66 research outputs found

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Discrete Micromechanics of Random Fibrous Architectures

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Predictive Analytics Lead to Smarter Self-Organizing Directional Wireless Backbone Networks

    Get PDF
    Directional wireless systems are becoming a cost-effective approach towards providing a high-speed, reliable, broadband connection for the ubiquitous mobile wireless devices in use today. The most common of these systems consists of narrow-beam radio frequency (RF) and free-space-optical (FSO) links, which offer speeds between 100Mbps and 100Gbps while offering bit-error-rates comparable to fixed fiber optic installations. In addition, spatial and spectral efficiencies are accessible with directional wireless systems that cannot be matched with broadcast systems. The added benefits of compact designs permit the installation of directional antennas on-board unmanned autonomous systems (UAS) to provide network availability to regions prone to natural disasters, in maritime situations, and in war-torn countries that lack infrastructure security. In addition, through the use of intelligent network-centric algorithms, a flexible airborne backbone network can be established to dodge the scalability limitations of traditional omnidirectional wireless networks. Assuring end-to-end connectivity and coverage is the main challenge in the design of directional wireless backbone (DWB) networks. Conflating the duality of these objectives with the dynamical nature of the environment in which DWB networks are deployed, in addition to the standardized network metrics such as latency-minimization and throughput maximization, demands a rigorous control process that encompasses all aspects of the system. This includes the mechanical steering of the directional point-to-point link and the monitoring of aggregate network performance (e.g. dropped packets). The inclusion of processes for topology control, mobility management, pointing, acquisition, and tracking of the directional antennas, alongside traditional protocols (e.g. IPv6) provides a rigorous framework for next-generation mobile directional communication networks. This dissertation provides a novel approach to increase reliability in reconfigurable beam-steered directional wireless backbone networks by predicating optimal network reconfigurations wherein the network is modeled as a giant molecule in which the point-to-point links between two UASs are able to grow and retract analogously to the bonds between atoms in a molecule. This cross-disciplinary methodology explores the application of potential energy surfaces and normal mode analysis as an extension to the topology control optimization. Each of these methodologies provides a new and unique ability for predicting unstable configurations of DWB networks through an understanding of second-order principle dynamics inherent within the aggregate configuration of the system. This insight is not available through monitoring individual link performance. Together, the techniques used to model the DWB network through molecular dynamics are referred to as predictive analytics and provide reliable results that lead to smarter self-organizing reconfigurable beam-steered DWB networks. Furthermore, a comprehensive control architecture is proposed that complements traditional network science (e.g. Internet protocol) and the unique design aspects of DWB networks. The distinct ability of a beam-steered DWB network to adjust the direction of its antennas (i.e. reconfigure) in response to degraded effects within the atmosphere or due to an increased separation of nodes, is not incorporated in traditional network processes such re-routing mechanism, and therefore, processes for reconfiguration can be abstracted which both optimize the physical interconnections while maintaining interoperability with existing protocols. This control framework is validated using network metrics for latency and throughput and compared to existing architectures which use only standard re-routing mechanisms. Results are shown that validate both the analogous molecular modeling of a reconfigurable beam-steered directional wireless backbone network and a comprehensive control architecture which coalesces the unique capabilities of reconfiguration and mobility of mobile wireless backbone networks with existing protocols for networks such as IPv6

    Clock routing for high performance microprocessor designs.

    Get PDF
    Tian, Haitong.Chinese abstract is on unnumbered page.Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (p. 65-74).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivations --- p.1Chapter 1.2 --- Our Contributions --- p.2Chapter 1.3 --- Organization of the Thesis --- p.3Chapter 2 --- Background Study --- p.4Chapter 2.1 --- Traditional Clock Routing Problem --- p.4Chapter 2.2 --- Tree-Based Clock Routing Algorithms --- p.5Chapter 2.2.1 --- Clock Routing Using H-tree --- p.5Chapter 2.2.2 --- Method of Means and Medians(MMM) --- p.6Chapter 2.2.3 --- Geometric Matching Algorithm (GMA) --- p.8Chapter 2.2.4 --- Exact Zero-Skew Algorithm --- p.9Chapter 2.2.5 --- Deferred Merge Embedding (DME) --- p.10Chapter 2.2.6 --- Boundary Merging and Embedding (BME) Algorithm --- p.14Chapter 2.2.7 --- Planar Clock Routing Algorithm --- p.17Chapter 2.2.8 --- Useful-skew Tree Algorithm --- p.18Chapter 2.3 --- Non-Tree Clock Distribution Networks --- p.19Chapter 2.3.1 --- Grid (Mesh) Structure --- p.20Chapter 2.3.2 --- Spine Structure --- p.20Chapter 2.3.3 --- Hybrid Structure --- p.21Chapter 2.4 --- Post-grid Clock Routing Problem --- p.22Chapter 2.5 --- Limitations of the Previous Work --- p.24Chapter 3 --- Post-Grid Clock Routing Problem --- p.26Chapter 3.1 --- Introduction --- p.26Chapter 3.2 --- Problem Definition --- p.27Chapter 3.3 --- Our Approach --- p.30Chapter 3.3.1 --- Delay-driven Path Expansion Algorithm --- p.31Chapter 3.3.2 --- Pre-processing to Connect Critical ports --- p.34Chapter 3.3.3 --- Post-processing to Reduce Capacitance --- p.36Chapter 3.4 --- Experimental Results --- p.39Chapter 3.4.1 --- Experiment Setup --- p.39Chapter 3.4.2 --- Validations of the Delay and Slew Estimation --- p.39Chapter 3.4.3 --- Comparisons with the Tree Grow (TG) Approach --- p.41Chapter 3.4.4 --- Lowest Achievable Delays --- p.42Chapter 3.4.5 --- Simulation Results --- p.42Chapter 4 --- Non-tree Based Post-Grid Clock Routing Problem --- p.44Chapter 4.1 --- Introduction --- p.44Chapter 4.2 --- Handling Ports with Large Load Capacitances --- p.46Chapter 4.2.1 --- Problem Ports Identification --- p.47Chapter 4.2.2 --- Non-Tree Construction --- p.47Chapter 4.2.3 --- Wire Link Selection --- p.48Chapter 4.3 --- Path Expansion in Non-tree Algorithm --- p.51Chapter 4.4 --- Limitations of the Non-tree Algorithm --- p.51Chapter 4.5 --- Experimental Results --- p.51Chapter 4.5.1 --- Experiment Setup --- p.51Chapter 4.5.2 --- Validations of the Delay and Slew Estimation --- p.52Chapter 4.5.3 --- Lowest Achievable Delays --- p.53Chapter 4.5.4 --- Results on New Benchmarks --- p.53Chapter 4.5.5 --- Simulation Results --- p.55Chapter 5 --- Efficient Partitioning-based Extension --- p.57Chapter 5.1 --- Introduction --- p.57Chapter 5.2 --- Partition-based Extension --- p.58Chapter 5.3 --- Experimental Results --- p.61Chapter 5.3.1 --- Experiment Setup --- p.61Chapter 5.3.2 --- Running Time Improvement with Partitioning Technique --- p.61Chapter 6 --- Conclusion --- p.63Bibliography --- p.6

    Durability and Damage Analysis of Hybrid Multiscale Composites

    Get PDF
    In this dissertation, an effort was carried out to enhance the mechanical performance of fiber reinforced composites (FRPs) by modification of the fibers’ surface morphologies. The effects of various surface alterations of a plain-woven carbon fiber fabric surface, on the fiber/epoxy interface were investigated. The alterations were mostly achieved by growing different nanofillers like zinc oxide nanorods (ZnO NR), carbon nanotubes (CNTs), and metal organic frameworks (MOFs) on the fiber surface. While the growth techniques for ZnO NR and CNTs place restrictions on the size of the fabricated composites, MOFs route is uniform, affordable, and can be readily scaled up to any required size. This makes this method more feasible and versatile than any other nanofillers. This dissertation comprises three major investigations: Study of hybrid composites with zinc oxide nanorods based surface modifications; Study of hybrid composites with carbon nanotubes-based surface modifications; and Study of hybrid composites with metal organic framework-based surface modifications. The growth of zinc oxide nanorods on carbon fiber surface was performed with a combination of physical vapor deposition (PVD) and hydrothermal growth techniques. Various configurations of composites were fabricated to study the effects of altering the topology of the nanorods and functionalizing the fiber surface with polydopamine. Mechanical analysis showed a significant improvement in strength and stiffness in samples with patterning, when compared to samples with uniform nanofiller growth. Damping results show that polydopamine improved the adhesion between the carbon fiber and zinc oxide nanofillers, thus increasing the glass transition temperature of the composites. A molecular dynamics (MD) model was built to study this phenomenon in an atomic scale. The results showed a significant improvement in Young’s, bulk, and shear moduli as a consequence of the addition of zinc oxide nanorods. Various topologies of CNTs were synthesized using physical vapor deposition and graphitic structures by design (GSD) techniques on the carbon fiber surface. Mechanical characterization of these hybrid composites was performed via tensile testing, dynamic mechanical analysis (DMA), and fracture analysis. A study of viscoplastic behavior of these composites using stress relaxation and creep tests was also performed for these different composites’ configurations. A phenomenological viscoplastic model was utilized for creep prediction over long periods of time utilizing shorter stress relaxation tests. The results showed that with proper geometrical patterning of CNTs, significant improvements in strength, stiffness, creep and relaxation resistance, and glass transition temperatures can be realized. A comprehensive study on fracture analysis depicting delamination was performed using crack propagation experiments and ANSYS simulations for composites based on CNTs/carbon fibers hybrid reinforcements. ANSYS simulations employed both cohesive zone modeling (CZM) and virtual crack closure (VCCT) technique to model interlaminar delamination. The results in all the three setups showed that coarser patterns of carbon nanotubes on the carbon fiber surface perform better in resisting crack propagation due to more efficient energy dissipation mechanisms at the fiber/matrix interface. Finally, an investigation on multiscale hybrid composites with nickel-based MOFs as an interface was conducted. Growing MOFs require both de-sizing and acid etching of the fibers. Acid activation made the carbon fiber surface chemically active, furnishing better adherence between the MOFs and the carbon fibers. These MOFs were also utilized as a catalyst to grow carbon nanotubes on the carbon fiber surface; hence, replacing the unscalable PVD. The hybrid composites based on MOFs as reinforcements at the fiber/matrix interface exhibited improvements in tensile and shear strength and enhanced the damping parameters for the composite. In summary, all the investigations in this dissertation conclude that tailoring carbon fiber surface using various nanofillers, and functionalization play a crucial role in shaping the interlaminar strength of carbon fiber polymer composites among other mechanical enhancements

    New advances in vehicular technology and automotive engineering

    Get PDF
    An automobile was seen as a simple accessory of luxury in the early years of the past century. Therefore, it was an expensive asset which none of the common citizen could afford. It was necessary to pass a long period and waiting for Henry Ford to establish the first plants with the series fabrication. This new industrial paradigm makes easy to the common American to acquire an automobile, either for running away or for working purposes. Since that date, the automotive research grown exponentially to the levels observed in the actuality. Now, the automobiles are indispensable goods; saying with other words, the automobile is a first necessity article in a wide number of aspects of living: for workers to allow them to move from their homes into their workplaces, for transportation of students, for allowing the domestic women in their home tasks, for ambulances to carry people with decease to the hospitals, for transportation of materials, and so on, the list don’t ends. The new goal pursued by the automotive industry is to provide electric vehicles at low cost and with high reliability. This commitment is justified by the oil’s peak extraction on 50s of this century and also by the necessity to reduce the emissions of CO2 to the atmosphere, as well as to reduce the needs of this even more valuable natural resource. In order to achieve this task and to improve the regular cars based on oil, the automotive industry is even more concerned on doing applied research on technology and on fundamental research of new materials. The most important idea to retain from the previous introduction is to clarify the minds of the potential readers for the direct and indirect penetration of the vehicles and the vehicular industry in the today’s life. In this sequence of ideas, this book tries not only to fill a gap by presenting fresh subjects related to the vehicular technology and to the automotive engineering but to provide guidelines for future research. This book account with valuable contributions from worldwide experts of automotive’s field. The amount and type of contributions were judiciously selected to cover a broad range of research. The reader can found the most recent and cutting-edge sources of information divided in four major groups: electronics (power, communications, optics, batteries, alternators and sensors), mechanics (suspension control, torque converters, deformation analysis, structural monitoring), materials (nanotechnology, nanocomposites, lubrificants, biodegradable, composites, structural monitoring) and manufacturing (supply chains). We are sure that you will enjoy this book and will profit with the technical and scientific contents. To finish, we are thankful to all of those who contributed to this book and who made it possible.info:eu-repo/semantics/publishedVersio

    Physics-Based Modeling of Material Behavior and Damage Initiation in Nanoengineered Composites

    Get PDF
    abstract: Materials with unprecedented properties are necessary to make dramatic changes in current and future aerospace platforms. Hybrid materials and composites are increasingly being used in aircraft and spacecraft frames; however, future platforms will require an optimal design of novel materials that enable operation in a variety of environments and produce known/predicted damage mechanisms. Nanocomposites and nanoengineered composites with CNTs have the potential to make significant improvements in strength, stiffness, fracture toughness, flame retardancy and resistance to corrosion. Therefore, these materials have generated tremendous scientific and technical interest over the past decade and various architectures are being explored for applications to light-weight airframe structures. However, the success of such materials with significantly improved performance metrics requires careful control of the parameters during synthesis and processing. Their implementation is also limited due to the lack of complete understanding of the effects the nanoparticles impart to the bulk properties of composites. It is common for computational methods to be applied to explain phenomena measured or observed experimentally. Frequently, a given phenomenon or material property is only considered to be fully understood when the associated physics has been identified through accompanying calculations or simulations. The computationally and experimentally integrated research presented in this dissertation provides improved understanding of the mechanical behavior and response including damage and failure in CNT nanocomposites, enhancing confidence in their applications. The computations at the atomistic level helps to understand the underlying mechanochemistry and allow a systematic investigation of the complex CNT architectures and the material performance across a wide range of parameters. Simulation of the bond breakage phenomena and development of the interface to continuum scale damage captures the effects of applied loading and damage precursor and provides insight into the safety of nanoengineered composites under service loads. The validated modeling methodology is expected to be a step in the direction of computationally-assisted design and certification of novel materials, thus liberating the pace of their implementation in future applications.Dissertation/ThesisDoctoral Dissertation Aerospace Engineering 201

    Biofabrication Approaches With Hyaluronic Acid Hydrogels For Cartilage Repair

    Get PDF
    Current therapies to repair damaged articular cartilage fail to consistently or fully restore the biomechanical function of cartilage. Although cell-based clinical techniques have emerged for the treatment of focal defects in articulating joints, these approaches typically lead to inferior tissue formation when compared to native, healthy cartilage. Alternatively, subchondral microfracture is a surgical procedure that aims to recruit endogenous mesenchymal stromal cells (MSCs) from the underlying bone marrow to facilitate neocartilage formation in focal defects. Similarly, microfracture typically results in the formation of repair cartilage incapable of withstanding the loading environment of the articulating joint over time. New biomaterial-based strategies are therefore in significant demand to improve cartilage tissue formation and maturation within focal defects. Hyaluronic acid (HA) is a glycosaminoglycan that is found in native cartilage and that shows promise as a biomaterial for cartilage tissue engineering due to its innate bioactivity and ability to form hydrogels, water-swollen polymer networks that may be engineered to mimic the native extracellular matrix (ECM). Moreover, hydrogels may be employed as materials for biofabrication, which involves the use of automated additive manufacturing processes such as 3D printing to fabricate living, biological constructs. This dissertation describes the design and implementation of HA hydrogels for the biofabrication of articular cartilage towards improving existing therapies for damaged cartilage. Multiple biofabrication approaches, including extrusion bioprinting, melt-electrowriting, and digital light processing are investigated to engineer scaffolds with rationally designed geometries, mechanical properties, porosities, and biodegradability. Conserved across all these approaches is the use of thiol-ene based photochemistry to control the formation and resultant material properties of HA hydrogels modified with norbornene functional groups. Taken together, the employment of these biofabrication approaches for cartilage repair has significantly informed the design and implementation of future therapies for articular cartilage damage

    Adaptation of the IEEE 802.11 protocol for inter-satellite links in LEO satellite networks

    Get PDF
    Knowledge of the coefficient of thermal expansion (CTE) of a ceramic material is important in many application areas. Whilst the CTE can be measured, it would be useful to be able to predict the expansion behaviour of multiphase materials.. There are several models for the CTE, however, most require a knowledge of the elastic properties of the constituent phases and do not take account ofthe microstructural features of the material. If the CTE could be predicted on the basis of microstructural information, this would then lead to the ability to engineer the microstructure of multiphase ceramic materials to produce acceptable thermal expansion behaviour. To investigate this possibility, magnesia-magnesium aluminate sp~el (MMAS) composites, consisting of a magnesia matrix and magnesium aluminate s~ne'l (MAS) particles, were studied. Having determined a procedure to produce MAS fr alumina and magnesia, via solid state sintering, magnesia-rich compositions wit ~ various magnesia contents were prepared to make the MMAS composites. Further, the l\.1MAS composites prepared from different powders (i.e. from an alumina-magnesia mixture ahd from a magnesia-spinel powder) were compared. Com starch was added into the powder mixtures before sintering to make porous microstructures. Microstructural development and thermal expansion behaviour ofthe MMAS composites were investigated. Microstructures of the MAS and the MMAS composites as well as their porous bodies were quaritified from backscattered electron micrographs in terms of the connectivity of solids i.e. solid contiguity by means of linear intercept counting. Solid contiguity decreased with increasing pore content and varied with pore size, pore shape and pore distribution whereas the phase contiguity depended strongly on the chemical composition and was less influenced by porosity. ' The thermal expansion behaviour of the MAS and the MMAS composites between 100 and 1000 °C was determined experimentally. Variation in the CTE ofthe MAS relates to the degree of spinel formation while the thermal expansion of the MMAS composites depends strongly on phase content. However, the MMAS composites with similar phase compositions but made from different manufacturing processes showed differences in microstructural features and thermal expansion behaviour. Predictions of the CTE values for composites based on a simple rule-of-mixtures (ROM) using volume fraction were compared with the measured data. A conventional ROM accurately predicted the effective CTE of a range of dense alumina-silicon carbide particulate composites but was not very accurate for porous multiphase structures. It provided an upper bound prediction as all experimental values were lower. Hence, the conventional ROM was modified to take account of quantitative microstructural parameters obtained from solid contiguity. The modified ROM predicted lower values and gave a good agreement with the experimental data. Thus, it has been shown that quantitative microstructural information can be used to predict the CTE of multiphase ceramic materials with complex microstructures.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mitigating hidden node problem in an IEEE 802.16 failure resilient multi-hop wireless backhaul

    Get PDF
    Backhaul networks are used to interconnect access points and further connect them to gateway nodes which are located in regional or metropolitan centres. Conventionally, these backhaul networks are established using metallic cables, optical fibres, microwave or satellite links. With the proliferation of wireless technologies, multi-hop wireless backhaul networks emerge as a potential cost effective and flexible solution to provide extended coverage to areas where the deployment of wired backhaul is difficult or cost-prohibitive, such as the difficult to access and sparsely populated remote areas, which have little or no existing wired infrastructure.Nevertheless, wireless backhaul networks are vulnerable to node or link failures. In order to ensure undisrupted traffic transmission even in the presence of failures, additional nodes and links are introduced to create alternative paths between each source and destination pair. Moreover, the deployment of such extra links and nodes requires careful planning to ensure that available network resources can be fully utilised, while still achieving the specified failure resilience with minimum infrastructure establishment cost.The majority of the current research efforts focus on improving the failure resilience of wired backhaul networks but little is carried out on the wireless counterparts. Most of the existing studies on improving the failure resilience of wireless backhaul networks concern energy-constrained networks such as the wireless sensor and ad hoc networks. Moreover, they tend to focus on maintaining the connectivity of the networks during failure, but neglecting the network performance. As such, it calls for a better approach to design a wireless backhaul network, which can meet the specified failure resilience requirement with minimum network cost, while achieving the specified quality of service (QoS).In this study, a failure resilient wireless backhaul topology, taking the form of a ladder network, is proposed to connect a remote community to a gateway node located in a regional or metropolitan centre. This topology is designed with the use of a minimum number of nodes. Also, it provides at least one backup path between each node pair. With the exception of a few failure scenarios, the proposed ladder network can sustain multiple simultaneous link or node failures. Furthermore, it allows traffic to traverse a minimum number of additional hops to arrive at the destination during failure conditions.WiMax wireless technology, based on the IEEE 802.16 standard, is applied to the proposed ladder network of different hop counts. This wireless technology can operate in either point-to-multipoint single-hop mode or multi-hop mesh mode. For the latter, coordinated distributed scheduling involving a three-way handshake procedure is used for resource allocation. Computer simulations are used to extensively evaluate the performance of the ladder network. It is shown that the three-way handshake suffers from severe hidden node problem, which restrains nodes from data transmission for long period of time. As a result, data packets accumulate in the buffer queue of the affected nodes and these packets will be dropped when the buffer overflows. This in turn results in the degradation of the network throughput and increase of average transmission delay.A new scheme called reverse notification (RN) is proposed to overcome the hidden node problem. With this new scheme, all the nodes will be informed of the minislots requested by their neighbours. This will prevent the nodes from making the same request and increase the chance for the nodes to obtain all their requested resources, and start transmitting data as soon as the handshake is completed. Computer simulations have verified that the use of this RN can significantly reduce the hidden terminal problem and thus increase network throughput, as well as reduce transmission delay.In addition, two new schemes, namely request-resend and dynamic minislot allocation, are proposed to further mitigate the hidden node problem as it deteriorates during failure. The request-resend scheme is proposed to solve the hidden node problem when the RN message failed to arrive in time at the destined node to prevent it from sending a conflicting request. On the other hand, the dynamic minislot allocation scheme is proposed to allocate minislots to a given node according to the amount of traffic that it is currently servicing. It is shown that these two schemes can greatly enhance the network performance under both normal and failure conditions.The performance of the ladder network can be further improved by equipping each node with two transceivers to allow them to transmit concurrently on two different frequency channels. Moreover, a two-channel two-transceiver channel assignment (TTDCA) algorithm is proposed to allocate minislots to the nodes. When operating with this algorithm, a node uses only one of its two transceivers to transmit control messages during control subframe and both transceivers to transmit data packets during data subframe. Also, the frequency channels of the nodes are pre-assigned to more effectively overcome the hidden node problem. It is shown that the use of the TTDCA algorithm, in conjunction with the request-resend and RN schemes, is able to double the maximum achievable throughput of the ladder network, when compared to the single channel case. Also, the throughput remains constant regardless of the hop counts.The TTDCA algorithm is further modified to make use of the second transceiver at each node to transmit control messages during control subframe. Such an approach is referred to as enhanced TTDCA (ETTDCA) algorithm. This algorithm is effective in reducing the duration needed to complete the three-way handshake without sacrificing network throughput. It is shown that the application of the ETTDCA algorithm in ladder networks of different hop counts has greatly reduced the transmission delay to a value which allows the proposed network to not only relay a large amount of data traffic but also delay-sensitive traffics. This suggests that the proposed ladder network is a cost effective solution, which can provide the necessary failure resilience and specified QoS, for delivering broadband multimedia services to the remote rural communities
    corecore