducted to integrate the existing ChainMails to devise a unified ChainMail algorithm.  

 Proposed Energy Propagation Method (Chapter 4.1): Future research work will focus on developing a 

minimally invasive experiment for full validation of the simulated deformation against in vivo data of soft 

tissues. 

 Neural Dynamics-based Energy Propagation Method (Chapter 4.2): Future research work will focus 

on the extension of the proposed method to handle model topology changes such as cutting, joining and 

tearing. In addition to deformation, topology changes are also involved in these operations. To handle 

topology changes, the break point to break an edge will be identified using a threshold value of energy. 

Subsequently, new points will be introduced according to the transition of energy to form new control 

volumes and boundaries to achieve optimal energy distribution. It is expected that algorithms for handling 

topology changes will be developed, leading to a new energy propagation method to model both topology 

changes and deformation at the same time. 
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 Neural Dynamics-based Stable Simulation of Soft Tissue Deformation (Chapter 4.3): Future research 

work will focus on the use of nonlinear strain-stress relationship to formulate the local connectivity of 

cells to further improve the modelling realism. 

 Energy Balance Method (Chapter 5): Future research work will focus on improvement of the proposed 

EBM. The proposed EBM will be extended for integration with GPU hardware to facilitate the 

computational performance. The current implementation only utilises the single core computing power of 

CPU without particular efforts on hardware acceleration. It is expected that the GPU acceleration solution 

will significantly improve the computational performance of the proposed EBM. In addition, the simulated 

deformations by the proposed EBM will be further verified against in vivo deformation of soft tissues. The 

measurement of in vivo soft tissue behaviours would be of great value for a thorough validation but is 

much more challenging to achieve experimentally. A minimally invasive in vivo measurement will be 

established in the future to acquire soft tissues’ mechanical data for full validation of the simulated results. 

Further, the proposed EBM will be extended to model complex surgical operations such as cutting, joining, 

tearing and suturing. In addition to geometry changes, these operations also involve topology changes, 

which further lead to changes in the stiffness matrix of elements. Therefore, simulating these surgical 

operations is an even more challenging issue. Compared to conventional FEM method, the proposed EBM 

uses an iterative solution process without requiring the formulation of global stiffness matrix, leading to an 

advantage to model complex surgical operations. 
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Appendix A -Derivation of   

Consider the governing equation of         centred at point             given by Eq. (3.33) 
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The limit points                      and                      define the maximum extension length and 

minimum compression length of chain link    , and they are determined by identifying the intersection points 

between the boundary of         and the infinite line of chain link    . 

Since      and      are on the boundary of        , substituting      and      into Eq. (A.1), at the boundary 

limit: 
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Consider        λ�̂�   and       − λ�̂�   given by Eq. (3.35) where �̂�       𝑢     𝑢     𝑢  is the unit vector 

of chain link    . The coordinates of      and      can be written as 
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Substituting Eqs. (A.4) and (A.5) into Eqs. (A.2) and (A.3) respectively, we have 
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Thus, 𝜆 is expressed as 
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Appendix B -Proof of Linear and Angular Momentum Conservation for 

Position Adjustment 

For the purpose of simplicity without loss of generality, we consider the case of two connected chain elements 

only. For any two connected chain elements   and  , the sum of linear momentum can be written as 

  (−
𝑤 
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*Pj
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where �̂�    is the unit vector of chain link      between   
  and   . 

Since 𝑤       and 𝑤      , substituting them into Eq. (B.1) yields 
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Therefore, the condition of linear momentum conservation, i.e. Eq. (3.28) is satisfied. 

The sum of angular momentum of chain elements   and   can be written as 
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Eq. (B.3) may be simplified to 
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By applying the vector cross product rule, Eq. (B.4) becomes 

    − ‖Pi
*Pj

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖

𝑤  𝑤 

((−‖  ‖ ∙ ‖�̂�   ‖ sin    )  (‖  ‖ ∙ ‖�̂�   ‖ sin    ))  

(B.5) 

where    and    are the angles in the triangle formed by vectors   ,    and chain link      between   
  and    (see 

Fig. B.1), and   is the unit vector perpendicular to the plane containing   ,    and �̂�   . 
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Figure B.1 Vectors   ,    and      form a triangle:    and    are the internal angles, point   is an arbitrary 

common rotation centre. 

 

Applying the sine rule yields 
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Substituting Eq. (B.6) into Eq. (B.5) yields 
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Therefore, the condition of angular momentum conservation, i.e. Eq. (3.29) is satisfied. 

 

 



 

133 
 

List of Publications 

 Zhang, J., Zhong, Y., Smith, J., & Gu, C. (2016). A new ChainMail approach for real-time soft tissue 

simulation. Bioengineered, 7(4), 246-252. DOI: 10.1080/21655979.2016.1197634 (Chapter 3.2) 

 Zhang, J., Zhong, Y., Smith, J., & Gu, C. (2017). ChainMail based neural dynamics modelling of soft 

tissue deformation for surgical simulation. Technology and Health Care, 25(S1), 231-239. DOI: 

10.3233/THC-171325 (Chapter 3.4) 

 Zhang, J., Zhong, Y., Smith, J., & Gu, C. (2017). Energy propagation modelling of nonlinear soft 

tissue deformation for surgical simulation. SIMULATION. DOI: 10.1177/0037549717720859 (Chapter 

4.1) 

 Zhang, J., Zhong, Y., Smith, J., & Gu, C. (2017). Neural dynamics-based Poisson propagation for 

deformable modelling. Neural Computing and Applications. DOI: 10.1007/s00521-017-3132-3 

(Chapter 4.2) 

 Zhang, J., Zhong, Y., Smith, J., & Gu, C. (2017). Cellular neural network modelling of soft tissue 

dynamics for surgical simulation. Technology and Health Care, 25(S1), 337-344. DOI: 10.3233/THC-

171337 (Chapter 4.3) 

 Zhang, J., Zhong, Y., & Gu, C. (2017). Energy balance method for modelling of soft tissue 

deformation. Computer-Aided Design. DOI: 10.1016/j.cad.2017.07.006 (Chapter 5) 



 

134 
 

References 

[1] K. Miller, “Computational Biomechanics for Patient-Specific Applications,” Annals of Biomedical 

Engineering, vol. 44, no. 1, pp. 1-2, 2016. 

[2] H. Delingette, X. Pennec, L. Soler et al., “Computational models for image-guided robot-assisted and 

simulated medical interventions,” Proceedings of the IEEE, vol. 94, no. 9, pp. 1678-1688, Sep, 2006. 

[3] H. Courtecuisse, J. Allard, P. Kerfriden et al., “Real-time simulation of contact and cutting of 

heterogeneous soft-tissues,” Medical Image Analysis, vol. 18, no. 2, pp. 394-410, Feb, 2014. 

[4] Y.-J. Lim, and S. De, “Real time simulation of nonlinear tissue response in virtual surgery using the 

point collocation-based method of finite spheres,” Computer Methods in Applied Mechanics and 

Engineering, vol. 196, no. 31-32, pp. 3011-3024, 2007. 

[5] A. E. Kerdok, S. M. Cotin, M. P. Ottensmeyer et al., “Truth cube: Establishing physical standards for 

soft tissue simulation,” Medical Image Analysis, vol. 7, no. 3, pp. 283-291, Sep, 2003. 

[6] T. W. Sederberg, and S. R. Parry, “Free-form deformation of solid geometric models,” ACM 

SIGGRAPH Computer Graphics, vol. 20, no. 4, pp. 151-160, 1986. 

[7] S. A. Cover, N. F. Ezquerra, J. F. O'Brien et al., “Interactively deformable models for surgery 

simulation,” IEEE Computer Graphics and Applications, vol. 13, no. 6, pp. 68-75, 1993. 

[8] Y. Duan, W. Huang, H. Chang et al., “Volume Preserved Mass-Spring Model with Novel Constraints 

for Soft Tissue Deformation,” IEEE Journal of Biomedical and Health Informatics, vol. 20, no. 1, pp. 

268-280, 2016. 

[9] P. E. Hammer, M. S. Sacks, P. Del Nido, J et al., “Mass-spring model for simulation of heart valve 

tissue mechanical behavior,” Annals of Biomedical Engineering, vol. 39, no. 6, pp. 1668-1679, 2011. 

[10] A. Nealen, M. Müller, R. Keiser et al., “Physically based deformable models in computer graphics,” 

Computer Graphics Forum, vol. 25, no. 4, pp. 809-836, 2006. 

[11] U. Meier, O. Lopez, C. Monserrat et al., “Real-time deformable models for surgery simulation: a 

survey,” Computer Methods and Programs in Biomedicine, vol. 77, no. 3, pp. 183-197, 2005. 

[12] H. Delingette, “Toward realistic soft-tissue modeling in medical simulation,” Proceedings of the IEEE, 

vol. 86, no. 3, pp. 512-523, Mar, 1998. 

[13] S. F. Gibson, and B. Mirtich, “A survey of deformable modeling in computer graphics,” 1997. 

[14] G. San-Vicente, I. Aguinaga, and J. Tomas Celigueta, “Cubical Mass-Spring Model design based on a 

tensile deformation test and nonlinear material model,” IEEE Transactions on Visualization and 

Computer Graphics, vol. 18, no. 2, pp. 228-241, Feb, 2012. 

[15] G. Picinbono, H. Delingette, and N. Ayache, “Non-linear anisotropic elasticity for real-time surgery 

simulation,” Graphical Models, vol. 65, no. 5, pp. 305-321, Sep, 2003. 

[16] K.-S. Choi, H. Sun, and P.-A. Heng, “An efficient and scalable deformable model for virtual reality-

based medical applications,” Artificial Intelligence in Medicine, vol. 32, no. 1, pp. 51-69, 2004. 

[17] E. Basafa, and F. Farahmand, “Real-time simulation of the nonlinear visco-elastic deformations of soft 

tissues,” International Journal of Computer Assisted Radiology and Surgery, vol. 6, no. 3, pp. 297-307, 

2011. 

[18] J. Qin, W.-M. Pang, Y.-P. Chui et al., “A novel modeling framework for multilayered soft tissue 

deformation in virtual orthopedic surgery,” Journal of Medical Systems, vol. 34, no. 3, pp. 261-271, 

Jun, 2010. 

[19] K. S. Choi, H. Sun, and P. A. Heng, “Interactive deformation of soft tissues with haptic feedback for 

medical learning,” IEEE Transactions on Information Technology in Biomedicine, vol. 7, no. 4, pp. 

358-363, Dec, 2003. 

[20] J. Qin, K.-S. Choi, and P.-A. Heng, “Collaborative simulation of soft-tissue deformation for virtual 

surgery applications,” Journal of Medical Systems, vol. 34, no. 3, pp. 367-378, Jun, 2010. 

[21] S. De, J. Kim, Y.-J. Lim et al., “The point collocation-based method of finite spheres (PCMFS) for real 

time surgery simulation,” Computers & Structures, vol. 83, no. 17–18, pp. 1515-1525, 6//, 2005. 

[22] O. Deussen, L. Kobbelt, and P. Tücke, “Using simulated annealing to obtain good nodal 

approximations of deformable bodies,” 1995. 



 

135 
 

[23] J. Louchet, X. Provot, and D. Crochemore, "Evolutionary identification of cloth animation models," 

Computer Animation and Simulation’95, pp. 44-54: Springer, 1995. 

[24] S. F. Frisken-Gibson, “3D ChainMail: a Fast Algorithm for Deforming Volumetric Objects,” 

Proceedings of the Symposium on Interactive 3D graphics, pp. 149-154, 1997. 

[25] S. Gibson, C. Fyock, E. Grimson et al., “Volumetric object modeling for surgical simulation,” Medical 

Image Analysis, vol. 2, no. 2, pp. 121-132, Jun, 1998. 

[26] S. F. Frisken-Gibson, “Using linked volumes to model object collisions, deformation, cutting, carving, 

and joining,” IEEE Transactions on Visualization and Computer Graphics, vol. 5, no. 4, pp. 333-348, 

Oct, 1999. 

[27] A. Rodríguez, A. León, and G. Arroyo, “Parallel deformation of heterogeneous ChainMail models: 

Application to interactive deformation of large medical volumes,” Computers in Biology and Medicine, 

vol. 79, pp. 222-232, 2016. 

[28] D. Fortmeier, A. Mastmeyer, J. Schroder et al., “A Virtual Reality System for PTCD Simulation Using 

Direct Visuo-Haptic Rendering of Partially Segmented Image Data,” IEEE Journal of Biomedical and 

Health Informatics, vol. 20, no. 1, pp. 355-366, Jan, 2016. 

[29] A. Rodriguez, A. Leon, G. Arroyo et al., “SP-ChainMail: a GPU-based sparse parallel ChainMail 

algorithm for deforming medical volumes,” Journal of Supercomputing, vol. 71, no. 9, pp. 3482-3499, 

Sep, 2015. 

[30] M. A. Schill, S. F. F. Gibson, H.-J. Bender et al., "Biomechanical simulation of the vitreous humor in 

the eye using an enhanced chainmail algorithm," Medical Image Computing and Computer-Assisted 

Interventation, pp. 679-687: Springer, 1998. 

[31] J. Park, S. Y. Kim, S. W. Son et al., “Shape retaining chain linked model for real-time volume haptic 

rendering,” IEEE/ACM Siggraph Symposium on Volume Visualization and Graphics 2002, 

Proceedings, pp. 65-72, 2002. 

[32] X. G. Wang, and A. Fenster, “A virtual reality based 3D real-time interactive brachytherapy simulation 

of needle insertion and seed implantation,” 2004 2nd IEEE International Symposium on Biomedical 

Imaging: Macro to Nano, Vols 1 and 2, pp. 280-283, 2004. 

[33] Y. Li, K. Brodlie, and N. Phillips, “Real-time soft tissue modelling for web-based surgical simulation: 

SurfaceChainMail,” Studies in Health Technology and Informatics, vol. 85, pp. 261-267, 2002. 

[34] Y. Li, and K. Brodlie, “Soft Object Modelling with Generalised ChainMail - Extending the Boundaries 

of Web-based Graphics,” Computer Graphics Forum, vol. 22, no. 4, pp. 717-727, Dec, 2003. 

[35] J. Wang, and W. F. Lu, “A real-time haptics-based deformable model for virtual prototyping and 

simulations,” ASME 2009 International Design Engineering Technical Conferences and Computers 

and Information in Engineering Conference, pp. 1601-1610, 2009. 

[36] D. Levin, A. Fenster, and H. M. Ladak, “A hybrid deformable model for simulating prostate 

brachytherapy,” Medical Imaging, vol. 6141, pp. 61410Q-61410Q-10, 2006. 

[37] A. Duysak, and J. J. Zhang, “Fast simulation of deformable objects,” Eighth International Conference 

on Information Visualisation, Proceedings, pp. 422-427, 2004. 

[38] D.-I. A. Neubauer, “A ChainMail Algorithm for Direct Volume Deformation in Virtual Endoscopy 

Applications,” PhD thesis, 2005. 

[39] S. F. F. Gibson, J. Samosky, A. Mor et al., “Simulating arthroscopic knee surgery using volumetric 

object representations, real-time volume rendering and haptic feedback,” CVRMed-MRCAS'97, pp. 

367-378, 1996. 

[40] M. A. Schill, C. Wagner, M. Hennen et al., “Eyesi–a simulator for intra-ocular surgery,” Medical 

Image Computing and Computer-Assisted Intervention–MICCAI’99, vol. 1679, pp. 1166-1174, 1999. 

[41] X. Wang, and A. Fenster, “A haptic-enhanced 3D real-time interactive needle insertion simulation for 

prostate brachytherapy,” Medical Imaging, vol. 5367, pp. 781-789, 2004. 

[42] P. F. Villard, F. P. Vidal, L. ap Cenydd et al., “Interventional radiology virtual simulator for liver 

biopsy,” International Journal of Computer Assisted Radiology and Surgery, vol. 9, no. 2, pp. 255-267, 

Mar, 2014. 

[43] T. Le Fol, O. Acosta-Tamayo, A. Lucas et al., “Angioplasty simulation using ChainMail method,” 

Medical Imaging, pp. 65092X-65092X-8, 2007. 



 

136 
 

[44] D. Fortmeier, A. Mastmeyer, and H. Handels, "Image-Based Palpation Simulation With Soft Tissue 

Deformations Using Chainmail on the GPU," Bildverarbeitung für die Medizin 2013, pp. 140-145: 

Springer, 2013. 

[45] J. Zhang, Y. Zhong, J. Smith et al., “A new ChainMail approach for real-time soft tissue simulation,” 

Bioengineered, vol. 7, no. 4, pp. 246-252, Jul 03, 2016. 

[46] J. Zhang, Y. Zhong, J. Smith et al., “ChainMail based neural dynamics modeling of soft tissue 

deformation for surgical simulation,” Technology and Health Care, vol. 25, no. S1, pp. 231-239, May 

19, 2017. 

[47] M. Camara, E. Mayer, A. Darzi et al., “Soft tissue deformation for surgical simulation: a position-

based dynamics approach,” International Journal of Computer Assisted Radiology and Surgery, vol. 11, 

no. 6, pp. 919-928, 2016. 

[48] M. Müller, B. Heidelberger, M. Teschner et al., “Meshless deformations based on shape matching,” 

ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 471-478, 2005. 

[49] O. Zienkiewicz, R. Taylor, and J. Zhu, The finite element method: its basis and fundamentals: 

Butterworth-Heinemann, 2005. 

[50] M. Freutel, H. Schmidt, L. Durselen et al., “Finite element modeling of soft tissues: Material models, 

tissue interaction and challenges,” Clinical Biomechanics, vol. 29, no. 4, pp. 363-372, 2014. 

[51] R. Plantefève, I. Peterlik, N. Haouchine et al., “Patient-Specific Biomechanical Modeling for Guidance 

During Minimally-Invasive Hepatic Surgery,” Annals of Biomedical Engineering, vol. 44, no. 1, pp. 

139-153, 2016. 

[52] G. R. Joldes, A. Wittek, and K. Miller, “Suite of finite element algorithms for accurate computation of 

soft tissue deformation for surgical simulation,” Medical Image Analysis, vol. 13, no. 6, pp. 912-919, 

Dec, 2009. 

[53] M. Li, K. Miller, G. R. Joldes et al., “Patient-specific biomechanical model as whole-body CT image 

registration tool,” Medical Image Analysis, vol. 22, no. 1, pp. 22-34, May, 2015. 

[54] H. Talbot, F. Spadoni, C. Duriez et al., “Interactive training system for interventional electrocardiology 

procedures,” Medical Image Analysis, vol. 35, pp. 225-237, 1//, 2017. 

[55] M. Bro-Nielsen, “Finite element modeling in surgery simulation,” Proceedings of the IEEE, vol. 86, no. 

3, pp. 490-503, Mar, 1998. 

[56] K. Miller, G. Joldes, D. Lance et al., “Total Lagrangian explicit dynamics finite element algorithm for 

computing soft tissue deformation,” International Journal for Numerical Methods in Biomedical 

Engineering, vol. 23, no. 2, pp. 121-134, 2007. 

[57] M. Bro‐Nielsen, and S. Cotin, “Real‐time Volumetric Deformable Models for Surgery Simulation 

using Finite Elements and Condensation,” Computer Graphics Forum, vol. 15, no. 3, pp. 57-66, 1996. 

[58] W. Wu, and P. A. Heng, “An improved scheme of an interactive finite element model for 3D soft-

tissue cutting and deformation,” The Visual Computer, vol. 21, no. 8-10, pp. 707-716, Sep, 2005. 

[59] S. Cotin, H. Delingette, and N. Ayache, “Real-Time Elastic Deformations of Soft Tissues for Surgery 

Simulation,” IEEE Transactions on Visualization and Computer Graphics, vol. 5, no. 1, pp. 62-73, 

1999. 

[60] S. Cotin, H. Delingette, and N. Ayache, “A hybrid elastic model for real-time cutting, deformations, 

and force feedback for surgery training and simulation,” The Visual Computer, vol. 16, no. 8, pp. 437-

452, 2000. 

[61] C. Monserrat, U. Meier, M. Alcaniz et al., “A new approach for the real-time simulation of tissue 

deformations in surgery simulation,” Computer Methods and Programs in Biomedicine, vol. 64, no. 2, 

pp. 77-85, 2001. 

[62] B. Zhu, and L. Gu, “A hybrid deformable model for real-time surgical simulation,” Computerized 

Medical Imaging and Graphics, vol. 36, no. 5, pp. 356-365, 2012. 

[63] P. Wang, A. A. Becker, I. A. Jones et al., “Virtual reality simulation of surgery with haptic feedback 

based on the boundary element method,” Computers & Structures, vol. 85, no. 7-8, pp. 331-339, Apr, 

2007. 

[64] W. Tang, and T. R. Wan, “Constraint-based soft tissue simulation for virtual surgical training,” IEEE 

Transactions on Biomedical Engineering, vol. 61, no. 11, pp. 2698-2706, 2014. 



 

137 
 

[65] X. P. P. Liu, S. P. Xu, H. Zhang et al., “A New Hybrid Soft Tissue Model for Visio-Haptic Simulation,” 

IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 11, pp. 3570-3581, Nov, 2011. 

[66] F. Goulette, and Z.-W. Chen, “Fast computation of soft tissue deformations in real-time simulation 

with Hyper-Elastic Mass Links,” Computer Methods in Applied Mechanics and Engineering, vol. 295, 

pp. 18-38, 2015. 

[67] K. Miller, A. Wittek, G. Joldes et al., “Modelling brain deformations for computer‐integrated 

neurosurgery,” International Journal for Numerical Methods in Biomedical Engineering, vol. 26, no. 1, 

pp. 117-138, 2010. 

[68] G. Szekely, C. Brechbuhler, R. Hutter et al., “Modelling of soft tissue deformation for laparoscopic 

surgery simulation,” Medical Image Analysis, vol. 4, no. 1, pp. 57-66, Mar, 2000. 

[69] Z. A. Taylor, M. Cheng, and S. Ourselin, “High-Speed Nonlinear Finite Element Analysis for Surgical 

Simulation Using Graphics Processing Units,” IEEE Transactions on Medical Imaging, vol. 27, no. 5, 

pp. 650-663, May, 2008. 

[70] Z. A. Taylor, O. Comas, M. Cheng et al., “On modelling of anisotropic viscoelasticity for soft tissue 

simulation: numerical solution and GPU execution,” Medical Image Analysis, vol. 13, no. 2, pp. 234-

244, Apr, 2009. 

[71] S. F. Johnsen, Z. A. Taylor, M. J. Clarkson et al., “NiftySim: A GPU-based nonlinear finite element 

package for simulation of soft tissue biomechanics,” International Journal of Computer Assisted 

Radiology and Surgery, vol. 10, no. 7, pp. 1077-1095, 2015. 

[72] G. R. Joldes, A. Wittek, and K. Miller, “Real-time nonlinear finite element computations on GPU–

Application to neurosurgical simulation,” Computer Methods in Applied Mechanics and Engineering, 

vol. 199, no. 49-52, pp. 3305-3314, 2010. 

[73] V. Strbac, J. V. Sloten, and N. Famaey, “Analyzing the potential of GPGPUs for real-time explicit 

finite element analysis of soft tissue deformation using CUDA,” Finite Elements in Analysis and 

Design, vol. 105, pp. 79-89, 2015. 

[74] S. Marchesseau, T. Heimann, S. Chatelin et al., “Fast porous visco-hyperelastic soft tissue model for 

surgery simulation: application to liver surgery,” Progress in Biophysics & Molecular Biology, vol. 

103, no. 2-3, pp. 185-196, Dec, 2010. 

[75] R. Mafi, and S. Sirouspour, “GPU-based acceleration of computations in nonlinear finite element 

deformation analysis,” International Journal for Numerical Methods in Biomedical Engineering, vol. 

30, no. 3, pp. 365-381, 2014. 

[76] A. Radermacher, and S. Reese, “A comparison of projection-based model reduction concepts in the 

context of nonlinear biomechanics,” Archive of Applied Mechanics, vol. 83, no. 8, pp. 1193-1213, 2013. 

[77] S. Niroomandi, I. Alfaro, D. Gonzalez et al., “Real‐time simulation of surgery by reduced‐order 

modeling and X‐FEM techniques,” International Journal for Numerical Methods in Biomedical 

Engineering, vol. 28, no. 5, pp. 574-588, May, 2012. 

[78] S. Niroomandi, I. Alfaro, E. Cueto et al., “Real-time deformable models of non-linear tissues by model 

reduction techniques,” Computer Methods and Programs in Biomedicine, vol. 91, no. 3, pp. 223-231, 

2008. 

[79] S. Niroomandi, I. Alfaro, E. Cueto et al., “Accounting for large deformations in real-time simulations 

of soft tissues based on reduced-order models,” Computer Methods and Programs in Biomedicine, vol. 

105, no. 1, pp. 1-12, Jan, 2012. 

[80] S. Niroomandi, D. González, I. Alfaro et al., “Real‐time simulation of biological soft tissues: a PGD 

approach,” International Journal for Numerical Methods in Biomedical Engineering, vol. 29, no. 5, pp. 

586-600, 2013. 

[81] A. Radermacher, and S. Reese, “POD-based model reduction with empirical interpolation applied to 

nonlinear elasticity,” International Journal for Numerical Methods in Engineering, vol. 107, no. 6, pp. 

477-495, Aug, 2016. 

[82] E. Cueto, and F. Chinesta, “Real time simulation for computational surgery: a review,” Advanced 

Modeling and Simulation in Engineering Sciences, vol. 1, no. 1, pp. 11, 2014. 

[83] G. R. Joldes, A. Wittek, and K. Miller, “An efficient hourglass control implementation for the uniform 

strain hexahedron using the Total Lagrangian formulation,” International Journal for Numerical 

Methods in Biomedical Engineering, vol. 24, no. 11, pp. 1315-1323, 2008. 



 

138 
 

[84] G. R. Joldes, A. Wittek, and K. Miller, “Non-locking tetrahedral finite element for surgical simulation,” 

International Journal for Numerical Methods in Biomedical Engineering, vol. 25, no. 7, pp. 827-836, 

2009. 

[85] A. Horton, A. Wittek, G. R. Joldes et al., “A meshless Total Lagrangian explicit dynamics algorithm 

for surgical simulation,” International Journal for Numerical Methods in Biomedical Engineering, vol. 

26, no. 8, pp. 977-998, Aug, 2010. 

[86] G. R. Joldes, A. Wittek, and K. Miller, “Stable time step estimates for mesh-free particle methods,” 

International Journal for Numerical Methods in Engineering, vol. 91, no. 4, pp. 450-456, 2012. 

[87] K. Miller, A. Horton, G. R. Joldes et al., “Beyond finite elements: a comprehensive, patient-specific 

neurosurgical simulation utilizing a meshless method,” Journal of Biomechanics, vol. 45, no. 15, pp. 

2698-701, Oct 11, 2012. 

[88] R. Aras, Y. Shen, and M. Audette, “An analytic meshless enrichment function for handling 

discontinuities in interactive surgical simulation,” Advances in Engineering Software, vol. 102, pp. 40-

48, 2016. 

[89] Y. Zou, and P. X. Liu, “A high-resolution model for soft tissue deformation based on point primitives,” 

Computer Methods and Programs in Biomedicine, vol. 148, pp. 113-121, 9, 2017. 

[90] G. Y. Zhang, A. Wittek, G. R. Joldes et al., “A three-dimensional nonlinear meshfree algorithm for 

simulating mechanical responses of soft tissue,” Engineering Analysis with Boundary Elements, vol. 42, 

pp. 60-66, 2014. 

[91] Y. Zou, P. X. Liu, Q. Cheng et al., “A New Deformation Model of Biological Tissue for Surgery 

Simulation,” IEEE Transactions on Cybernetics, pp. 1-10, 2016. 

[92] H. A. Chowdhury, A. Wittek, K. Miller et al., “An Element Free Galerkin Method Based on the 

Modified Moving Least Squares Approximation,” Journal of Scientific Computing, vol. 71, no. 3, pp. 

1-15, 2016. 

[93] A. Palyanov, S. Khayrulin, and S. D. Larson, “Application of smoothed particle hydrodynamics to 

modeling mechanisms of biological tissue,” Advances in Engineering Software, vol. 98, pp. 1-11, 2016. 

[94] M. K. Rausch, G. E. Karniadakis, and J. D. Humphrey, “Modeling Soft Tissue Damage and Failure 

Using a Combined Particle/Continuum Approach,” Biomechanics and Modeling in Mechanobiology, 

pp. 1-13, 2016. 

[95] S. Banihani, T. Rabczuk, and T. Almomani, “POD for real-time simulation of hyperelastic soft 

biological tissue using the point collocation method of finite spheres,” Mathematical Problems in 

Engineering, vol. 2013, 2013. 

[96] A. Wittek, N. M. Grosland, G. R. Joldes et al., “From Finite Element Meshes to Clouds of Points: A 

Review of Methods for Generation of Computational Biomechanics Models for Patient-Specific 

Applications,” Annals of Biomedical Engineering, vol. 44, no. 1, pp. 3-15, 2016. 

[97] Y. Zhong, B. Shirinzadeh, G. Alici et al., “A Cellular Neural Network Methodology for Deformable 

Object Simulation,” IEEE Transactions on Information Technology in Biomedicine, vol. 10, no. 4, pp. 

749-762, Oct, 2006. 

[98] S. De, D. Deo, G. Sankaranarayanan et al., “A physics-driven neural networks-based simulation system 

(phynness) for multimodal interactive virtual environments involving nonlinear deformable objects,” 

Presence: Teleoperators and Virtual Environments, vol. 20, no. 4, pp. 289-308, Aug, 2011. 

[99] D. Lorente, F. Martínez-Martínez, M. J. Rupérez et al., “A framework for modelling the biomechanical 

behaviour of the human liver during breathing in real time using machine learning,” Expert Systems 

with Applications, vol. 71, pp. 342-357, 2017. 

[100] B. Bickel, M. Bäecher, M. A. Otaduy et al., “Capture and modeling of non-linear heterogeneous soft 

tissue,” ACM Transactions on Graphics (TOG), vol. 28, no. 3, pp. 89, 2009. 

[101] I. F. Costa, “A novel deformation method for fast simulation of biological tissue formed by fibers and 

fluid,” Medical Image Analysis, vol. 16, no. 5, pp. 1038-1046, Jul, 2012. 

[102] T. Liu, A. W. Bargteil, J. F. O'Brien et al., “Fast simulation of mass-spring systems,” ACM 

Transactions on Graphics (TOG), vol. 32, no. 6, pp. 1-7, Nov, 2013. 

[103] B. Fierz, J. Spillmann, I. Aguinaga Hoyos et al., “Maintaining large time steps in explicit finite element 

simulations using shape matching,” IEEE Transactions on Visualization and Computer Graphics, vol. 

18, no. 5, pp. 717-728, May, 2012. 



 

139 
 

[104] M. H. Doweidar, B. Calvo, I. Alfaro et al., “A comparison of implicit and explicit natural element 

methods in large strains problems: Application to soft biological tissues modeling,” Computer Methods 

in Applied Mechanics and Engineering, vol. 199, no. 25-28, pp. 1691-1700, 2010. 

[105] M. Hauth, O. Etzmuß, and W. Straßer, “Analysis of numerical methods for the simulation of 

deformable models,” The Visual Computer, vol. 19, no. 7-8, pp. 581-600, Dec, 2003. 

[106] K.-J. Bathe, Finite element procedures: Klaus-Jurgen Bathe, 2006. 

[107] T. J. Hughes, The finite element method: linear static and dynamic finite element analysis: Courier 

Corporation, 2012. 

[108] Z. A. Taylor, S. Crozier, and S. Ourselin, “A reduced order explicit dynamic finite element algorithm 

for surgical simulation,” IEEE Transactions on Medical Imaging, vol. 30, no. 9, pp. 1713-1721, Sep, 

2011. 

[109] G. R. Joldes, A. Wittek, and K. Miller, “Computation of intra-operative brain shift using dynamic 

relaxation,” Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 41-44, pp. 3313-

3320, 2009. 

[110] G. R. Joldes, A. Wittek, and K. Miller, “An adaptive dynamic relaxation method for solving nonlinear 

finite element problems. Application to brain shift estimation,” International Journal for Numerical 

Methods in Biomedical Engineering, vol. 27, no. 2, pp. 173-185, 2011. 

[111] H. P. Bui, S. Tomar, H. Courtecuisse et al., “Real-time error control for surgical simulation,” IEEE 

Transactions on Biomedical Engineering, 2017. 

[112] Y.-C. Fung, Biomechanics: Mechanical Properties of Living Tissues: Springer-Verlag, 1993. 

[113] J. Bender, M. Müller, M. A. Otaduy et al., “A Survey on Position‐Based Simulation Methods in 

Computer Graphics,” Computer Graphics Forum, vol. 33, no. 6, pp. 228-251, 2014. 

[114] J. Pan, J. Bai, X. Zhao et al., “Real-time haptic manipulation and cutting of hybrid soft tissue models 

by extended position-based dynamics,” Computer Animation and Virtual Worlds, vol. 26, no. 3-4, pp. 

321-335, 2015. 

[115] L. S. Srinath, Advanced mechanics of solids: Tata McGraw-Hill, 2003. 

[116] N.-H. Kim, Introduction to nonlinear finite element analysis: Springer Science & Business Media, 

2014. 

[117] M. Muller, B. Heidelberger, M. Hennix et al., “Position based dynamics,” Journal of Visual 

Communication and Image Representation, vol. 18, no. 2, pp. 109-118, Apr, 2007. 

[118] I. Peterlík, C. Duriez, and S. Cotin, "Modeling and real-time simulation of a vascularized liver tissue," 

Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012, pp. 50-57: Springer, 

2012. 

[119] R. Barauskas, A. Gulbinas, and G. Barauskas, “Investigation of radiofrequency ablation process in liver 

tissue by finite element modeling and experiment,” Medicina, vol. 43, no. 4, pp. 310-325, 2007. 

[120] G. Picinbono, J. C. Lombardo, H. Delingette et al., “Improving realism of a surgery simulator: linear 

anisotropic elasticity, complex interactions and force extrapolation,” The Journal of Visualization and 

Computer Animation, vol. 13, no. 3, pp. 147-167, Jul, 2002. 

[121] L. O. Chua, and L. Yang, “Cellular Neural Networks: Theory,” IEEE Transactions on Circuits and 

Systems, vol. 35, no. 10, pp. 1257-1272, 1988. 

[122] P. Thiran, G. Setti, and M. Hasler, “An Approach to Information Propagation in 1-D Cellular Neural 

Networks - Part I: Local Diffusion,” IEEE Transactions on Circuits and Systems I: Fundamental 

Theory and Applications, vol. 45, no. 8, pp. 777-789, 1998. 

[123] G. Setti, P. Thiran, and C. Serpico, “An Approach to Information Propagation in 1-D Cellular Neural 

Networks - Part II: Global Propagation,” IEEE Transactions on Circuits and Systems I: Fundamental 

Theory and Applications, vol. 45, no. 8, pp. 790-811, 1998. 

[124] L. O. Chua, M. Hasler, G. S. Moschytz et al., “Autonomous Cellular Neural Networks: A Unified 

Paradigm for Pattern Formation and Active Wave Propagation,” IEEE Transactions on Circuits and 

Systems I: Fundamental Theory and Applications, vol. 42, no. 10, pp. 559-577, 1995. 

[125] M. H. Sadd, Elasticity: theory, applications, and numerics: Academic Press, 2009. 

[126] Y. Zhong, B. Shirinzadeh, and J. Smith, “Soft tissue deformation with neural dynamics for surgery 

simulation,” International Journal of Robotics and Automation, vol. 22, no. 1, pp. 1-9, 2007. 



 

140 
 

[127] A. P. Selvadurai, Partial Differential Equations in Mechanics 2: the Biharmonic Equation, Poisson’s 

Equation: Springer Science & Business Media, 2013. 

[128] P. Vijayan, and Y. Kallinderis, “A 3D finite-volume scheme for the Euler equations on adaptive 

tetrahedral grids,” Journal of Computational Physics, vol. 113, no. 2, pp. 249-267, Aug, 1994. 

[129] J. Blazek, Computational Fluid Dynamics: Principles and Applications: Elsevier, 2001. 

[130] H. Nishikawa, "Beyond interface gradient: A general principle for constructing diffusion schemes." p. 

5093. 

[131] S. Xu, X. Liu, H. Zhang et al., “A Nonlinear Viscoelastic Tensor-Mass Visual Model for Surgery 

Simulation,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 1, pp. 14-20, 2011. 

[132] L. O. Chua, and T. Roska, “The CNN Paradigm,” IEEE Transactions on Circuits and Systems I-

Fundamental Theory and Applications, vol. 40, no. 3, pp. 147-156, 1993. 

[133] T. Kozek, L. O. Chua, T. Roska et al., “Simulating nonlinear waves and partial differential equations 

via CNN - Part II: Typical Examples,” IEEE Transactions on Circuits and Systems I: Fundamental 

Theory and Applications, vol. 42, no. 10, pp. 816-820, 1995. 

[134] P. Szolgay, G. Vörös, and G. Erőss, “On the applications of the cellular neural network paradigm in 

mechanical vibrating systems,” IEEE Transactions on Circuits and Systems I: Fundamental Theory 

and Applications, vol. 40, no. 3, pp. 222-227, 1993. 

[135] T. Roska, L. O. Chua, D. Wolf et al., “Simulating nonlinear waves and partial differential equations via 

CNN - Part I: Basic Techniques,” IEEE Transactions on Circuits and Systems I: Fundamental Theory 

and Applications, vol. 42, no. 10, pp. 807-815, 1995. 

[136] T. Roska, and L. O. Chua, “Cellular neural networks with non‐linear and delay‐type template elements 

and non‐uniform grids,” International Journal of Circuit Theory and Applications, vol. 20, no. 5, pp. 

469-481, 1992. 

[137] Y. Zhong, B. Shirinzadeh, G. Alici et al., “A Poisson-based methodology for deformable object 

simulation,” International Journal of Modelling and Simulation, vol. 28, no. 2, pp. 156, 2008. 

[138] Z. Jingya, W. Jiajun, W. Xiuying et al., “The adaptive FEM elastic model for medical image 

registration,” Physics in Medicine and Biology, vol. 59, no. 1, pp. 97-118, Jan 06, 2014. 

[139] J. Misra, and I. Saha, “Artificial neural networks in hardware A survey of two decades of progress,” 

Neurocomputing, vol. 74, no. 1-3, pp. 239-255, Dec, 2010. 

[140] Z. Ullah, and C. E. Augarde, “Finite deformation elasto-plastic modelling using an adaptive meshless 

method,” Computers & Structures, vol. 118, no. S1, pp. 39-52, 2013. 

[141] P. Xia, “New advances for haptic rendering: state of the art,” The Visual Computer, pp. 1-17, 2016. 

[142] E. Forest, and R. D. Ruth, “Fourth-order symplectic integration,” Physica D: Nonlinear Phenomena, 

vol. 43, no. 1, pp. 105-117, 1990. 

[143] J. A. Weiss, B. N. Maker, and S. Govindjee, “Finite element implementation of incompressible, 

transversely isotropic hyperelasticity,” Computer Methods in Applied Mechanics and Engineering, vol. 

135, no. 1, pp. 107-128, 1996. 

[144] H. Si, “TetGen, a Delaunay-based quality tetrahedral mesh generator,” ACM Transactions on 

Mathematical Software (TOMS), vol. 41, no. 2, pp. 11, 2015. 

[145] C. Quesada, D. González, I. Alfaro et al., “Computational vademecums for real‐time simulation of 

surgical cutting in haptic environments,” International Journal for Numerical Methods in Engineering, 

vol. 108, no. 10, pp. 1230-1247, 2016. 

[146] J. Stunt, P. Wulms, G. Kerkhoffs et al., “How valid are commercially available medical simulators?,” 

Advances in medical education and practice, vol. 5, pp. 385, 2014. 

[147] C. D. Lallas, J. W. Davis, and S. Members Of The Society Of Urologic Robotic, “Robotic surgery 

training with commercially available simulation systems in 2011: a current review and practice pattern 

survey from the society of urologic robotic surgeons,” J Endourol, vol. 26, no. 3, pp. 283-93, Mar, 

2012. 

[148] M. Abadi, A. Agarwal, P. Barham et al., “Tensorflow: Large-scale machine learning on heterogeneous 

distributed systems,” arXiv preprint arXiv:1603.04467, 2016. 

[149] Hibbitt, Karlsson, and Sorensen, ABAQUS/standard User's Manual: Hibbitt, Karlsson & Sorensen, 

2001. 



 

141 
 

[150] E. Samur, M. Sedef, C. Basdogan et al., “A robotic indenter for minimally invasive measurement and 

characterization of soft tissue response,” Medical Image Analysis, vol. 11, no. 4, pp. 361-373, Aug, 

2007. 

[151] K. Miller, and J. Lu, “On the prospect of patient-specific biomechanics without patient-specific 

properties of tissues,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 27, pp. 154-

166, Nov, 2013. 

[152] F. Faure, C. Duriez, H. Delingette et al., "Sofa: A multi-model framework for interactive physical 

simulation," Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp. 283-321: 

Springer, 2012. 

[153] S. A. Maas, B. J. Ellis, G. A. Ateshian et al., “FEBio: Finite Elements for Biomechanics,” Journal of 

Biomechanical Engineering, vol. 134, no. 1, pp. 011005, 2012. 

[154] S. A. Maas, G. A. Ateshian, and J. A. Weiss, “FEBio: History and Advances,” Annual Review of 

Biomedical Engineering, vol. 19, no. 1, 2017. 

[155] N. Hamzé, I. Peterlík, S. Cotin et al., “Preoperative trajectory planning for percutaneous procedures in 

deformable environments,” Computerized Medical Imaging and Graphics, vol. 47, pp. 16-28, 1//, 2016. 

[156] B. Eiben, L. Han, J. Hipwell et al., "Biomechanically guided prone-to-supine image registration of 

breast MRI using an estimated reference state." pp. 214-217. 

[157] S. Suzuki, N. Suzuki, A. Hattori et al., “Tele‐surgery simulation with a patient organ model for robotic 

surgery training,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 

1, no. 4, pp. 80-88, Dec, 2005. 

[158] P.-A. Heng, T.-T. Wong, R. Yang et al., “Intelligent inferencing and haptic simulation for Chinese 

acupuncture learning and training,” IEEE Transactions on Information Technology in Biomedicine, vol. 

10, no. 1, pp. 28-41, 2006. 

[159] S. P. DiMaio, and S. E. Salcudean, “Needle insertion modeling and simulation,” IEEE Transactions on 

Robotics and Automation, vol. 19, no. 5, pp. 864-875, 2003. 

[160] S. Ourselin, M. Emberton, and T. Vercauteren, “From computer-assisted intervention research to 

clinical impact: The need for a holistic approach,” Medical Image Analysis, vol. 33, pp. 72-78, Oct, 

2016. 

[161] D. J. Hawkes, “From clinical imaging and computational models to personalised medicine and image 

guided interventions,” Medical Image Analysis, vol. 33, pp. 50-55, Oct, 2016. 

[162] A. K. Ho, H. Alsaffar, P. C. Doyle et al., “Virtual reality myringotomy simulation with real-time 

deformation: development and validity testing,” Laryngoscope, vol. 122, no. 8, pp. 1844-1851, Aug, 

2012. 

[163] S. Misra, K. T. Ramesh, and A. M. Okamura, “Modeling of Tool-Tissue Interactions for Computer-

Based Surgical Simulation: A Literature Review,” Presence: Teleoperators and Virtual Environments, 

vol. 17, no. 5, pp. 463-491, Oct 01, 2008. 

[164] K. Kunkler, “The role of medical simulation: an overview,” The International Journal of Medical 

Robotics and Computer Assisted Surgery, vol. 2, no. 3, pp. 203-210, 2006. 

 

 


