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Summary

Fibrous micro-architectures are subscale motifs ubiquitously found in structures

ranging from eukaryotic cells to laminated composites. The mechanics of such

microstructures, including their stiffening, strengthening and the failure are en-

riched by the nonlinearities and stochastic effects arising from the underlying

topological randomness coupled with constituent properties. This thesis inves-

tigates the mechanics of two types of fibrous architectures with stiffness and

length scales that span over several orders: (i) soft, filamentous networks mim-

icking biopolymers, and (ii) stiff, fiber-reinforced polymers employed in many

engineering applications. The primary focus is on the role of microstructural

discreteness in the evolution of elasticity and failure of the above-mentioned

exemplars. Three major steps involved in this task are: (i) generation and char-

acterization of random microstructures, (ii) study of the mechanical response

including damage and (iii) making connections between the characterization pa-

rameters defined in step (i) and the response obtained in step (ii).

Discrete micromechanical models encompass the spatial heterogeneities and the

finer resolution offers avenues to understand various deformation mechanism-

s. In-house algorithms are developed for the generation and characterization of

random topologies. A discrete network (DN) model is developed for filamen-

tous networks that explicitly models the individual filaments and crosslinks that

xi



connect these filaments together at a discrete level. Statistical parameters that

are used to characterize the networks showed correlation with the overall me-

chanical response. The experimentally observed stochastic crosslink scission of

F-actin networks is incorporated through Kinetic Monte Carlo algorithms. DN

model predicts the characteristic response of the biopolymeric networks; rate

dependent stiffening, identification of peak stiffness and softening followed by

failure. The model is further extended over to a wide range of filament stiffness

in an attempt to develop a general predictive response model for filamentous

networks.

A micromechanical model is developed for the interface damage of fiber rein-

forced composites under mechanical and environmental stimuli. Moisture at-

tacks the interfaces and the degradation of the interface strength is incorporated

into the modeling. The response obtained with this approach is weaker com-

pared to the pristine interface cases. The interplay between the randomness in

fiber arrangement and the interface damage is elucidated through its correlation

with the measure of fiber clustering.
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Chapter 1

Introduction

1.1 Background

In recent decades, microstructural engineering has received unprecedented focus

in the realm of materials engineering encompassing nearly all functional applica-

tions imaginable. This is because, microstructural details including, the choice of

materials, their topological arrangements, presence of defects and their distribu-

tion, play key roles in determining the functional efficiency of the systems they

constitute. Examples include, but are not limited to, materials used in mechani-

cal, thermal, electrical, optical and electronic applications [1,2]. The universe of

expectations for such applications is unsatiably expanding, necessitating the de-

sign of complex architectures that are manipulated from macroscopic to atomic

length scales. In devising strategies for functional architectures (whether mi-

cro or macro), the primary aim is to produce robust designs. For example, in

structural systems i.e., systems whose primary (or an important) function is to

adequately support mechanical stimuli (a focal aspect of this thesis), it is highly

desirable to reduce the material volume by using high-strength, tough materials.
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However, it is imperative to retain sufficient redundancy in such structures, ide-

ally at multiple scales, that would ensure their graceful performance, even in the

event of a failure. Such requirements or expectations although ubiquitous in pro-

tean systems, often give rise to conflicting design situations that are extremely

difficult to meet simultaneously.

c

a

e

b

d f

Organic matrix

Figure 1.1: The brick mortar structure of the nacre. (a) Red abalone shell. (b)
A cross-section showing the layered structure. (c) Scanning electron micrograph
of the nacre showing the ceramic tablets which are stacked like bricks with a
lining of the biopolymer at the interfaces. (d) Interfaces of the tablets reveling
the organic (biopolymer) layer. (e) AFM image showing the top view of the
tablets. (f) TEM image showing the nano-grains of the single tablet (adapted
from Espinosa et al. [3] and Rousseau et al. [4]). Wood, bone,chitin etc. have
similar hierarchical structures.

A great source of inspiration for designing efficient structures through microstruc-

tural engineering comes from examples in the natural world [5, 6]. It is rather
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intriguing to note how nature grows efficient structures like nacre with build-

ing blocks of organic and inorganic materials, such as biopolymers, ceramic-

s/minerals and crosslinking agents [3, 4]. Figure 1.1 shows various hierarchies

in nacre made from the brick mortar arrangements of the aragonite tablets glued

together by biopolymeric interfaces. Perhaps, one of the most exciting lessons

from myriad natural examples is that nearly all macroscopic structures comprise

microstructures with exceptional hierarchies at different length scales [7,8]. Of-

ten, properties at each length scale are obtained by judicious combination and

arrangement of single or multiple constituent materials, rendering them as high-

ly engineered composite materials. Numerous examples of such natural com-

posites may be cited, e.g., bone, nacre, chitin in the exoskeleton of arthropods

etc. [9,10], that appropriately combine hard and soft constituents to provide the

necessary strength and toughness 1.

Matrix I

Level-I
Level-II

Level-III

Reinforcement I

Reinforcement II

Matrix III

Reinforcement III

Matrix II

Figure 1.2: Schematic representation of a hierarchical composite showing vari-
ous levels of reinforcements. Both biological and synthetic materials show such
levels of hierarchies.

1Bone is an excellent example of this. It exhibits a range of stiffness and strength depending
upon its function - skull, verterbrae, femur, etc.
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Another feature in the aforementioned natural hierarchical microstructures is

that often they comprise fibrous topologies at various length scales that may

be dispersed, entangled or connected through binders or crosslinking agents.

Through intelligent use of these networks at various hierarchical scales, these

systems adapt to an optimal strength-to-weight ratio for the designed purpose

[11, 12]. Figure 1.2 shows the toy model of a hierarchical composite, i.e., a com-

posite within a composite. As an example, at a coarse length scale (e.g., ob-

servable by optical or low resolution scanning electron microscopes (SEM)) the

level-II structure could be a reinforced polymer comprising strong fibers speckled

in a regular or random arrangement. As one examines the structure of this rein-

forcement at a finer scale (e.g., high resolution SEM), it may itself be a composite

(level-I) of fibers coated or embedded with finer, stronger fibers. Indeed, this has

been a motivating factor in many examples of artificial composite structures pro-

cessed using a combination of materials that bear fibrous architectures at sub-

scales. There have been several successful recipes of artificial microstructures

mimicking such natural examples that result in strong and ductile materials by

exploiting the interplay between the material properties and fibrous topological

arrangements [13–17]. In our schematic example (Fig. 1.2), the polymer matrix

may also be construed as a dense filamentous network at the finest resolution,

which may be reinforced by stiffer nano-scaled fibers (shown as red lines). Exam-

ples of such architectures include epoxies reinforced with CNTs for the purpose

of matrix strengthening [18,19].

Bao and Suresh discuss about the deformation of single cells and bio-molecules

and appropriately places various materials based on the stiffness and length s-

cales [20]. Figure 1.3 schematically shows the approximate range of values

for the stiffness and length scales of different materials (adapted from Bao and

Suresh [20] ). All these microstructures render anisotropy in the elasticity (and
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perhaps even inelasticity, including damage). In vivo F-actin networks in bio-

logical cells possess capability to rearrange dynamically thereby adjusting their

stiffness actively. Wood, bone and composites are typically strong in the direction

of the reinforcements, but exhibits very low transverse strength [21,22].

Figure 1.3: Schematic diagram showing the approximate range of the elastic
modulus and length scales of various materials having random microstructures.
We chose materials at two ends of the spectrum, F-actin networks for biologi-
cal cells and epoxies reinforced with glass fibers for composites. (main figure
adapted from Bao et al. [20] and microstructures from refs [23,24]).

The ubiquity of fibrous architectures in natural and artificial structures across a

range of length scales and stiffnesses provides the motivation for this thesis. It

focuses on some of the aspects concerning the mechanics of fibrous networks, in-

cluding their elasticity and failure. Of particular interest is modeling the spatial
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and temporal dynamics arising from topological interactions under protean me-

chanical stimuli. The approach taken is based on the notion that microstructural

discreteness plays a vital role in determining the responses of such architectures

and must be carefully understood in order to develop robust homogenized ap-

proaches.

1.2 Examples of Fibrous Architectures

The examples highlighted in the Introduction brings to the fore a description of

what we mean by “Fibrous” microstructures. A working definition that serves

the purpose of this thesis is as follows: fibrous architectures2 may indicate

microstructures that are made of filaments forming an interconnected network

through entanglements and/or physical/chemical crosslinks, or those that embed

fibers within a binding matrix, or a combination thereof. The following two sec-

tions shed some light on some of the commonly found fibrous architectures that

fall within these categories. The examples are not exhaustive, but illustrative.

1.2.1 Random Filamentous Networks

Filamentous networks form structural motifs for a variety of systems ranging

from macroscopic to atomistic, for example, felt, paper, cotton, dish scrubber-

s, biopolymers, elastomers, hydrogels, and so on [25–35]. Figure 1.4 shows

some examples of fibrous networks observable at different resolutions. Figure

1.4a shows the network structure of an epoxy, which can be resolved at atomic s-

cales [25]. Figure 1.4b shows a CNT network, which has applications as conduct-

ing devices in flexible electronics [29]. Biological cell structures are abundant

2We use the terms “microstructure”, “architecture” and “micro-architecture” interchangeably.
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with such architectures, e.g., actin network (Figure 1.4c [26]) whose mechani-

cal rigidity provides important clues about cell functioning. Figure 1.4d shows

the network of electrospun polymers used as scaffolds in tissue engineering [28].

Nanowires may be grown on substrates as a network with applications as elec-

trodes in Li-ion batteries (Fig. 1.4e) [30]. Finally, at reasonably coarse resolution

the network of cellulose fibers in paper is revealed (Fig. 1.4f) [27].

(a) Epoxy network [25] (b) CNT network [29] (c) Cytoskeletal network [26]

(d) Electrospun scaffolds [28] (e) Battery electrodes [30] (f) Paper [27]

Figure 1.4: Network structures of different materials with the corresponding
length scales.

1.2.2 Random Fiber Composites

A fiber reinforced composite (FRC) is another example of fibrous architecture

that are widely used in several applications including aerospace, marine, energy

and bio-medical systems. In most FRCs, fibers are randomly arranged inside
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the matrix. Figure 1.5 shows examples of FRC microstructures. In Fig. 1.5a,

a laminated composite with plies having reinforcement in different directions

are shown [36], while Fig. 1.5b shows an example of unidirectional FRC with

randomly arranged fiber bundles. Although, FRC microstructures are distinct

from the examples of network architectures mentioned in the preceding section,

some of the issues pertaining to elasto-plasticity and failure bear semblance; for

example, the role of topology in response variability is critical to FRC structure

performance.

Ply 1

Ply 2

Ply 3

 
 
!
"#
$

1

2

 !! "#

(a) Laminated composite [36] (b) Random fiber bundles [37]

Figure 1.5: Examples of FRC microstructures. (a) A cross-section of plies in a
laminated composite with different fiber orientations. Square windows 1 and
2 show typical computational domains used in micromechanical modeling. (b)
A cross-sectional view of the unidirectional FRC with randomly arranged fiber
bundles.
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1.3 Modeling of Random Microstructures

This thesis deals with modeling the mechanical behaviors of the aforementioned

exemplars of fibrous architectures. Although, the underlying approach in princi-

ple may be applicable to metallic and polymeric systems alike (the details may d-

iffer), the main focus here is on the latter. In particular, it encompasses two types

of aforementioned random micro-architectures that sit at the extremes of the e-

lastic stiffnesses in polymeric structures (Fig. 1.3), yet are strongly influenced by

the topological arrangements of its constituents. Figure 1.6 shows examples of

the artificially generated motifs resembling the real architectures that will appear

frequently in this thesis. As mentioned earlier, the central idea is to model the

discreteness of such fibrous microstructures and this is achieved by resorting to

developing Discrete Network (DN) models for fibrous networks (Fig. 1.6a) and

discrete microstructures for the FRC microstructures (Fig. 1.6b).
Printed using Abaqus/CAE on: Fri May 04 00:32:44 Malay Peninsula Standard Time 2012

(a) Random filament network (b) Random fiber composite

Figure 1.6: Examplars of random microstructures considered in this work. (a)
Microstructure of a discrete filament network. (b) Cross-section of a unidirec-
tionally fiber reinforced composite.

The elastic, plastic and failure properties of these and similar microstructures

observed at the macro-scale are intimately linked to the arrangements of their
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building blocks at the sub-scale [38]. For example, if a filamentous microstruc-

ture exhibits isotropic elasticity it could signal uniformity in the spatial distribu-

tion of filaments, while an anisotropic response of such an architecture could be

related to a biased distribution. Likewise, it is common to encounter fiber cluster-

ing in FRCs leaving regions that are matrix-rich and matrix-deficient (e.g., dark

regions in Fig. 1.5b). In dealing with these aspects, this thesis provides a detailed

account of the digital generation of such microstructures, their topological char-

acterization, seamless integration of these topologies into existing finite element

code, topology-response correlation, stochastic nature of failure mechanics and

the effects of topological variability on the mechanical behaviors.

1.3.1 Meso-scale Modeling

As in metals, atomistic models for polymeric systems provide a strong basis for

unraveling the unknown physics of the deformation process; however, these can

be computationally prohibitive at microstructural size scales beyond few hundred

nanometers and therefore, are limited to interrogating very small volumes [39].

Also, the highest resolution on the time-scale set by the atomic vibrations re-

sults in prescription of high deformation rates that may not be realistic. At the

other extreme, homogenized continuum models provide a powerful way to de-

scribe the macroscopic mechanics, but have to rely on phenomenological con-

stitutive descriptions. While good constitutive models are available for many

polymers, they may not capture specific features that are mediated by topologi-

cal aspects. An important intermediate approach, sometimes referred to as the

meso-scale may be introduced by choosing a spatial resolution such that it smears

out some of the finer details in atomistic models, but retains other important

discrete entities not modeled in homogenized continua [40–42]. This is much
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like an approach adopted in experimental characterization of materials, where

one chooses techniques ranging from high resolution transmission electron mi-

croscopy to optical microscopy depending on the queries one needs to find an-

swers to. Meso-scale models form a bridge between the atomistic and continuum

models [39, 42–45] providing pathways for multi-scale modeling where specific

information is extracted at the finer scale and incorporated into the subsequent

coarser scales [42,46,47].

In polymeric systems, there are a large number of multi-scale modeling approach-

es and we cite some of these for the sake of completeness. Gates and coworkers

(e.g., [48]) developed an equivalent continuum modeling where the energy e-

quivalence of the molecular structures and their macro-scale equivalent is used

to transfer information from lower scales to higher length scales for CNTs and its

composites. Monte Carlo and Bond-Fluctuation methods have been developed

for flexible chain polymers to map atomistic scales on to coarse-grained model-

s [49,50]. Barocas and coworkers [51,52] modeled the mechanics of collagenous

gels occurring at length scales smaller than the functional length scales (microns)

using volume averaging theories. Breuls et al. [53] developed a multi-level finite

element (FE) approach for modeling tissue constructs in which detailed nonlin-

ear FE analysis of the microstructure at the integration points were homogenized

to obtain the response of large-scale skeletal muscle tissues. A similar multi-

level FE approach was used by Smit et al. [54] to predict the response of het-

erogeneous polymeric materials. They studied the influence of microstructural

properties on the macroscopic mechanical behavior polystyrene/polycarbonate

containing voids/rubbery particles, subjected to unidirectional extension.
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1.4 Modeling of Biopolymeric Networks
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Figure 1.7: Various length scales in biomechanics dealing with human tissues
(figures adapted from refs [26,55–58]).

Figure 1.7 shows typical hierarchical architecture of human tissues [26, 55–58].

Eukaryotic cells (Fig. 1.7d) comprise gel-like cytoplasm, which is bounded by the

cell membrane [59, 60]. The cytoplasm holds most of the cell’s internal con-

stituents e.g., organelles and a part of it that is devoid of the organelles is called

the cytosol. Cytosol houses a network of filaments that provides the structural

rigidity to cells. These networks together form the cytoskeleton and hosts three

main types of filaments - Actin, Intermediate filaments and Microtubules. All
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these filaments are in turn made up of sub-structures made up of protein sub-

units called amino acids. The building block of actin is a 42000 Da3 protein

called G-actin. Long chains of G-actin are termed as F-actin and it forms double

helix of diameter ≈ 7 nm called as micro filaments [55]. Networks of F-actin

filaments pinned together with crosslinkers (known as Actin Binding Proteins or

ABPs for short) in biological cells are an important class of fibrous architectures

that help determine the shape of the cell and offer resistance to mechanical stim-

uli [12, 61–63]. F-actin constitutes ≈ 1% mass of the human body and plays an

important role in various cellular functions such as mechanotransduction, mito-

sis and cell-migration [12, 64–67]. From a mechanics perspective, such fibrous

biopolymeric networks are exciting micro-architectures that provide avenues to

devise efficient functional solutions for a variety of engineering and biological

applications [68].

1.4.1 Mechanics of F-actin Networks

The mechanical behavior of biopolymeric networks ensues from the rich dynam-

ics that arises out of their properties and topological arrangements of their con-

stituents. Under mechanical stimuli, they exhibit a nonlinear stress-strain behav-

ior that is attributed to entropic elasticity and/or bending-stretching transition of

the semiflexible filaments that is modulated by the crosslink (ABP) behavior [69].

For example, the network response depends on whether the crosslinking protein

is rigid or compliant. Various researchers have modeled the mechanics of F-

actin networks through different approaches such as mean-field theory, effective

medium theory and discrete network (DN) models [70–73]. In a series of sys-

tematic experimental and modeling works, MacKintosh and coworkers [74–77]

3Dalton (Da) is the unit of atomic mass.
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elucidated some of the complex physical mechanisms that govern the mechani-

cal behaviors of F-actin networks. In a pioneering set of experiments on rigidly

crosslinked F-actin networks, Gardel et al. [33] concluded that the network elas-

ticity has its origins in the filament entropic behavior. Through DN simulations,

Head et al. [77] constructed a map showing different regimes of the network

elastic response. They also developed scaling laws for the initial shear mod-

ulus and bending rigidity as a function of stretching modulus of the filament

and mean distance between crosslinks. Van der Giessen and coworkers [78, 79]

used the DN approach to model the strain stiffening response of networks and

attributed it to the non-affine deformation kinematics arising from bending and

stretching of individual filaments rather than the entropic elasticity of the fila-

ment themselves. The same group adopted an affine network model [80], but

modeled the thermal undulations to show that a similar response can be obtained

without invoking non-affine kinematics. They also noted the apparent discrep-

ancy that arises in the calculation of the flexural rigidity based on persistence

length assumption and physical dimensions of F-actin filament. In the effective

medium approach developed by Broedersz et al. [81], crosslinks were endowed

with nonlinear stiffness instead of assuming highly rigid and a similar nonlinear

network stiffening was observed, but attributed to the crosslink response rather

than non-affine deformation. Recently, Chen et al. [82] explored the effect of

molecular motors in the strain stiffening using a finite element based DN model

with compliant and rigid crosslinks. They showed that rigid crosslinks resulted

in a negligible hardening response compared to the compliant ones as observed

in experiments [70,83].

Irrespective of the type of crosslinking protein, biopolymeric networks ubiqui-

tously exhibit the following salient characteristics - an initial soft response fol-

lowed by a rate-dependent nonlinear stiffening that culminates into a precipitous
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drop in the overall stiffness beyond a critical strain [72,84–86].

Figure 1.8: Rate sensitivty of F-actin networks cross linked by ABP filamin (adapt-
ed from Schmoller et al. [72]).

Figure 1.8 shows such a response for F-actin network crosslinked by ABP fil-

amin. Drop in stiffness is mostly irreversible, although in some cases highly

reversible softening has been observed, especially those with high F-actin con-

centration [87]. It is natural to imagine that the underlying mechanisms for the

reversible and irreversible softening characteristics would be distinct. Mecha-

nistic arguments based on DN models posit the role of filament buckling [87]

in the reversible softening scenarios as has recently also been shown by Su and

Purohit [88]. Microscopically, the loss of overall mechanical stability of actin net-

works should result from the dominance of a softening mechanism over stiffen-

ing induced by the elasticity of the network constituents. This competition would

naturally lead to the identification of the peak stress and characteristic rupture

strain. Further, these network characteristics are expected to be modulated by
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the mechanical properties of the individual network constituents, network den-

sity, topology, and applied deformation rate [70–72]. Unfortunately, most of the

aforementioned works, with the exception of Broedersz et al. [71] do not model

or discuss the irreversible softening mechanics. Even their work only alludes to

it by incorporating an additional irreversible strain in a continuum sense, but do

not resort to any physically motivated explanation for the same. Experiments

indicate that crosslinks dissociate under force [84], which is a likely softening

mechanism in networks. DiDonna and Levine [89] proposed a mean-field model

enriched with unfolding (saw-tooth) behavior of crosslinkers to model the strain

softening response of F-actin networks. In their work, the differential (tangent)

modulus exhibits a linear variation with deformation unlike most of the experi-

mental results that indicate highly nonlinear response. They ignored the bending

energy of the filament and crosslinks were assumed to possess infinite number

of unfolding domains leading to a response that may have repercussions on the

non-affine network behavior. Notwithstanding this discrepancy, their model pre-

dicts that the degree of softening depends on the softness of the cross-linker.

1.4.2 Discrete Network Modeling

Experimental techniques have evolved to a level where forces in the range of

few pico newtons can be measured accurately. Techniques including laser tweez-

ers, atomic force microscopy etc. have enabled researchers to characterize the

mechanical properties of F-actin filaments and various crosslinking proteins. N-

early 150 types of ABPs have been identified with each of them exhibiting dif-

ferent characteristics, which may also affect the type of networks formed [90].

These developments have provided sufficient background to develop mathemat-

ical models that can capture the response of individual filaments and crosslinks,
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and also their collective behaviors as networks. Like some of the literature cited

in the previous section, we adopt the DN modeling approach to investigate the

response of fibrous networks. In this approach individual filaments and the inter-

action among filaments are accounted explicitly. Although it is computationally

expensive compared to the homogenized continuum models, it provides enriched

details of the evolving kinematics that are governed by the local kinetic processes

and inter-filament interactions.

One of the aspects that is addressed in this thesis is the failure mechanics of fi-

brous architectures mimicking semi-flexible F-actin networks. We develop a finite

element based DN approach incorporating topological randomness and stochas-

tic crosslink scission kinetics. The DN approach is rendered particularly useful,

because failure is governed by local characteristics of a microstructure rather

than the overall features. The stochastic approach to modeling the crosslink dis-

sociation process coupled with the topological variations of networks (for the

same nominal parameters, e.g., filament density) introduce statistical effects in

their mechanical behavior.

The following sections discuss the motivation behind understanding the mechan-

ics of network structures, including the failure.

1.4.3 Biomechanics

Understanding the response of a cell is within the broad scope of biomechan-

ics and it finds novel applications in medicine. Biomechanics aims at bridging

the gap between medical and engineering fields and it exploits the overlap be-

tween both areas to enable the medical practitioners obtain novel insight from

the understanding the physics of the biological response. Few applications of

biomechanics in these areas are given below.
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Diagnostics of Diseases

The disease-structure-property correlation of the pathogenic basis of certain dis-

eases has been recently unraveled [91]. It has been shown that the mechani-

cal properties of cells change depending upon the pathological conditions that

prevail in them. For example, malaria affected red blood cells may stiffen or

soften (depending upon the malaria type) by orders of magnitude, while malig-

nant cancer cells exhibit a significantly compliant response compared with the

healthy and benign cancer cells [64,92]. The interaction of the parasitic protein

with the spectrin network during the ring stage of infection leads to the stiffening

of malaria infected red blood cells [91]. The increased compliance and motility

of cancer cells in humans is attributed to the mutation of the filamin gene [12].

This nexus between the mechanics and pathology could be exploited in disease

diagnosis along with the conventional diagnostic techniques.

Functional Tissue Engineering

Functional tissue engineering requires extensive understanding of the in vivo re-

sponse of the various tissues [93]. In vivo experimental characterization of tis-

sues is rather difficult and one of the solutions to this problem is the modeling

of complex loading conditions experienced by the tissues with the knowledge

gained from the in vitro characterization. Current advances in stem cell research

are supported by the learning experience from mechanobiology, both in terms of

the cell morphological/structural changes and the substrate/scaffold response. It

has been shown that the stiffness of the substrate affects the growth of mesenchy-

mal stem cells in that adapt to the stiffness of their substrate by differentiating

toward lineages that reflect the substrate stiffness [94]. For example, on soft

substrates mimicking the stiffness of the brain, stem cells tend to evolve into a
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neuronal structure that are highly elongated, while on much stiffer substrates

(e.g., bone-like stiffness) the same cells may grow more isotropically. Under-

standing the deformation and force transmitting mechanisms of the substrates

and scaffolds used in the culture are precursors to such studies. It calls for fur-

ther understanding of the structural changes and the associated changes in the

response of cells so that the efficacy of the methods utilizing structure-property

correlation can be improved and mechanobiology will emerge as a mainstream

technique along with the conventional ones.

Biomimetics

Biomimetics aims at nature-inspired design of engineering materials in order

to obtain high performance ultra-light hierarchical materials [38]. Engineer-

ing these new material systems require deep understanding of the mechanisms

by which the weakly bonded natural soft materials emerge with intriguingly high

strength, toughening and crack blunting [17]. Incorporating hierarchical designs

could push the limit of current composite technologies to newer levels. Practical

applications of bio-inspired designs require development of physically-based the-

oretical models that encompass information from various levels of hierarchies.

Learning and adapting nature’s design is truly a multidisciplinary research area

which requires the contribution from all areas of science and technology. The

success of above-mentioned applications rely on the accuracy with which the me-

chanical response of bio-materials can be quantified, which demands developing

constitutive theories that cater for complex features such as uncertainty.

In précis, there is a strong motivation to develop sophisticated theoretical and

computational modeling approaches that can embed a variety of complex details

within them through systematic connections at the sub-scale.
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1.5 Meso-scale Modeling of Fiber Composites

a

b

c

d

e

f

g

m

Figure 1.9: Various length scales in modeling the composite used in wind tur-
bines. When the structure changes from the wind turbine to epoxy molecular
structure, length scales changes from meters to A0 (figures adapted from ref-
s [25,37,95–98]).

As noted in Section 1.3 and in Fig. 1.3, fiber reinforced polymers (FRPs) sit at the

higher end of the stiffness spectrum in the family of polymers. Akin to the various

methods in modeling fibrous networks, FRP modeling can also be performed at

over a range of spatial resolutions. Figure 1.9 illustrates hierarchical structures

that may be resolved in typical FRCs at different length scale [25,37,95–98]. S-

tarting with a macroscale structure (Fig. 1.9a and b) the mechanics of laminates

(Fig. 1.9c) has been well established. Individual plies within these laminates may

exhibit randomly arranged fibers (Fig. 1.9d), which provides a meso-scale reso-

lution where individual fibers and their arrangements can be retained (Fig. 1.9e)
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and can naturally lead to understanding the role of composite topology under

protean loading conditions. In this work, we developed a micromechanics mod-

el at this level. Fig. 1.9f zooms into the matrix part which is usually epoxies and

Fig. 1.9g reveals the molecular length scale of epoxy which appears to be discrete

network of random filament arrangements. Hereafter we focus on modeling the

composite at the level of microstructure shown in Fig. 1.9e. Specifically, at the

interface damage in epoxy based polymers reinforced with long glass fibers.

Figure 1.10: Matrix cracking and interface damage in fiber reinforced composites
(adapted from [99]).

Composites are prone to damage that could initiate within the matrix, in fibers

or at the fiber-matrix interfaces (Fig. 1.10). Damage could be caused by the me-

chanical load and/or environmental effects during processing and functional life.

While microstructural topology generally plays a role in ascribing the severity of

damage, it takes prominence in situations where such microstructures experi-

ence ambient conditions that set up transients due to diffusion of temperature,

moisture etc. through the constituents. For example, dental composites used in

root canal implants are continually exposed to moist environments with varying
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chemical compositions (acidic/alkaline) [100].

Various meso-scale modeling approaches have been developed to predict the me-

chanical response of pristine FRCs (no damage) and those that account for dam-

age. Unit cell modeling has been a method of choice for analytical as well as

numerical modeling of FRC microstructures. However, these methods work well

if the underlying assumption of regularly arranged fibers reasonably describes

the real microstructure topologies. In his book [101], Mishnaevsky discusses in

great detail the various meso-scale modeling approaches for FRCs and provides

some guidelines toward modeling realistic architectures in 2D and 3D. A short

report on continuum mechanics by Böhm also discusses the basic guidelines for

modeling [102].

A quick survey of the literature on meso-scale modeling of FRCs incorporating

damage indicates a large body of work that considers composite degradation un-

der mechanical loads [103–106]. While microstructural topology plays a role

in the evolution of damage of FRCs under (quasi-)static mechanical loads com-

parison and this has been well-addressed through a variety of modeling strate-

gies [101, 102, 107], the situation is much more interesting if damage accrues

in random FRC architectures under diffusive processes. With this in mind, the

present work discusses the damage evolution and its impact on the mechanical

response as a function of FRC microstructural topologies. The idea is to probe an

aspect of topologically mediated degradation where microstructural constituents

play a vital role.
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1.6 Thesis Contributions

The key focus of this thesis is to investigate the mechanics of random microstruc-

tures with an emphasize on damage. Two types of random microstructures; dis-

crete filament networks and fiber reinforced composites are considered. The key

aspects accomplished in this work are:

• A MATLAB R© based FE preprocessing tool kit NetGen for the generation of

the filamentous microstructures. The capability of the tool kit includes:

– Generation of 2D random network structures.

– Topological characterization based on statistical parameters.

– FE pre-processing including meshing and automated generation of in-

put and sub-routine files for ABAQUS R©.

• A DN model for F-actin networks. The salient features are:

– 2D network of filaments and crosslinks.

– Accounted the variations in topology using fully random network struc-

tures.

– Implemented the failure of crosslinks using KMC algorithm.

– Developed empirical equations for the damage evolution (cross link

scission) that can be used in continuum models.

– Validated the simulation results with the existing experimental results.

• A non-affine continuum model for filamentous materials:

– Incorporated the underlying microstructural details using probability

distribution functions.
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– Tracking of the filament orientation evolution with deformation.

– Non-affine formulation based on the theory of amorphous solids.

– Incorporated the damage evolution equations from the DN model cal-

culations.

– Qualitative modeling of the rate-sensitive mechanical response.

• Parametric study of the mechanical response of filamentous networks with

an objective of creating a response map that can be used for different ma-

terials having similar microstructures:

– A comprehensive parametric study of networks with filament property

ranging from F-actin networks to three orders of magnitude higher.

– Developed contour maps of the hardening response, non-affine defor-

mation and damage.

– Explored the role of the filament stiffness in damage evolution.

• A micromechanics model for the moisture induced degradation of FRC mi-

crostructures:

– Considered different microstructures like regular, random and clus-

tered fiber arrangement.

– The topology characterization using statistical parameters.

– Linked the characterization parameters to the interface damage.

– Incorporated the degradation of interfaces with moisture using a de-

grading traction separation rule .
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1.7 Thesis Organization

Chapter 2 discusses in detail the numerical generation of random filamentous

networks using algorithms implemented in MATLAB R©. Characterization of the

random networks based on the topological parameters is the topic of discus-

sion in Chapter 3. It discusses the correlation of the mechanical response with

the statistical descriptors of networks. In Chapter 4, the applicability of the D-

N approach is shown using a model system of F-actin networks. Stochastic DN

simulations capture the qualitative and quantitative rate sensitive response of

F-actin networks. A non-affine continuum model which qualitatively captures

the experimentally observed rate sensitive response of F-actin networks is dis-

cussed towards the end. We expand this work further to account for the effect of

filament and crosslink properties in Chapter 5. Specifically, a map is develope-

d which shows the characteristic response of the network with the variation of

filament stretching and bending stiffness. The variation in the damage character-

istics for a range of filament/crosslink properties is also shown. Micromechanics

of fiber reinforced polymeric composite is the topic of discussion in Chapter 6.

The first part of the chapter discusses the characterization of the random fiber

arrangement and the later parts explain the interface damage and its correlation

with the topological factors.

Appendix A discusses the setup for the implementation of single crosslink simu-

lation, details of the time increment independent crosslink scission criterion, role

of stochasticity etc. A preliminary probabilistic model developed for the moisture

induced degradation due to chain scission in epoxies is briefly discussed in Ap-

pendix B. Appendix C lists the publications and conference presentations by the

author.
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Chapter 2

Discrete Network Approach and

Computational Model Development

2.1 Introduction

This chapter focuses on the computational aspects of the generation and charac-

terization of network topologies for modeling filamentous microstructures. It has

been shown by experiments that materials like F-actin networks, polymers, pa-

per, fluff etc. have filamentous microstructure and are similar in several aspects

vis-á-vis topological randomness, deformation mechanisms, damage etc. We de-

velop a generic model that captures the response of these materials. The model

explicitly accounts for the filamentous microstructure and is termed as discrete

network models (DN models). The capability of the model is demonstrated us-

ing a material for which extensive experimental data is available at both filament

and network levels. A literature review of the network models developed thus far

for materials mentioned above is presented in the first part of this chapter along
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Figure 2.1: GUI of the network generation toolkit, NetGen showing the input
panel.

with a table summarizing key features. Subsequent part gives a detailed descrip-

tion of the algorithms used for the topology generation of filamentous networks

with desired parameters that can approximate the microstructure of any of these

materials. A brief discussion about the statistical parameters used to characterize

the networks is discussed towards the end. Various algorithms used for network

generation and characterization is organized into different modules and is inte-

grated into a graphical user interface (GUI) frame work using MATLAB R©. The

GUI based toolkit (hereafter called NetGen) generates the networks with user

supplied input, characterize it using statistical parameters and provides the FE

models as the output which can be analyzed with the commercial FE package

ABAQUS R©. Fig. 2.1 shows the GUI of NetGen.
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2.2 DN Modeling of Fibrous Networks: A Review

Discrete network models help to understand the material response from a mi-

crostructural viewpoint. The advantage of such models is that the discreteness

of the kinematic processes and resulting kinetics of deformation can be tracked

in addition to modeling the macroscopic response. As the macroscopic response

has underpinnings to local effects observed in the microscopic scale, understand-

ing these mechanisms and processes enables us to better explain the macroscopic

response. Furthermore, it gives avenues for understanding mechanisms involved

in the damage evolution and helps to design such materials to overcome failure

or to engineer failure for our advantage. This can be also used to build predictive

models and to develop physically based continuum theories.

As elucidated in Chapter 1, one of the main objectives of this work are to under-

stand the origins of phenomena, such as rate sensitivity, effect of the constituent

concentration, filament/crosslink stiffness on the overall response etc. We also

study the process of damage evolution in filamentous network under externally

applied loads. Damage in these networks could be either damage of filaments

or the damage of the crosslinks which connects the filaments together. One of

the key assumptions in the model is that there exists a connection between the

filaments where they intersects. We assume that the filament remains intact and

limit our discussion to the damage of the crosslinks, vis-á-vis crosslink scission.

Depending on the length scales at which the random network structure exist-

s, mechanisms of deformation could be deterministic or stochastic especially the

process of damage. Materials like paper and random composites fall in the broad

category of networks with deterministic deformation mechanisms. As thermal

undulations and non-bonding interactions are dominant at the scale at which

synthetic polymers and biopolymers exhibit network structure, they fall in the
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broad category of stochastic showing a strong dependence on the applied force.

Due to thermal undulations, crosslinks of F-actin networks are rather transien-

t and are in a process of continuous breakage and reformation. The rate of

crosslink reformation is higher than the dissociation when no external force is

applied and a net fraction of crosslinks is present at any instant of time. And with

the externally applied load the rate of disassociation increases and shows an Ar-

rhenius type of dependence to the applied force. Unlike flexible polymer chains

which can be approximated by Gaussian chains, F-actin filaments are semiflexible

filaments with finite bending stiffness (see Section 2.6 for a discussion about the

classification of polymer chains). The model usually adopted for such filaments

is the worm like chain model (WLC) [108]. Filaments are in consistent thermal

undulations and the externally applied force has to pull the the filament straight

out of these undulations which costs energy and it adds to the thermal modulus

of filaments [77].

At larger length scales, e.g., in the case of paper, thermal undulations are less sig-

nificant and the crosslinks are rather stationary and the breakage depends on the

energy criterion. Another important aspect arises in the deformation of network

is non affinity; local deformation of the network differs from the macroscopical-

ly applied deformation. Further discussion on non-affinity and other important

considerations like isostaticity of the network is given in Chapter 5.

Discrete network models have been developed for materials like paper, biopoly-

mer,synthetic polymers, randomly reinforced composites etc. Depending on the

nature of the problem, some of them require a stochastic approach while others

are deterministic and our model is capable of modeling both these types [109].

The response of such materials are highly non-linear stiffening, non-affine and

shows softening and failure due to failure of filaments and crosslinks.
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The mechanisms of elasticity (entropic and thermal contributions) and damage

changes with both length scales and materials, and the response becomes either

deterministic or stochastic. A review of the DN modeling approach for various

materials are given in the next section, categorized based on the types of re-

sponse.

2.2.1 Discrete Network Models: Deterministic Approach

The entropic and thermal contributions to the elasticity is negligible at length

scales of microns or above. In such networks, failure of the crosslink/bond are

governed by the strain/stress based criterions. Paper, cotton, cellulose fluff, elec-

trospun networks etc. falls in this category. Models developed for such materials

account for the randomness in the topological arrangement and the mechanisms

for the filament and bond failure is usually deterministic. The overall response

may show the statistical variations which arises entirely due to the random nature

of the topology. Few researchers have tried investigating the damage evolution in

paper using FE based DN models. Heyden [110] did extensive work in develop-

ing DN models for cellulose fluff. Both 2D and 3D models have been developed

with both linear and nonlinear bond response. Bond fracture is also accounted

in the model and damage evolution was tracked with deformation. Other as-

pects probed are the effect of filament property, computational window size etc.

Isaksson and Hagglund [111] used a similar approach for modeling the response

of paper. The focus of that work was the fracture of the bonds connecting the

filaments and they compared the simulation results with experimental work and

found striking correlations. They observed a randomly distributed damage evolu-

tion which subsequently changed to highly localized damage as the deformation

progressed. In a subsequent work, same authors embarked on a numerical study
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of the damage evolution and identified that the peak stress coincides with the

onset of damage localization. They also developed damage evolution laws based

on the filament aspect ratio and the bond density [112]. Jan Astron et al. [113]

developed a DN model for fibrous networks like paper and observed linear de-

pendence of the filament density on the elastic modulus. Wu and Denizen [114]

developed an effective medium approach by averaging the strain energy contri-

bution over all directions and compared the results with the FE based DN models.

Wei et al. [115] modeled the response of electrospun networks incorporating the

fusion bonds between the filaments and non-bonding interactions. They used a

strain based failure criterion and found that the fusion bonds contribute signifi-

cantly to the elasticity of networks. Increase in the strength of electrospun net-

works by the addition of CNTs was studied by Agic et al. [116] by experiments

and DN models. Chen et al. [117] developed a DN model with an activation

strain based criterion for filament failure and modeled materials having length

scales from a range of 10 to 100 µm. Their model showed excellent correlation

with experiments for materials like paper, nanowoven cloth and nanomats.

2.2.2 Discrete Network Models: Stochastic Approach

Networks at submicron or lower length scales are strongly affected by the ther-

mal undulations which contribute to the overall filament modulus. Apart from

this, the elasticity could be entropic if the persistence length (lp) of the fila-

ments is small (see Section 2.6 for a discussion about lp). Typically biopoly-

mers and synthetic polymers falls in this category. Termonia et al. [118–121]

pioneered the discrete network modeling approach for linear chain polymers

like polyethylene where the individual polymer chains were modeled as linear
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springs. These models are based on the kinetic theory of fracture of solids devel-

oped by Zhurkov [122]. In his work, Zhurkov developed a universal rate relation

between life time of the bonds and the stress after rigorous experiments with

various materials like aluminum, plexi glass and several polymers. This work is a

pioneering work and has been widely used for modeling bond breaking process

both in synthetic and biopolymers1. Effect of molecular weight on the tensile

strength of ordered polyethylene fibers were probed using a DN model by Ter-

monia and coworkers [118]. They explicitly accounted for the chemical bonds

and assumed a stochastic bond breakage process. Both primary and secondary

bonds were modeled and the bond scission was incorporated using Kinetic Monte

Carlo approach. Various parameters relevant for the bond scission criterion were

obtained from experiments.

In a subsequent series of work, Termonia and Smith [119] probed the correlation

of molecular parameters like molecular weight, entanglement spacing etc. with

the mechanical response. Further, they studied the role of molecular weight on

the response of flexible chain polymer using a structured network; along with

both primary and secondary bonds, entanglement slippage was accounted in this

work. A similar approach was used to study the effect of entanglement spac-

ing on the response and the results were compared with experiments [120]. In

another work, they probed the effect of experimental conditions like tempera-

ture and the deformation rate [121]. This work was further expended to study

the biological problems like spider silk elasticity where crystallites and the soft

rubber like polymeric chains were modeled using a DN model [124]. Wang and

Jin [125] studied the damage mechanisms in amorphous polymers using a 3D

network model considering the entanglements and the sliding points of the poly-

mer chains. In all works mentioned here, a regular structured network was used

1G. I. Bell proposed a model, widely known as Bell model for receptor ligand bond breaking
based on the work of Zhurkov [123].
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and the bond/crosslink scission mechanism was stochastic. In the next para-

graph, a review of the DN model using randomly oriented filaments is given.

Another area where DN models have been widely used is for biopolymeric net-

works. MacKintosh and coworkers [74,77,126] did extensive experiments to un-

derstand the network response and developed models for the response of F-actin

networks. Head et al. [126] characterized the shear modulus and non-affine re-

sponse of F-actin networks. They proposed a material length scale (lb =
√

κ/µs)

and defined a measure of non-affinity (λna) based on this length scale. In a sub-

sequent work [77] they developed scaling laws for the network modulus based

on the filament property and qualitatively delineated various response regimes

based on the filament length and concentration. In doing so, they quantified

the role of thermal fluctuation in network response and identified a character-

istic length scale below which thermal effects are negligible. In the above two

works, crosslinks were fixed at the intersection point and were freely rotating

type. Marbini and Picu [127] studied various factors which affect the non-affine

response in random fiber networks; found that the non-affinity is independent of

the applied deformation and it decreases with the preferential orientation.

Onck et al. [78] developed FE based network models with rigid crosslinks and

looked at the stress strain response. In a 2D network model, the transition from

non-affine to affine response was attributed to the transition from bending dom-

inated to stretching dominated regime in the response of filaments and they as-

cribed the non-affine response solely to the topological effects [78]. Networks

with undulated filaments showed a similar response as that of straight filaments

but had a delayed bending-stretching transition. In a 3D network model, similar

response was observed but less stiffening due to less constraint effects [128]. A

work by Van Dillen et al. [80] compared the the DN model approach by Van der

Giessen [78] where the stiffening of the network is attributed to the topological
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effects and the work of MacKintosh [129] where the stiffening is attributed to

more of filament property. They also highlighted the discrepancy between the

persistence length2 and the bending stiffness of the filaments used in DN models.

Heussinger and Frey [130] modeled the non-affine response and the different

transition regimes of the filamentous networks with freely rotating crosslinks. In

another work, they studied the effect of the thermal fluctuations which contribute

to the elasticity of networks through entropic stiffness [131]. They looked into

the polydispersity and structural randomness those are not present in the ather-

mal modes and highlighted the importance of polymer chain length.

In all works mentioned above, crosslinks were assumed to be rigid/freely rotat-

ing. DiDonna and Levine [89] developed DN models where the elasticity and

failure of crosslinks were incorporated. The effect of crosslink unfolding was

probed using a crosslinks having infinite unfolding domains. Though this work

adopted a more realistic representation of the crosslink response, filaments were

modeled as linear springs that are incapable of bending. Due to this assumption,

the model failed to capture in initial bending dominated compliant response at

small strains. Chen and Shenoy [82] incorporated the effect of moelcular motors

into a DN model with crosslinks having finite stiffness. Using a computation-

al approach they showed that molecular motors are able to stretch the flexible

crosslinks to full extend there by stiffening the network several orders higher

than one with rigid crosslinkers.

2See Section 2.6 for a discussion about persistence length.
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Table 2.1: Summary of the literature review of DN models for various materials
showing the key features of each models.

Researchers Material Key Features

Termonia et al. [118–121] Polyethylene 2D Regular spring network, Stochastic crosslink

scission, Effect of molecular weight, entangle-

ment spacing etc., Both primary and secondary

bonds, Affine deformation

Termonia [124] Spider silk 2D Regular spring network, Stochastic crosslink

scission, Role of crystallites

Wang and Jin [125] Amorphous

polymers

3D Regular beam network, Entanglement sliding,

Non-affine response

Marbini and Picu [127] Semi- flexi-

ble

2D Random beam network, Role of fiber orienta-

tion, Non-affine response

Jan Astron et al. [113] Paper 2D Random spring network, Relation between fil-

ament modulus and network stiffness

Wu and Denizen [114] Wool assem-

bly

2D Random beam network, Effective medium

model

Heyden [110] Cellulose

fluff

2D and 3D Random spring network, Linear and

nonlinear crosslinks, Fracture mechanics based

crosslink scission

Isaksson and Hagglund [111] Paper 2D Random network, Fracture mechanics based

crosslink scission

Wei et al. [115] Electrospun

network

2D Random bead-spring network, Fusion bonds,

strain based failure criterion

Agic and Mijovic [116] Electrospun

network

2D Random beam network, Non-affine, Multi-

scale model
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Table 2.1 – Continued

Researchers Material Key Features

Chen et al. [117] Paper,

Nanowoven

cloth and

Nanomat

2D Random beam network, Scaling laws, Non-

affine, A general model for a different materials,

Activation strain based failure criterion

Head et al. [77,126] F-actin 2D Random beam network, Scaling laws, Non-

affine

Onck et al. [78] F-actin 2D Random beam network, Rigid crosslinks,

Nonlinear stiffening, Non-affine

Huisman et al. [128] F-actin 3D Random beam network, Rigid crosslinks,

Nonlinear stiffening, Non-affine

Heussinger and Frey [130,

131]

F-actin 2D Random beam network, Freely rotating

crosslinks, Polydispersity of filaments, Non-affine

DiDonna and Levine [89] F-actin 2D Random spring network, Crosslink with finite

stiffness, Stochastic failure of crosslinks, Affine

Chen and Shenoy [82] F-actin 2D Random beam network, Crosslink with finite

stiffness, No failure of crosslinks, Non-affine

Table 2.1 summarizes some of the key efforts in network-based modeling for

various material systems. From the summary, key features identified are– mod-

eling random filament topologies, accounting for affine/non-affine deformation

and incorporating right crosslink breaking mechanism; stochastic or determin-

istic depending on the problem. Models by Termonia incorporates stochastic

crossing scission but restricts the focus to regular networks with linear springs

between junctions for polymers. Didonna used random topologies and stochastic

cross link scission but ignored the role of filament bending. Further to it, only

crosslink unfolding was incorporated, not complete failure of crosslinks. Rest of
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the works use a DN model but do not account for the crosslink scission.

We develop a DN model for filament networks, which accounts for the actual

response of both filaments and crosslinks. Our model has all the three features

mentioned above that are considered to be important in modeling the response

of polymers. By incorporating the stochastic failure of crosslinks as observed in

experiments, it captures both the qualitative and quantitative network response.

A detailed overview of algorithms developed for the generation and characteri-

zation of networks is given in the next section.

2.3 Network Generation

Network comprises of filaments and crosslinks which binds them together. Based

on the type of filament orientation distribution (θρ̄), networks can be broadly

classified into two; networks with filaments oriented in all directions (uniformly

distributed) and networks with filaments having a preferred orientation (nor-

mally distributed with specified mean angle and standard deviation). We do

simulations on numerically recreated networks by assuming the filaments to be

line segments and the crosslinks to be the intersection points of the line seg-

ments (both line segments and filaments are used interchangeably to represent

the filaments). For the computational studies of network structures, we devel-

oped a MATLAB R© based toolkit, NetGen that creates filamentous networks with

specified filament density, orientation, type of crosslinks etc. It also provides the

facility for topology characterization, generation of the necessary FE mesh and

storing it as a file that can be seamlessly read into ABAQUS R©. In a nutshell,

it works as a FE preprocessor for filamentous network topologies. The software

also creates the part of the subroutine files which are necessary to implement the
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crosslink scission algorithms.

Input

Network Generation

Characterization

FEM Preprocessor

ABAQUS® input file

Figure 2.2: The overall work flow of NetGen.

Figure 2.2 show the basic structure of the software. The GUI accepts input in-

cluding the size of representative volume element (RVE), number of filaments,

mesh size, type of the filament orientation, type of crosslinks and the material

properties. Inputs are passed to a network generating module which generate

the networks based on the requested filament density (ρ̄)3. Once the topologies

are created, it is passed to the network characterization module where the net-

work statistics about the crosslinks and the orientation are extracted out. After

3ρ̄ = NL2/W 2 is a non-dimensional filament density where N is the number of filaments, L is
the length of a filament and W is the size of the computational window. See Section 2.3.2.
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this , FE preprocessor module does the operations required to generate an input

file amenable for ABAQUS R©. Each module in Fig. 2.2 consists of a series of op-

erations and it is described in subsequent sections. Before delving into details of

the algorithm, a brief introduction about the rigidity percolation is given in next

section.

2.3.1 A Note About Rigidity Percolation

One of the important considerations while working with filamentous networks

is the concept of percolation. It appears as a generic concept, e.g ., conductivity

percolation, rigidity percolation etc. Conductivity percolation refers to the con-

tinuity of electric or communication signals. It checks when a signal is supplied

at one end of the network whether it reaches other end or not. The percolation

relevant in the present context is rigidity percolation which refers to the ability of

the network to carry load. If the network is above rigidity percolation threshold,

it could resist the applied load which implies that it has filaments connected from

end to end, at least a single strand [132]. The percolation of the networks can

be measured in terms of the filament density of the network.

Rigidity percolation can be explained with the help of a simple exercise: Consider

a RVE of given size where the number of filaments is increased starting from zero.

At a very low filament density, initially the individual filaments are stranded

in the domain, then it forms small clusters which are not connected to each

other and cannot resist any deformation. As the density increases, these remote

clusters get interconnected and gradually develops rigidity, the critical density at

which this transition takes place is identified as rigidity percolation threshold ρ̄c

and it corresponds to a filament density of ρ̄ = 5.7 [133]. This is analogous to

say that network makes a transition from simple mechanism to a structure when
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the number of filaments reaches a critical value. A simple example is a four bar

pin joined linkage which cannot resist shear loads, but when a diagonal linkage

is added, it could resist shear deformations. For all simulations in this work, ρ̄

is above this threshold and the network is a rigid structure which can resist the

applied loads.

The percolation mentioned above is in terms of the topological arrangements,

which is similar to conductivity percolation. In order to carry load, filaments has

to be connected to each other. We are assuming a case where the filaments form

physical connections at the topological intersection points. Frictional force at the

intersections could also lead to the percolation, but these are not accounted in

the current work. In our case, the percolation is entirely due the formation of

crosslinks. At densities well above the percolation threshold, the network is a

highly redundant structure. One of the examples for such a network is birds nest

which is made up of random arrangement of filaments. It has important implica-

tions from a failure viewpoint too. Due to the highly redundant nature, failures

of few filaments do not result in the failure of the entire structure. Networks with

crosslinks that could break, represent such a scenario. Though few crosslinks are

broken, the network still remains redundant and carries load, but when a critical

fraction of crosslinks breaks, the rigidity is lost and the structure collapses.

2.3.2 Generation of Line Segments

The 2D discrete network model is made up of line segments confined in a single

plane. Intersection points of line segments are considered as crosslinks with zero

initial length. Line segments are of finite length and are assumed to be straight.

The software has the capability to generate networks with uniform/preferred

orientations. Uniform distribution means line segments are equally present in
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all directions. For the preferred orientation, we use normally distributed line

segments with mean angle (µ′) in the preferred direction along with the specified

standard deviation (Σ). In both cases above, only the orientation distribution(θρ̄)

is varied but the location of the line segments follows uniform distribution.

Input data to NetGen are the size of RVE (W ), number of line segments (N),

length of line segment (L) and type of orientation function (uniform/normal).

The filament density is defined as ρ̄ = Nl2/W 2 [78]. Rigidity percolation of the

networks are ensured by considering a network density of ρ̄ ≥ 5.7. The size of the

computational domain is determined in such a ways that the boundary effects are

minimum. Unless otherwise stated, all networks have an aspect ratio ofW/L = 4.

A detailed analysis of the boundary effects based on the W/L ratio is given in the

dissertation of Heyden [110]. To start with, location of the line segments is

determined based on a random seed within the size of RVE. The orientation of

the line segment is determined using another random seed and a line segments of

length L is generated based on the location and orientation. When a line segment

is generated inside RVE, its intersection with other line segments already inside

the RVE and the boundaries of the RVE are found to define the crosslinks and the

periodic boundary conditions (b.c.’s). The Intersection point Px, Py between the

line segment L1 and L2 is obtained by using Cramer’s rule [134].
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Input (S, L, N, n, filament 
properties, type of crosslink, 

crosslink stiffness)

Randomly generate the location of 
a filament

Generate a random angle based on 
normal or uniform distribution

With the random location and 
random orientation, a line segment 

of the length ‘L’ is generated

Intersection of the line segment 
with the boundary and the pre-

existing line segments are found

Periodic boundary condition is 
applied at the boundaries

Dangling ends are removed

Store the network data

 !" !#$$%" &" '  

Yes

No

Figure 2.3: Algorithm used for the generation of periodic networks with the
desired orientation and density.
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denotes a determinant, (x1, y1) and (x2, y2) are the points on the

line, L1 and (x3, y3) and (x4, y4) are the points on the line L2. The determinant in

Eq. 2.1 can be expanded as [134],

Px =
(x1y2 − y1x2)(x3 − x4)− (x1 − x2)(x3y4 − y3x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)

Py =
(x1y2)(y3 − y4)− (y1 − y2)(x3y4 − y3x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)

(2.2)

This gives the intersection of two infinitely long lines and it is ensured that

(Px, Py) lies on the line segment considered. Each generated line segment is

compared against all existing line segments in the RVE and the RVE boundaries

to find out the intersection points. All the intersection points are stored as the
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global node numbers to be used in the FE model.

2.3.3 Periodic Boundary Conditions

(a) (b) (c)

Figure 2.4: Steps involved in applying the periodic boundary condition for a
line segment crossing the boundary of the RVE. (a) A line segment is crossing
the right boundary. (b) The segment is terminated at the intersection with the
boundary and is inserted back at the opposite boundary. (c) The same process is
repeated at the top and bottom boundaries.

Networks generated are assumed to be a small sample from a big network struc-

ture. To approximate this, we prescribe periodic boundary condition at the edges

of the RVE; both topological periodicity and compatible deformation which is

ensured by proper kinematic b.c’s during the FE simulations. In order to achieve

the topological periodicity, we adopted the procedure depicted in Fig. 2.4. For a

topology to be periodic, it should be continuous when tiled up in both horizontal

and vertical axis which necessitates the continuity of the line segments across the

edges. When a line segment crosses the boundary (Fig. 2.4a), it is terminated at

the intersection with boundary and is translated to the opposite boundary and

the same horizontal level and is continued inside the RVE (Fig. 2.4b). In this

particular case, after the first translation the line segment crosses the boundary
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at the top, so the same procedure is repeated and the remaining length of the

line segment is continued at the bottom boundary. The algorithm has the capa-

bility to apply periodic b.c. to line segment of any length crossing the boundary.

The deposition of line segments is continued until the required numbers (N) are

placed in the RVE to obtain the desired density. Once this condition is satisfied,

The generation process is stopped and the coordinates of the line segments and

the the crosslinks are stored.

2.3.4 Dangling End Removal

Figure 2.5: A network with periodic b.c. applied and dangling ends removed.
Red line segments are dangling ends that extends beyond the end crosslinks
which is removed for computational efficiency.

Line segments are present in all orientations and they make multiple contacts

with the other segments inside the RVE. A network after applying periodic condi-

tion is shown in Fig. 2.5 (red line segments). It can be noted that edges of the line

segments project beyond the end crosslinks. Such ends are called dangling ends.

In the analysis, physical contact and interaction between the line segments other
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than at crosslinks are not considered and these ends which do not contribute to

the structural rigidity of the networks are removed to enhance the computational

efficiency. The final structure of the network is shown by black line segments in

Fig. 2.5. Dangling ends are important if frictional, contact or non-bonding forces

are accounted, else it may result in underestimating the network rigidity.

After the dangling end removal, the network generation process is complete and

the control is passed to the statistical characterization unit. Once the dangling

ends are removed, the effective line segment is the distance between two end

crosslinks. The distance between two crosslinks are calculated and the average

of the distance between crosslinks calculated for the all crosslinks in the RVE

and is defined as the mean distance between crosslinks (lc). Cox [135] developed

a theoretical expression for lc, given by lc = πL/2ρ̄. The average value of lc

obtained from networks generated by NetGen is comparable with value of lc

from the theoretical expression.

2.4 Network Characterization

Even if the input parameters are held fixed, the randomness in the network gen-

eration algorithm results in different realizations. Naturally, one may expect

variation in the mechanical response due to differences in network percolation.

This necessitates the development of parameters other than ρ̄ to characterize the

network in terms of their mechanical responses. Networks exhibit highly non-

linear and anisotropic responses which are inextricably linked to the topology.

The network response could depend on the type of crosslinks, location of the

crosslinks, loading direction, orientation of filaments etc. It is also known that

the local architecture affects the percolation of the networks and it in turn has
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a strong influence on the overall response. This is more dominant in the case

of networks with low ρ̄. In such cases the overall topological variability among

different realization will be very high.

(a) 1× 1 compartment (b) 3× 3 compartment

Figure 2.6: Two approaches to calculate the statistical parameters like the num-
ber of crosslink, distance of crosslinks from a reference axis (red lines), projected
length of the line segments on the axis etc. (a) Shows the distance of crosslinks
from the reference axis when the RVE is considered as a single compartment (b)
Shows the same network when the RVE is divided into 3× 3 compartments.

A method commonly used to find out the statistical descriptors that can char-

acterize the response is nearest neighbor statistics. This method is commonly

employed in the characterization of packing of hard spheres, discs and random

filament arrangement in composites [136–138]. Kushsch et al. [139] developed

nearest neighbor statistics for fiber reinforced composites, identified clusters of

fibers that are highly stressed regions in the composites. We developed a similar

statistical approach based on the center to center distance of fibers in composites

and correlated it with the interface debonding [140]. This method also identi-

fied clusters of fibers based on the coefficient of variation of the center to center

distance of fibers.
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Read the Network data and the 
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Group crosslinks into different 
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Figure 2.7: The work flow in the network characterization module where the
types of crosslinks are identified and parameters like AF and FF are calculated.

48



An approach to account for such local variations in the filament distribution is

to compartmentalize a given network into different regions for the calculation

of statistical parameters and then find the equivalent (Fig. 2.6). The NetGen

software has the capability to divide a given network into any number of com-

partments for the calculation of the statistical parameters. The characterization

module can identify the type of crosslinks, projected length of the line segments

onto a reference axis and the distance of the crosslink from the axis.

We define four parameters; XM , XF , AF and FF to characterize the topology

based on the topological information, such as crosslink density and the filament

orientation. A detailed discussion about these parameters is given in Chapter 3

in conjunction with the discussion of mechanical response and its correlation.

The flow of activities in the characterization module of the NetGen is shown

in Fig. 2.7. It first identifies the type of crosslinks as X, T or L (Fig. 2.10) and

then generates the statistics of XM , XF , AF and FF in a sequential manner. The

output of the module is saved to a Microsoft excel file.
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Read the network data and input

Mesh the line segments based

on the required mesh size

Store the local and global node 
numbers

Generate crosslinks at the intersection 
points based on the type of crosslink

Write the input file in the ABAQUS®

Syntax

 !" !#$$%" &" '  

Figure 2.8: Steps involved in the FE preprocessing module.

2.5 FE Preprocessing

Our aim is to develop a computational model for the discrete networks in a finite

element framework. The model is implemented in a commercial FE software

ABAQUS R© for which an input file is written that can be seamlessly read into it.

This help us to utilize the solver and post processing capability of ABAQUS R©
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while focusing ourself on the development the discrete network model.

(a) µ′ = 450 and Σ = 150 (b) µ′ = 450 and Σ = 450

(c) µ′ = 900 and Σ = 150 (d) µ′ = 900 and Σ = 450

Figure 2.9: Networks having normal filament orientation distribution with the
orientation histogram in the inset. The mean angle (µ′) and standard deviation
(Σ) of each network is shown in the label. It can be noted that all filaments are
oriented to the mean angle in figures (a) and (c) but the spread of the distribution
increases as Σ increases as shown in figures (b) and (d). Networks become
more uniformly distributed as Σ increases and the overall number of crosslinks
increases.
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Figure 2.8 outlines the steps involved in this module. NetGen is capable of gen-

erating two types of networks based on the filament distribution by selecting the

options in the input panel. It also has a provision to generate same topology with

rigid and compliant crosslinks. The types of networks that can be generated by

NetGen are

1. Uniform filament orientation distribution

2. Normal filament orientation distribution

3. Networks with rigid crosslinks

4. Networks with crosslinks having finite stiffness

5. Type 3 and 4 at the same time

Input to the FE preprocessor is the number of mesh per filament, type of crosslink,

type of element and the material property of both filaments and crosslinks. Fig-

ure 2.9 shows two networks with normal filament orientation distribution, gen-

erated using NetGen. Figure 2.9a shows a network with a mean angle µ′ = 450

and a standard deviation of Σ = 150. The network appears to be sparse with

most of the filaments oriented along the diagonal along 450. When the standard

deviation is increased keeping the µ′ the same (Fig. 2.9b), the distribution be-

comes more random and has more crosslinks and the networks appears to be

more dense though the ρ̄ in both Fig. 2.9a and Fig. 2.9b is the same. Figures 2.9c

and d shows a similar case when µ′ = 900. In Fig. 2.9c, filaments are aligned in

the vertical direction and the disorder increases as the Σ increases.

52



2.5.1 Mesh Generation

The most important step involved in the FE preprocessing is finite element mesh-

ing. Filaments in the DN model are modeled using beam elements as the actual

filaments show resistance to bending. The element type used is based on the

aspect ratio of the beams. For slender beams Euler- Bernoulli finite elements

(B23 in ABAQUS R©) are used while for stubby beams, lower order element like

Timoshenko beam elements (B21) are used. Within NetGen, meshing is done

based on the number of elements required per filament (user input) and is ac-

complished in two stages:

First stage: A filament is discretized based on the crosslink locations. This is

done after the network generation when the intersection points are identified

and they are assigned the node numbers. After the first stage of meshing, the

mesh size is of the order of lc.

Second stage: Filaments are already discretized at all crosslink locations and

a new mesh is formed if the distance between two crosslinks are greater than

or equal to twice the mesh size. This is done based on the number of elements

specified by the user. The algorithm run through each line segment one at a

time. In between two crosslinks, a new mesh is formed only if the remaining

length is again greater than or equal to twice the input mesh size. This constraint

helps to avoid very small elements being formed. Such elements may have effect

on the numerical convergence during FE simulations. It calculates the average

mesh size based on the filament length and the number of mesh required as

ζ = La/n where ζ is the mesh size4, La is the projected length of the filament

and n is the number of elements required per filament. This operation is done

on the horizontal projection of the filaments and then rotated back to the actual

4In simple terms, it is the average dimension of the FE mesh created on the filament.
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orientation of filaments. Each filament is stored as coordinate pairs in an array

with its starting and ending points together with crosslink locations. First, the

distance between two points (end point and the next crosslink) is calculated and

if the size greater than the mesh size, it is discretized.

The meshing approaches are somewhat different for networks with rigid crosslinks

and flimsy crosslinks. For the rigid ones, there entire network is a single instance

(it is an ABAQUS R© terminology) based on a single coordinate system and all

mesh points are global node numbers. In the case of networks with finite stiff-

ness crosslinks, each filament is a separate instance having its own local coordi-

nate system. Crosslinks acts as the global node numbers while the mesh points

acts local to a line segment. NetGen calculates the statistical parameters of the

networks and does the complete FE preprocessing. The output of the FE prepro-

cessor unit is fed to the next module where an input file in ABAQUS R© syntax is

written and can be directly used for simulations in ABAQUS R©.

2.5.2 Generation of Input Files

Once the meshing is complete, the next task is to form the crosslink pairs for

the crosslink with finite stiffness. Crosslinks are treated as springs and is imple-

mented as Spring2 elements in ABAQUS R©. Crosslinks are assumed to have a

constrained translational degrees of freedom while it is free to rotate about the

axis perpendicular to the plane. This is implemented using separate springs a-

long both x and y axis. The line segment edges on the vertical boundaries are

identified for the kinematic coupling for the periodic b.c.’s where all degrees of

freedom on the left and right edge are tied together. The horizontal edges are

identified for applying load b.c.’s. Once all these sets are identified, the output

is written to a text file in the format of ABAQUS R© input file [141]. During this,
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the material property is assigned to the filaments/crosslinks and the b.c.’s are

applied on the boundaries. It generates and stores the input files, data necessary

for the implementation of crosslink breaking algorithms, statistical parameters of

the networks and images generated at various stages.

T

X

L

Figure 2.10: A closer look at a network with free ends removed. The green
intersections are crosslinks and red dots shows the finite element mesh. X,T and
L-types of crosslinks are marked in the figure.

2.6 Mechanical Properties of Constituents

The DN model is a generic and can be used to model a wide range of materials

which exhibit the fibrous network structures at any level. The overall macroscop-

ic properties depend on the length scale at which the material exhibit the network

structure, properties of the constituents like filaments and crosslinks, presence of

external media like fluids, failure mechanisms for filaments and crosslinks etc.

If we consider two materials which exhibits the network structure at the same

length scales but different macroscopic properties; it could be attributed to the

parameters like the ρ̄ and/or the properties of the filaments and crosslinks. A

brief discussion about the material property of the filaments and crosslinks is
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given in this section for the sake of completeness.

Filament Property

Filaments in the network is an approximation of the short segments of polymer

chains. The physical characteristics and the material properties of the filaments

are available from single filament experiments. One of the parameters used to

classify the polymers chains is the long range correlation existing in the chains.

Based on the bending stiffness of the chains, a length scale referred to as the per-

sistence length (lp = κ/kBT ) is defined, where κ is the filament bending rigidity,

kB is the Boltzmann constant and T is the temperature. The long - range order

in polymers depends on this length scale and based on lp polymers are broadly

classified into three types [60].

• Flexible (L < lp)

• Semi-flexible (L ∼ lp) and

• Rigid (L > lp)

where L is the length of the polymer chains. With increasing lp, the long range

correlation in the polymer chains increases and bending deformation requires

more energy. In the case of flexible polymer chains, any two points beyond the

length of the monomer units are uncorrelated. Gels and rubbers fall in this cat-

egory and the mechanism of deformation is entropic [34, 60]. During deforma-

tion, the number of energetically favorable configurations reduces resulting in

higher energetic cost. One of the key differences between entropic elasticity and

conventional elasticity is in the case of thermal response. Increasing tempera-

ture increases the stiffness in the case of former while the latter becomes more

compliant.
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When lp is nearly equal to the polymer chain length, it is called semi-flexible.

Semi-flexible polymer chains exhibits rich dynamics due to the bending stiffness

of the chains unlike the flexible chains and thermal effects. There are two energy

components associated with stretching; thermal and mechanical. At finite temper-

ature, polymer chains will be in thermal oscillations and to pull out of transverse

thermal fluctuations costs additional energy. The overall filament modulus could

be the equivalent of the mechanical and thermal modulus [142].

µ =
µMµT

µM + µT

(2.3)

where µ is the effective modulus, µM is the mechanical modulus and µT is the

thermal modulus. For F-actin filaments of diameter d, only if the chain length be-

tween two crosslinks is less than a characteristic length l∗ = (d2lp)
1/3 ∼ 100 nm,

thermal fluctuations are insignificant [142]. It implies, for a realistic modeling

of biopolymers, one has to account for the thermal effects.

These filaments could be straight, curly or undulated ones. Length of the fila-

ments also pay a significant role in the overall response. Even if the filaments are

long, the distance between the crosslinks lc may be playing a dominant role if the

crosslinks are rigid. Usually for the modeling, if the chain segments are smaller

than lp, chains are approximated as straight filaments and thermal effects can be

neglected. Van der Giessen and coworkers [78, 79] developed 2D and 3D net-

work models for F-actin filaments using both straight and undulated filaments.

They observed that the response remains similar in both cases except delayed

bending to stretching transition in the case of undulated filaments. When lp is in-

finitely large or the chain segments are shorter than lp, chains acts like rigid rods.

In the current model, we neglect thermal energy and assume that the filaments

are straight and of finite length.
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Crosslink Property

The overall mechanical response of the network is grossly determined by the in-

teraction (load transfer) between the filaments. This interaction could arise from

the presence of crosslinks, friction at the intersections, physical entanglements

or the the Van der Waals interaction or combinations thereof. For the sake of

simplicity, only crosslinks at the intersection points are considered in the cur-

rent model. The property of the crosslinks has to be carefully considered for

the accurate representation of the actual system considered. The response of

the crosslinks could range from linear response to highly nonlinear and flimsy

to rigid. In the case of biopolymers like F-actin networks, actin binding proteins

(ABPs) forms the crosslinks and it shows very highly nonlinear response elicited

by experiments on single ABPs. For the modeling of F-actin network, we used a

simplified bi-linear representation for a highly nonlinear hardening response of

the crosslinks [82].

Crosslinks are modeled as springs with independent degrees of freedom in both

x and y directions (see Section 2.5). For implementing the failure criterion, the

resultant forces are calculated and failure implies, loss of stiffness in both the

directions.

Conversion of the Filament Concentration to Filament Density

Biopolymers like F-actin is usually expressed in terms of the concentration of

F-actin filaments and the crosslinking proteins. In order to develop DN model

for biopolymers, the filament concentration has to be converted into filament

density. This can be done based on the dimension of the constituent molecules.

58



F-actin has a dimer structure made up of the two strands of G-actins [60]. G-

actin has a spherical structure and the dimensions are known. Total length of the

filaments inside RVE for a given ρ̄ can be obtained by ρ = ρ̄/L. This is translated

in to length per unit volume by considering the dimension of the RVE. Using the

dimension of G-actin, number of G-actin present in the RVE can be obtained.

This information can be converted into number of moles and which in turn can

be converted into weight per unit volume. This can be further converted into

molecular concentration unit micromolar and can be compared with the given

concentration of F-actin. Using this approach, DN models is built for biopolymers

where the network desity in experiments is expressed in the concentration of the

constituents.

Failure Response of Crosslinks

In the DN model, the failure of networks is through the failure of crosslinks.

The mechanisms for the failure of crosslinks is highly dependent on the length

scales of the networks. If the network is in a microscopic scales where thermal

undulations and non-bonding interactions are dominant, the failure becomes a

stochastic process. Such kind of process can be modeled using Kinetic Monte

Carlo approach (see Chapter 4 for a discussion about the KMC algorithm). Failure

of crosslinks in biopolymers falls into this regime.

If the network structure exists at a larger length scale where the process is more

deterministic, fracture mechanics based failure criteria like traction separation

rule can be applied [110]. A wide range of materials like paper, felt, electrospun

polymers etc. can be approximated into this category. The failure criterion can

be written as [110]

g(F ) =

−→
F

Fult

− 1 (2.4)
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where g(F ) is the slip criterion,
−→
F is the vector sum of the forces and the Fult is

the ultimate force in the crosslink.

The overall network stiffness, toughness and ultimate strength depends upon

the crosslink response. Rigid crosslinks make the network stiffer and of high

strength but it may result in low toughness and low failure strains. Engineering

the crosslinks can yield networks having exceptional properties, in a computa-

tional study by Salib et al. [143], a network with a fraction of the labile crosslinks

rendered the network 200% stronger than one with all rigid crosslinks.

The network model developed in this chapter can be used to model the response

of a variety of materials having underlying filamentous microstructure. We chose

F-actin network as an exemplar to show the capability of the model. Chapter 3

focuses on the variability in the response of networks due to random topological

realizations and limiting the size of RVE. Chapter 4 focuses on the rate dependent

stochastic failure of F-actin networks. Chapter 5 explores the network response

over a wide parametric space, starting with the F-actin networks focusing mainly

on the nonlinear stiffening, non-affine response and damage.
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Chapter 3

Influence of Topological

Characteristics in Network Response

3.1 Introduction

In Chapter 2, we described the computational approach developed in this work

to generate fibrous architectures with a given basic set of topological and physi-

cal parameters. We also showed that one could obtain myriad realizations even

if the basic structural parameters for networks are kept constant. Consequently,

for fixed constituent material properties, it is of interest to know how the topo-

logical characteristics of a network would influence the overall response. Each

realization carved out of a bigger sample could potentially generate a different

quantitative response that depends on its domain size (sampling window) W ,

filament density ρ̄ and their orientation distribution with respect to the loading

direction. Naturally, these aspects raise a multitude of questions regarding the

effect of these topological features on the response variability. While one may

paint a qualitative landscape of the range of responses that could be obtained,
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e.g., linear/nonlinear, affine/non-affine, stiffening/softening, or a combination

thereof, it is important to understand and ideally, predict the variability in the

responses as a function of the uncertainties arising from network topology.
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(a) Network with ρ̄ = 10 (b) Filament orientation distribution

Figure 3.1: (a) A periodic filament network. (b) Filament orientation distribution
function θρ̄ of the network shown in (a). Though the prescribed θρ̄ is uniform, the
resulting distribution is not perfectly uniform. Such anomalies lead to variability
in the response. The reference axis shown.

We cite two examples to motivate some of the complexities associated with the

characterization of the mechanical behaviors of such fibrous networks. Consider

the network shown in Fig. 3.1a, generated by prescribing a uniform orientation

distribution using NetGen (Fig. 2.1). The filament orientation distribution θρ̄

corresponding to the network is shown in Fig. 3.1b. For this network, Fig. 3.2a

shows the stiffness-strain response when deformed independently in the forward

and reverse directions under simple shear. For a topologically isotropic network,

one should expect the network to generate near-identical responses whether de-

formed in the forward direction or its opposite direction. However, as can be

seen, the actual result shows some asymmetry indicating the influence of the

deviation from an ideal uniform filament orientation distribution. The second

case serves as an exemplar of the variability produced by multiple realizations
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of network for a given ρ̄. Figure 3.2b collates the responses of twelve different

realizations (ρ̄ = 10) deformed under simple shear. Although some results tend

overlap, in general, there exists a considerable spread in the response underscor-

ing the role of network topology. Note that here we assume a simple constituent

description for the filaments, that of linear elasticity. Nonlinear material models

and damage mechanisms further complicate the response characteristics and also

the variability.
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Figure 3.2: Examples of variability in mechanical response for ρ̄ = 10. (a) Shows
the same realization loaded in opposite directions. (b) Shows the different real-
izations for same ρ̄ loaded in same direction.

This chapter discusses some effects arising from the topological characteristic-

s of fibrous networks by considering multiple network realizations where one

parameter is varied while others are held fixed. For a given ρ̄, increasing the

computational domain size improves the topological corroboration with the ide-

al (expected) one by virtue of the sampling statistics. However, amongst other

aspects, the choice of the computational domain size is restricted by the com-

putational effort that can be handled by available computational power at our

disposal. Clearly, smaller sampling windows are expected to produce larger vari-

ations in the macroscopic behaviors [144–146]. In other words, to obtain a
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good statistical measure of the network responses, one has to choose a reason-

ably large representative volume element (RVE) so that fewer realizations are

required or perform simulations on a large number of realizations with smaller

domain sizes. The available computational resources during this work indicated

that a sampling window of 40 µm allows obtaining results in a reasonable time.

Next section discusses the variability in the filament distribution and selection of

an optimum sample window size to the reduce this variability.

3.2 Topological Variability

The issue of sampling size is important in constructing artificial microstructures.

For example, from the viewpoint of computational cost it may not be possible

to simulate large scale specimens (Fig. 3.3). Instead, one may need to choose

smaller windows from the large specimen. While on an average, such a win-

dowing procedure is expected to retain global features of the larger architecture,

e.g., filament and crosslink density but the local details could vary significantly as

shown in Fig. 3.3. In turn, this variability in the local architectures is deemed to

influence the mechanical responses. Although, the algorithm attempts to gener-

ate networks that adhere to the input characteristics, there is always a possibility

of the generated networks deviating from expected features. The deviation is

quantified using statistical parameters and suggest methods to achieve perfect-

ly uniform networks. We briefly discuss these statistical aspects with reference

to the topological isotropy as a function of computational window size (W) and

filament density (ρ̄).
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W

 

Figure 3.3: Idealization of actual network by smaller computational windows.
Depending on the location, filament distribution inside windows could be differ-
ent. Though nominal network parameters like ρ̄ and number of crosslinks are
the same, response could vary for different filament realizations.

To begin with, we prescribe a uniform filament distribution for a given window

size W. Filaments are randomly placed in the window until the desired ρ̄ is ob-

tained. In order to quantify the filament orientation distribution of a given net-

work, filaments are grouped into ten bins of orientations ranging from 00 to 1800

with each bin of width 180. The number of filaments in each bin is normalized

by the total number of filaments and this filament fraction was used in rest of

the calculations. For a given ρ̄ or W , we consider five network realizations to

obtain the average, µ′ and the standard deviation, Σ of the filament fraction .

Given that the range of angles considered is from 00 to 1800 and the distribution
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is uniform, the average value is always ≈ 10%. The Coefficient of variation is

Cv = µ′/Σ. In the following sections, we discuss the statistical aspects arising

from computational window size, W and filament density, ρ̄.

3.2.1 Increasing the Computational Window Size

One of the approaches to get the idealized uniformly distributed filament net-

works is to increase the W for a given ρ̄. We considered a case with ρ̄=10 and

increased the window size, W to find the optimum size at which the filament

distribution becomes uniform. Starting with a W= 30 µm, networks were gen-

erated with uniform filament distribution and filaments of length, L=10 µm and

the largest W was of 1000 µm (Fig. 3.4). As the W increases distribution tend to

be more uniform, reflected as a drop in the value of Σ.
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(b) W = 1000µm

Figure 3.4: Filament distribution with ρ̄=10 for two window sizes are shown
with the mean (red line) and standard deviation. As the W increases, the distri-
bution becomes more uniform.

Figure 3.5 gives a summary of the parametric study with W ranging from 30 µm

to 1000 µm. From the µ′ and Σ of each realization, Cv was calculated. Using the

Cv of five realizations for a given W , µ′ and Σ of the Cv of each W was calcu-

lated. From the limited number of realizations considered here, we deduce that
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the variability is very high when the W is 30 µm and there is a limitation for the

lowest value for W that can be considered due to the fixed filament length of

10 µm and the rigidity percolation requirement. It can be noted that increasing

W beyond 200 µm does not yield any substantial increase in the convergence

of numerical approximation of uniform distribution (shown by the blue zone in

Fig. 3.5). Increase in W is offset by the cost of computation. From a computa-

tional cost stand point, for a given ρ̄, it would be necessary to consider a large

number of realizations to obtain accurate bounds on the response variability, if

one chose to use small W. For the present work, we chose ≈ 5 − 8 realizations

to obtain the variability due to topological effects. The accuracy could be further

improved with more realizations. The value of W used in the current study is

marked in Fig. 3.5.
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Figure 3.5: Variability in filament distribution decreases as the W increases. In-
creasing the W beyond 200µm does not reduces the variability in filament distri-
bution.
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3.2.2 Increasing Filament Density
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(b) Network with ρ̄=8000

Figure 3.6: The filament distribution for ρ̄=10 and 8000 is shown with the mean
(red line) and standard deviation. As ρ̄ increases the distribution becomes more
uniform. W remains fixed at 40µm.

An allied question that arises is - how would ρ̄ affect the variability if W is fixed.

As the filament location and orientation are randomly generated, more the num-

ber of filaments, better the chance of approximating the prescribed distribution

function. Figure 3.6 shows the filament distribution for two typical realization

with limiting values of ρ̄. At a ρ̄ = 10, distribution shows large variability and

the standard deviation Σ is high. As ρ̄ increases, the distribution becomes more

uniform and the standard deviation drops by an order of magnitude but only at a

very high filament density, ρ̄ = 8000. However, this is a reasonable choice only if

the global responses also tend to be independent of ρ̄, e.g., in networks mimick-

ing highly crosslinked synthetic polymers. In problems concerning low density

networks, e.g., biopolymers, increasing ρ̄ would not be a natural option, because

the responses tend to be a strong function of ρ̄. In such cases, using reasonably

large W with fewer realizations or small W with large number of realizations

would be the options. To find a good choice of ρ̄ for a given W = 40 µm so that

the filament distribution approaches theoretical uniform distribution, Networks

were generated with ρ̄ ranging from 5 to 8000 and five different realizations for
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each ρ̄. Using the similar procedure as in Section 3.2.1, Fig. 3.7 shows the vari-

ability of Cv on ρ̄, for a fixed W. It shows that Cv decreases as the ρ̄ increases

and there is a saturation value; the blue zone shown in figure. Increasing ρ̄ be-

yond 1000 do not change the distribution any further. It implies that multiple

realizations of networks with ρ̄ ≥ 400 would tend to yield nearly identical global

responses. Therefore, it may seem that the variability arising from topological

differences can be mitigated by choosing a ρ̄ for a given W.
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Figure 3.7: Variability in the filament distribution decreases as ρ̄ increases. In-
creasing ρ̄ above 1000 brings no change in filament distribution.
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3.3 Network Characterization

Reiterating the observation in Fig. 3.2a, we show that even for a network with

nominally uniform filament orientation distribution and same ρ̄, the overall be-

havior could be different when the shearing direction is reversed. Likewise,

rarely do two networks with same ρ̄ exhibit identical characteristics even with

nominally similar orientation parameters with respect to the loading directions

(Fig. 3.2b). These observations necessitate identification of metrics for network

characterization that embed in them the information of the network directional-

ity and topological arrangement. It is seen that one of the reasons for the vari-

ability in response is due to the variation of θρ̄ (deviations from the prescribed

distribution) which could be reduced by choosing a large sampling window. We

ask:

1. Why do the network exhibit variation in response despite of having similar

ρ̄ and crosslink densities?

2. What are the factors which contribute to this variability?

3. Is there any correlation between these factors and the mechanical response?

We examine the networks and quantify variations by characterization of these

topologies based on statistical parameters. Some of the readily known factors

affecting the network response are i) filament density, ii) crosslink density and

iii) filament orientation. The first and second factor are related to each oth-

er but depends on the θρ̄, vis-á-vis uniformly distributed networks form more

crosslinks than normally distributed networks (Section 3.3.2). Characterization

of the filament networks is challenging due to the myriad realizations possible

and intersection of a filament with multiple other filaments. Many researchers

have developed network models using discrete filamentous networks (see Table
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2.1 for a summary) however, the applicability of such models are based on the

limited statistics. In none of these works, the variability in response due to the

microstructure is probed. In order to develop a discrete network model, it is

imperative that the variability arising from various factors have to be addressed

and quantified.

Analogous problem of network characterization exists in foams, porous materi-

als, concrete etc [147, 148]. Zhu et al. [149] studied the role of irregularities

in the elastic properties of foams using 2D random Voronoi networks. In their

observation, the forms remained isotropic with varying levels of irregularity and

the elastic modulus increased with randomness. Bréchet et al. [150] probed the

role of randomness in the elasticity of cellular solids using Voroni 2D network-

s. They observed a power law dependence between the Young’s modulus and

relative density. 2D random networks considered in our work is different from

the random Voronoi networks due to the long range order present in the net-

work, the filament length L. Heussinger and Frey [131] showed the importance

of underlying network structure on the macroscopic response. They considered

networks of varying level of randomness and probed its influence on the elas-

tic properties. Both random and ordered networks were used to study this and

developed scaling laws for the modulus.

Network comprises of mainly three types of crosslinks based on the number of

filaments intersecting at a crosslink. Z̆agar et al. [151] categorized crosslinksas

X-type if its the intersection of four filaments , T -type if its the intersection of

three filaments and L-type if its the intersection of two filaments (Fig. 2.10). In

most of the cases L-type forms the end links and X and T -types are formed in

the interior of the filaments. The effectiveness of the crosslinks on the overall

mechanical response depends on the type and stiffness of the crosslinks. If the

crosslinks are stiff, X-type crosslink is the one which dominates the mechanical
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response. They identified a topological function based on the mean distance be-

tween crosslinks, mesh size and the number of X-type crosslinks and developed

scaling laws for the initial shear stiffness of the biopolymeric networks with rigid

crosslinks [151]. Such a scaling is applicable only for the networks that are as-

sumed to be uniformly distributed and these statistics fails when the networks

have a resulting orientation. We identified statistical parameters in similar lines

that can account for both filament orientation and crosslink density and applica-

ble to networks of any orientation an filament density.

3.3.1 Crosslink Moment XM

One of the reasons for the variation in the response of networks having similar

filament and crosslink density is the variation in the distribution of crosslinks

rather than the total number of crosslinks. For uniformly distributed networks

the, distribution could be macroscopically uniform. However, there could be local

regions where the filaments and crosslinks form cluster that alter the response.

We identified a parameters which is the moment of the crosslinks with respect to

a chosen reference axis1. The crosslink moment accounts for not just the number

but also the effect of the spacial distribution. If the compartment approach is

used in calculating the moment, it gives a better measure about the uniformity

of the crosslink distribution. Such an approach is shown in Fig. 2.6 where the

moments of the crosslinks are found with the RVE as a whole and after dividing

the RVE into 3× 3 compartments. The moment of the crosslinks is calculated as

1Present work focuses on the shear loading of the polymeric networks. The principal loading
direction for a square domain will be the diagonal inclined at 450. Motivating from these, we are
considering an axis inclined at 450 for the calculation of crosslink moments. If the deformation
mode changes from shear to tension, correspondingly the axis should also be changed.
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XM =
1

n

n
∑

i=1

dpi (3.1)

where n is the total number of crosslinks and dpi is the perpendicular distance

between the crosslink and a chosen axis. When the RVE is divided into com-

partments, the equivalent moments can be calculated as in the case of spring

networks. This approach could account for the periodic boundary condition of

the RVE.

3.3.2 Crosslink Factor XF

In lines with Žagar et al., we defined crosslink factor (XF ) which is the ratio of

X-type crosslink to the total number of crosslinks in a RVE.

XF =
nX

nX + nT + nL
(3.2)

where nX is the total number of X-type crosslinks and similarly for other types

of crosslinks. As the X-type crosslink has the maximum connectivity,it plays a

dominant role in the overall network response. Evolution of XF with density

depends on the filament distribution.

Uniform θρ̄: Black symbols in Fig. 3.8 show the evolution of XF . Average of sev-

eral simulations shows that XF increases with density and the bounds becomes

tighter as the ρ̄ increases.

Normal θρ̄: Red symbols in Fig. 3.8 show the evolution of XF and the trend is

very similar to that in the case of uniform distribution but the actual value of

the XF for a given density is lower by a factor of 2 and the trend is consistent

across various ρ̄ considered here. The reason for this lower crosslink density is
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the lower spread of the filaments unlike in the case of uniform θρ̄ where there

is higher chances of a filament making more intersections due to the random

nature of the distribution.
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Figure 3.8: Variation of XF with ρ̄ for networks with uniform filament distri-
bution. At lower ρ̄, the variation is high and the bounds becomes smaller as ρ̄
increases. The error bar shows one standard deviation.

3.3.3 Alignment Factor AF

The type of crosslinks could give information about the mechanical response

pertaining to the crosslink density but it may not give any information about the

anisotropic response observed in the network structures. If the same network is

subjected to shear deformation in opposite directions, the response could vary

drastically depending on the filament alignment although the type and number

of crosslinks remains same in both cases (Fig. 3.2a). Another occasion is when
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the filament distribution is non uniform. The response of the network with pre-

ferred orientation becomes highly anisotropic and the correlation with the (XF )

is not observed in this case (Fig. 3.18). We have used networks with filaments

normally distributed in the preferred direction (mean angle µ′) with a predeter-

mined standard deviation (Σ). Σ of the orientation determines the spread of the

filaments. In order to account for anisotropy, we defined a parameter called the

alignment factor (AF ) which is the ratio of the sum of projected length of the

filaments along a principal loading axis to the total length of filaments.

AF =

N
∑

i=0

Lai

N
∑

i=0

Li

(3.3)

where Lai is the projected length of the line segment along an axis considered

and Li is the length of the line segment. When the loading direction changes,

the axis considered for AF changes and its value could be different for different

directions. As in the case of XF , variation of AF with density is also filament

distribution dependent.
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Figure 3.9: Variation of AF with ρ̄. Value of AF does not change significantly
with ρ̄ for networks with uniform θρ̄ and fluctuates around the mean value of
0.64. The same trend is not observed for networks with uniform θρ̄, for the
favorable orientation (µ′ = 450), AF ≈ 1 while for unfavorable orientation (µ′ =
1350),AF ≈ 0. The error bar shows one standard deviation.

Uniform θρ̄: Black symbols in Fig. 3.9 show the variation of AF with ρ̄ for net-

works with uniform θρ̄. Unlike in the case of XF (Fig. 3.8), AF does not increase

with ρ̄ but oscillate abound a mean value of 0.64. Furthermore, the value of AF

remains in the same range if different axis is used for the calculation.

Normal θρ̄: AF changes drastically with the axis considered (black symbols in

Fig. 3.9). A network with normal θρ̄ with µ′ = 450 shows a very high value for

AF if the axis used for the calculation is inclined at 450 (AF ≈ 0.9 ) but the value

of AF is very low if the axis is changed to one inclined at 1350 (AF ≈ 0.2 ). The

average value with one standard deviation is shown here. This implies the role

of AF in accounting for the resulting orientation of the network.

76



3.3.4 Fabric Factor FF

In a nutshell, XF accounts for the role of ρ̄ which may be related to the filament

density while the AF accounts for the effect of orientation of the filaments (θρ̄).

Any of these parameters used alone cannot account for the complete network

response. To overcome this shortcoming, we defined a parameter called fabric

factor (FF ) which is the product of XF and AF . FF accounts for both filament

density and orientation.

FF = XFAF (3.4)

We found that FF shows very good correlation with the response (K0 and γT ) for

a range of filament densities and θρ̄. We systematically probed the influence of all

these parameters on the mechanical response of networks with rigid crosslinks

in the following sections. Failure of crosslinks is not accounted in the results

presented in this chapter.

3.4 Overall Network Response

Before delving into understanding the response uncertainty due to microstruc-

tural variability, we first discuss the effect of network filament density ρ̄ and

network orientation distribution on the overall mechanical response. The basic

network parameters are chosen and the generated architectures are investigated

under simple shear condition. Between all the cases considered here the filamen-

t properties as well as the inter-filament junction characteristics (i.e., bonds or

crosslinks) are kept fixed2. The typical properties considered here are indicative

2Chapter 5 discusses the effect of filament and crosslink properties.
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of F-actin networks where the filament bending and stretching rigidities are not

necessarily correlated (unlike in generic truss or framed structures where a pre-

scription of the elastic modulus, cross-sectional shape and dimensions automat-

ically define the member rigidities). This discrepancy arises in nearly all flimsy

networks because of the importance of the influence of the thermal fluctuations

that introduce the notion of a persistence length that gets intimately connected

to the member flexural rigidity [78]. We do not model thermal fluctuations, but

use a simple strategy that accommodates this dichotomy between the two rigidi-

ties. Rather than providing the filament material and cross-sectional properties

separately, we directly prescribe their stiffness properties by assuming a general-

ized cross-section internally with the FE framework. The flexural rigidity (EI) is

set to 8.4 × 10−22 Nm−2 and the axial rigidity (EA) is set equal to 1.6 × 10−4 N.

These properties resemble those of F-actin filaments that form semi-flexible net-

works within eukaryotic cells [82]. The crosslinks are assumed to be elastically

rigid, which is a reasonable assumption for some biopolymeric networks [33] (as

well as some synthetic networks [115]) and for simplicity, they are assumed to

be infinitely strong so that failure does not occur3.

3Both these assumptions are relaxed in Chapter 5.
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3.4.1 Effect of Topological Arrangements for a fixed ρ̄ and θρ̄

0.00 0.05 0.10 0.15 0.20 0.25
-5

0

5

10

15

20

25

30

35

40

45

50
c

a

 

 Stress
 Stiffness

Strain

Sh
ea

r s
tre

ss
 (P

a)

b

0

200

400

600

800

1000

Sh
ea

r s
tif

fn
es

s, 
K

 (P
a)

Figure 3.10: Variation of stress and stiffness of a network with ρ̄ = 10 deformed
with a shear rate of γ̇ = 1s−1. The deformed configuration of the network at the
three markers shown are given in Fig. 3.11.

Figure 3.10 (black curve) shows the overall shear stress - shear strain (τ − γ)

responses of a network realization (with ρ̄ = 10) subjected to applied shear strain

rate γ̇ = 1s−1. From the τ − γ curves, the tangent shear stiffness K is obtained

by numerically calculating the derivative ∂τ/∂γ and is plotted as a function of γ,

shown in the same figure (red curve). The overall response is highly nonlinear

and shows strain stiffening with a steep increase in stiffness at strain of ≈ 12.5 to

15%. The entire deformation history of the network is explained with help of the

stress/stiffness- strain curves and the corresponding snapshots of the deformed

configuration of the network taken at three strains.
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(a) 0 % strain

(b) 10 % strain

(c) 20 % strain

Figure 3.11: Snapshots of the network at three strains. Colors represent the re-
sultant displacement in the network. (a) Shows the initial configuration with
straight filaments. (b) At a strain of 10%, filaments reorient to the loading direc-
tion by bending and stretching and the network stiffness starts to increase. (c)
At a strain of 20% network stiffness increases to ≈600 times of the stiffness in
Fig. b (see Fig. 3.10).
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Figure 3.11a shows the initial configuration at zero strain. At a strain of 10%,

the stress and stiffness of the network does not increase to an appreciable value.

Figure 3.11b shows the network at 10% strain, it can be seen that some of the

filaments have slightly reoriented and the local deformation is different from the

applied macroscopic deformation (colors represent the resultant displacement in

the network). Such localized deformation is called non-affine deformation and is

more evident from the vector plot of the displacement on the deformed network

as one shown in Fig. 3.12. Most importantly, the material properties used for the

filaments are linear while the response of the network is highly nonlinear. This

nonlinearity arises purely out of the non-affine deformation due to the bending

and buckling of filaments (a similar argument can be found in the work of Onck

et al. [78]). At a strain on < 10% the deformation is predominantly bending

dominated.

The sudden jump in stress and corresponding stiffness at a strain range of ≈ 12.5

to 15% marks the change in deformation from bending dominated to stretching

dominated. This point is defined at the transition strain γT . As this process

takes place over a range of strain, γT is defined as the strain at which K/K0 ≈
10(see Section 3.5.2 for a discussion about γT ). This transition does not implies

the end of non-affine response or bending of filaments but the main mode of

deformation changes to stretching rather than bending. At a strain of 20% (point

c in Fig. 3.10), the stiffness of the network is nearly ≈ 600 times of the stiffness

at 10% strain. The corresponding network configuration is shown in Fig. 3.11c.

With further straining, localization/bundling of the filaments takes place and the

network stiffness increases even further. This nonlinear stiffening is common

to all networks having similar constituent filaments and an example for such a

deformation from biological world; stress fibers formed in F-actin networks is a

similar bundle of fibers formed to resist the external mechanical stimuli [152–
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154]. We verify this concept for a wide range of ρ̄ and filament property and

a more detailed discussion about the non-affine response is given in Chapter 5.

Having said about the overall response of a network, next we consider the role of

various factors which affect the network response from a topological perspective.

Figure 3.12: Vector plot of the displacement of a network at a strain of 20%
showing the non-affine deformation. The applied shear load is in the horizontal
direction while some of the filament rotates and the deformation differs from the
global applied deformation.

82



3.4.2 Effect of Filament Density ρ̄
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Figure 3.13: Stress-strain response of networks with increasing filament density
ρ̄. As the filament density increases, the initial response stiffens early and tends to
be linear. Typically, biopolymers (low to intermediate ρ̄) exhibit nonlinear elastic
responses while synthetic polymers (high ρ̄) exhibit linear elastic responses.

At a given strain, the overall stiffness of a fibrous network depends on the net-

work connectivity. It is known that fibrous networks support load only if the

filament density is above a certain threshold connectivity. This is referred to as

the rigidity percolation4 [133]. Below the rigidity percolation, a network may not

be a integrally connected structure and therefore, could act like a mechanism.

The idea is quite analogous to the truss structures in civil engineering where a

given system of truss (bars with hinged joints) has to satisfy a certain criterion

for it to be able to support an applied load. For fibrous networks, above the

4See Section 2.3.1 for a discussion about rigidity percolation.
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rigidity percolation, the structural stiffness typically increases with increasing fil-

ament density. Increasing the number of filaments results in a better network

connectivity resulting in higher stiffness. Increasing the filament density makes

the network response more affine; instead of showing initially flimsy response

followed by steep stiffening, it tend to be more stiffer and linear in response.

The role of filament density is shown here by increasing density from ρ̄ = 7.5 to

25. Figure 3.13 shows the stress-strain response of the networks with increasing

ρ̄. The filament densities considered here are motivated from practical prob-

lems, e.g., biopolymers like F-actin networks typically have density ≈ ρ̄ = 10,

electospun/paper networks shows intermediate densities and synthetic polymer

like epoxies shows very high density5 [111, 155]. Due to high nonlinearity, the

response of different ρ̄ cannot be compared easily. Here we make use of the

parameters we have defined earlier; K and γT . Only a qualitative description

is given in this section, for more detailed discussion please refer to Section 3.5.

The response of networks is similar to the example explained in the preceding

section and characteristics of the deformation are same, non-affine and nonlin-

ear stiffening. An interesting observation is that the response tend to be more

of linear at higher densities, e.g.,ρ̄ = 22.5 and 25 . At a ρ̄ = 7.5, the response is

highly nonlinear and there is a transition at a strain of ≈ 50% and K increases

with a steep slope (Fig. 3.13). As the ρ̄ increases, γT decreases and the response

becomes more and more linear. This signifies that the non-affine contributions

reduces as ρ̄ increases and the deformation is stretching dominated.

5Material property of the filaments varies with materials. In the present context, we motivate
it from a topological perceptive. Chapter 5 discusses the role of filament property in the response.
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Figure 3.14: Stiffness evolution of networks with increasing ρ̄. (a) The network
initial stiffness increases with ρ̄. (b) Curves collapses when the stiffness is scaled
and plotted as a function of scaled stress. The average slope of the curves is 3/2
as shown by Žagar et al. [156].

Žagar et al. studied such a case of increasing ρ̄ or decreasing lc and developed

scaling laws for the long strain response, given by K̃ ∝ τ 3/2 [156]. To investigate

whether such a scaling law also holds for the cases considered in our simulations,

we plot the stiffness response when the lc is decreased. Figure 5.3a shows the

stiffness-strain curves and is similar to the cases shown in Fig. 3.10. In Fig. 5.3a,

the stiffness is normalized and is plotted as a function of T/TC as in the work of

Žagar, all curves collapses with a mean slope of 3/2 in the log-log scale [156].

Such a scaling is possible only if the bending length lb
6 is similar in all cases as

shown in Section 5.2.1.

6It is a material length scale given by lb =
√

(κ/µs). See Chapter 5 for a discussion about lb.
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3.4.3 Effect of Filament Distribution

While filament density plays an important role in describing network respons-

es (as shown in the previous section), it may not be a sufficient metric to fully

characterize their behaviors. Indeed, network realizations with same filament

density but different net orientations with respect to the loading direction can

exhibit overall stiffness characteristics that could vary by several orders of mag-

nitude. Filament distribution could range from uniform to highly oriented ones.
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Figure 3.15: Response of normally distributed networks to shear loading. Net-
works with a net orientation of 450 shows stronger response compared to one
with net orientation of 1350.
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(a) Initial network (c) Deformed network

(d) Initial network (f) Deformed network

Figure 3.16: Networks with normal filament distributions. (a) Shows the initial
configuration of a network with µ′ = 450. The histogram of the filament distribu-
tion is shown in the inset. Majority of the filaments are oriented at 450. (b) The
deformed configuration at a strain of 4%. Figures (c) and (d) shows the same
for a network with µ′ = 1350. The clear distinction between the deformation of
these two orientations; for θρ̄ with µ′ = 450, filaments get stretched as they are
aligned to the shear loading whereas for µ′ = 1350, filaments are not aligned
to the loading direction and they bend and rotate to the applied load showing
compliant response (Fig. 3.15).

It is seen preceding sections that the filament try to reorient towards the loading
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direction by bending and subsequent rotation. The significance of this process

can be clearly understood by considering networks with same ρ̄ but having d-

ifferent resulting filament orientations. Figure 3.16 shows two such networks

with a mean orientation of µ′ = 450 (Fig. 3.16a) and µ′ = 1350 (Fig. 3.16d) and

the corresponding histogram of the θρ̄ is shown in Fig. 3.16b and e. For both

cases, Σ = 150. At a strain of 4%, the network with µ′ = 450, filaments are de-

formed in stretching (Fig. 3.16c) while for the µ′ = 1350, filaments are in bending

(Fig. 3.16f) leading to vast difference in the resulting network stiffness K.

Figure3.15 summarizes the results of four such orientations. Network with µ′ =

450 shows the stiffest response and the stiffness decreases as the orientation be-

comes more unfavorable and the least stiffness is for µ′ = 1350. When µ′ = 450,

the primary component of the strain energy during deformation is stretching and

the bending energy contribution is small. As the µ′ changes, the proportion of

stretching/bending changes leading to the decrease in stretching and bending

contribution increases. At µ′ = 1350, the energy balance is reverse as of µ′ = 450.

We have seen in Section 3.4.2 that the stiffness increases with ρ̄. The key differ-

ence in the overall response with increasing ρ̄ and changing the θρ̄ at a fixed ρ̄ is

the variation in γT ; for the former, its decreases as the ρ̄ increases however, γT

remains at the same value for different θρ̄.

3.4.4 Loading Direction

The direction of shear loading direction has a similar effect on the overall me-

chanical response as in the case of filament orientation distribution. The response

of a network with a net orientation to loading in one direction is nearly same as

that of a network with orientation offset by 900 and loaded in opposite direction.

A network exhibits a highly stiff response (sometimes tending toward linearity) if
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its filaments are primarily oriented along the loading direction, with the network

stiffness governed by the concerted stretching of the filaments. However, if the

same initial network configuration is shear loaded in the reverse sense, it shows

a highly compliant response that is now dominated by the relatively much softer

bending mode of the filaments (Fig. 3.2a). This is because the filaments tend to

buckle because of the alignment with the principal compressive axis.

3.5 Correlation between Network Topology and Me-

chanical Response

In this section, we describe the results of an extensive set of numerical experi-

ments performed on a range of network realizations comprising varying filament

and crosslink densities and filament orientations (θρ̄). Two types of θρ̄, uniform

and normal are used to probe the role of filament orientation (Fig. 3.17). For

normal distribution, networks with a mean orientations ranging from 450 to 1350

to the x-axis with a standard deviation Σ=150 are considered. For each type of

θρ̄ and net orientation, networks with eight different ρ̄ and for each of the cases,

5-8 different realizations are considered (see Table 3.1 for the list of cases consid-

ered). Altogether ≈ 300 simulations are done. Note that increasing the standard

deviation makes the network more disoriented (i.e., randomized architectures

tending toward uniform distributions), while smaller standard deviations tend-

s to produce highly oriented networks. The latter may also affect the network

connectivity, which is an important issue to consider from the viewpoint of the

percolation threshold for a given ρ̄.

In what follows, we discuss the results in terms of the network initial stiffness K0

and transition strain γT described in Section 3.4.1. Specifically, we show their
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Figure 3.17: Distribution of filament orientation angles in networks (a) Uniform
network (b) Normally distributed network with a mean orientation of 450 and a
standard deviation of 150.

dependencies on the network orientation (described by the alignment factor AF )

and the crosslink density (described by the crosslink factor XF ). Then, we utilize

a composite factor that embeds the information from AF and XF and exhibits

good correlation with K0 and γT for a wide range of network characteristics. We

discuss the significance and implications of identifying such a unified metric. The

relevance of all three (XF , AF and FF ) statistical parameters7 in understanding

the network response is explained and its correlation with response is shown for

networks with a range of filament distributions and crosslink densities.

3.5.1 Effect on the Initial Stiffness K0

As discussed in Section 3.4, a filamentous network supports applied loads through

a combination of filament bending and stretching. The relative contribution-

s from each of these deformation modes depend on the elastic and geometric

properties of the filaments. In situations where the filament bending stiffness

dominates a significant portion of the overall response (Fig. 3.13), it is of interest

7Refer to Section 3.3 for more details.
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to investigate if K0 depends on the topological parameters and if so, what is the

nature of this dependency8.

To enable answering this question in terms of AF and XF , we consider the a

range of networks with mean orientations ranging between 00 to 450 (describes

the role of AF ) for a range of ρ̄ (partly affects XF ), subjected to simple shear.

Note that increasing AF indicates increased bias in the network orientation with

respect to the loading direction (also referred to here as preferential or favorable

orientation). That is, for a given ρ̄, a higher AF indicates that a larger proportion

of the filaments are initially oriented along the principal tensile axis.

Table 3.1: Details of the networks used for characterization. In all cases the RVE
size was fixed at 40µm and the filament length at L = 10 µm. For each of the
normally distributed cases, 5 filament orientations with µ′ = 400, 750, 900, 1150

and 1350 with a Σ = 150 is considered.

No. of Filaments (N) Filament density (ρ̄) Filament distribution (θρ̄)

140 8.75 uniform
160 10.00 uniform
180 11.25 uniform
240 15.00 uniform & normal
280 17.50 uniform & normal
320 20.00 uniform & normal
360 22.50 uniform & normal
400 25.00 uniform & normal

8If cross links are not rigid, K0 is modulated by the crosslink stiffness. See Chapter 5, Section
5.3 for a detailed discussion.
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Figure 3.18: Variation of K0 with AF for normal θρ̄. Higher alignment factor
shows the initial orientation of the filament to the loading direction which results
in high initial stiffness during loading. Increase in ρ̄ also makes the response
stiffer.

Figure 3.18 shows the variation of K0 with AF for different filament densities

with a normal θρ̄ (Table 3.1). Each data point is an average of about 5 to 8 sim-

ulations. The plot reveals several interesting features: first, the general trend

is that K0 increases with increasing AF across the entire range of ρ̄ considered.

This is expected, because for any given ρ̄ increasing AF accentuates the role of

filament stretching over its bending counterpart producing an overall stiffer net-

work. Second, the magnitude of this enhancement is highly dependent on the

filament density. At higher ρ̄ the increase in K0 is a strongly nonlinear function of

AF and the critical AF , (AF )cr beyond which the enhancement is rapid decreases

with increasing ρ̄. This trend appears because of two reasons: (i) a higher fil-

ament density generates a more rigid network as the stiffnesses scale inversely

with the effective filament lengths and (ii) a higher AF means more filaments are
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already apportioned along the tensile axis, which is the predominant load carry-

ing direction. Consequently, such networks tend to mitigate the requirement of

filament reorientation and hence, K0 is dictated by the filament stretching mode

rather than the bending mode, the limiting case being AF ≈ 1. However, this

does not happen at all ρ̄ and there seems to be a critical filament density that

produces a high stiffening effect with increased AF . In other words, at the other

end of the spectrum (AF = 0) shows the network with net orientation towards

the diagonal at 1350 and shows a flimsy response. K0 increases with increasing

AF and another observation about the stiffening response is the rate of stiffening;

it increases with increasing ρ̄ . This indicates the role of network density in the

overall hardening along with filament orientation.
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Figure 3.19: Variation of K0 with XF for networks having uniform filament ori-
entation. As the ρ̄ increases, the fraction of X-type crosslinks increases and the
overall network stiffness increases. See Fig. 3.8 for the variation of XF with ρ̄.

One may ask a slightly different question: For a given orientation distribution,
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what is the relation between the network connectivity and K0? Figure 3.19 pre-

cisely answers this question for the case of uniform filament distribution (AF

value for networks with uniform θρ̄ ≈ 0.64, see Fig. 3.9). Given that the filament

orientation is similar in all the cases, the plot clearly shows that a higher density

of X-type crosslinks in a given network (i.e., higher XF ), the stiffer is the initial

network response. This is a direct consequence of the fact that amongst a variety

of junction types, X-type crosslinks possess the largest coordination number of

4, rendering a more effective network connectivity for load sharing. Thus, even

though two networks may possess similar AF , their responses may vary depend-

ing on the value of XF .
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Figure 3.20: Variation of K0 with XF for networks having uniform filament ori-
entation. As the ρ̄ increases, the fraction of X-type crosslinks increases and the
overall network stiffness increases. See Fig. 3.8 for the variation of XF with ρ̄.

In précis, it is clear that for a fixed ρ̄, AF accounts for the filament distribution

and exhibits a consistent relationship with K0 (Fig. 3.18), but it does not account
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for the crosslink/filament density. Likewise, XF accounts for the crosslink den-

sity (i.e. network connectivity) and correlates very well with K0 for networks

with uniform θρ̄ (Fig. 3.19), but the correlation breaks down when there is a net

orientation in the filament distribution. Figure 3.20 shows the variation of K0

with XF for networks with normal θρ̄. For each ρ̄, we have considered 5 filament

orientations; 400, 750, 900, 1150 and 1350. It is evident from Fig. 3.20 that the stiff-

ness not only depends on XF but also on the resultant filament orientation, i.e.,

on AF . Due to this dependence of stiffness on both AF and XF and to account

for both crosslink density and filament orientation, a natural question arises as

to whether it is possible to consider a metric that captures the combined effect

and whether it would exhibit any correlation. The following section address on

this question.

3.5.2 Developing Scaling Law for K0 and γT

A simple-minded way of embedding the effects of AF and XF is to use the com-

posite FF = AFXF , referred to here as Fabric Factor (see Section 3.3.4). The

fact that it is obtained as a product of the filament orientation distribution and

network connectivity inherently suggests a synergistic interaction between the

two. Continuing from the discussion in the preceding section, Fig. 3.21 com-

bines the results of Figs.3.18, 3.19 and 3.20 into a log-log plot that shows K0 as

a function of FF . The error bars bounding each average result (average obtained

from about 5 to 8 cases for each data point) indicate the variability observed for

a given set of topological parameters9. However, before discussing the trend, it

is informative to comment on the range of FF that is in turn delineated by the

ranges of AF and XF . Based on our statistical analysis for several networks with

9This plot combines the results from ≈ 300 simulations.
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uniform filament distribution we obtain that AF ≈ 0.64 for axis along both 450

and 1350 diagonals (Eq. 3.3). If we consider such networks above the rigidity

percolation (i.e., ρ̄ > 5.6, which sets the minimum for XF ≈ 0.3, see Fig. 3.19),

we obtain FF ≈ 0.2. Thus, all networks with uniform filament distribution fall

in the range 0.2 ≤ FF ≤ 0.6. On the other hand, networks with normal θρ̄ tend

to exhibit different AF along its principal diagonals. For a given network, AF is

higher in one direction than in the other, because of the preferential orientation;

note that for these cases, XF depends on ρ̄, but is the same irrespective of which

principal diagonal is under consideration.

With this background, the results in Figure 3.21 indicate three regimes as we

traverse along the FF axis. These are, Regime 1: FF < 0.1, Regime 2: 0.1 ≤
FF ≤ 0.24 and Regime 3: FF > 0.25. Regime 1 signifies network topologies

that are both unfavorably oriented (very low AF ) and poorly connected (low

XF ) resulting in low K0 that indicate flimsy networks. Regime 2 may be desig-

nated as an intermediate region where the overall fabric of the network is still

poor, but may be because of plethora of topological possibilities that result in

an overall flimsy fabric. For example, a network may be highly favorably ori-

ented network (AF → 1, see Fig. 3.18), but poorly connected (XF → 0.3, see

Fig. 3.19), or reasonably connected, but poorly oriented, and so on. With one or

both the parameters working against providing adequate structural support, the

initial stiffness responses resemble networks that tend to deform predominantly

by filament bending. Regime 3 seems to evolve from a bending dominated behav-

ior at its lower end (0.25 ≤ FF ≤≈ 0.3) to a stretching dominated behavior for

FF ≥ 0.3. An interesting observation in Regime 3 is the range of K0 exhibited by

the networks with uniform distributions (solid squares). Particularly, those that

possess high K0 indicate the response that may be at least as stiff or even stiffer
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compared to the normally distributed networks (solid circles). This indirectly in-

dicates that the crosslink density of the uniform distribution is higher and can be

attributed to the random nature of the filament orientations (Fig. 3.8). This may

be further accentuated with increasing ρ̄, and suggests that crosslink density is

an important parameter which governing the network response.

Finally, the plot provides scaling laws for networks in each of the regimes. In

each of the regimes the K0−FF relationship shows a linear regression indicating

a power-law dependence of the initial stiffness on the fabric of a network. This

gives a unique estimate of the initial stiffness of a network provided one knows

its fabric factor. The scaling exponent of the lines are 4.5, 6 and 10 in regimes

1, 2 and 3, respectively. However, while the uniqueness exists in determining K0

for a known FF , there exists ambiguity in unequivocally ascribing a fabric to a

network provided one already has information about K0. This is particularly the

case in 0.1 ≤ FF ≤ 0.3 range. For example, if a network has a K0 = 1 Pa, it may

resemble a network with FF = 0.85, 0.21 or 0.3. It is only in the regime FF ≥ 0.32

that a unique correlation becomes possible, K0 ∝ F 10
F (shaded region). However,

one could argue that the non-uniqueness in the low FF regime suggests that for

networks that possess low initial stiffness (K0 < 2 Pa) the fabric factor does not

matter. Note that in Regimes 1 and 2, value of stiffness is always less than 2 Pa.

This could be due to either of the two reasons mentioned earlier in this section;

poor network connectivity or unfavorable filament orientation.

A similar scaling law based on the topological parameters for the scaled initial

stiffness was given by Z̆agar et al. with a scaling exponent of 2.5. Their work is

limited only to networks with uniform filament orientation as the filament orien-

tation start to play a dominant role when there is a resulting orientation in the

network. Heussinger and Frey [131] looked a semiflexible networks with ran-

dom network to regular lattice structure. They considered the role of filament
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length and filament density and developed scaling laws for the stiffness based on

the average distance between crosslinks (lc). They accounted for thermal energy

and found that the stiffness scaled with the filament density. The shear modulus

showed a scaling with the bending and stretching stiffness with the exponent

ranging between 0 to 1 depending on complete bending or stretching. Further

to it, they identified two different regimes based on the filament length, one in

which the modulus decreased with the increasing filament length and another

regime where it remained independent. In similar lines Head et al. developed

scaling laws for the network modulus based on the average distance between

crosslinks. They delineated the response into bending dominated and stretch-

ing dominated. In the bending dominated regime, the modulus scaled with the

bending stiffness, angle of filament deflection and l−3
c . In the stretching domi-

nated regime, modulus was proportional to stretching stiffness and l−1
c . Similar

scaling laws have been developed from experimental observations. Gartel et al.

used F-actin networks crosslinked by rigid crosslinker Scruin to eliminate the

role of crosslinker [157]. Scaling law was developed for Shear modulus based

on the average distance between the filaments, average distance between the

crosslinks and the bending stiffness. A review paper by Picu summarizes such

scaling relationships by various researchers. Based on numerical simulation on

extensive set of parameters, he presented excellent scaling relations for the 2D

random filament networks. Response was delineated based on the filament den-

sity and bending stiffness and provided scaling laws for affine and non-affine

regimes [158]. The novelty of our approach is the ability to characterize the net-

works of all densities and orientations. The contribution from lc is embedded in

our XF parameter. In the regime where K0 is uniquely defined by FF , the na-

ture of the networks (either uniform distribution or favorable orientation) can be

predicted if the K0 is given. If the network is of uniform θρ̄, the filament density
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could be accurately predicted from FF as AF is always ≈ 0.64. It becomes a bit

equivocal when θρ̄ is normal as a single value of FF could corresponds to more

than one ρ̄ depending on AF (orientation).
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Figure 3.22: Variation of γT with XF for uniform filament distribution. Network
density increases as XF increases and it stiffens at lower strains.

As mentioned in the introductory part of this chapter, to describe the basic char-

acteristics of a network, the information about the network transition from bend-

ing to stretching is also important and this is characterized by the transition strain

γT . It is logical to expect that the transition strain γT characterizing a change in
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the deformation mode from bending-dominated to stretching-dominated, should

also be influenced by the underlying fabric of a network. Indeed, as shown in

Fig. 3.22, γT shows a nearly linear relationship with FF . The figure also shows

that the linear variation with the crosslink factor XF . This, together with the lin-

earity in FF implies that γT must be nearly independent of AF , which is indeed

true as the networks considered in arriving this result have a constant AF (uni-

form filament orientation distribution). The reason for choosing only uniform

orientation space is because for very low FF <≈ 0.2 (i.e. unfavorable orienta-

tions) the transition from bending to stretching may either occur at very large

strains that are practically difficult to capture, or not occur at all. Notwithstand-

ing this limitation, the result indicates that the fabric characteristics, including

the crosslink density and the network topology produce linear scaling for the

transition strain.

3.6 Summary

The topological aspects of fibrous networks and its connections with the mechan-

ical response is studied in this chapter. Topological variability arising from the

limited computational window size (W ) is examined and an ideal window size

is proposed for both fixed and varying ρ̄. Statistical parameters are identified

for the characterization of networks and its correlation with the mechanical re-

sponse is established. The characteristic network response and the role of various

factors in the overall response is also discussed. In a nutshell, the initial stiffness

K0, transition strain γT and the overall response depends on the nominal net-

work parameters and topology of the networks. The response of the networks

with rigid crosslinks with no failure mechanism for the crosslinks are correlated

to topological factors XF and FF . K0 shows a power law dependence to FF and
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γT linearly decreases with XF and FF . When the failure of crosslinks are account-

ed the evolution of topology has to be tracked to derive the statistical parameters

and very high variability is expected in such cases. Approximating the filament

distribution as uniform/normal itself is prone to statistical variation. It is high-

ly dependent on the filament density as well as the size of the computational

domain considered.

This chapter has mainly focused on the influence of network statistics on the

initial network stiffness. Though it may give indication about the subsequent

network response, variation in network architecture and non-affine deformation

due to the local rearrangement of filaments could make the response drastically

different. For a complete understanding, one has to probe the response over

a wide range of strain. First we validate the network model by examining the

response of F-actin networks including failure and the results are presented in

Chapter 4. We further continue to probe the response of networks over a wide

parametric space in Chapter 5. We analyse the networks up to 15% strain and

create a deformation map with key focus on non-affine response and failure.

102



Chapter 4

Stochastic Rate-dependent Elasticity

and Failure of Soft Fibrous Networks

4.1 Introduction

This work focuses on modeling the rate sensitive stiffening-to-softening transi-

tion in fibrous architectures mimicking crosslinked F-actin networks induced by

crosslink unbinding. Using finite element based Discrete Network (DN) model-

ing approach combined with stochastic crosslink scission kinetics, we correlate

the microstructural damage evolution with the macroscopic stress-strain respons-

es of these networks as a function of applied deformation rate. Simulations of

multiple DN realizations for fixed filament density indicate that an incubation

strain exists, which characterizes the minimum macroscopic deformation that a

network should accrue before damage initiates. This incubation strain exhibits

a direct relationship with the applied strain rate. Simulations predict that criti-

cal damage fraction corresponding to colossal softening is quite low, which may

be ascribed to the network non-affinity and filament reorientation. Further, this
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critical fraction appears to be independent of applied strain rate. Based on these

characteristics, we propose a phenomenological damage evolution law mimick-

ing scission kinetics in an average sense. This law is embedded within an existing

continuum model that is extended to include non-affine effects induced by fila-

ment bending.

4.2 DN Model of F-actin Networks

Real in-vitro F-actin networks are random architectures of undulated F-actin

filaments connected by crosslinking proteins and surrounded by a fluid medi-

um [159]. Apart from the filament length L, another important length-scale

in such networks is lp, the filament persistence length which is in the range of

≈ 10 − 20 µm [160]. When lp ≫ L, undulated filaments act as if they were

straight. Van der Giessen and coworkers showed that the macroscopic responses

of networks assuming straight filaments is qualitatively similar to those modeled

using undulated filaments [80, 128]; initial undulations tend to postpone the

transition from flimsy to a stiff behavior. Therefore, we model the networks with

straight filaments with individual filament designed to be of length L ≈ lp. For

a prescribed line (filament) density ρ̄, our in-house MATLAB R© code generates

a 2D network of randomly oriented straight filaments that intersect each other

at discrete points within the computational window (Fig. 4.1). These intersec-

tion points are considered as crosslinks and are modeled as springs with finite

stiffness. We perform a topological analysis to check the randomness of the ini-

tial average orientation of a generated network (see Chapter 3, Section3.2 for

a brief discussion). The code automatically generates FE mesh on the topology

and records the necessary information in a manner that can be seamlessly read

into ABAQUS R© [141].
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Figure 4.1: Initial configuration of a typical network. Dangling ends are removed
and the boundary of the computational window (red dashed lines) along with the
b.c.’s are shown.

The unfolding characteristics of the crosslinks are approximated by a bi-linear

constitutive relationship comprising an initial compliant regime followed by a

highly stiff behavior [81,89,161,162]. The unbinding characteristic of a crosslink

is tantamount to the scission process beyond which it is incapable of supporting

any load. Interestingly, the critical force Fcr for scission exhibits rate-dependency

that depends logarithmically on the applied loading rate [163, 164]. Another

equally striking experimental observation is the variability of Fcr for a fixed load-

ing rate1 [164,165]. This variability even at the single crosslink level is expected

to play a role in the overall network response. A noteworthy feature incorporated

in the present work is that it explicitly accounts for the rate-dependent stochastic

crosslink dissociation process. This is achieved by combining Bell model [166],

which gives an exponential relation to the applied force and the dissociation rate,

with a Kinetic Monte Carlo (KMC) algorithm [167]. The crosslink dissociation

1See Appendix A for a discussion about single crossslink simulations.
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rate is given by

k = k0e
(Fa/kBT ) (4.1)

where k0 is the characteristic dissociation rate in the absence of applied force, F

is the induced local force on a crosslink, a is the interaction distance [168,169],

kB is the Boltzmann constant and T is the temperature. The stochastic crosslink

scission is introduced as a KMC step in that the crosslink life-time is given by

t = −1

k
log(r) (4.2)

where 0 < r < 1 is a uniformly distributed random number. A crosslink may

potentially dissociate if it satisfies the criterion

t ≤ t̂ (4.3)

where t̂ = εc/ε̇ with ε̇ being the local axial strain rate and εc = a/l0 being the

critical axial dissociation strain for a crosslink of length l0 ≈ 160 nm.

The time-scales associated with the crosslink dissociation kinetics may interac-

t with the time-scale pertaining to the macroscopic deformation rate, produc-

ing an overall rate-dependent network response including stiffening and fail-

ure [72,168]. In the model system adopted here, we consider ρ̄ = 10 that trans-

lates to actin concentration of ≈ 0.8 mg/ml [60]. From a numerical viewpoint,

we model a square computational domain of fixed size W = 40 µm. From this,

the total number of filamentsN in the computational domain is obtained through

the relationship ρ = NL2/W 2, where L = 10 µm is the filament length [78].

Filaments are meshed using 2D Euler-Bernoulli beam finite elements and each

crosslink is modeled using spring element having both axial and transverse de-

grees of freedom while the rotational degree of freedom is unconstrained. We
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adopt the parameters that resemble networks crosslinked by Filamin, which is a

relatively compliant ABP among the myriad crosslinkers that have been reported

in the literature [90]. The parameters used in the crosslink scission algorithm

are k0off = 0.1 s−1, a = 0.5 nm and l0 = 160 nm [169, 170]. Note that at every

time-step there may be multiple crosslinks that satisfy Eq. 4.3, but we choose to

break only the one with the smallest t. The reader is referred to appendix Bfor

the implementation of KMC algorithm in FE framework [167].

4.2.1 KMC Algorithm and Implementation in Finite Element

Model

In bio- as well as synthetic polymeric networks the length-scales of interest in-

troduce stochastic effects due to the presence of thermal energy that superposes

the mechanical energy. The KMC algorithm implemented in this work addresses

this stochastic nature as a first-order reaction. This description is appropriate for

an ensemble of similar bonds whose kinetics can be modeled deterministically

by a first order ordinary differential equation (ODE) even though the breaking of

each bond is a stochastic process. In particular, the probability density function

corresponding to the time required to break jth bond can be written as

pj(t) = kje
−kjt (4.4)

where kj is dissociation rate of a bond and is given by Eq. 4.1. Dissociation of

crosslinks is based on the criterion given in Eq. 4.3. In our FE implementation

within ABAQUS R©, we used a random seed that depends on the physical time

at which the simulation was performed. This largely ensured that for a given

network topology no two sequences of random numbers were identical.
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User subroutines 

UFIELD 

URDFIL 

• Makes the spring stiffness, a function of 

force in the spring. 

• Springs can be selectively degraded. 

• Keeps the account of springs degraded in 

all increments. 

 

 

 

 

 

 

 

 

• Spring with minimum life time is 

deactivated. 

• Obtain force in spring elements after 

each iteration. 

MONTE CARLO SIMULATION 

• This is run within UFIELD. 

• This is active from the second time increment 

onwards. 

• A Monte Carlo simulation is run to find out the 

life time of cross links based on the force 

obtained from URDFIL. 

• Spring which has the minimum life time is 

determined. 

Figure 4.2: Implementation of crosslink scission algorithm within ABAQUS R©.

The implementation of KMC algorithm in ABAQUS R© is shown in Fig. 4.2. Specif-

ically, we wrote two user-subroutines, which determine the kinetics of each

crosslink modeled as bi-linear spring -(a) UFIELD: to incorporate the Bell mod-

el that gives a crosslink dissociation rate. Using this subroutine, we related the

crosslink stiffness as a function of an appropriate field variable (axial force F in

a crosslink) and (b) URDFIL: To enable reading and storing those field variables

for each crosslink so that they can be used by UFIELD.

We note here that similar to the scission process, crosslink reformation is also
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an important phenomenon that ascertains the network remains structurally vi-

able, e.g., thermally-activated crosslink scission. However, the scission rate is

enhanced exponentially in the presence of tension F in a crosslink. More gen-

erally, the equilibrium constant of the reaction is given by k̂(F ) = (koff/kon) =

k̂0e
(Fa/kBT ), where kon is the rate of crosslink formation, k̂ is the equilibrium con-

stant and k̂0 is the value of k̂ at zero force [168]. If the tensile force in a filament

is large then the reaction is biased toward crosslink scission and may prevail over

the relinking process, although the former may provide sites for the latter. The

crosslink rebinding phenomenon is rich with complexities [171] and is beyond

the scope of this thesis.

4.3 Discrete Network Simulation Results

For the given ρ, Fig. 4.1 shows the initial configuration of one of the many re-

alizations considered in this work. The kinematic b.c.’s prescribed on the edges

of the computational domain are as follows: the bottom edge is fixed while the

top edge is sheared horizontally with a constant velocity v, simulating simple

shear condition with a nominal shear strain rate γ̇ = v/W . Periodic b.c.’s are

applied to the left and right edges so that the microstructure can be considered

as representative of an infinitely long slab in the horizontal direction.
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4.3.1 Increasing filament bending stiffness
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Figure 4.3: Stress-strain response of networks with increasing filament bend-
ing stiffness. Response becomes stiffer with increasing filament stiffness. Solid
curves show the response with damage and the dotted curves show the undam-
aged response.

Before delving into the rate sensitivity of the network response, we look into

the role of filament bending stiffness in the overall response. The bending na-

ture of the filament dependens on a material length scale called bending length

lb =
√

(κ/µs) (see Chapter 5 for a detailed discussion). The ubiquity of the

influence of lb in overall response is verified by considering networks with flex-

ible crosslinks (corresponding to filamin). We also considered the failure of the

crosslinks incorporated using KMC Algorithm (Section 4.2.1). Figure 4.3 shows

the stiffness response of networks with and without damage for the increas-

ing bending stiffness in such a way that lb increases from 2 to 21 nm (dotted

lines). The snapshots of the deformed configuration of the networks are shown

in Fig. 4.4. As lb increases response becomes more stiffer and a similar response
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is observed with damage (solid lines). Note the very low failure stress of the net-

works when damage is accounted. Even with the increasing filament stiffness,

curves show an initially flimsy regime. This is attributed to the bi-linear nature

of the crosslinks (Fig. 5.4). And due to the same reason, crosslinks deform at low

strains but the contribution to overall network response is small (blue springs in

Fig. 4.4). Only after a finite strain, the crosslinks enters the high stiffness regime

and then acts as rigid ones and the stiffening of networks takes place. When the

crosslinks are in the flimsy regime, the overall network stiffness is very low as it

is determined by the minimum of the stiffnesses, i.e., crosslink stiffness. Increase

in bending stiffness has a significant effect in the initial stiffness; evident from

the jump in stress-strain curves at small strains.

In a typical network, there are three stiffness which determine the overall re-

sponse; filament stretching, filament bending and crosslink stretching stiffness.

Apart from these, buckling of filaments results in local fluctuations in load trans-

fer which is reflected as oscillations in the response curves. When the lb = 2

nm, filament bending is the preferred mode of deformation and it is evident

from the curvature of filaments in Fig. 4.4a . As the lb increases, filament bend-

ing becomes more difficult and even at 20% strain, it appears to be straight and

crosslink extension becomes the preferred mode of deformation (Fig. 4.4b and

c). The bending length of the filaments used in this work is lb = 2 nm which

corresponds to F-actin networks.
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(a) lb ≈ 2 nm

(b) lb ≈ 7 nm

(c) lb ≈ 21 nm

Figure 4.4: Snapshots of networks at a strain of 20%. Black lines shows the fil-
aments and the blue junctions represents the crosslinks. (a) When lb ≈ 2 nm,
filaments bend with minimum extension of the crosslinks and the resulting re-
sponse is weaker (Fig. 4.3). (b) As the lb increases, bending of filaments costs
more energy and the crosslink extension becomes more preferred mode of defor-
mation. (c) At an lb ≈ 21 nm, the filament bending is even more difficult and the
overall network response becomes stiffer.
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4.3.2 Increasing Filament Density
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Figure 4.5: Stress-strain response of networks with increasing filament density
(ρ̄).

Increasing the ρ̄ shows a very similar response as seen in Section.4.3.1 when the

bending stiffness (or lb) of the filaments is increased (Fig. 4.5). It shows similar

overall response and a similar jump in stress at small strains. Though the results

are comparable at a variation of lb over a small range, in Chapter 5, we see that

the correlation breaks down when the range of lb considered is large. Another

factor which modulates the response is the crosslink response. The crosslinks are

assumed to be rigid in Chapter 5 when we study the role of filament bending

stiffness exclusively. Response of the network with ρ̄ = 15 shows very delayed

hardening response (Fig. 4.5). And this transition takes place at lower strains as

ρ̄ increases. With the increasing ρ̄, network connectivity increases and the av-

erage lc decreases which results in an increased bending resistance. Correlation

between the responses in Fig. 4.3 and 4.5 corroborates this hypothesis.
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4.3.3 Rate Sensitive Response of F-actin Networks

Having seen the basic mechanics of network response, we chose a ρ̄ = 10 and

lb = 2 nm to further explore more characteristics of the network response. In

order to investigate the rate effects, we shear a given network at γ̇ = 0.01, 0.1

and 1.0 s−1. Fig. 4.6 shows snapshots of final configuration of the network for

these shear rates. The flexibility of the crosslinks is evident from the extensive

deformation at the filament intersection (blue springs in the color version). Some

of the crosslinks dissociate during deformation. This is severe for the low rates

due to the low critical breaking force. It is interesting to note the tendency of

the network to form stress fibers, which may be construed as a set of aligned

filaments that are closely bundled together, traversing the principal tensile axis.

These stress fibers are more commonly observed at higher rates (e.g., Fig. 2c)

compared to lower rates.

(a) γ̇ = 0.01 s−1 (b) γ̇ = 0.1 s−1 (c)γ̇ = 1.0 s−1

Figure 4.6: Deformed configurations of the network in Fig. 4.1 experiencing
macroscopic shear strain of 50% under three different shear rates. Blue springs
are dissociated crosslinks.

In what follows, we first discuss the deterministic mechanics of one network

topology (Fig. 4.6) in order to provide an insight into the macro-micro nexus. A

deterministic analysis implies that the stochastic step (Eq. 4.2) is not activated in

the simulations. Then we discuss the rate-dependent behavior of the networks in
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terms of the stiffness and evolution crosslink scission fraction φ with strain where

φ(t) =
Number of crosslinks broken at time t

Total initial number of crosslinks
(4.5)

As shown later the critical fraction of φ that causes precipitous collapse of the

network stiffness is quite low. The underlying reasons for this are discussed in

the next section. Following this we discuss the stochastic effects arising from

the KMC procedure and the variability arising from topological randomness (for

fixed ρ̄). Finally, we present a homogenized continuum model with damage.

Deterministic Network Response

Figure 4.7 shows the evolution of the average shear stress τ , tangent shear stiff-

ness K = ∂τ/∂γ and damage fraction φ as a function of shear strain γ for the

network in Fig. 4.1 subjected to γ̇ = 1 s−1. In the initial flimsy regime the stress

is low owing to the low bending rigidity of the filaments and the low initial s-

tiffness of the crosslinks. This is the regime of filament reorientation that aligns

them along the principal stress directions. The damage is also low in this regime,

which indicates that at this stage the lifetime of most of the crosslinks is larger

than the time-scale associated with the imposed local strain rate.

At γ ≈ 0.2 the stress begins to increase at a faster rate due to preferential align-

ment of some fraction of filaments along the axis of principal tension together

with the fact that the initially flimsy crosslinks get fully stretched to lc (Eq. 4.3)

and lock. As these filaments become taut their stretching stiffness, which is order-

s of magnitude larger than the bending stiffness, comes into play and determine

the overall network response [78]. Consequently, the damage process also ac-

crues faster because the larger forces experienced by the crosslinks dramatically

reduce their lifetime (Eq. 4.1) resulting in increased likelihood of satisfying the
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Figure 4.7: Plot of stress, stiffness and damage as a function of strain for γ̇ = 1
s−1. The dotted curves indicate the response of pristine networks.

dissociation criterion. As damage develops the average network stress and tan-

gent stiffness increasingly deviate from their pristine counterparts (shown by the

dotted curves). Although the stress continues to rise, the rate of increase slows

down over a short strain range (γ ≈ 0.4 − 0.42) that manifests as a temporary

drop in the network stiffness. As the crosslink scission process starts dominating

the response (γ ≈ 0.45) the stiffness drops precipitously. The stress and stiffness

do exhibit some recovery, which is due to reorganization of the intact crosslinked

filaments into aligned bundles (stress fibers). It is worth noting that there may

be situations where a network may soften temporarily, but it may not necessarily

lead to a colossal loss of load carrying ability. This indicates a competition be-

tween the stiffening mechanism driven by the tendency of a network to reorient
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majority of the filaments along the principal tensile axis in order to maximize the

stretching stiffness and the scission based softening mechanism. As long as there

are sufficient number of intact crosslinks, the overall system redundancy helps

retain dominance of the stiffening process. Eventually, the softening mechanism

prevails over the stiffening mechanism due to increasing force. In fact, to some

extent it is a self-cascading process. Each crosslink dissociation brings about

an increased tendency of reorientation of the intact network filaments, because

these filaments experience weaker constraint from its surrounding. This results

in higher forces on the intact crosslinks, which further increases their probability

to dissociate even more rapidly. Concomitantly, the damage evolves with strain

rapidly beyond γ ≈ 0.5 (Fig. 4.7) .
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Figure 4.8: Rate-dependent stiffness and damage evolution for three applied
rates. Stiffness degradation of networks coincide with the rapid increase in the
damage (marked by circles). Inset shows the softening regime at small strains
due to filament buckling.
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We now discuss the rate-dependent mechanical response of the network. Fig. 4.8

shows evolution of the normalized tangent stiffness K/K0 (K0 is the initial stiff-

ness) and damage for the three shear rates. In each case, the network stiffness

has an initial flimsy regime as depicted earlier in the Fig. 4.7. It is evident that

the network stiffness shows an initial gradual reduction which is present even in

the absence of crosslink scission before it begins to increase (see inset in Fig. 4.8).

This is so because, as filaments reorient toward the direction of principal stresses,

a certain proportion experience tension, while the remaining undergo compres-

sion. Given the high flexibility of filaments, compression induces buckling - a

structural softening mechanism, which is not necessarily irreversible [78, 87].

Consequently, the entire stress is carried by the filaments under tension after

they are fully taut. As noted in the preceding section, the filament straightening

is concomitant with the nonlinear increase in the overall network stiffness. Im-

portantly, Fig. 4.8 shows that the degree of nonlinear stiffening is rate-dependent.

With increasing applied rate the overall network response increases; higher stiff-

ening and a higher peak before the loss of stiffness occurs. The rate-dependent

stiffening and the peak stiffness are a direct result of the interaction between

the loading rate and crosslink scission rate (Eq. 4.1). At slow strain rate the dis-

sociation criterion (Eq. 4.3) is more likely to be satisfied even at small strains.

Therefore, damage initiates early for lower γ̇ and extends over the entire strain

range up to the point of collapse. With increasing strain rate the damage initiates

later, but it evolves more rapidly as can be deduced from the steeper jumps on the

damage-strain curves. At higher applied strain rates the induced local rate may

exceed the dissociation rate resulting in the crosslink not having sufficient time

to break before the force has changed. Naturally, such a delay means that the

network remains intact for larger strain values and therefore, exhibits an over-

all higher stiffness at a given strain compared to those deformed at lower strain
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rates. Interestingly, this situation is akin to the dislocation kinetics in metals that

exhibit rate-sensitivity at the elastic to plastic transition [172].

Of the three shear rates considered here, the maximum peak normalized stiffness

obtained is ≈ 50 for γ̇ = 1 s−1 and the minimum of ≈ 2 for γ̇ = 0.01 s−1. Soon

after the point of maximum stiffness, the network collapses. We characterize this

loss of structural functionality of the network by the failure strain γf at which

the τ − γ curve crosses the K − γ curve (Fig. 4.7). Although the simulations

may continue beyond this point, we consider γf as the measure of structural

failure, because the subsequent stiffening effect is usually much weaker than the

one before the colossal stiffness drop. From a microstructural viewpoint, at the

failure strain there is a substantial deterioration of the network integrity brought

about by scission of a critical fraction of the total crosslink population.

Stochastic Network Response

The results presented in the preceding section are for a fixed network topology

and with deterministic scission kinetics. However, there are at least two sources

through which variability may arise in the responses, even in the case of fixed

ρ. First, it is evident from experiments that the crosslink scission is a stochastic

process [164, 165]. Thus, at a given deformation rate, Fcr for crosslink scission

may be scattered about a mean value. Second, one may be able to generate

myriad topological realizations for a given orientation distribution function. In

this section, we investigate the stochastic effects in the rate-dependent behavior

of networks arising from these sources of variabilities.We consider five differen-

t realizations of the networks corresponding to ρ = 10. For each realization,

the stochastic nature of crosslink scission is captured through the KMC proce-

dure (Section 4.2), which is invoked for every crosslink in a given network. The
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crosslinks are ranked in an ascending order of their lifetimes t and the one with

the largest lifetime tmax is compared with the critical lifetime t̂. We perform five

such simulations for each network realization. Thus, for a given γ̇ we simulate

twenty-five cases. We note in passing that the variability arising from the latter is

also expected to depend on the size of the computational window, W. A discus-

sion about the topological variability due to the filament density and size of the

computational window is presented in Section 3.2.
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Figure 4.9: Stochastic rate-dependent response of networks.

Figure 4.9 shows the network stiffness evolution with strain for three different

applied strain rates. Each curve is an average of 25 simulations and the error bars

indicate the variability due to the aforementioned sources of randomness. The

responses indicate rate-sensitive stiffening and failure, but also exhibit significant

variability as indicated by error bars. The variability is low at small strains (γ ≈
0.05), but it increases beyond that. Although not shown here, our simulations

indicate that topological variations, which are meditated by the computational
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domain size, play a bigger role than the stochastic scission and some of this can

be reduced by sampling larger regions (Section 3.2). However, microstructural

characteristics also mediate this variability. This is primarily due to the fact that

as each network topology accrues damage due to crosslink scission, the local

rearrangements of the filaments can vary significantly.

A quantitative comparison with experiments is challenging due to the large num-

ber of parameters involved: actin concentration, actin-ABP ratio, filament length,

distance between crosslinks, rate of loading etc. Figure. 4.10 summarizes ex-

perimental data on the peak normalized network stiffness for F-actin networks

crosslinked with various ABPs [71, 72, 173–176]. It also superposes the present

simulation results (square boxes with error bars). It should be noted however,

that the different experimental results in the figure may not directly comparable

as the concentration of actin and ABP are not the same; also, the filament lengths

may differ. For the data shown in Fig. 4.10, the concentration of F-actin varies

from 0.4− 0.8 mg/ml. The concentration ratio of ABP to actin varies from 0.003

to 0.01. The experimental result that compares well with the our simulation re-

sults are from Kasza et al. [174] (black triangle in Fig. 4.10), where the F-actin

concentration is ≈ 0.5 mg/mlwith L ≈ 10 µm, similar to the parameters used

here.

Figure 4.11 shows the average rate-dependent evolution of the damage φ with

strain corresponding to the stiffness evolution in Fig. 4.9. The trend is similar to

the one in the deterministic simulations (Fig. 4.8) and given that this result stems

from sizable number of simulations, we identify two universal features- (a) in-

cubation strain γin which characterizes the minimum macroscopic deformation

that a network should accrue before crosslinks begin to dissociate and (b) rate

of growth φ̇ beyond incubation. As can be noted, γin has an inverse relation-

ship with the applied rate: networks subjected to lower rates of loading possess
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diamonds for rigor-HMM bonds. Simmulation results are shown by the rect-
angular boxes [71, 72, 173–176]. The length of the F-actin filaments used in
experiments is shown in the legend.

propensity for early initiation of damage, while at higher rates, damage initiation

takes place only at large strains. Such information is not available in experimen-

tal literature as there it may not be possible to isolate the damage incubation

characteristics in an experiment. However, one may be able to reconcile it in an

indirect fashion. In Broedersz et al. [177] and Lieleg and Bausch [84] for exam-

ple, it can be noted that networks subjected to lower applied shear rates start to

stiffen at higher strains compared to those sheared at higher rates. This could be

attributed to the fact that the damage (crosslink scission) is more severe in the

former, which implies lower incubation strain while the latter shows a delayed

damage initiation i.e. higher incubation strain. Another interesting observation

is that irrespective of the applied rate, the damage evolution appears to converge
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to a single value of ≈ 4% with γ ≈ 0.45, beyond which a runaway growth occurs

especially for higher strain rates.
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Figure 4.11: Damage evolution for three applied shear rates. Each curve is an
average of 25 simulations. The solid circle on each curve indicates incubation
strain γin for that particular rate.

Figures 4.12a and 4.12b show the rate-dependent γin and the critical damage for

stiffness collapse, φcr with their corresponding variability. Whereas, the former

clearly indicates a rate-dependent behavior, the same cannot be said about latter

owing to a large scatter. Another important observation in the damage evolution

process is that the φcr ranges between ≈ 0.5 − 3%, while the loading rate and

corresponding peak stiffness vary by three orders of magnitude. This low criti-

cal damage is ascribed to the non-affine nature of the network response. It can

be observed from Fig. 4.12b that the variation in φcr is minimum for the shear

rate γ̇ = 0.1 s−1. For the lower rates, crosslink scission is vigorous starting at

a very small strain and for higher rates the crosslink scission is very rapid after
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Figure 4.12: Rate effects in damage incubation strain γin and critical damage φcr.

incubation which brings in substantial variability in φcr. Given that φcr is rel-

atively rate insensitive, from variability consideration one may posit that there

is an optimum rate that provides a more deterministic information about criti-

cal damage irrespective of the computational window size. At the point where

the network collapses, the main load carrying components are the filaments that

have already aligned in the principal tensile direction. In this scenario, although

there may be several intact crosslinks that connect the filaments, the effective

system redundancy is governed by stress fibers. These stress fibers are like a

system of springs in parallel where each of the stress fiber comprises of several

filament-spring connected in series, supporting the applied deformation. When

one crosslink within any of these stress fibers dissociates, it corresponds to loss of

one stress fiber thereby reducing the effective stiffness dramatically (Fig. 4.13).

In other words, rearrangement of filaments lowers the effective redundancy of

the network, which would otherwise help maintain its structural integrity over a

larger deformation.
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Figure 4.13: Schematic showing the formation of stress fibers at large deforma-
tion due to the preferential alignment of the filaments to the loading direction
and its failure due to crosslink scission. Scission of a small fraction of crosslinks
may result in the failure of stress fibers which in turn result in the network fail-
ure. The view on the left shows a broken stress fiber and the right view shows
the intact one.

4.4 A Continuum Model with Damage

In this section, we present a phenomenological homogenized continuum model

that incorporates the effect of non-affinity and deformation-induced damage evo-

lution due to crosslink scission. The main objective is to show that the damage

kinetics can be introduced within an existing homogenized model and demon-

strate that such an enriched model qualitatively mimics the DN simulation re-

sults [178]. The model is based on the work of Planas et al. [179] that accounts

for the filament orientation evolution in an average sense, but unlike their work

that ignores non-affine effects, we approximately incorporate the influence of

non-affine deformations [180].
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4.4.1 Affine Deformation Model

F-actin filaments crosslinked by ABPs are assumed to be uniformly distributed in

the unloaded configuration [181]. Filaments are assumed to be isotropic and

homogeneous with crosslinks at the end points. The initial filament orientation θ

is accounted using a distribution function. A uniform probability density function

for a continuous distribution is given by [179]

Γ(x) =











1
b−a

if a ≤ θ ≤ b

0 if θ < a or θ > b

(4.6)

where a and b denote the limits of θ. In the present 2D scenario with 0 ≤ θ ≤ π

the initial spatial distribution function is given by [179]

Γ(n, x) =
ff
2π

(4.7)

where ff is the volume fraction of the filaments. In this homogenized theory,

information about ρ̄ is embedded through ff . For the 2D case,we equivalently

define it as the area fraction, i.e. ff ≈ NLd/W 2 = 0.007 where d is the diameter

of filaments. n is the unit vector in the reference configuration x, where the

filament distribution is uniform

n = e1 cos θ + e2 sin θ (4.8)

In the deformed configuration filaments continually align with the loading di-

rection and the overall orientation distribution deviates from its initial uniform

state.

Consider a filament connected with two crosslinks in series. The stress in this
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filament-crosslink system is described by

sf (λ) = EA
f (λ− 1) (4.9)

where λ is the axial stretch in this system. EA
f is the effective elastic modulus of

the filament-crosslink system, ignoring the non-affine and damage effects. Note

that EA
f may itself be a function of λ depending upon the constitutive behaviors

of the filament and the crosslinks. At any time t, a macroscopic simple shear

γ(= γ̇t) applied to the network results in the following deformation gradient

F =





1 γ

0 1



 (4.10)

With affine deformation assumption, the stretch λ in an individual filament-

crosslink system due to γ is [179],

λ(θ) = |Fn| =
√

1 + γ2 sin2 θ + 2γ sin θ cos θ (4.11)

and the corresponding Cauchy stress (in 2D) is

σ =

∫ π

0

sf(λ)

[

Fn ⊗ Fn

|Fn| − 1

2
|Fn|I

]

Γ(n,x)dθ − pI (4.12)

where ⊗ denotes a tensor product, I is the identity tensor and |a| indicates the

magnitude of a vector a and Fn ⊗ Fn is given by

Fn =





cos θ + γ sin θ

sin θ



 (4.13)

127



Fn ⊗ Fn =

[

Fn1Fn1 Fn1Fn2

Fn2Fn1 Fn2Fn2

]

=

[

(cos θ + γ sin θ)2 sin θ(cos θ + γ sin θ)

sin θ(cos θ + γ sin θ) sin2 θ

]

(4.14)

The expression is for incompressible and the factor 1/2 is because of the 2D

framework. Eq. 4.12 can be expanded as

σ =

∫ π

0

sf

[

Fn ⊗ Fn

|Fn| − 1

2
|Fn|I

]

Γ(n,x)− pI

=

∫ π

0

E(λ− 1)

[

Fn ⊗ Fn

|Fn| − 1

2
|Fn|I

]

Γ(n,x)− pI (4.15)

=

∫ π

0

E(|Fn| − 1)

[

Fn ⊗ Fn

|Fn| − 1

2
|Fn|I

]

Γ(n,x)− pI (4.16)

=

∫ π

0

E(γ)

[

Fn ⊗ Fn − 1

2
|Fn|2I − Fn ⊗ Fn

|Fn| − pI (4.17)

+
1

2
|Fn|I

]

ff
π
dθ (4.18)

For the cases considered here the stiffness E is the combined stiffness of the

filament and the crosslink. We are considering two cases here, in one of them

the stiffness of the crosslink is constant and in the other case, the crosslink strain

hardens and the stiffness increases with deformation. The former is modeled

using a linear spring while the latter is approximated using Worm Like Chain

(WLC) model.
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4.4.2 Crosslink with Fixed Stiffness

In order to account for the finite stiffness of the crosslinker, the crosslink is as-

sumed to be like a linear spring with finite stiffness. As filament is connected

by crosslinks at the end, a representative filaments is a system with a filament

connected in series with two crosslinks. The components of stress are,

σ11 =
Eff
π

∫ π

0

[

(cos θ + γ sin θ)2 − 1

2
(1 + γ2 sin2 θ + 2γ sin θ cos θ)

]

− Eff
π

∫ π

0

[

(cos θ + γ sin θ)2 − 1
2
(1 + γ2 sin2 θ + 2γ sin θ cos θ)

√

1 + γ2 sin2 θ + 2γ sin θ cos θ

]

− pI

(4.19)

σ22 = −Eff
π

∫ π

0

[

sin2 θ − 1

2
(1 + γ2 sin2 θ + 2γ sin θ cos θ)

]

−Eff
π

∫ π

0

[

(sin2 θ − 1
2
(1 + γ2 sin2 θ + 2γ sin θ cos θ)

√

1 + γ2 sin2 θ + 2γ sin θ cos θ

]

− pI (4.20)

σ12 = σ21 = −Eff
π

∫ π

0

cos θ(cos θ + γ sin θ)dθ

− Eff
π

∫ π

0

[

cos θ(cos θ + γ sin θ)
√

1 + γ2 sin2 θ + 2γ sin θ cos θ

]

− pI (4.21)

In order to solve the integrals, we take advantage of the fact that the shear strain

γ is usually less than 1. The individual terms in the integral are expanded using

binomial theorem, retaining terms up to order 3. All the above integrals can be
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solved by considering each terms separately. Equation 4.19 becomes,

σ111 =
Eff
π

∫ π

0

(cos2 θ + γ2 sin2 θ + 2γ sin θ cos θ − 1

2
(1 + γ2 sin2 θ + 2γ sin θ cos θ)dθ

=
1

2

Eff
π

∫ π

0

(2 cos2 θ + γ2 sin2 θ + 2γ sin θ cos θ)dθ

(4.22)

The terms can be directly integrated, giving

σ111 =
1

4
Effγ

2 (4.23)

The second term of the integral is

σ112 = −Eff
π

∫ π

0

(cos θ + γ sin θ)2 − 1
2
(1 + γ2 sin2 θ + 2γ sin θ cos θ)

√

1 + γ2 sin2 θ + 2γ sin θ cos θ
dθ

= −1

2

Eff
π

∫ π

0

(2 cos2 θ − 1 + γ2 sin2 θ + 2γ sin θ cos θ)
√

1 + γ2 sin2 θ + 2γ sin θ cos θ
dθ

(4.24)
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Adding and subtracting 1 to above equation

σ112 = −1

2

Eff
π

∫ π

0

(2 cos2 θ − 1− 1 + 1 + γ2 sin2 θ + 2γ sin θ cos θ)
√

1 + γ2 sin2 θ + 2γ sin θ cos θ
dθ

= −1

2

Eff
π

∫ π

0

(2(cos2 θ − 1) + 1 + γ2 sin2 θ + 2γ sin θ cos θ)
√

1 + γ2 sin2 θ + 2γ sin θ cos θ
dθ

= −1

2

Eff
π

∫ π

0

(−2 sin2 θ + 1 + γ2 sin2 θ + 2γ sin θ cos θ)
√

1 + γ2 sin2 θ + 2γ sin θ cos θ
dθ

= −1

2

Eff
π

∫ π

0

sin2 θ
√

1 + γ2 sin2 θ + 2γ sin θ cos θ
dθ

− 1

2

Eff
π

∫ π

0

√

1 + γ2 sin2 θ + 2γ sin θ cos θ dθ

= −1

2

Eff
π
I2(γ)−

1

2

Eff
π
I1(γ)

(4.25)

Equation 4.20 can be integrated in similar fashion. First term of σ22 is

σ221 = −Eff
π

∫ π

0

sin2 θ − 1

2
(1 + γ2 sin2 θ + 2γ sin θ cos θ)dθ (4.26)

Direct integration yields,

σ221 = −1

4
Effγ

2 (4.27)

Second part of the integral is
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σ222 = −Eff
π

∫ π

0

(sin2 θ − 1
2
(1 + γ2 sin2 θ + 2γ sin θ cos θ)

√

1 + γ2 sin2 θ + 2γ sin θ cos θ
dθ

= −Eff
π

∫ π

0

sin2 θ
√

1 + γ2 sin2 θ + 2γ sin θ cos θ
dθ

+
1

2

Eff
π

∫ π

0

√

1 + γ2 sin2 θ + 2γ sin θ cos θ dθ

= −1

2

Eff
π
I2(γ) +

1

2

Eff
π
I1(γ)

(4.28)

First part of the shear term in the equation.4.21 becomes,

σ121 = −Eff
π

∫ π

0

cos θ(cos θ + γ sin θ) dθ

=
1

2
Effγ

(4.29)

Second part of the integral is

σ122 = −Eff
π

∫ π

0

cos θ(cos θ + γ sin θ)
√

1 + γ2 sin2 θ + 2γ sin θ cos θ

= −Eff
π
γ

∫ π

0

sin2 θ
√

1 + γ2 sin2 θ + 2γ sin θ cos θ

− Eff
π

∫ π

0

sin θ cos θ
√

1 + γ2 sin2 θ + 2γ sin θ cos θ

= −Eff
π
γI2(γ)−

1

2

Eff
π
I3(γ)

(4.30)

Expanding the terms in the above equations using binomial expansion to solve

the integrals; only terms up to γ3are retained. Integrals I1, I2 and I3 becomes,

132



I1(γ) =

∫ π

0

√

1 + γ2 sin2 θ + 2γ sin θ cos θ dθ

≈
∫ π

0

[

1 + (γ2 sin2 θ + 2γ sin θ cos θ)
]1/2

dθ

≈ π +
3

16
γ2

(4.31)

I2(γ) =

∫ π

0

sin2 θ
√

1 + γ2 sin2 θ + 2γ sin θ cos θ
dθ

≈
∫ π

0

sin2 θ
[

1 + (γ2 sin2 θ + 2γ sin θ cos θ)
]

−1/2
dθ

≈ π

2
+

3

32
γ2

(4.32)

I2(γ) =

∫ π

0

sin θ cos θ
√

1 + γ2 sin2 θ + 2γ sin θ cos θ
dθ

≈
∫ π

0

sin θ cos θ
[

1 + (γ2 sin2 θ + 2γ sin θ cos θ)
]

−1/2
dθ

≈ π

8
γ +

9

256
γ3

(4.33)

Using equations 4.31,4.32 and 4.33 in equations 4.25, 4.28 and 4.30, the stress

components are given by

σ11 = −p + Eff
16

γ2

σ22 = −p− Eff
16

γ2

σ12 =
Eff
8
γ +

15Eff
256

γ3

(4.34)
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σ12 is an odd function of γ, both linear and cubical in γ. The contribution by

higher order term is very small at small strains due to the small value of the

coefficient. If we neglect the higher order term in σ12, Poynting effect can be

observed [182]:

σ11 − σ22 = γσ12

=
Eff
16

γ2 +
Eff
16

γ2 ≈ γσ12

(4.35)

4.4.3 Strain Hardening Crosslink

Crosslinkers like Filamin are flexible and shows a strain hardening type of re-

sponse (ref Section. A.6 for a discussion about crosslink response). Such a re-

sponse can be better approximated by WLC model. In this case the stiffness of

the system is a function of deformation and the stress on the filament sf has to

be integrated over the entire orientation. Force-displacement relation for WLC

model is given by

F (x) =
kbT

lp

[

1

4

(

1− x

L0

)

−2

+
x

L0

]

(4.36)

Stiffness of the crosslink is

F (x) =
kbT

L0lp

[

1

2
(1− (λ− 1)−3) + 1

]

(4.37)

We used the expression x/L0 = (λ− 1) for rewriting the stiffness in terms of the

stretch. When the filament is connected in series to the crosslinks at the end, the

effective stiffness Keq of the system is given by
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Keq =
KfKx

Kx + 2Kf

=
Kf

kbT
L0lp

(

1
2
(1− (λ− 1)−3) + 1

)

kbT
L0lp

(

1
2
(1− (λ− 1)−3 + 1)

)

+ 2Kf

(4.38)

The equation for shear stress obtained from Eq. 4.21

σ12 =

∫ π

0

KeqλL

A

ff
π
(λ− 1)

Fn ⊗ Fn

λ
dθ (4.39)

Substituting for Keq from Eq. 4.38,

σ12 =
Lff
Aπ

∫ π

0

Kf
kbT
L0lp

(

1
2
(1− (λ− 1)−3) + 1

)

kbT
L0lp

(

1
2
(1− (λ− 1)−3) + 1

)

+ 2Kf

(λ− 1)
Fn ⊗ Fn

λ
dθ

=
Lff
Aπ

∫ π

0

Kf
kbT
L0lp

(

1
2
(1− (λ− 1)−3) + 1

)

kbT
L0lp

(

1
2
(1− (λ− 1)−3) + 1

)

+ 2Kf

[

Fn ⊗ Fn − Fn ⊗ Fn

λ

]

dθ

(4.40)

Expanding the terms, final expression for stress becomes,

σ12 =
Lff
Aπ

∫ π

0

[

Kf
1
2
(2− λ)−3

Kλ
Fn ⊗ Fn +

Kf

Kλ
Fn ⊗ Fn

−Kf
1
2
(2− λ)−3

Kλ

Fn ⊗ Fn

λ
− Kf

Kλ

Fn ⊗ Fn

λ

]

dθ

(4.41)

where Kλ is the sum of stiffness given by
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Kλ =
1

2
(1− (λ− 1)−3) + 1 + 2

KfL0lp
kbT

(4.42)

In the above expressions, λ is the stretch in the system. Replacing λ by Eq. ?? in

Eq. 4.11, the resulting expression is solved numerically in MAPLE R© to obtain the

stress.

4.4.4 Constitutive Response of F-actin Networks

We consider F-actin as linear elastic and crosslink behavior modeled using WLC

[81,183], the shear response in Eq. 4.41 can be rewritten as

σ12 = −pI +
∫ π

0

EA
f ff

π

{

Fn ⊗ Fn − 1

2
|Fn|2I − Fn ⊗ Fn

|Fn| +

1

2
|Fn|I

}

dθ (4.43)

where EA
f the affine network modulus. With this, EA

f in Eq. (4.43) becomes

EA
f =

KfL

A
( λ̂

−3

2
+ 1)

1 + λ̂−3

2
+

2Kf l0lp
kBT

(4.44)

where λ̂ = (1− (λ−1)), and Kf and A are the stiffness and area of the filaments,

respectively.

As discussed later the initial response is determined by the crosslink behavior

as it is the more compliant of the two. However, gradually, as the macroscopic

strain increases the crosslink stiffens and the filament starts playing a dominant

136



role. This is further aided by the filament reorientation process.

4.4.5 Effect of Non-affinity

The simple springs-in-series model describing EA
f leads to affine deformations,

whereas a network may deform in a non-afffine manner triggered by filament

bending [77, 126]. In this work, we do not attempt to rigorously formulate this

effect. However, it is important to account for it and to that end, we refer to

Zaccone and Scossa-Romano [180] who elegantly showed that in amorphous

solids,

µ = µA − µNA = µA(1− z
′

) (4.45)

where µ is the actual network shear modulus, µA is the modulus assuming affine

deformations while µNA is the non-affine contribution that softens the overall

response. In other words, the term inside the bracket describes the magnitude

of non-affinity through z
′

that is related to the coordination number indicating

nearest neighbor particles in contact and dimensionality of the problem. While

Eq. 4.45 is only valid for central force systems, it is used here as a guidance

for writing a similar form for biopolymeric networks where bending energy can

stabilize the floppy (soft) modes [184, 185]. Motivated by the elegance of Eq.

4.45, we write

Ef = EA
f (1− ζ0) (4.46)
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where ζ0 is a dimensionless quantity (< 1) that characterizes the network non-

affinity induced by bending deformations. For a given filament density, it is ex-

pected to depend on an effective coordination number z at a crosslink (deter-

mined by whether it is an X,L or T type junction [186, 187], the effective fila-

ment length lc between the crosslinks and a length-scale λ describing the propen-

sity of a filament to bending [77, 188]. Although not derived here in detail, we

suggest that ζ0 would be directly proportional to lc, but depend inversely on z

and λ. Finally, using continuum damage mechanics approach, we superpose the

effect of scission-induced damage and write the equivalent elastic modulus Ee of

the filament-crosslink system as

Ee = EA
f (1− ζ0 − ζ1φ) (4.47)

where ζ1 is a is a phenomenological sensitivity parameter that accounts for the

effect of enhancement of degradation due to reduced redundancy of the network

as stress fibers form (Fig. 4.13). Equation 4.47 indicates that the softening of the

network brought about by bending induced non-affinity (characterized by ζ0) is

accentuated by the damage induced from crosslink scission. The modulus EA
f

in Eq. 4.43 is substituted by Eq. 4.47. The resulting expressions for the network

stress components are complicated functions of γ and are solved using MAPLE R©

to obtain the overall differential shear stiffness.

4.4.6 Damage Evolution

Reiterating the characteristic features of damage evolution, we have rate-dependent

incubation strain and damage growth but a rate independent strain γe ≈ 0.45 at
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Table 4.1: Value of the parameters used in damage modeling(Eq. 4.48).

αγin p φ̇0 ( s−1) γ̇0 ( s−1) γe n ζ0 ζ1

0.25 0.4 0.067 1 0.45 0.4 0.8 50

which the runaway damage growth occurs. From these characteristics we pro-

pose the following evolution law for the crosslink scisson fraction

φ̇ =











0 if γ ≤ γin

φ̇0

(

γ̇
γ̇0

)(

γ
γe−γ

)n

if γ > γin

(4.48)

where φ̇0 is the characteristic scission rate obtained at a characteristic macroscop-

ic deformation rate γ̇0 and n indicates its dependence on the applied and runaway

strains.In the equation, the rate-dependent incubation strain γin = αγin (γ̇/γ̇0)
p

is characterized by the parameters αγin and p. Damage evolves only after γin

is reached. These parameters are obtained form the damage evolution curves

(Fig. 4.11) and the values are given in Table 4.1.

4.4.7 Network Response: Continuum Modeling Results

Figure 4.14 shows the rate-dependent stiffness and damage evolution with macro-

scopic shear strain obtained from the homogenized model. The result repro-

duces qualitative trends that were obtained in the DN results (Fig. 4.8). As both

crosslink and the filament are connected in series, at small strains the response

is mediated by the crosslink due to low stiffness. With continued deformation

the crosslink stiffens and the filament starts contributing to the overall stiffness,

because it now assumes the role of the weakest link in the filament-crosslink se-

ries system. Yet, the network stiffness increases by several orders of magnitude
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owing to reasonably large stretching stiffness of the filament.
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Figure 4.14: Rate-dependent stiffness response of the network the homogenized
model.

Using the parameters in Table 4.1, the peak stiffness values obtained are in the

same range as in the experimental observation [71] and our DN model. Im-

portanly the underlying microstructural evolution, damage evolution and the

resulting rate sensitivity of the biopolymer networks are captured using the cur-

rent model in an average sense without the necessity to divulge into the specifics

of a given network. The microstructural evolution of a network through fila-

ment reorientation causes stiffening of the overall response. In Planas et al.’s

model [179] the current average network orientation without considering the

damage is described by θp as
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θp(x) =

∫

γ(n, x)n.e1 dw
∫

γ(n, x) dw

=
1

ff

∫ π

0

Γ(n,x)Fn.e1

|Fn| dθ

=
1

π

∫ π

0

cos θ + γ sin θ

|Fn| dθ

(4.49)

i.e. θp is the ratio of the projected length of filaments on the reference axis to the

total length of the filaments. Evolution of θp depends on the type of deformation

and the reference axis.
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Figure 4.15: Evolution of filament orientation for shear loading with respect
to 450 axis. At small strains principal loading direction coincides with 450 axis
and later it deviates, evident from the initial increase and then decrease in the
orientation parameter.

Figure 4.15 shows the process of filament reorientation in a network, obtained by
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numerically integrating Eq. 4.49 for the simple shear case. For simple shear de-

formation, the initial principal axes are at ≈ 450. During deformation, filaments

get oriented towards the principal axes. The reference axis considered for the

calculation of θp remains fixed at 450 while the principal axis for the simple shear

case start with 450 and tend towards 00 at very large strains. For a 2D uniform

distribution, the initial value of θp is 2/π and the limiting value when θ tends to

be 00 is 1/
√
2 (not shown in Fig. 4.15). For the uniform distribution, filaments

are oriented in all directions in the undeformed state, but during deformation

they tend to be oriented to 450 at small strains, reflected as initial increase in θp

and then progressively to 00, reflected as the drop in θp.

Although not explored here, another important feature of this model is that the

variability in the damage evolution that could be incorporated into the continu-

um model by adopting distribution functions for the parameters in Table 4.1 as

those are based on the variability obtained from the DN calculations. In such a

scenario, the values in Table 4.1 could be mean values.

4.5 Summary

In this work, we developed microstructurally informed models to gain insights

into the rate-dependent mechanical behavior of soft, fibrous networks. F-actin

network crosslinked with Filamin was chosen as a model system for this inves-

tigation. The DN approach was enriched with crosslink scission kinetics, which

renders the response rate-sensitive. The stochastic nature of the scission process

is embedded in the approach by integrating KMC procedure into the FE frame-

work. We also addressed the variability of responses that arise from sampling
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effects, which enables us to understand statistical aspects of the network mechan-

ics. We also developed a homogenized damage model that was merged with an

existing continuum model and phenomenologically accounted for network non-

affinity. Although not explored here, an important feature of this homogenized

model is that the variability in the scission-induced damage could be incorporat-

ed in a seamless manner by adopting distribution functions for the parameters in

its evolution function.

In this work, the sole mechanism for rate dependent behavior is rate dependent

damage evolution. Factors such as viscoelasticity, reformation of crosslinks and

active rearrangement of the network architectures are not accounted for. Anoth-

er mechanism which is not accounted is the strain-rate hardening of crosslinks

[163]. In the case of strain-rate hardening type of crosslink, both γf and peak s-

tiffness could be modulated due to the higher forces experienced by the crosslinks.

It is seen that the mechanical response is inextricably linked to topological factors

such as filament density, crosslink density and network architecture ( see Chap-

ter4 [187]). The dependency on the last factor is not well understood and strong

connections have to be made between the topology and mechanical response to

fully understand behaviors of filamentous networks. The results presented here

are based on 2D filamentous networks whereas real biopolymeric networks are

three-dimensional. The lower constraint effect offered by the latter [80, 128]

and the resulting extended non-affinity may affect the damage evolution quanti-

tatively, although the qualitative behavior should still hold. Finally, we have not

addressed the role of the fluid medium that surrounds these networks. To the

lowest order, this will result in a shear stress that varies linearly with the strain

rate, solvent viscosity being the proportionality constant. This may be effectively

construed as dashpots embedded within the network and this may also influ-

ence the damage evolution, especially if the viscous time-scales compare with
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the dissociation time-scales and applied loading rate.

The research problem addressed in this chapter lies at the nexus of mechanics

and chemistry. A broad class of phenomena in cellular and molecular biophysics

are in this arena, including force induced unfolding or conformational change

of proteins, force induced activation of ion channels, chemical to mechanical

energy conversion in muscles and polymerization induced force generation in

actin filaments [189]. In all these problems the effect of force on equilibria

and rates of chemical reactions is treated using variants of the Bell and Eyring

models at the level of single molecules or single fibers. Our treatment of the

breaking of crosslinks follows along these lines but we have gone further by

constructing a damage model at the continuum level that is informed by thermal

activation theories at the scale of single crosslinks. As such our evolution laws

are written for tensorial quantities such as stresses and strains (not just forces or

extensions) even though they have their origins in one-dimensional ideas at the

single molecule level. We expect that our methods that combine deterministic

and stochastic elements will be applicable to a variety of filamentous network

architectures where there is continuous interplay of mechanical and chemical

forces.
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Chapter 5

Effect of Constituent Properties on

Network Response

5.1 Introduction

In Chapter 2, the overall filament length L set up the filament density and the

average distance between crosslinks lc appeared as the crosslink density1. We

assumed the filaments to be straight line segments (Section 2.6) by invoking the

persistence length (lp) argument. We discussed the effects of network topological

features on their characteristics through these three length scales. However, it is

also of interest to know how the response of a given network topology is mediat-

ed by the constituent properties of the filaments and crosslinks. A fourth length

scale that emerges is the characteristic filament bending length lb =
√

(κ/µs),

which has its origins in both, the material and the cross-sectional characteristics

1The length lc is also sometimes correlated to the network average mesh size [156,158].
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of individual filaments [142]. The problem becomes particularly intriguing be-

cause these networks resist deformation through a combination of filament bend-

ing and stretching, which invokes myriad possibilities with regard to the degree

of response nonlinearity and non-affinity as a function of their corresponding

rigidities. The challenges in characterization of network response is accentuated

if one considers finite stiffness of the crosslinks and their dissociation character-

istics. Naturally, it becomes imperative to seek answers to the some of the basic

questions that arise:

• How does the filament stretching-bending synergy affect the overall net-

work response?

• What is the interplay between the crosslink and filament stiffnesses in de-

termining the degree of response nonlinearity?

• For a fixed filament density, does the network response seamlessly transi-

tion from a non-affine to an affine behavior as a function of the filament

and crosslink properties?

• How does crosslink dissociation affect network stiffening as a function of

crosslink and filament stiffness?

• Is it possible to provide a simple, predictive model for network response

that accounts for topological effect, non-affinity and failure?

In the literature on fibrous networks, especially pertaining to biopolymeric sys-

tems, some of the aspects, e.g., bending-stretching nexus, degree of non-affinity,

and so forth, have been discussed [117, 130, 158, 184]. However, most of these

works have focused on addressing aspects related to the network behaviors as

a function of the filament density, filament length etc. For example, Onck et

al. [78] attributed the nonlinear stiffening in fibrous networks mimicking F-actin
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architectures to the non-affine deformations induced by filament bending that is

strongly influenced by the filament density. Head et al. [142] delineated the net-

work deformation into affine and non-affine and developed scaling laws based

on the filament properties. Missel et al. [190] studied the affine/non-affine tran-

sition in topologically anisotropic networks and found that the stress-strain re-

lation ship at both small and finite strains are different from affine prediction-

s of orthotropic continuum linear elasticity. Bai et al. [188] investigated the

role of filament length polydispersity (having filaments of multiple length) in

the affine/non-affine transition and observed the shift of transition to lower fil-

ament densities. Frey and coworkers [130, 184] developed self-consistent ef-

fective medium models describing non-affine deformations. Using a DN model

Wilhelm and Frey [191] obtained different scaling regimes in stiff random fi-

brous networks that includes the bending dominated regime. However, the role

of crosslink response was not probed in any of the above mentioned works. From

the perspective of biopolymers having a finite crosslink stiffness, it is important

to understand the role of crosslink response.

In this chapter, we seek answers to the above-mentioned questions using our

model problem comprising simple shear of a network with fixed filament density

(ρ̄ = 10) and network topology (Fig. 5.6), but varying the filament and crosslink

rigidities over a wide range 2. Starting with typical rigidity parameters that re-

semble F-actin filaments, the investigation extends over nearly three decades of

filament stiffnesses. In the following sections, we first describe the results per-

taining to the role of filament properties assuming the crosslinks to be rigid. We

2Though we present the results of a single topological realization, different topologies were
with nominally similar topological parameters were investigated and they demonstrated same
trend in the response with a variation of < 10%. Note that Chapter 3 discusses the aspects of
topological variability.
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then elucidate the role of the crosslink properties including the effect of their dis-

sociation characteristics on the network behavior over the range of rigidities. One

can imagine that building a general predictive model would be a complicated a-

genda, but we take a step toward addressing the complexity of the problem. The

highlight of this investigation is the resulting response map that fully describes

the overall network response for a wide range of filament properties and a fixed

ρ̄. We discuss the significance of such a predictive map and its implications on

the design of fibrous networks.

5.2 Role of Filament Properties

As mentioned in the introductory statements of this chapter, the role of the fil-

ament properties in the overall network response may be ascribed through the

characteristic bending length scale lb, which is simply the square root of the ra-

tio of the bending rigidity κ = EI and the stretching rigidity µs = EA, where

E, I and A are respectively the elastic modulus, second moment of area and the

cross-sectional area of the filament. For purposes of illustration, let the elastic

modulus be constant; then, lb =
√

I/A, which is the definition of the radius of

gyration of a column that plays an important role in bending and buckling of

slender structures. It is important to find out if it is the ratio (i.e., lb only) that

matters in the overall response, or the individual components of lb also play a

role. For example, it may so happen that two topologically identical networks

may comprise filaments that also possess identical lb, but the individual terms

(i.e., I and A) may be vary, albeit proportionately (Case I). Alternatively, they

may vary disproportionately so that filaments the two topologically identical net-

works have different lb (Case II). We discuss the constant lb case first followed by

the variable lb case. In both the cases the filaments obey linear elasticity and the
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crosslinks are rigid.

5.2.1 Case I: Constant lb

Fig. 5.1a shows the K − γ response of the network topology in Fig. 5.6. Note

that the nonlinear behavior is a direct result of the non-affine nature of network

deformation (see Chapter 3, Section 3.4 for a discussion about the non-affine

response). With this in mind, the Fig. 5.1a shows that for a constant lb = 2 nm,

larger the I and A, stiffer is the actual K − γ response. This is expected because

the overall network tends to be stiffer. However, the evolution of the normalized

stiffness K̂(= K/K0) collapse onto a single curve (Fig. 5.1b). That is, the rate

of stiffening (characterizing the non-affine nature) of these networks is identical,

indicating that it is the ratio rather than the individual components of lb that

matters in describing the non-affine characteristics of a rigidly crosslinked net-

work (Fig. 5.1a). Therefore, at least for the limited scenario of rigidly crosslinked

networks with no failure, it would be appropriate to simply prescribe an lb pa-

rameter to obtain a desired network response without being concerned about the

choice of individual constituent parameters for the filaments. Given that in all

the cases, the lb/lc ratio is constant, K0 is expected to adhere to the following

scaling law,

K0 ∝
(

κ

l4c

)(

lc
ξ

)q

(5.1)

where q has a value of 3 in ref. [156] and 2 in ref. [129] depending upon whether

the effect of network topology is accounted for in the scaling or ignored. This

scaling together with a fitting function for the K̃ − γ curves provides a complete

description for any network with a given lb.
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Figure 5.1: Stiffness evolution of topologically identical networks with different
combination of bending and stretching stiffness producing fixed lb ≈ 2 nm. (a)
Network stiffness scales with the absolute value of filament stiffness (the stiffness
parameters are shown in the legend). (b) The normalized response superposes
into a single curve.

5.2.2 Case II: Variable lb

Figure 5.2a shows that the situation in the case of variable lb is rather different

from its predecessor in Section 5.2.1. It can be immediately noted that the initial

stiffness K0 scales with lb, but unlike in Case I, this scaling is not maintained

throughout the entire deformation regime. Consequently, the responses are not

amenable to degeneration into a single master curve (Fig. 5.2b). Note that for a

fixed topology a higher lb indicates a network that is more resistant to bending.

As mentioned earlier, it is the propensity of the filaments to undergo bending

that renders non-affinity in the network response (see Section 3.4). Naturally,

with increasing lb the filament stretching becomes increasingly preferred mode

and the nonlinearity in the K − γ response diminishes. This is further clarified

in the normalized stiffness response in Fig. 5.2b where the degree of nonlinearity
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decreases with increasing lb to the extent that for lb = 2000 nm and the response

is affine over a large strain range.
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Figure 5.2: Stiffness evolution of networks with increasing bending length lb ≈
2, 200 and 2000 nm. Network stiffness varies with lb and considerable difference
is seen in the hardening response. (a) The initial network stiffness increases with
the bending stiffness of the filaments but the stiffness attained at 10% strain do
not follow the same trend. (b) Curves cannot be superposed to a single curve
when scaled with the initial stiffness.

It is useful to compare this with the case of changing lc keeping lb fixed (Chapter

3). It was ascertained in Section 3.4.2 that in the former situation the normalized

stiffness curves collapses on to a single master curve that follows K̂ ∝ τ̂ 3/2 scaling

with the normalized stress τ̂ [156]. Performing a similar normalization for the

cases in Fig. 5.2 and re-plotting the curves alongside the case of varying lc at fixed

lb (Fig. 5.3), we observe that the latter do not readily degenerate to a master

curve indicating the failure of the scaling law. The reason for this failure lies in

the fact that with increasing lb, the entire deformation process is dominated by

filament stretching, whereas the scaling law works well only for the cases where

there is a stark transition from bending to stretching, as was the case in [156].
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Figure 5.3: Role of lb and lc in the stiffness evolution of networks. (a) With fixed
lb and varying lc, curves collapses when the stiffness is scaled and plotted as a
function of scaled stress as shown by Žagar et al. [156]. (b) With varying lb and
fixed lc, such a scaling response is not observed.

5.3 Role of Crosslink Stiffness

Crosslinks may be broadly classified as rigid or compliant depending on their abil-

ity to extend under applied tension in consonance with the filaments they connec-

t. For example, Scruin, an Actin Binding Protein (ABP) in F-actin networks is rela-

tively rigid compared to the filaments. On the other hand, the stiffness of Filamin

is lower than the F-actin filaments and may be classified as compliant [157,192].

Apart from rigidly crosslinked biopolymeric networks, synthetic fibrous architec-

tures such as electrospun networks may also be classified under this category

owing to the fusion bonding between filaments [115,193]. The response of such

networks is governed by the filament properties and are often adopted as model

systems to investigate the topological effects (e.g., [80,110,112]). For network-

s with compliant crosslinks, the effect of the crosslink stiffness on the overall
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network response becomes an important question to address as the load trans-

fer paths could be significantly altered owing to additional kinematic degrees

of freedom and may have important implications on the degree of non-affinity,

stiffening and ultimately rupture of networks.
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Figure 5.4: Crosslink response and corresponding network response. (a) Linear
and bi-linear crosslink response. (b) Response of networks with crosslinks shown
in (a). Network with linear crosslinks shows early stiffening.

As an illustration of networks with flexible crosslinks, consider two canonical

crosslink elastic behaviors - linear and bilinear (Fig. 5.4a); the latter may be con-

strued as a simplification of a more realistic nonlinear constitutive characteristic

of some crosslinkers [192]. Further, let the stiffness of the linear elastic crosslink

be the same as the second leg of the bilinear crosslink. Figure 5.4b shows the

shear responses of two identical network topologies, one comprising the linear

elastic crosslinks and the other comprising the bilinear crosslinks. While both the

networks result in an overall nonlinear stress-stain response, the network with

nonlinear crosslinks is more compliant than its linear counterpart. The enhanced

flexibility of the nonlinear crosslinks allows the network to deform more easily
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over an extended strain regime and the overall response stiffens only after the

crosslinks stretch out their initial flimsy behavior.
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Figure 5.5: Variation of the average τ − γ response of network with ρ̄ = 10 as a
function of crosslink stretching stiffness Kx. Beyond Kx/Kf ≈ 102, crosslinks act
as if rigid and the network response becomes independent of Kx.

Motivated by this example, we delineate the role of crosslink stiffness on the

stiffening characteristics of networks. For simplicity, we assume the crosslinks

(and the filaments also) to be linearly elastic as key network features observed in

the nonlinear crosslinks are qualitatively retained. Figure 5.5 shows the overall

τ − γ responses for the crosslink stretching stiffness Kx ranging from 10−2Kf −
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106Kf , where Kf = 2 pNnm is the filament stretching stiffness. Given that the

network topologies are identical the difference in responses are directly linked

to the interplay between the filament and crosslink stiffnesses. This interplay is

brought about by the different ways in which the crosslink stiffness leads to the

deformations in the filaments.

For the most compliant crosslink considered here, the network deforms profusely

driven dominantly by the crosslink stretching (Fig. 5.6a). The filaments play sec-

ond fiddle accommodating the crosslink stretching by themselves bending (given

their low bending rigidity), both of which result in very low stresses. As a result,

the overall network response does not stiffen at all even when sheared to large

strains (γ > 1). An order of increase in Kx/Kf = 10−1 appreciably changes the

network dynamics, although still Kx < Kf . The network stiffening occurs at a

much lower strain than the preceding case and indicates that the initial filament

bending (plateau region) causes them to reorient along the principal tensile (and

compressive) axes (Fig. 5.6b). The crosslinks too tend to align along these axes

and the overall behavior is then a manifestation of springs-in-series like scenari-

o, where the response is dictated by the weaker crosslinks, but modulated by

the stiffer filaments. The trend remains the same for the cases Kx/Kf = 1 and

10, with the filaments playing an increasingly important role while the crosslinks

becoming the source of transferring loads between their connecting filaments. Fi-

nally, beyond Kx/Kf ≈ 100 the crosslinks are so stiff compared to the filaments

that the network effectively acts as if rigidly crosslinked and the response is in-

dependent of Kx (Fig. 5.6c). This also suggests that from a modeling viewpoint,

Kx/Kf ≈ 100 seems to be a reasonable assumption for rigid crosslinks.
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(a) Kx/Kf ≈ 10−2

(b) Kx/Kf ≈ 10−1

(c) Kx/Kf ≈ 102

Figure 5.6: Snapshots of the deformed networks at τ ≈ 0.5 Pa for (a) Kx/Kf =
10−2, (b) Kx/Kf = 10−1, and (c) Kx/Kf = 102. Figures on the right are enlarged
view of the region highlighted by red rectangles. Higher resistance to deforma-
tion offered by the crosslinks with increasing Kx/Kf is indicated by the reduced
expansion of crosslinks (colored springs represent deformed crosslinks).

A similar saturation characteristic is also observed for K0 (Fig. 5.7), although the
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range over which K0 varies is small (between 0.11 Pa for Kx/Kf ≈ 10−2 and

0.125 Pa for Kx/Kf ≈ 106). Interestingly, for Kx/Kf > 0.1, the transition strain

γT is nearly independent of Kx, which means that γT is governed by the collec-

tive behavior of the filaments and the crosslink flexibility does not play any major

role. Consequently, for a network with given constituent parameters, the stiffen-

ing initiation depends only on the topological arrangements of the filaments.
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Figure 5.7: Variation of initial stiffness with increasing crosslink stiffness.

5.4 Network Response with Failure of Crosslinks

In Chapter 4, we interrogated the stochastic failure of fibrous networks driven

by crosslink scission. However, there we focused on the rate effects in network

stiffening and softening mediated by stochastic nature of crosslinks and topolog-

ical variability. In this section, we re-invoke the crosslink scission mechanics, but

ask a different question: how does the filament-crosslink stiffness synergy affect
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the network response characteristics, i.e., K0, γT , peak stress and critical dam-

age (fraction crosslinks broken, φ)? To answer this and allied questions, we use

the same network topology as in the preceding sections together with a range of

Kx/Kf . The networks are sheared at γ̇ = 1 s−1, but unlike in Chapter 4 here we

do not discuss the rate-dependent behavior as main features are unaffected by

the applied rate. For simplicity, we also suppress the stochastic nature of scission

process (these are briefly discussed later in Section 5.5.4).
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Figure 5.8: Variation of normalized network stiffness K̂ at γ = 10% as a function
of increasing crosslink stiffness. For rigid crosslinks without failure (black curve),
when the crosslink stiffness is ≈ 10 times the filament stiffness, network stiffness
saturates as the crosslinks acts as rigid ones. When damage is incorporated (red
curve), overall network stiffness drops when the crosslink stiffness is increased
beyond certain value due to the crosslink scission.

Note that for the pristine crosslinks case (Fig. 5.5 and 5.7) both, small strain
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K0 and large strain responses K(γ) become stiffer with the increasing Kx, but

saturate beyond a critical Kx/Kf . With increasing Kx the forces induced on

individual crosslinks increase. This leads to an escalation of the crosslink scis-

sion rate (Eq. 4.1) thereby enhancing the probability of satisfying the scission

criterion (Eq. 4.3). Therefore, it can be expected that for nearly all the Kx/Kf

ratios considered here weakening of the network stiffness is expected at some

strain. Indeed, the situation dramatically changes with the inclusion of crosslink

scission. Figure 5.8 inspects the effect of crosslink scission on the normalized

network stiffness K̂ at γ = 10%. While the trend for K̂ follows that of the pris-

tine crosslink case up to Kx/Kf ≈ 102, beyond that the networks exhibit high

compliance. This reduction in K̂ suggests that for rigidly crosslinked networks

the scission process may initiate at small strains, possibly even concurrently with

the commencement of loading.

Figure 5.9 illustrates this behavior discussion quantitatively where solid lines

with symbols (bottom figure) indicate the network tangent stiffness and the

lines (top figure) show the damage (defined in Chapter 4). Relatively compli-

ant crosslinks (Kx/Kf ≪ 100) tend to dictate the overall load sharing and the

overall stiffness is low (e.g., solid green line in Fig. 5.9). Indeed, the stiffness

in this particular case is so low that no scission occurs over the strain range

noted from the absence of the corresponding damage evolution curve (there is

no green line in the damage plot as no crosslinks are broken). With increasing

crosslink stiffness the network stiffness increases, resulting in some crosslink s-

cission that occurs at intermediate to large strains (e.g., γ ≈ 0.2 for Kx/Kf = 1).

For rigidly crosslinked networks, instead of high initial and finite strain stiffness-

es, one observes a weaker response (black curve). These networks, weakened by

the scission process initiated at small strain (≈ 0.02), exhibit an initial stiffness

comparable to their counterpart with Kx/Kf ≈ 1 that does not sustain damage
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over a large strain range. Note that this feature is also clear in Fig. 5.8. The

crosslink scission induced softening with increasing Kx indicates that for a giv-

en set of scission characteristics, there could be an optimum value of the Kx at

which the maximum network stiffness can be achieved. Increasing the stiffness

of the crosslink beyond this value will result in precipitous softening rather than

stiffening.
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Figure 5.9: Stiffness and damage evolution for three crosslink stiffness. Solid
lines shows the stiffness and dotted lines show corresponding damage.
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5.5 Toward Constructing a Predictive Response Map

In Sections 5.2.1 and 5.2.2, we observed that the nonlinear stiffening varies sig-

nificantly with lb. An interesting query that arises is whether these observations

can be integrated into a response surface that provides a minimalist approach

to predicting the response of any network with a given set of parameters. This

section describes an approach toward constructing such a map for a fixed ρ̄. To

do so, the first step is to perform a comprehensive parametric study over a wide

range of stretching and bending stiffnesses for both, fixed and varying lb
3. Here

we assume the crosslinks to be rigid and therefore, the effect of crosslink stiff-

ness is not interrogated. It has been seen that both initial stiffness and the overall

response varies considerably with lb and cannot be predicted from lb alone. In

this section we probe the initial stiffness and the nonlinear response of networks

up to a strain of 15%4. For a rigidly crosslinked network, it is lc that affects the

overall network response rather than actual filament length L. We define nor-

malized parameters by scaling stiffnesses with E and lc. Such a scaling helps to

incorporate the role of lc or ρ̄ as increasing ρ̄ leads to a decrease in lc.

5.5.1 Initial Stiffness

Figure 5.10 shows the surface plot of K̃0 = K0/Elc as a function of K̃s = Ks/Elc

and K̃b = Kb/Elc that is interpolated from the results obtained for the simu-

lated cases. Traversing along increasing abscissa (at any fixed K̃s) indicates an

increased energy cost for a network to deform through filament bending, while

3A total of 49 simulations were performed (indicated by circles in Fig. 5.10) keeping the net-
work topology the same.

4For the ρ̄ considered here, the nonlinearity/no-affinity settles down and the network response
becomes stretching dominated at γ ≈ 15%, beyond which the response is similar. Also, for the
range of stiffnesses probed here numerical solutions are possible up to this strain, beyond which
some cases give convergence problems.

161



traversing along increasing ordinate at a fixed K̃b indicates increasing effort to

stretch the filaments. On this backdrop, the contour variation shows some inter-

esting features.
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Figure 5.10: Contour plot showing the variation of scaled initial network stiffness
(K̃0) with normalized filament stiffnesses K̃s and K̃b. Superposed circles indicate
the simulated cases used in constructing the contour plot.

Note that lb =
√

(Kb/Ks) varies in both the scenarios. However, the effect of

this variation is significantly different along the paths of constant K̃b and K̃s.

For a fixed K̃s, K̃0 increases with increasing K̃b. However, for a fixed K̃b, K̃0 is

nearly constant. There are thick vertical bands in Fig. 5.10 delineating regions

with constant K̃0 where networks with a range of lb
′s essentially exhibit identical

initial stiffness. Note however, that this does not necessarily mean the entire
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K̃ − γ evolution for these networks is the same (discussed et seq).

5.5.2 Stiffening Evolution
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Figure 5.11: Illustrative plot showing the stiffening evolution for same the net-
work topology with different lb. (black, lb = 2 nm and red, lb = 60 nm). Symbols
show the actual responses and the lines are the fits.

To characterize the stiffening evolution, the K − γ responses (up to γmax = 15%)

obtained from each τ − γ are normalized (K̂ = K/K0) so that all the curves can

be superposed on to one plot. These normalized responses are well-described

by power-law functions of the form K̂ = 1 + αNAγn
NA

(e.g., Fig. 5.11), where
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αNA = αNA(lb, lc, γmax) and nNA = nNA(lb, lc, γmax)
5. Note that αNA and nNA

together provide the measure of the overall network non-affinity, because the

material properties are linear elastic and the crosslinks are rigid. In the limiting

case, nNA = 0 or αNA = 0 indicates affine deformation.
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Figure 5.12: Variation of stiffening index nNA with normalized filament stiffness-
es K̃s and K̃b.

5In general, the magnitudes of αNA and nNA are expected to depend on the level of strain
(i.e., γmax); however, as is shown later there is a K̃s − K̃b domain where these are independent
of this strain.
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Figure 5.12 collates the response of all the simulated cases and shows the varia-

tion of nNA with K̃s and K̃b. For further discussion, we refer the line of constant

lb = 2 nm as the main diagonal. Any line parallel to it represents a constant

lb line. It was observed in Section 5.2.1 that the network stiffening response is

governed by the bending nature of the filaments and the results consolidated in

this map corroborates with this observation. Along any given constant lb line the

network stiffening rate is identical. For example, if we consider two networks

with identical topologies, one at the lower left corner of lb = 2 nm and other at

its top right corner, both exhibit identical stiffening rate although their filament

stiffnesses are three orders of magnitude apart. The role of filament stiffnesses is

to simply translate the curves proportionately (Fig. 5.1).

The region above the main diagonal from the lower left corner to the top right

corner may be viewed as the domain of constant stiffening rate as the magnitude

of nNA is the same irrespective of the filament stiffnesses. The region below

this diagonal may be referred to as the domain of variable stiffening rate as nNA

explicitly depends on the filament stiffnesses. If we traverse along the increasing

K̃b, in the lower region of the map nNA decreases from ≈ 3.6 to ≈ 2.2 as lb

increases from 2 nm to 60 nm. As lb increases, bending costs more energy and the

process of filament realignment and the bending-stretching transition is delayed.

At the same time if we traverse along the increasing the bending stiffness at the

upper regions of the contour where lb increases from ≈ 0.06 to ≈ 2, the stiffening

index remains constant. This is attributed to the interplay between the bending-

stretching nature of the filament deformation. The network response is governed

by the lower of the two stiffnesses. At lb ≈ 2 nm the network response is governed

by the bending of the filaments, leading to an initially highly flimsy behavior that

appreciably stiffens only after significant filament reorientation occurs so that

stretching mode kicks in. Lowering lb below this value does not change this

165



mode much, as highlighted by the constant nNA domain. On the other hand,

as lb increases from 2 nm to 60 nm (either traversing along the increasing K̃b at

K̃s = 3 × 10−5 or along decreasing K̃s at K̃b = 8 × 10−8) the network response

increasingly renders through a stretching dominated behavior as evident from

decreasing nNA. It shows that a lb of 2 nm or lower makes the network response

bending dominated and facilitates the reorientation of the filaments leading to

bending to stretching transition and the resulting stiffening.

5.5.3 Mapping the Scission-induced Damage

The observations on the network responses as a function of filament stiffnesses

provide a way to predict the entire stress-strain response of pristine networks

that lie within the ranges investigated, albeit for a given ρ̄. Given the filament

stiffness of a network, its full response curve up to γmax = 15% can be predicted

from the maps of K̃0, α
NA and nNA. Fig. 5.13 shows the combined contour of

K̃0 and αNA. The variation of αNA is similar to the variation of the nNA and

these two parameters helps to determine the response at finite strains once the

initial stiffness is known. One may take a step further and ask if it would be

possible to map out the failure accrued by a network in a similar manner given its

stiffening characteristics. For example, for networks in the domains of constant

K̃0 and αNA (Fig. 5.13), one may conjecture that the damage evolution through

scission would also be the same for the networks in these regions. We probe this

important aspect by characterizing the damage responses of selected networks

marked by yellow circles in Fig. 5.13.
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Figure 5.13: Variation of the normalized initial stiffness K̃0 (colored contours)
and the coefficient of the power law fit αNA (dashed lines) with K̃s and K̃b.

Before discussing the results, one may ask: how is such a characterization use-

ful? We believe that such an investigation may be useful in providing important

guidelines from the viewpoint of designing fibrous architectures for various engi-

neering purposes (e.g., scaffolds in tissue engineering [115, 155]). For instance,

the networks at the extremes of the main diagonal (Fig. 5.12) possess identical

stiffening rates (because lb is the same). However, the overall levels of stress in

these two cases are significantly different. Furthermore, if we probe the charac-

teristics along the diagonal of increasing lb, i.e., moving down from top left to
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bottom right corner, the response changes from hardening to linear ones. Based

on the stiffness values, one may postulate that the networks at different points

on the contour may represent different materials but to make such connections,

exhaustive investigations have to be done.

In this section we are focusing on the role of stiffness in the damage response of

networks. We consider two types of crosslinks; rigid and flexible ones and the

variation in damage evolution for these two types of networks are discussed in

the the next two sections.

Rigid Crosslinks

In this section, we examine the damage response of the networks with rigid

crosslinks (same networks used to create the response contours in Fig. 5.10, 5.12

and 5.13). We also assume that across the entire range of K̃s and K̃b, the kinetics

of scission process follow the Bell model, as discussed in Chapter 4 [166, 168,

169]. Across different stiffnesses, same parameters is used in the Bell model

so that the results for various simulations can be compared. The numerals in

the yellow circles superposed on Fig. 5.13 is coded as b/s, where b indicates a

particular level of K̃b and s indicates a level of K̃s (also see Table 5.1). For the

cases simulated, both s and b takes the values 0 and 3, i.e., the stiffnesses ranges

by three orders of magnitude.
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Figure 5.14: Damage evolution of the networks marked in Fig. 5.13. Each figure
shows the damage evolution for varying K̃b at a fixed K̃s. As can be seen from
Fig. (a) to (d), damage evolution becomes independent of K̃b. Scale in all figures
is the same.
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Table 5.1: Filament characteristics for the networks marked in Fig. 5.13. KA
b and

KA
s indicate F-actin bending and stretching stiffness respectively.

Network Bending stiffness Stretching stiffness
Designation Kb/K

A
b Ks/K

A
s

0/0 100 100

1/0 101 100

2/0 102 100

3/0 103 100

0/1 100 101

1/1 101 101

2/1 102 101

3/1 103 101

0/2 100 102

1/2 101 102

2/2 102 102

3/2 103 102

0/3 100 103

1/3 101 103

2/3 102 103

3/3 103 103

Fig. 5.14 show the damage responses, grouped by each K̃s. Fig. 5.14a shows the

response at a fixed K̃s = 2.9 × 10−5 and increasing K̃b. Recalling the discus-

sion of damage in Chapter 4, Section 4.4.6, damage is defined as the fraction of

crosslinks broken and is characterized by two parameters; initiation strain (γin)

and growth rate once the damage initiates. For a fixed filament stiffness, γin

shows a rate dependent response and is given by γin = αγin (γ̇/γ̇0)
p. The key

observations from the damage curves in Fig. 5.14 are:

• For a limited range of K̃s, γin decreases with increasing K̃b

• Delayed initiation of damage results in a steeper damage growth

• At higher K̃s, damage evolution is independent of K̃b
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Extending the observation from Chapter 4, γin is a function of the filament prop-

erties and the network topology; i.e., γin = f(lb, lc, γmax). Fig. 5.14b shows that

the trend changes with increasing K̃s, the sensitivity of γin to K̃b decreases. As

we move on to Fig. 5.14c and Fig. 5.14d, irrespective of the value of K̃0 and αNA,

damage becomes insensitive to K̃b for a fixed K̃s.
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Figure 5.15: Variation of γin with normalized filament stiffnesses K̃s and K̃b.
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damage is independent of the underlying filament stiffness (blue region above
the upper contour line).
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To better understand the variation of damage response with K̃b and K̃s, we col-

late the information in Fig. 5.14 to a contour plot. The plot along with the con-

tours is shown in Fig. 5.15. Variations in γin ceases at about K̃s = 3 × 10−4

and it remains the same with further increase in K̃s and K̃b. Only in a short

range, γin depends on the filament stiffness, then it is independent of the fila-

ment properties. Increase in K̃b results in lower values of γin and this may be

due to the increase in the overall stress level that leads to early damage (see dif-

ferent regimes in Fig. 5.13). This early initiation leads to merciful collapse of the

network as the subsequent damage growth rate is modest and the failure will be

gradual (see the difference in the slopes of green and blue curves in Fig. 5.14b).

Predicting the damage from the stiffnesses calls for in-depth understanding the

complex damage evolution process; the nexus between the filament-crosslink

stiffness, dependence on Bell model parameters, deformation rate etc. In Chapter

4, we explored the rate effects and found that the rate dependency of the damage

evolution makes the overall response rate dependent. In the next section, we

consider the same examples from Chapter 4 and vary the filament stiffness but

at a fixed loading rate.

Flexible Crosslinks

In order to understand the interplay of the filament-crosslink stiffness, we used

crosslinks with stiffness corresponding to ABP filamin. For the cases considered,

the crosslink is compliant compared to filaments. Mechanical response and dam-

age of eight selected networks marked in Fig. 5.13 (two central rows with thick

outlines) is discussed in this section. For the cases simulated, s takes the values

1 and 2, while b ranges from 0-3.
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Figure 5.16: Evolution ofK with strain for the eight networks marked in Fig. 5.13
in the presence of crosslink scission. Ks is 10 times and 100 times of F-actin for
each Kb. Scale in all figures is the same.

Figure 5.16 shows the mechanical response of the selected networks and Fig. 5.17

shows their corresponding damage evolution. The insets in Figs.5.16 are en-

larged views of the small strain network stiffness, which scale with the filament

bending stiffness. The stiffness and damage evolution curves exhibit some in-

teresting features. Note that although the initial stiffness and the subsequent

plateau (before stiffening commences) varies by orders of magnitude in the four
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sets of cases, the finite strain (≈ γ 0.1− 0.2) stiffness is nearly the same in all the

cases (≈ 1 Pa). Likewise, the ultimate damage at this finite strain is also nearly

the same in all the cases (≈ 0.2).

With these broad observations, let us compare the results further. As expected,

the K − γ responses for cases 0/1 and 0/2 are identical (Fig. 5.16a) given their

identical K̃0 and αNA. Importantly, both the cases also exhibit identical damage

evolution (Fig. 5.17a and b). Likewise, the stiffness and damage evolution with

strain for the 1/1 and 1/2 cases also superpose. What is interesting between the

“0/s” family and “1/s” family is that the stiffness plateau set by K0 is an order of

magnitude higher in the latter compared to the former (cf. Fig. 5.16a and b), yet

their damage evolution curves are identical (cf. Fig. 5.17a and b). This indicates

that (at least in the case of rigidly crosslinked networks) the underlying crosslink

scission process is unaffected below a certain threshold filament bending stiffness

Kb. This statement is reinforced by the damage evolution for the 2/s and 3/s cas-

es (Fig. 5.17c and d) that despite possessing nearly the same finite strain stiffness

(≈ 1 Pa) exhibit distinctly different damage evolutions amongst compared to the

preceding cases on two counts. First, in the 2/s and 3/s families the damage

initiates at a much later strain (nearly an order of magnitude larger) compared

to 0/s and 1/s families. Second, given that the final dissociated crosslinks is the

same in all the cases, the rate of damage growth is much higher in the 2/s and

3/s. In other words, all the topological parameters (e.g., ρ̄, filament distribution,

standard deviation) held constant, the nucleation and rate of damage growth is

set by the Kb. This aspect of Kb mediated damage evolution may be construed as

the flexurally stiff networks degrading rather catastrophically compared to more

graceful softening in the flexurally compliant networks.
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Figure 5.17: Damage evolution of the eight selected networks marked in
Fig. 5.13. Scale in all figures is the same.

Focusing on the specific cases, note further that for the 2/1 and 2/2 cases the

damage evolution follows identical trends although they are sampled from some-

what different stiffening regimes (see Fig. 5.13). This observation suggests that

the evolution may have a threshold sensitivity resolution with regard to αNA

and nNA. Finally, there does exist some difference in the damage evolution for

cases 3/1 (αNA ≈ 1000) and 3/2 (αNA ≈ 7000, but seem to quickly overlap as

deformation progresses. Although this may seem to be a minor difference or
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possibly even an artifact of the numerical simulation, it is worthwhile to note

that except for the different filament properties all the other characteristics are

identical. Further, we do not observe such “artifact” in any of its predecessors

and the observations in this section is similar to the damage characteristics ob-

served for networks with rigid crosslinks and this corroborates the dependence

of damage on stiffnesses. With this, we believe that the (initial) difference in the

damage evolution may largely be a physical effect rather than artificial. One may

expect the difference in the evolution to be more discernable for the cases with

significantly different values of αNA and nNA.

5.5.4 Role of Stochasticity

0.0 0.1 0.2 0.3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

St
re

ss
 (P

a)

Strain

 0/1  R1
 0/1 R2
 0/1 R3
 0/1 R4
 0/1 R5
 0/2 R1
 0/2 R2
 0/2 R3
 0/2 R4
 0/2 R5

(a) Kb = 100 ×KA
b

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

St
re

ss
 (P

a)

Strain

 1/1  R1
 1/1  R2
 1/1  R3
 1/1  R4
 1/1  R5
 1/2  R1
 1/2  R2
 1/2  R3
 1/2  R4
 1/2  R5

(b) Kb = 101 ×KA
b

Figure 5.18: Stress-strain responses for two Kb values and each having five s-
tochastic simulations for two different Ks.

The results presented previous section are with deterministic crosslink scission

criterion. Here, we relax that assumption by re-invoking the KMC step (Section
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4.2.1, Chapter 4). Keeping the basic approach the same as in the preceding sec-

tions, we consider two different values for Kb and for each of them, we consider

two Ks values. For each combination, we perform five simulations (i.e., total 20

simulations) in order to interrogate the stochastic nature of the scission process.

Figures 5.18a and 5.18b collate all the τ − γ responses, and for each Kb the re-

sponses are nearly identical. The effect of bending stiffness on overall response

can be easily noted from the two figures in Fig. 5.18. For Kb = KA
b , the stress

is nearly zero till a strain of ≈ 20% where as Kb = 101 ×KA
b shows more linear

response and networks start to stiffen at strains as alow as ≈ 10%.

5.5.5 Non-affine Response

The variation in stiffening response seen in Section 5.5.2 is tightly couple to the

affine/non-affine nature of the deformation. It is postulated that the crossover

of response from affine to non-affine depends on the the filament density (it has

been incorporated by the length scale lc which is defined as the distance between

crosslinks) and the material length scale lb. These two information is incorporat-

ed into a new length scale λna which is defined asλna(lc, lb) = lc(lc/lb)
1/3 [126].

Based on this definition, Head et al. classified the deformation to be affine

if a non dimensional number L/λna >> 1 (≈ 10 or higher) and non-affine if

L/λna < 1 [142].

For highly anisotropic networks, L/λna is not the only measure of non-affinity.

These networks behaves different from an orthotropic solids and this strong non-

linearity is attributed to the cooperative bending and Euler buckling related to

the floppy modes of the filament networks. Spatial heterogeneity in strain field

is used as a measure of non-affinity. This measure does not depend on the net
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filament orientation of the network or on the loading direction. Bending of a fil-

ament encourages the cooperative bending in the filaments which it is connected

to it until the filament length is too small enough to be incompliant for bending.
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Figure 5.19: Deformation mapping with the variation in filament stiffness. Based
the L/λna criterion, the entire regime is non-affine deformation.

For lower L/λna values, networks shows more non-affine response due to the

Euler buckling of filaments which results in nonlinear softening and more energy

will be stored in bending than stretching. In the case of networks having a fixed

L/λna and loading direction, one which the highest anisotropy shows the highest

nonlinearity. This is due to the pronounced buckling of the highly oriented fila-

ments under compression. Figure 5.19 shows the measure of non-affine response
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(L/λna) of the networks with varying stiffness. For the networks considered here,

L/λna varies from ≈ 0.29 to 2.9 and based on the description of Head et al. [142]

it falls in the transition regime. As in Fig. 5.12, deformation is similar along the

constant lb lines. This is due to the fact that the bending depends on the value of

lb and at a fixed lb, the bending response of the filaments are identical. When the

lb ≈ 0.06 nm network shows higher bending and the response is highly non-affine

but the stiffening response was insensitive to a value of lb less than 2 nm. As the

lb increases, bending energy increases and the response becomes more affine due

to the stretching dominated response. This transition can be observed at lb of 60

nm. Increasing lb beyond this value may make the response more affine (region

pointed by the arrow in Fig. 5.19). This corroborates that increasing the bending

stiffness alone could make the non-affine to affine transition without increasing

the filament density [126].

5.6 Summary

The role of filament properties on the mechanical response and damage are

shown using 2D filament networks in a finite element framework. Key aspects

of the mechanical response like initial stiffness, finite strain stiffness, stiffening,

damage etc. are discussed in the context of the material length scale lb and topo-

logical length scale lc. A parametric study of the network response over three

decades of the filament stiffness is done and the results are presented as contour

plots. The correlation between the mechanical response and damage over a wide

parametric space provides insights to develop a predictive map for the network

response. Affine/non-affine transition in the same parametric space is also briefly

discussed.
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Chapter 6

Micromechanics of

diffusion-induced damage evolution

in reinforced polymers

6.1 Introduction

One of the manifestations of random architectures relevant to mechanics com-

munity is composites where randomly arranged reinforcement inside a matrix

that makes the composite stronger. The reinforcement could be of different size,

shape and volume fractions. This chapter focuses the random architectures of

fibers which forms the microstructure of the fiber reinforced composites. Pre-

vious chapters focused in the mechanics and characterization discrete random

architectures of filamentous networks. Mechanics of networks is explained in

terms of filament/crosslink property and crosslink failure was accounted as dam-

age. As in the fiber networks, topology is characterized in terms of statistical

parameters and its correlation with damage is shown. Damage is quantified as
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the debonding of the interfaces which is an integral part that transfers the load

from the fibers to the matrix.

Polymers, natural or synthetic are often reinforced with stiffer inclusions in the

form of fibers or particles to create heterogeneous composites that are attractive

for applications where mechanical strength and stability are of primary interest.

The choice of the polymer (matrix) and inclusion (reinforcement) is dictated by

the requirements of the end application. Many large-scale structural applications

such as automotive, aerospace, turbine blades etc. typically employ epoxy-based

polymeric matrices reinforced with high strength synthetic fibers such as glass or

carbon. Often, the differences in the physical, mechanical and chemical proper-

ties of these two constituents create a large property mismatch in the interfacial

regions of the composite. Under external stimuli, high stresses tend to concen-

trate around these interfacial regions and this may potentially lead to overall

composite degradation through a variety of microstructural instabilities includ-

ing interface debonding, fiber breaking, void nucleation and shear localization in

the matrix that are precursors to the macro-structural failure. It has been long

recognized that while polymer composites possess exceptional potential in de-

signing light and strong applications, their use may be limited by the fact that

their response to environmental conditions during their functional life is not well

understood. This is especially critical when one recognizes that they are deployed

in protean service environments and are expected to perform over long periods

of time. Residual stresses occur in a composite subjected to varying temperature

or moisture conditions, due to the difference in the thermal or moisture expan-

sion coefficients between the fiber and the matrix. In particular, moisture ingress

may assist the degradation of composites, possibly further amplified by temper-

ature, that may be detrimental, for example, wind energy or marine structures

that experience a range of changes in temperature and moisture (salinity may
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have additional effects) in addition to the regular mechanical loads [194, 195].

Composites used for dental restoration purposes may experience aqueous ser-

vice environments that range between strongly acidic to strongly alkaline [196].

Further, the moisture diffusivity itself may be a function of the applied stress,

which in turn may affect the stress distribution in the composite [197–199]. The

absorbed moisture may lead to matrix cracking [200–204] or plasticize the ma-

trix thereby reducing effective stiffness and strength of polymers [200] and their

composites [194, 195, 205]. An efficient design of a composite for specific func-

tions relies heavily on the ability to predict the possible mechanisms of failure

at multiple length and time-scales when subjected to such synergistic environ-

ments [206,207]. These effects may be further complicated by the fact the most

composite micro-architectures exhibit random inclusion topologies.

The aforementioned scenarios pose challenges for engineers and necessitate a

better understanding of the mechanical behavior of such heterogeneous micro-

architectures in hostile environments (moisture) as a function of microstructural

details.In this work, we focus on the moisture induced damage in composites.

The randomness in the microstructure not just affect the load transfer but also

the diffusion pathways. The moisture transport can be better understood by

considering the tortuosity of the microstructure. Accounting for the discreteness

of the microstructure is important as the moisture transport is a highly direction

dependent phenomenon. Presence of externally applied forces makes it a coupled

problem and we study this using a micromechanical model which accounts for

the spatial heterogeneities of the microstructure. The following sections give a

brief background about how moisture degrades composites.
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6.1.1 Moisture Induced Damage of Epoxies

Epoxies have an affinity to water as it has polar sites which react with water

and it may lead to plasticization. Water enters the epoxy by diffusion and the

absorbed water has to components; water which resides in the free volume in

the polymer called free water as it can further diffuse to other locations and

another component which react with the polymer called bound water [208–210].

Usually the water molecule inside the epoxy breaks the existing hydrogen bonds

and reacts which the amine groups resulting in chain scission [211–213]. These

two interactions leads to plasticization and failure strain may increase [214].

One of the best ways to shed light into the moisture induced damage in poly-

mers is to utilize the spectroscopic information [215]. Experiments like Fourier

transformed infrared spectroscopy (FT-IR), FT-IR microscopy and Raman chemi-

cal imaging are used to study the extend of degradation like hydroxyl reaction-

s, chain scission etc [216]. Damage depends on the stoichiometry of epoxies,

sometimes a strengthening response is observed if the water molecules aids in

the epoxide reaction. Polyester based composites shows an increase in strength

after subjected to moisture [215].

6.1.2 Moisture Induced Damage of Glass Fibers

Glass fibers reacts with water leading to loss of strength and the reaction by-

products could lead to weakening of the interface and further undesirable ef-

fects. This effect is more dominant if some coupling agents are applied to the

glass fibers [215]. Liao and Tan found that the moisture induced stress alone is

sufficient to cause stress corrosion in E-glass fibers even in the absence of exter-

nally applied load [217]. Their experiments concluded that the glass fibers in
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epoxy matrix composite degraded at a faster rate than the stress free aging of

glass fibers. A review by DiBenedetto discusses about the various mechanisms by

which the polymer-siloxane-glass interfaces are formed and the interface thick-

ness is identified as 100-500 nm [218]. The nature of water on the glass sur-

face of epoxy/glass composites were studied using fluorescence methods [219].

Fibers with different silane coating revealed that the diffusivity around the inter-

faces differs with the coating resulting in low absorption of water but the gross

sorption of the composite remained the same.

6.1.3 Moisture Induced Damage of Interfaces

Depending on the fiber/matrix composition, the interface may be the weakest

region where the damage could initiate even without considering the moisture

induced degradation [215]. Presence of environmental stimuli along with the ex-

ternal load may lead to the interface debonding. Once the interface is debonded,

it may act as channels for the transportation of moisture and further exacerbate

the damage (Fig. 1.10). Chateauminois et al. studied the effect of hygro-thermal

loading on epoxy reinforced with unidirectional fibers and observed that the dif-

fusion follows Fick’s law at temperatures below 700C but deviates from Fick’s law

at prolonged exposures which coincides with the interface debonding. They at-

tributed the irreversible damage of the interface only at the non-fickian diffusion

which takes place after the epoxy has saturated with moisture [220]. Interface

strength of composites can be varied by different chemical treatments to the fiber

surfaces. The effect of interface strength and the debonded interface on diffusion

characteristics was studied by Tsenoglou et al. by considering fibers with various

surface treatments [221].
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6.1.4 Characterization of Interfaces

In the micromechanics model, we are explicitly looking at the interface behav-

ior. One should have thorough understanding about the interface behavior and

its damage response to develop such models. Extensive work has been done to

characterize the interfaces of various fiber/matrix combinations and the inter-

face shear strength and fracture energies have been identified. The presence of

covalent bonds at the interface is still debated but the major consensus is for

it, at least in the presence of coupling agents [215]. Few experiments which

shed light into the interface response are microbond/micro droplet experiments

(Fig. 6.1), fiber push out (Fig. 6.2) and fiber fragmentation tests [222, 223]. A-

part from these, visual observation of the scanning electron microscopy images of

the interfaces gives information about the condition of the interface like debond-

ing, presence of chemical species etc (Fig. 1.10). We need the information about

the role of moisture in weakening of the interface to account for the moisture

induced degradation.

Fracture mechanics approach has been used for the damage modeling of com-

posites at both ply and micromechanics level. A review paper by Tay discusses

the major developments in this field over last one decade [105]. We use a sim-

ilar approach and model the interface using cohesive elements that follows the

traction separation rule [224,225].

Microbond experiment is used to measure the interface strength by depositing

a drop of the polymer on a single fiber and the shear strength is calculated by

pulling out the fiber from the epoxy droplet after it has hardened. It is highly de-

pendent on factors like the uniformity of the fiber diameter and out of roundness

of fiber diameters. Miller and coworkers discusses about the variability of inter-

face strength obtained using the micro bond experiments accounting for above
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(a) Schematic diagram [226] (b)Experiment [227]

Figure 6.1: Microbond test to find out the interface shear strength.

factors and the analysis of the droplet configuration [226,228]. Kang et al. con-

ducted microbond experiments with carbon fiber epoxy composite to find out

the interface strength. They found the interface strength depends on the range

of the embedded length of the fiber and further probed the stress distribution in

the epoxy droplet using finite element studies [229]. In a subsequent work by

the same group, Choi and park used a quasi-disk type droplet and found more re-

liable information about the interface strength [222]. Zhou et al. used fiber push

out and fragmentation experiments to find out find the interface strength and

energy of composites. Their experiments with E-glass/epoxy system with and

without chemical treatments of the fiber revealed that the former shows higher

interface strength and energy [223].

In order to understand the interface response under the influence of moisture,

Gaur et al. conducted the microbond experiments for various fiber/matrix com-

binations [231]. An interesting observation in this work is that the interface

strength of all fibers in the epoxy matrix decreased after aging in water at 880

C while the same fibers in polyethylene matrix showed an increase in strength.

Hodzic et al. studied about the interface strength of composites with glass fibers
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(a) Schematic diagram [230] (b) Experiment [230]

Figure 6.2: The interface strength can be determined by fiber push out test.
Individual fibers are pushed out from a cross-section of the composite using a
nano-indentor.

and various matrix materials including the effect of moisture [232]. They i-

dentified interphase region and observed the debonding of interface even in the

case specimens subjected to only hygrothermal loads [233]. Their work showed

that polyester based composites showed excellent resistance to moisture induced

degradation of the interface and remained intact even after 6 weeks of aging in

water [234]. Microbond experiments by Biro and coworkers on epoxy/carbon

fiber composites revealed 20 − 40% drop in the interface strength after 6 hours

of exposure to hot water [227]. X-ray photo electron microscopy did not reveal

much variation in the surface chemistry of the fibers and the loss of strength

was attributed to the plasticization of the epoxy and mismatch strains. These

experiments provided valuable information about the interface response of the

composites that can be used in micromechanics based models.
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Figure 6.3: A transverse section of a unidirectionally reinforced composite with
random fiber arrangement. The random architecture can be approximated by a
periodically repeating domain, shown by the red square.

6.2 Computational Modeling

In this work, we numerically investigate the response of reinforced glassy poly-

mers under transient hygro-mechanical conditions at the microstructural length-

scale. We focus on modeling the nucleation and evolution of damage at the mi-

cromechanical scale in a model glass-reinforced epoxy polymer composite sub-

jected to moisture and mechanical loads under isothermal conditions. Of the

above-mentioned possible micro-structural modes of failure, we explicitly mod-

el the experimentally observed debonding at the matrix-inclusion interfaces due

to moisture-induced stresses [195, 235, 236]. Such debonded interfaces may act
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as channels causing accelerated diffusion especially if it is in the exposed sur-

face [237]. Further, some experiments on glass fiber-epoxy matrix composites

have revealed that both the strength and toughness of the fiber-matrix inter-

faces may degrade significantly in moist environments exacerbating the severity

of damage [195, 238]. Motivated by these experimental observations (see also

[239]), we incorporate the possibility of the interface behavior that continuously

degrades with the evolution of local moisture concentration. While the moisture

diffusion and stress build-up phenomena in composites have been modeled by

researchers (e.g., [240,241]), there are relatively few works that model the evo-

lution of hygro-mechanically induced damage, in general (e.g., [199, 242]) and

interface failure, in particular (e.g., [243]). Some works that do model interfacial

effects under hygral or thermal excursions resort to the restrictive assumption of

unit cells with regularly arranged fibers (e.g., [244]), which is seldom the case in

real materials [245]. In fact, the effective diffusivities may strongly be affected

by the tortuosity of the microstructure, which may have direct implications on

the build-up of differential stresses [241, 245, 246]. In this work, we relax this

restriction by choosing representative volume elements (RVEs) with random ar-

rangements alongside the regularly arranged RVEs. Fig. 6.3 shows a section of

unidirectionally reinforced composite with infinite dimension along both x and

y axis. Fibers are randomly placed in the matrix and one of the simplifications

to such an arrangement is periodicity. The red square box is a periodic unit cell,

representative of the entire microstructure and is considered as the RVE for mod-

eling. The enitre microstructure can be generated by translating the RVE along

both axis.

In précis, the objective of this work is to develop a predictive approach to char-

acterize moisture diffusion-induced damage incurred through interfacial failure
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in reinforced polymers as a function of microstructural randomness and its ef-

fect on the subsequent response when loaded mechanically. In the next section,

we describe the computational setup and the details of the finite element (FE)

models used in the investigation.
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Figure 6.4: A unidirectionally reinforced composite lamina subjected to mechan-
ical and moisture boundary conditions. The lamina is periodic in the X1 - direc-
tion. A typical RVE considered in the computational modeling is shown by the
dashed boundary.

Figure 6.4 shows a typical section of a unidirectionally reinforced lamina of thick-

ness 2L2 = 100 µm [206] in the X2 direction considered in the present work. We

consider the lamina to be infinitely long in the X1 direction, comprising repeat-

ing unit cells giving a periodic RVE in that direction (shown in the Fig. 6.4 by the

dashed box). Further, we assume that the lamina is symmetric about X2 = 0 and

satisfies the plane-strain condition in the X3 direction. Within an RVE the fibers

may be arranged in a regular or random manner. The top and bottom surfaces of

the lamina may be subjected to mechanical and/or moisture boundary conditions

(b.c.’s).
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6.2.1 RVE generation and characterization of micro-architectures

Microstructural characterizations of real composites unequivocally reveal the

random topological arrangements of fibers (e.g., [107,247]). While one may use

digitized versions of such real microstructures, we adopt a more computational

approach in that we generate artificial microstructural arrangements mimicking

real composites [248]. Such a strategy enables comparing a wide range of mi-

crostructures with different fiber volume fractions (vf ), arrangements and fiber

diameters.

(a) Random 1 (R1) (c) Random 2 (R2) (b) Random 3 (R3)

(d) Random Cluster (RC) (e) Square Regular (SR) (f) Square Cluster (SC)

Figure 6.5: RVEs with different fiber arrangements having vf = 0.5 and d = 10
µm .

As an example, Fig. 6.5 a-f shows six of the nearly fifty1 different RVEs considered

in this work that are generated using an in-house code for two-dimensional (2D)

heterogeneous composite micro-architectures with desired fiber arrangements

(regular/ random and uniform/ clustered), for a given fiber diameter d and vf

1These include RVEs for different vf (vf = 0.30, 0.40, 0.50, 0.60 ) and diameters (d = 9, 10, 11
µm ).
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. Specifically, these RVEs are constructed for fixed vf = 0.47 for all the random

arrangements and equal to 0.50 for the two regular arrangements to investigate

the effects of fiber distribution. These volume fractions are represented by fifteen

(sixteen in the case of the regular arrangements) 10 µm diameter fibers [230],

which also sets up the size of the RVE. The RVEs in Fig. 6.5a to c are three differ-

ent random (R1, R2, R3) arrangements. Note that amongst these three the R2

arrangement has all the fibers completely inside the RVE, which means that there

exists a thin matrix-rich layer at the edges of the RVE [245]. Figure 6.5d shows

a random arrangement but with a clustering (RC) of fibers leaving what appears

to be a big region in the microstructure that is matrix-rich. Fig. 6.5e shows the

regular square (SR) arrangement, used as benchmark. Finally, Fig. 6.5f shows

the square clustered (SC) arrangement where a set of four fibers are placed close

together and this arrangement is repeated within the RVE. This description of the

RVEs with random fiber arrangements is qualitative.

In literature, different approaches have been formulated to characterize the topo-

logical disorder in composite microstructures. Pyrz et al. [249] defined topologi-

cal entropy based on the Dirichlet tessellation method and correlated it with the

microstructural stress field in fiber composites. Chen and Papathanasiou [247]

used a second-order intensity function based on a cut-off radius and the number

of fibers within that zone to characterize different fiber arrangements. Based on

an exclusion probability defined by Torquato [250] few others [251, 252] used

the nearest neighbor distance. In this work, we quantify the heterogeneity of

fiber distribution (i.e., clustering) in different RVEs using the center-to-center (c-

c) distance between the neighboring fibers. The neighbors of a fiber are defined

such that the lines joining the centers of two fibers do not trespass other fiber-

s. Then, the coefficient of variation Cv (=Σ/ξ , Σ = standard deviation and ξ=

mean) of the c-c distance can be used as a metric to quantify clustering. Figure
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6.6 shows an example for a random arrangement with d= 10 µm and vf= 0.47.

Green circles are the fibers, the magenta outline represents the periodicity of

the RVE, and the blue and red lines connect the centers of fibers such that none

of the lines pass through an intermediate fiber. Note that the red lines connect

fibers that are significantly apart from each other even though they may not nec-

essarily communicate with each other through their stress fields, yet they can be

connected topologically as far as the definition of c-c connectivity is concerned.

From a topological perspective, this situation may not be uncommon in random

microstructures; however, from the physical viewpoint it may not be relevant to

include such remote influences. An important question then arises: for a given

fiber, how many surrounding fibers influence its failure? In other words, is there

a cut-off radius rc that can be used in determining Cv? From a stress concen-

tration argument, one may consider that fibers that are more than ≈ 1 − 2 fiber

diameters away from the fiber edge may not significantly influence its failure. Re-

ferring back to our example in Fig. 6.6, for a fiber at the center, the neighborhood

of influence with rc= 4r (r=d/2 ) and the c-c lines falling within this cut-off are

shown by blue lines and are used to calculate a Cv ; the red lines exceed this

distance and are ignored in the calculation of Cv . As such, the Cv for a giv-

en RVE then depends on the chosen rc. Therefore, to evaluate its influence we

chose three different rc ’s to calculate the relevant c-c distances, namely, 4r, 4.5r

and 5r (so that the edge-edge distance between any two interacting fibers are

= 2r, 2.5r and 3r , respectively). This also partly accounts for the next nearest

neighbor interactions. In section 6.3.3, we discuss the correlation between Cv

’s defined this way and the overall damage. We demonstrate that the degree of

overall damage correlates well with the Cv across protean RVEs with different

distributions, vf and diameters.
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r

4r

Figure 6.6: Illustration showing the calculation of Cv based on cut-off radius rc
for a RVE (see section 6.2.1 for details).
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In order to ensure proper modeling of the fiber-matrix interfaces we do not allow

a fiber touching another. The topological periodicity of the fiber arrangement is

ensured at the left and right edges of the RVE and is also specified in terms of

the coupling between the kinematic boundary conditions (b.c.’s) at these edges

as discussed in the next section.

6.2.2 Finite Element Model

An important aspect of this work is to model the transient moisture diffusion,

which is assumed to obey Fick’s law. The Fick’s law is analogous to the Fouri-

er’s heat conduction law [240], which is available in ABAQUS/ STANDARD R©

FE program [141] as a coupled temperature-displacement analysis procedure.

We exploit this analogy to model the transient, coupled moisture-displacement

problem. The moisture diffusivity (Dm) is specified in terms of the equivalent

thermal diffusivity (Dt) in ABAQUS/ CAE R© 2. The temperature evolution in

the RVE then resembles the moisture diffusion. Likewise, the moisture B.C. is

specified in terms of an equivalent temperature. Note that the thermal-moisture

direct analogy [253] adopted here is valid only as long as only one of the phases

is capable of moisture diffusion3, which is true in the present work. The micro-

architectures generated by the code are imported into ABAQUS and meshed us-

ing the plane strain, linear quadrilateral finite elements with displacement and

moisture degrees of freedom (CPE4T). In our calculations, a typical RVE compris-

es of ≈ 30000 finite elements after conducting mesh convergence with different

mesh densities for a few cases. The periodic kinematic b.c.’s applied to the left

2In ABAQUS R© , Dt = k/(ρcp ) , where k is the thermal conductivity, ρ the mass density and cp
the specific heat. However, it is the ratio that is important rather than the values of the individual
parameters.

3Alternatively, one may adopt a normalized analogy [253], which can be used under a gener-
alized case of a bi-material system where both the phases are pervious.
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and right edges may be expressed in terms of the displacement vector
−→
U 1 which

relates the displacement between the opposite edges of the RVE, X1 = 0 and

X1 = L1 [106],

−→u (0, X2)−−→u (L1, X2) =
−→
U1 (6.1)

where u1 is the displacement in the X1 -direction and L1 sets the wavelength

of the periodicity. The vector
−→
U1 = (u1, 0) is computed from the condition that

the average stress perpendicular to the loading axis should be zero, therefore

∫ L2

0

−→
t dX2 = 0 on X1 = 0 and X1 = L1 (6.2)

where t is the traction vector. On the top and bottom edges both displacement

and moisture b.c.’s may be present. The average strain due to an applied velocity

v in the X2 direction is

ε̇22 =
v

L2

(6.3)

The corresponding average stress and strain is then (at time t ) given by

σ22 =
1

L1

∫ L1

0

σ22 (X1, L2) dX1 and ε22 =

∫ t

0

ε̇22dt (6.4)
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6.2.3 Constitutive Laws

In the present case, a linear, hygro-elastic constitutive law4 is adopted for the

matrix phase

σ = E : [ε− β (c− c0) I] (6.5)

where σ is the stress tensor, E is the fourth-order elasticity tensor, ε is the

total strain tensor. β is the isotropic coefficient of moisture expansion defined

for the percentage by weight of the moisture absorbed by the matrix is given by

c =
∫ t

0
ċ(t′)dt′ is the moisture concentration at time t, c0 is the reference moisture

concentration and I is the identity tensor. The moisture evolution follows Fick’s

law

ċ = Dm∇2c (6.6)

where Dm is the matrix moisture diffusivity and ∇2 is the Laplacian. Like the

matrix, the fibers are also assumed to be linearly elastic and isotropic, but im-

permeable. Table 6.1 lists the material properties that are representative of an

epoxy resin and E-glass fiber [230,241], where the elastic properties of the epoxy

correspond to the glassy regime. While it has been observed that moisture may

degrade the elastic properties of some epoxies [200,204,254], the effect is much

more severe and irreversible in the transition and rubbery regimes (attributed

to chain scission processes) than in the glassy regime where it can at times be

largely reversible [255, 256]. While recent atomistic simulations attempt to ad-

dress the deterioration of the glassy elastic modulus the underlying mechanisms

4The operation A:B denotes a contracted product between two tensors or between a tensor
and a vector.
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Table 6.1: Material properties for the fibers and matrix used in simulations.

Elastic
modulus,
E (GPa)

Poisson’s
ratio,
v

Diffusion
coefficient,
D (mm2s−1)

Moisture
expansion
coefficient,
β(mm/mm%H2O)

Fiber 75 0.28 0 0
Matrix 4 0.38 54×10−8 3.24×10−4

are not fully unraveled [254, 257]. In this work, we do not consider the elas-

tic degradation of polymer. Further, we also ignore plasticization (i.e., lowering

of glass transition temperature) given that the simulation time-scales are much

shorter than the typical viscoelastic time-scales for epoxies.

6.2.4 Interface Cohesive Behavior

Fiber-matrix interfaces are considered as a cohesive surface and its constitu-

tive description is provided by a traction-separation law [141]. A linear, elastic

traction-separation law
{−→
t

}

= [K]
{−→
δ
}

is adopted, where
{−→
t

}

is the nominal

interface traction vector with component tn in the normal direction and ts in the

shear direction,
{−→
δ
}

is the vector of displacement jumps across the interface

having components δn and δs and [K] is the interfacial stiffness matrix. The inter-

face softening initiates when the magnitude of the nominal stress in the normal

(n) or tangential (s) directions reach their critical values, N or S , respectively

(Fig. 6.7) given by

max

{〈tn〉
N

,
ts
S

}

= 1 (6.7)

The subsequent softening behavior at an interface node is governed by the dam-

age variable
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φint =
δ
f
(

δ
max − δ

0
)

δ
max

(

δ
f − δ

0
) (6.8)

where δ =
√

< δn >
2 + δ2s . The value of δ when the failure begins is given by

δ
0

and the interface fails completely when reaches δ reaches the value δ
f

. δ
max

is the maximum value of δ at any given instant of time. Note that at a given

interface node, 0 ≤ φint ≤ 1 where the lower limit denotes that the interface is

intact at that node and the upper limit denotes complete separation at that node.

We assume that both the normal and tangential displacement jumps contribute

to the failure which is modeled via a mixed mode based failure criterion

Gn

Gc
n

+
Gt

Gc
t

= 1 (6.9)

where Gc
n and Gc

t are the mode-I and mode-II energy release rates. Debonding

initiates when Eq. 6.9 is satisfied at a point on an interface. As both fracture

modes contribute towards failure (Eq. 6.7), an interface may fail before the fail-

ure energy reaches the critical value in any of the directions.

As noted earlier, some experiments indicate that the interface strength and tough-

ness may be affected by moisture [195, 239]. We account for this possibility

by allowing the normal and shear tractions to degrade with moisture (Fig. 6.7).

Note that in both the moisture-resistant (i.e., interface strength unaffected by

moisture) and moisture-affected scenarios the interfaces may still debond, but

the later will be much softer than the former. Irrespective of the nature of the

interfaces we assume the final failure to occur at the same displacement δ
f

; con-

sequently, the fracture energy (i.e., the area under the traction-separation curve)

is also smaller for a moisture-affected interface. For calculation purposes, we
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assume that the critical fracture energies linearly degrade to half their original

values as the local moisture concentration reaches the ambient value.
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Figure 6.7: The traction-separation law used for modeling fiber-matrix interface.
The shaded triangle shows the degraded traction-separation rule when the mois-
ture concentration at an interface reaches a critical value.

6.3 Damage Response of Epoxy-Glass Composites

In this section, we consider different scenarios that involve moisture and me-

chanical b.c.’s. In Sections 6.3.1 and 6.3.2 we discuss all the results pertaining

to the six RVEs shown in Fig. 6.5 that constitute a fixed fiber diameter d = 10 µm

and nearly the same vf ≈ 0.47 − 0.5 . Section 6.3.3 expands the discussion to a

range of vf and d .

In Section 6.3.1, we consider the RVEs subjected only to the moisture b.c. In

this case, we investigate the evolution of damage due to debonding as a function
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of the fiber arrangements for moisture-resistant and moisture-affected interface

strengths. We choose the moisture b.c. that represents the typical weight gain at

saturation in reinforced polymers exposed to moisture. For example, the satura-

tion weight gain in glass reinforced epoxy composites at 85% relative humidity

and 850C is approximately 1.5% of the initial weight. These values mimic the

accelerated conditions that are typically resorted to in laboratory-scale experi-

ments [240] and we apply this moisture b.c. (c∞ = 1.5%). Later, in Section

6.3.2, we consider the cases where the moisture and mechanical b.c.’s are ap-

plied sequentially.

6.3.1 Moisture induced debonding

RVEs in Fig. 6.5 are subjected to the moisture b.c. on the top edge. As the

moisture diffuses through the matrix, differential expansion between the matrix

and fibers induce interfacial stresses that may nucleate debonding and lead to

progressive damage evolution. We quantify the overall damage sustained by an

RVE at time t by an aggregate damage parameter ψ(t) = 1
n

∑n
i=1 φinti(t) , (0 <

ψ < 1) , where φinti is given in Eq. 6.8 and n is the total number of nodes at all

the interfaces in a RVE. Here, the physical time considered is long enough for the

moisture to equilibrate throughout in the RVEs.

Damage Evolution: Moisture-resistant Interfaces

To begin with, we consider moisture-resistant interfaces so that the interfacial

strengths N = S = 25 MPa and fracture energies (Gc
n = Gc

t = 50 Jm−2) are

unaltered even in the presence of moisture [230, 258]. Figure 6.8 a and b show

the temporal evolution of ψ in the six RVEs and its dependence on the their
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topological descriptor, Cv , respectively. For fixed vf the damage evolution is

significantly different depending upon the micro-architecture and for the applied

b.c. the RC-RVE (largest Cv ) sustains the maximum overall damage while the SR

arrangement (lowest Cv ) experiences no damage at all. Note that for different

v′fs and fiber size d , it is possible that even an SR-RVE may exhibit damage;

however, it is almost always the case that an SR-RVE sustains the least overall

damage. This emphasizes the strong influence of the fiber arrangement on the

damage evolution under moisture ingress. For the specific cases considered in

this section, the SR-RVE is the least clustered arrangement (as expected) and

sustains least (no) damage, whereas the RC-RVE is the most clustered (highest

Cv ) and sustains most damage. Indeed, for the six RVEs shown here, the Cv − ψ

follows a simple linear relation (Fig. 6.8 b). As will be shown in section 6.3.3,

for different v′fs and d′s , the clustering effect quantified by Cv correlates linearly

with the overall damage ψ sustained due to moisture ingress by the RVEs.
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Figure 6.8: Evolution of the overall interface damage ψ (a), and ψ − Cv correla-
tion between damage for vf = 0.50 and d = 10 µm with for rc = 4r (b) when the
interface is moisture-resistant.

A common feature between all arrangements except the SR arrangement is that
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there are matrix-rich pockets present due to some amount of fiber clustering.

It is interesting to note the pattern of evolution of damage between the SC, R1

and RC arrangements. The overall damage evolution is nearly the same in three

arrangements up to about 20 minutes after which the rate of growth in SC falls

appreciably. However, the aggregate damage in RC and R1 RVEs continue to

grow almost identically much further (t ≈ 60 minutes). By this time the moisture

has diffused through almost half the thickness of the RVEs. If we consider the

top half of all the RVEs, R1 and RC arrangements have more matrix-rich regions

compared to the other RVEs, which results in the similar response of R1 and RC

arrangements.

(a) SR (b) R3 (c) RC

Figure 6.9: Distribution of third invariant of the deviatoric stress tensor in (a)
SR, (b) R3 and (c) RC arrangements corresponding to the time at which the
RVE attains equilibrium concentration in the entire domain (moisture-resistant
interfaces). Deformed profiles are scaled fifty times and fibers are removed for
clarity.

Figure 6.9 compares the distribution of the third invariant J3 = 9
2
[S

⊗

S]
1

3 of

the deviatoric stress tensor S, for SR, R3 and RC arrangements when the steady-

state condition is reached (Ċ = 0 ). The J3 invariant combines the influence of all

stress components, but also distinguishes between the tensile and compression

regions (unlike the von-Mises invariant) and therefore, provides an indication

of the hot-spots that are susceptible to interfacial damage. The SR-RVE deforms

uniformly except at the top edge, which deforms freely to satisfy the traction b.c.
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In comparison, the R3 and RC arrangements experience a non-uniform distri-

bution of highly stressed regions that also sustain severe deformation than the

other parts within the RVE resulting in heavy debonding. The debonding in the

RC arrangement is much more severe than the other two arrangements. Further,

we observe that in the RC arrangement debonding is nearly aligned with the X1

- direction unlike the SR and R3 that tend to debond along the X2 - direction.

6.3.2 Damage Evolution: Moisture-affected Interfaces

To investigate the effect of degrading interfaces on the damage evolution we al-

low the cohesive strength to weaken with the local moisture concentration keep-

ing all other parameters the same as in the previous case. A key question we ask

is: what is the influence of degrading interfaces on the damage evolution with

reference to the trends observed in the preceding sub-section? To answer this

question the initial values (at c = 0 ) of interfacial strengths (N = S = 25 MPa )

and energies (Gc = 50 Jm−2 ) are now assumed to linearly degrade to 50% (shad-

ed area in Fig. 6.7) as the local moisture concentration reaches the its maximum

value [239]. Figure6.10 shows the evolution of ψ for the six RVEs under the ap-

plied moisture b.c. of c∞ = 1.5% at the top edge. As expected the overall damage

in each of the RVEs is more severe than their preceding moisture-resistant coun-

terparts, because the interfaces become progressively weaker with the evolution

of the local moisture concentration. The severity of damage is emphasized from

the fact the SR arrangement, which showed no damage in the preceding case too

exhibits some damage, although it is still the lowest amongst all the six RVEs.

These observations suggest that it is important to rigorously characterize the ef-

fect of moisture on the interface behavior and is vital to predicting the overall

composite response. The overall trends of damage evolution for other RVEs are
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qualitatively similar to those in Fig. 6.8.a although there are a few differences

especially at later stages. The damage evolution in the R2 and R3 arrangements

is initially slow in comparison to the SC arrangement, but evolves faster beyond

t ≈ 1.6 hours.
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Figure 6.10: Diffusion-induced evolution of interface damage ψ for moisture-
affected interfaces. The open circles indicate the location of the snapshots shown
in Fig. 6.11.

In determining the influence of a microstructure on the diffusion-induced dam-

age one has to consider two microstructural aspects: (a) the degree of fiber

clustering, and (b) tortuosity [259]. In the present context, while the former is

described here by Cv , the later may be described by the time it takes for moisture
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to fully equilibrate in an RVE. The longer the time taken the more tortuous a mi-

crostructure is and smaller is its apparent diffusivity. As an example, we compare

the tortuosities vis-á-vis the overall damage sustained in the SR (lowest Cv , low-

est damage), R3 (least overall damage amongst all random arrangements with

vf = 0.47, d = 10 µm ) and RC (most severe overall damage) RVEs. Figure 6.11

shows the snapshots of the moisture concentration contour for the RC and R3 ar-

rangements at different times. In the present context of diffusion-induced dam-

age, we define a normalized tortuosity, ζ = tc/tm , where tc is the time required

for moisture saturation in an RVE with a given vf and characteristic dimension

(in the diffusion direction) L2 , and tm is the corresponding time required for

moisture saturation in bare matrix with the same characteristic dimension .

Diffusion profiles of points marked in Fig. 6.10
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Figure 6.11: Snapshots of moisture diffusion profiles for the R3 and RC arrange-
ments at t = 0.7, 1.4, 5.5 and 8 hours. Note the higher rate of diffusion in the
RC-RVE.

As per this definition, although the SR-RVE is less clustered (Cv of ≈ 0.17 ) than

the RC-RVE (Cv of ≈ 0.25 ), they exhibit similar tortuosities (ζ of SR ≈ 9.1 ζ of

RC ≈ 9.0 ). However, the RC-RVE experiences significantly higher damage (ψ
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of RC ≈ 0.31 ) than the SR-RVE (ψ of SR ≈ 0.1 ) (Fig. 6.10). Between the two

random arrangements, the R3-RVE is less clustered (Cv of R3 ≈ 0.227 ), more

tortuous (ζ of R3 ≈ 11), but sustains lesser damage (ψ of R3 ≈ 0.24 ) than the

RC-RVE. That is, unlike Cv, ψ does not show a consistent correlation with dam-

age. In other words, this suggests the Cv and ψ do not necessarily correlate in a

simple (monotonic, linear) manner like the ψ − Cv relation (section 6.3.3). This

is because, while Cv compares different RVEs purely from the topological view-

point, ζ involves a spatio-temporal description that depends on the resistance to

moisture ingress along the direction of moisture ingress. This can be most easily

illustrated by considering an RVE, say RC, and switching the plane of symmetry

with the direction of moisture ingress. Although not shown here, in this scenari-

o the Cv of the flipped RC-RVE is the same as its original version, but is more

tortuous. In summary, clustering is a topological descriptor that can be used to

describe the severity of damage vis-á-vis microstructural spatial heterogeneity,

whereas tortuosity has to be determined with reference to the direction of dif-

fusion and may not give a systematic correlation with damage, although it may

have an influence on the damage.

Mechanical Loading of Initially Damaged Microstructures

While composite microstructures that have sustained initial damage such as that

induced due to moisture ingress are expected to demonstrate a compromised

response compared to their pristine counterparts when subsequently subjected

to mechanical stimuli. A natural question that then arises is: how does this initial

diffusion-induced damage incurred in the microstructures affect the performance

when subjected to mechanical stimuli? Does microstructural disorder still dictate

the further evolution of damage and affect its stiffness and the aggregate (stress-

strain) response? If so, what degree does it affect? To answer these questions, we
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examine the response of the initially damaged (due to moisture) microstructures

in the presence of applied mechanical load. A displacement b.c. (resulting in

the macroscopic final strain of ε̄ = 3% ) is applied on the top face of each of the

six RVEs considered in the preceding section after the moisture has completely

equilibrated and the diffusion-induced damaged has saturated. We simulate this

as a two-step loading case in ABAQUS R© , where in the first step the moisture

b.c. is applied and when moisture fully saturates, the second step corresponding

to the mechanical b.c. is invoked. Figure 6.12 shows the average stress (σ̄22 )

-strain (ε̄ ) response of the six RVEs. For brevity, we show only the results for the

moisture-affected interfaces as the results for the moisture-resistant interfaces are

qualitatively similar. In Fig. 6.12 the initial stress-free strain corresponds to the

first step that evolves due to the constrained moisture expansion of the RVEs. The

stresses due to the constraint from the fibers are locked in the matrix and fibers as

residual stresses, but do not manifest themselves in the stress-strain response as

they self-equilibrate. However, these stresses play a vital role in determining the

response of the RVEs in the subsequent mechanical loading step. As noted in the

preceding section the interface debonding initiates due to moisture ingress. In

the two-step loading, this initial diffusion-induced interfacial damage leads to an

overall softer average stress-strain response in all the RVEs compared to the cases

where the interfaces do not encounter moisture induced stresses. This is clearly

reflected in Table 6.2 that shows the initial tangent moduli (calculated at small

times in the second step). The moduli of the initially damaged RVEs (in both,

the moisture-resistant and moisture-affected cases) are ≈ 10 − 30% lower than

their corresponding pristine interface counterparts. As the loading progresses the

stress-strain response becomes nonlinear due to the rapid evolution of damage.

An interesting aspect comes to the fore when one observes the modulus degrada-

tion for the SR arrangement with moisture-resistant interfaces (Table 6.2). Note
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Table 6.2: Initial tangent moduli during the mechanical loading step of the se-
quential loading case.

RVE Perfect interface Moisture-resistant Moisture-affected

E E ∆ E E ∆ E
(GPa) (GPa) (GPa)

R1 11.5 9.6 17% 8.8 23%
R2 10.9 9.9 10% 8.9 19%
R3 11.7 8.8 25% 7.8 33%
RC 11.2 9.9 12% 9.1 19%
SR 13.6 10.9 20% 9.8 28%
SC 14.0 10.6 24% 9.6 32%

that in case of the moisture-only b.c. (with c∞ = 1.5% ) this arrangement does

not exhibit any damage (Fig. 6.9.a); however, post-equilibration it shows a sub-

stantial drop in the initial tangent modulus of nearly 20% upon application of

a small mechanical load. This indicates that the debonding commences as soon

as the SR composite is loaded mechanically. The reason for such a sudden de-

crease in the stiffness is explained as follows: During the moisture diffusion step

the ligaments connecting a column of fibers experience tensile stress in the X2

-direction. This also induces a tensile stress at the interfacial regions near the top

and bottom (the poles) of each fiber (Fig. 6.9.a). In the subsequent step, when

a mechanical load is applied in the same direction the normal stresses in the

ligaments along the loading direction superpose with the initial residual stresses

causing the interfaces to instantaneously debond as the total stress exceeds the

critical value. As the SR-RVE comprises regular fiber arrangement the stress state

is identical at all the poles (except those near the top edge due to boundary ef-

fects) causing simultaneous failure of all the interfaces near the poles. A similar

characteristic is also observed in the R3 arrangement (Fig. 6.9.b), which has two

columns of fibers that are nearly aligned.

It is interesting to note that although the RC arrangement sustains the maximum

209



overall damage at the end of the moisture step (Fig. 6.10 and Fig. 6.9.c) it is the

R3, SC and SR arrangements that show the largest drops in their tangent moduli

in both the moisture-resistant and moisture-affected scenarios (Table 6.2). This

phenomenon is ascribed again to the location of the debonding with respect to

the loading axis. For the SR, SC and R3 arrangements it is the interfacial regions

near the fiber poles that debond as these architectures resemble columnar fiber

arrangements. In contrast, in the RC arrangement that does not show the tenden-

cy of columnar fiber arrangement the debonding is profuse at the fiber equatorial

regions (900 to the poles) while the poles of the fibers remain connected to the

matrix. Naturally, when loaded along the direction of the poles (X2 -direction)

the RC arrangement is capable of carrying more stress by sharing it with the fiber-

s than the SR, SC and R3, at least initially. The same argument holds true for the

R1 and R2 arrangements too. At later stages though, debonding also evolves at

the poles in the RC-RVE, but correspondingly the equators in the SR, SC and to

some extent R3 don’t, because at the equators the state of stress is predominantly

compressive for the aligned fibers arrangements. Consequently, the RC topology

(also, R1 and R2) suffers from a more severe overall softening elastic behavior

compared to the SR, SC and R3 topologies (Fig. 6.13).
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Figure 6.12: Average normal stress σ̄22 - normal strain ε̄22 of the RVEs subjected
to mechanical loading after moisture has equilibrated (moisture-affected inter-
faces). Moisture-resistant interfaces show a similar, but stronger response.

From these observations, we summarize that the overall stress-strain behaviors of

the initially damaged microstructures exhibit similar qualitative trends irrespec-

tive of the RVE randomness. The lesser the initial damage in an RVE the better

is its load carrying capacity. In addition, if the fiber arrangements are favorably

aligned with the loading direction the damage accrues much more rapidly even

if the initial (moisture-induced) damage is small (e.g., the SR-RVE). Taking this

observation further, we posit that for the loading conditions simulating biaxial

(tensile) stress states (as in the moisture diffusion scenario) it is the degree of

clustering that decides the severity of damage; on the other hand, for uniaxial

(or, significantly directionally biased) loading cases (e.g., the applied mechani-

cal load scenario in this work) it is the alignment with reference to the primary
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loading direction that matters.

6.3.3 Effect of Volume Fraction and Fiber Diameter

We now generalize the damage characterization for RVEs with different vf and

diameter d . For consistent comparison, we restrict our attention to the damage

sustained by different RVEs with moisture-affected interfaces at the end of the

moisture loading step. As mentioned in Section 6.2.1, we calculate the coefficient

of variation Cv for each RVE with three different rc .
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Figure 6.13: ψ − Cv correlation for vf = 0.50 with (a) rc = 4r , (b) rc = 4.5r ,
and (c) rc = 5r for moisture-affected interface.

As an illustration of the procedure used to correlate damage with Cv , Fig. 6.13

a-c shows the correlation between ψ and Cv computed using different rc (section

6.2.1), for a fixed vf = 0.50 and d = 10 µm. The plots also indicate a linear fit

along with the R2 values. It can be seen that for these cases, the correlation is

quite high. The same approach is adopted for a range of vf (vf = 0.30, 0.40 and

0.60) in addition to vf = 0.50 . For each vf we considered an SR-RVE and five ran-

dom arrangements. To incorporate the influence of d, we considered RVEs with

d = 9, 10 and 11 µm in these simulations. For each RVE, ψ due to moisture diffu-

sion was obtained from the FE simulations. Each ψ was then plotted separately
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against the Cv of their corresponding RVEs based on the rc defined earlier and a

linear regression was performed for each case (similar to Fig. 6.3.1b). Figure6.13

consolidates all these data where the R2 values emerging from the linear regres-

sion analysis are plotted against vf . It can be observed that high correlations

between ψ and Cv are obtained for different rc values across a range of vf . While

rc = 4.5r and rc = 5r provided good correlations across all vf , the only reason for

a relatively weaker correlation in the case of rc = 4r and vf = 0.40 (Fig. 6.14) is

due to one outlier in the random arrangement that had a Cv smaller than the SR-

RVE (for rc = 4r ), but exhibited damage that was more severe than the SR-RVE

for the same vf .
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Figure 6.14: Comparison of Cv − ψ correlation for different fiber vf determined
from the linear regression (R2 ) for different cut-off radii (moisture-affected in-
terfaces).
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6.4 Summary

In this chapter, we modeled the transient damage response of reinforced poly-

mers subjected to the stresses induced due to moisture diffusion and mechanical

loading. The study reveals that fiber distribution plays a significant role in the

diffusion induced residual stresses in a composite. This in turn determines the

hotspots for debonding, which may adversely affect the initial stiffness (e.g., in

columnar fiber arrangement) or the overall stress (clustered arrangement). A

trend that emerges from the results presented here is that the fiber clustering

tends to hurt the performance of a composite over a period of time compared

to the more regularly spaced arrangements [240]. The topological descriptor Cv

characterizing the spatial inhomogeneity of fiber distribution is identified using

the concept of cut-off radius that is motivated based on the mechanistic and ge-

ometric basis. The Cv correlates linearly with the overall diffusion-induced dam-

age sustained for different RVEs over a range of fiber vf and diameters; however,

it does not enjoy a simple relationship with the tortuosity of RVE owing to the

highly directional nature of the later. An investigation of the synergistic effects

of the moisture and mechanical loads indicates that moisture ingress assists the

runaway microstructural failure that is dominated by the mechanical loading in

the later stages. It is important to characterize the strength and toughness of in-

terfaces in the presence of moisture as moisture-affected interfaces may not only

cause significant degradation, but also accelerate the permeability through the

channels that may form near the fibers. The degradation of the transverse stiff-

ness of an RVE induced by initial moisture ingress also does not show a simple

relation with Cv , again due to the directionality-induced complex interaction-

s between the interfaces and the dominant loading direction. While this study

uses the glass-fiber reinforced epoxy composite as a model system, some of the
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observations may be applicable in a variety of composites such as those used in

dental restoration purposes or in pharmaceuticals. Our future work will focus

on incorporating the mechanistic representation of the polymer degradation due

to diffusion in to its continuum constitutive description, viscoelastic relaxation

mechanisms and investigating their impact on the composite microstructural re-

sponse.
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Chapter 7

Summary and Future Directions

The work compiled in this dissertation is a basis for the discrete modeling ap-

proaches for random microtructures. It can be further extended to model a vari-

ety of materials having similar microstructure. Necessary software tools for the

random microstructure generation, a stochastic simulation methodology for ran-

dom fibrous networks and a micromechanical model for the interface damage in

FRCs are developed. A summary of the key contributions of the thesis and an

outlook for the further extension of the current work is discussed in this chapter.

7.1 Summary

Understanding various deformation mechanisms of materials requires modeling

at the smallest possible length scale. Molecular models are computationally ex-

pensive and time scales achieved are physically unrealistic. Meso-scale modeling

is one of the approaches that addresses some of these issues at a reasonable com-

putational cost. In this work, two such models are developed. First, a discrete

network (DN) model is developed for random fibrous networks and the response
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of a model system is studied in details. Next, fiber reinforced composite (FRC)

having a random microstructure is chosen and a discrete micromechanical model

is developed. We begin with the generation of random microstructures, imple-

mented the discrete models in a finite element(FE) framework and then checked

correlation between the topological parameters and the response.

Discrete microstructures (DM) are numerically recreated and characterized using

computational algorithms. A MATLAB R© based toolkit, NetGen is developed for

the topology generation and characterization of random fiber networks. NetGen

is a generic FE preprocessing software for random filamentous network that gen-

erates network with required topological parameters and characterize the net-

works using statistical descriptors. The output of NetGen is an input file that can

be seamlessly read by commercial FE software ABAQUS R©. Statistical parameters

which account for the density and orientation of the filaments in a network are

identified. For instance, a parameter fabric factor can be used to characterize net-

works with uniform/preferred filament orientation. Algorithms are developed in

C++ for the generation and characterization of periodic microstructure of fiber

reinforced composites. These microstructures are characterized using center-to-

center distance of fibers.

The mechanical response and damage characteristics are examined by imple-

menting models in commercial FE package ABAQUS R© using its subroutine capa-

bilities. The DN model for filamentous networks explicitly model random topolo-

gies. F-actin networks crosslinked with actin binding protein filamin is used as

a model system to study the mechanical response of filamentous networks. The

study is further extended to examine the network response over three decades

of filament stiffnesses. Contour plots generated from these simulations are pre-

cursors to a general predictive response model for filamentous networks. The

nexus between the filament/crosslink stiffness and the damage is examined for
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the entire range of stiffness considered. Fibrous biopolymeric networks exhibit

rate-dependent stiffening, identification of peak stiffness and softening followed

by failure. This failure is attributed to the failure of crosslinking proteins which

is often a stochastic process. The stochastic crosslink scission is incorporated into

the DN model using Kinetic Monte Carlo algorithm. The micromechanical model

for the interface damage in FRCs handles both mechanical and environmental

stimuli. An epoxy-glass composite is taken as a model system to investigate the

microstructural role in transient degradation of such architectures induced by

the moisture-induced interface debonding. The interplay of the randomness in

fiber arrangement and the overall damage is elucidated through its correlation

with the coefficient of variation of the center-to-center distance of fibers that

characterizes fiber clustering.

7.2 Future Directions

7.2.1 Discrete Network Modeling

The discrete network model for soft fibrous networks is a 2-Dimensional (2D)

model with few simplifying assumptions such as, straight filaments, no fluid me-

dia, no relinking of crosslinks etc. As an immediate expansion of the current work

is to relax some of these assumptions. It has been shown by Van der Giessen

and co-workers [78, 79] that the 3-Dimensional (3D) models are less confined

compared to 2D and may result in more non-affine deformations and compliant

responses. However these simulations were with rigid crosslinks and the effect

on crosslink scission on damage is not known. In order to have a better under-

standing of the damage response in actual networks, a 3D modeling approach

with stochastic crosslink scission has to be developed. The major steps towards
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3D modeling are

• Developing the 3D version of the networks generation software.

• Performing 3D network simulations over a range of constituent properties.

• Highlighting key differences between the local and global response charac-

teristics among 2D and 3D, while providing an average measures for the

same.

Some of these networks may be influenced by the ambience they reside in. For

example, F-actin networks are usually surrounded by a fluid medium that repre-

sents highly damped system. This and many existing works ignore such advanced

complicating features. However for the realistic representation, one must ac-

count for them. In our networks, the first order effect of accounting fluid would

be the additional stress generated due to the viscosity.

Another simplifying assumption in this work is the permanent failure of crosslinks.

In reality, rebinding is possible and may be an important process for network

stability. Crosslink relinking mechanism is very important especially when the

formation of stress fibers, filapodia etc. are to be modeled. Sunil Kumar and

co-workers [171] have modeled semi-flexible filaments with crosslink reforma-

tion. For the in vivo cells, the relinking may depend on several factors such as the

proximity to the filaments, chemical and mechanical signals etc. One of the ways

it could be implemented in the current model is by specifying a geometric thresh-

old for filament proximity and combining it into a contact algorithm via a kinetic

expression based on relevant parameters (mechanical, chemical, physical etc.).

The competition between dissociation and relinking may provide interesting load

transfer pathways.
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The current work is well suited for studying the damage in polymers and can

be extended for the multi-scale modeling of polymers. Such a model can deliv-

er highly enriched and accurate approximation of the mechanisms taking place

during the deformation and damage of polymers. The information obtained from

these models can be further used to develop simplified continuum models. A

schematic representation of one such approach is explained below.

moisture

element gauss point

DN model

load

Figure 7.1: A schematic representation of multi-scale modeling approach for
polymers.

For a finer representation of the physics at a better spatial resolution, multi-scale

finite element modeling approach has to be used. In this approach, the material

can be resolved into DN models at each gauss point and the property definition

for the material comes from the discrete network which is a representative of that

point (Fig.7.1). As the damage of the discrete material takes place due to the

crosslink scission, it leads to the degradation of the material at the larger length

scales. The advantage of this approach is that the material parameters like elastic

modulus, poisson’s ratio and even the damage parameters are derived from the
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DN models rather than using any assumptions. This approach can be used for

both biopolymer as well as synthetic polymers. These multi-scale calculations are

computationally intensive compared to the conventional FE methods. However,

once the right physics is modeled and parameters are extracted out, governing

laws can be derived out of these discrete calculations which can be generalized

to develop enriched continuum models.

In the current work, the discrete network model is a non-affine model while the

continuum model has incorporated the non-affine behavior in a phenomenologi-

cal manner without much physical underpinnings. This model has to be enriched

by incorporating the non-affine behavior which brings in the effect of filamen-

t bending stiffness and the filament density. It is observed in experiments that

the initial network stiffness increases with increase in the bending length lb and

decrease in lc which is a consequence of the increase in ρ̄ [77]. It is known that

at these sub-micron length scales, non-bonding interactions become dominan-

t. They play an increasingly important role as the length scale becomes small.

These effects have to be incorporated and the model can be further enriched by

incorporating couple stress theory, non-local theories etc.

In the continuum model, we used a damage sensitivity parameter ζ to capture

the network collapse at a low critical damage that is attributed to the loss of

percolation. This is a simplistic assumption and we used this parameter with

the qualitative understanding of the physics of the problem. We have to develop

rigorous mathematical models to find out the actual value of this parameter ac-

counting for the underlying physics of the loss of percolation, formation of stress

fiber etc.
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7.2.2 Micromechanics Modeling

In the micromechanical model for FRCs, we accounted for the degradation of

interface with moisture and debonding under the applied load. It is known that

epoxies degrade with moisture and leads to significant reduction in strength. And

so is the case with glass fibers. A comprehensive model should account for all

these types of damages.

Most of the polymers, at least in long time scales acts as a viscoelastic material.

In the current work, epoxy is assumed to be a linearly elastic material. There are

three time scales involved in the problem studied; (a) relaxation time scales of

the polymer, (b) moisture diffusion time scales and (c) the loading rate. A careful

treatment of all the three time scales has to be done for incorporating the right

physics.

Based on the work of Xiao and Shanahan [202, 211–214], we have partially de-

veloped a probabilistic model for the degradation of the epoxies with moisture.

The model has been tested for the polymer alone cases (Appendix B). It has to be

implemented along with the interface degradation for a more accurate modeling

of moisture induced degradation of FRCs. Further to it, the debonded interfaces

could acts as channels for diffusion and current model does not account for these

secondary effects. These may have a significant contribution to the overall dam-

age especially when the structure is exposed to the environment.

Another important consideration is the influence of temperature in the overall

response. It is well known that the strength of polymers is a function of tem-

perature and it may also affect the transport properties of moisture. In the cur-

rent work, we used a temperature analogy to model the transport of moisture

and hence the model could handle only isothermal loading conditions. Further
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to it, we assumed that the glass fibers are impermeable. A normalized analo-

gy [253] can better handle the transport of moisture for a bi-materials system

and accounts for the temperature effects. In a nutshell, the future model should

include the following details:

• Viscoelasticity for the polymer constitutive response.

• Damage of the polymeric matrix.

• Normalized analogy for moisture transport.

• Channeling effects after the initiation of interface debonding.
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[102] H. Böhm, “A short introduction to basic aspects of continuum microme-

chanics,” CDL-FMD Report, vol. 3, 1998.

[103] G. Tandon and N. Pagano, “Micromechanical analysis of the fiber push-out

and re-push test,” Composites science and technology, vol. 58, no. 11, pp.

1709–1725, 1998.

[104] M. Romanowicz, “Effect of interfacial debonding on the failure behavior

in a fiber-reinforced composite subjected to transverse tension,” Computa-

tional Materials Science, vol. 47, no. 1, pp. 225–231, 2009.

[105] T. Tay, “Characterization and analysis of delamination fracture in compos-

ites: an overview of developments from 1990 to 2001,” Applied Mechanics

236



Reviews, vol. 56, p. 1, 2003.

[106] C. Gonzlez and J. LLorca, “Mechanical behavior of unidirectional fiber-

reinforced polymers under transverse compression: microscopic mecha-

nisms and modeling,” Composites Science and Technology, vol. 67, no. 13,

pp. 2795–2806, 2007.

[107] L. Mishnaevsky Jr and P. Brndsted, “Statistical modelling of compression

and fatigue damage of unidirectional fiber reinforced composites,” Com-

posites Science and Technology, vol. 69, no. 3-4, pp. 477–484, 2009.

[108] E. Frey, K. Kroy, and J. Wilhelm, “Viscoelasticity of biopolymer networks

and statistical mechanics of semiflexible polymers,” Advances in Structural

Biology, vol. 5, pp. 135–168, 1999.

[109] A. S. Abhilash, P. K. Purohit, and S. P. Joshi, “Stochastic rate-

dependent elasticity and failure of soft fibrous networks,” Soft

Matter, vol. 8, pp. 7004–7016, 2012. [Online]. Available: http:

//dx.doi.org/10.1039/C2SM25450F

[110] S. Heyden, Network modelling for the evaluation of mechanical properties

of cellulose fibre fluff. Lund Univiversity, 2000.
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Appendix A

Single Crosslink Simulations

A.1 Introduction

Single molecule pulling experiments reveals interesting dynamics in the mechan-

ical behavior of the proteins [166,260,261]. It is observed that the critical force

at which proteins break, referred to as the rupture force Fr, shows a dependen-

cy on the applied velocity v̄, also referred to as the pulling velocity [166]. This

behavior is adequately captured by the Bell expression (Eq. A.1) [262]. The Bell

model for crosslink dissociation is by nature a deterministic one in that the rup-

ture force Fr is simply a logarithmic function of the applied velocity. However,

it can be endowed with a stochastic feature by using appropriate probabilistic

criterion [260,261]. A Bell model equipped with stochastic crosslink scission cri-

terion is capable of capturing the experimentally observed probabilistic nature of

the phenomenon and resulting scatter.
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A.2 Bell Model

Bell model gives the crosslink dissociation rate k

k = k0e
Fa
kBT (A.1)

where k0 is the crosslink dissociation rate at zero force, a is the interaction dis-

tance, kB is the Boltzmann constant, T is the temperature.

The local velocity v experienced by a crosslink can be written in terms of the

dissociation rate k as

v = ka (A.2)

Using Eq. A.2 in Eq. A.1, we obtain

v = v0e
Fa

kBT (A.3)

Inverting Eq. A.3, the rupture force Fr is given by

Fr =
kBT

a

v

v0
(A.4)

As mentioned in introduction, Eq. A.4 shows the logarithmic dependence of Fr

on the local velocity. Note that the effects of the crosslink stiffness and/or the

stiffness of the loading arrangement are implicitly embedded in the fact that v

is the local velocity (Fig. A.2). However, a simplifying assumption is sometimes

made in that v = v̄. Such an assumption implies that the crosslink stiffness

is much lower than the filaments it connects and the loading system. While,
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this simplifies the result, it has been shown that Fr is substantially modulated

by the stiffness of the loading system [262–267]. Recently, Maitra and Arya

[268]have derived the governing kinetics of a single ABP extension accounting

for the stiffnesses of the loading system and attached filament, but the solution

requires a numerical treatment.

In comparison to aforementioned analytical and semi-analytical approaches, we

have implemented Eq. A.1 in ABAQUS R©using its user subroutine capabilities.

What Eq. A.1 tells us is the rate at which crosslink can break under a given force.

Therefore, it is imperative to ask: is the local rate supplied to a crosslink sufficient

to break it? In other words, we must prescribe a criterion within the FE procedure

that allows making a decision on the crosslink scission. To this end, we adopt the

following steps:

• At time t, calculate the force F on the crosslink corresponding to the local

deformation δ via a linear Hookean assumption F = Kxδ, where Kx is the

(known) crosslink stiffness.

• Calculate the crosslink dissociation rate k for this force using using Eq. A.1

.

• Compare k with the normalized local rate k̂ = ε̇/ε, where ε̇ is the local

strain and εc is a critical strain (ref section A.3). If k ≥ k̂ then the crosslink

breaks.

A.3 Breaking Criterion

This section briefly discusses a breaking criterion which is independent of the

time increment chosen in the FE simulations. We have,

260



k̂ =
ε̇

ε
=
v/l0
δ/l0

(A.5)

where v = ∆δ/∆t is the local instantaneous velocity, δ is the local displacemen-

t, ∆δ is the incremental displacement in ∆t and l0 is the initial length of the

crosslink. Therefore,

k̂ =
ε̇

ε
=
δ/∆t

δ
(A.6)

Using a Hookean decription for the crosslink F = Kxδ, we obtain

k̂ =
(δ/∆t)Kx

F
(A.7)

In the above expression k̂ continuously changes with time because of F . Specif-

ically, it monotonically decreases with increasing time as F increases with in-

creasing δ. On the other hand, koff = k0e
Fa

kBT increases with time. It can be

systematically shown that in a deterministic single crosslink simulation, the force

F at which koff ≥ k̂ is satisfied, is lower for lower Kx.

k

t
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�
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(a) k̂ changing with F (b) k̂ fixed

Figure A.1: Variation of k̂ and koff for varying and fixed k̂.
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The question arises: should k̂ (a) change with time (Fig. A.1a) or (b) remain con-

stant (Fig. A.1b)? Prima facie, it appears difficult to decide what would constitute

a right choice. If we choose case a, we need to ensure that we choose appropriate

Kx in order to match the experiments (see Fig. A.5). It turns out that a high value

of Kx, even larger than the filament axial stiffness Kf (Fig. A.2), which creates

an awkward situation. Instead, let us consider a different definition of k̂,

k̂ =
ε̇

εc
(A.8)

where εc = a/l0 is a constant strain (independent of force, perhaps a material

parameter), with a= interaction distance (same as in koff ,∼ 0.1−1 nm typically)

and l0 is the initial crosslink length (∼ 10− 200 nm typically).

The above expression reads as follows: It takes time t̂ = 1/k̂ to reach a critical

strain εc at a local strain rate ε̇. If this time is smaller than tlife = 1/koff , then

a crosslink breaks. In other words, if koff ≥ k̂ then the crosslink breaks. The

only difference being that now k̂ does not change with force. This liberates the

solution from the choice of Kx, and allows predicting a correct rupture force

provided we appropriately tune εc.

A.4 Stochastic Breaking Process

While Eq. A.1 gives a deterministic dissociation rate, the element of probability

is incorporated through a KMC algorithm as follows: the probability distribution

function corresponding to k is [167],

p(t) = ke−kt (A.9)
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Then, the time corresponding this probability distribution is obtained as

t = −1

k
ln(r) (A.10)

where 0 < r < 1 is a uniformly distributed random number. Finally, we rewrite

Eq. A.10 in terms of a rate, i.e. k = 1/t . Then, the crosslink is ready to break if

k ≥ k̂.

A.5 Simulation Results

Figure A.2: Single crosslink scission simulation setup.

Figure A.2 shows the schematic of a crosslink (yellow circle) with a stiffness Kx

connecting two filaments each with stiffness Kf .The same setup is used to deter-

mine Fr as a function of v̄ using (a) analytical model (Eq. A.4), (b) deterministic

FE simulation, and (c) stochastic FE simulation. In the analytical model, we as-

sume that v = v̄ for simplicity. As this equation does not account for the Kx

and Kf explicitly, in FE simulations too we tune Kx/Kf so that Fr matches with

Eq. A.3 for one v̄, but use the same stiffness for the other cases. In doing so, we

set Kf to be sufficiently larger than Kx so that the crosslink experiences nearly

the same local velocity as the applied one (that is the filament is nearly rigid
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in comparison with the crosslink). Note that this assumption adopted in the FE

simulations (both, deterministic and stochastic) is not a limitation of the method,

but only a simplification for a meaningful comparison with the analytical model.

In a general FE scenario, the effect of the filament stiffness and loading system

stiffness will be captured through the local velocity experienced by the crosslink

(spring nodes).

Figure A.3 shows the results of the deterministic and stochastic FE simulations

along with the analytical result. For the stochastic simulations, the symbols rep-

resent the average value of five simulations for each loading rate and the error

bars indicate their standard deviations. The values obtained from the determin-

istic FE simulations are slightly lower than those obtained by the analytical equa-

tion (Eq. A.3) due to the assumed value of Kx used in the former. Importantly, in

both deterministic and stochastic FE simulations, the trends match very well with

the analytical prediction. Further, the stochastic approach shows a scatter that is

qualitatively akin to the experimentally observed variation. Moreover, the results

are independent of the time increment chosen. This substantiates the validity

of the present algorithm, which can now be used for different combinations of

Kx/Kf .

A.6 A Note on Crosslink Constitutive Response

As mentioned earlier, here the crosslinks are assumed to possess a linear F − δ

relation through stiffness Kx that is assumed to be independent of the applied

rate. As shown in Fig. A.4, it is natural then that δr must increase with increasing

Fr for increasing rate of loading1.

1In an alternative scenario, δr may be fixed. Then, to reach a higher force with higher rate,
the stiffness K should be rate-dependent. But, this rate-dependence of the crosslink would be a
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Figure A.3: Predicted dependence of the rupture force Fr on the pulling velocity.

It is commonly observed that compliant crosslinkers like Filamin first unfold

(Fig. A.5), which requires very small force (stiffness), but beyond a critical ex-

tension δc at which it is fully stretched the force (stiffness) increases dramatically

before dissociation. Such a behavior may be modeled using a nonlinear (or a bi-

linear) F − δ relationship (Fig. A.5) [81]. Note that if this type of relationship is

adopted the dissociation rate k must be calculated only beyond the point where

nonlinearity initiates (i.e., δc), because the initial stage is related to unfolding

rather than unbinding of the crosslink. Indeed, in our current simulations we

choose Kx that corresponds to the stiffening regime (Fig. A.5) and the maximum

displacement δmax ∼ a in calculating k (Eq. A.1).

constitutive prescription unlike the present case where the rate effect appears from the scission
criterion.
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Figure A.4: F − δ relation obtained from the deterministic FE simulations. Fr

and δr increase with increasing pulling velocity.
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Figure A.5: Schematic of nonlinear constitutive response of Filamin.
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Appendix B

Probabilistic Damage Model for

Polymers

B.1 Introduction

Polymers like elastomers, thermoplastics and thermosets undergo degradation of

its properties when exposed to moisture, oxygen, ozone etc. Irreversible plasti-

cization takes place in epoxies above glass transition temperatures when they are

exposed to moisture, which is reflected in mechanical property as loss of elastic

modulus [214]. One of the dominant mechanisms by which it takes place is due

to the breaking of bonds in polymer chains, which we refer to as chain scission.

B.2 The Model

Based on the work of Xiao and Shanahan, we developed a model which accounts

for the damage caused by moisture in epoxies assuming chain scission [202,
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211–214]. The observation is that the damage is nearly reversible in the glassy

regime where as irreversible in the rubbery regimes upon desorption. Diffusion

is assumed to follow the Fick’s Law and chain scission is proportional to the

local concentration of diffusant. The diffused water reacts irreversibly with the

polymer. This reaction is schematically written as

∼ A−B +H2O →∼ A−OH+ ∼ B −H (B.1)

where A and B represents the main groups in epoxy chains. A fraction of the

water diffusing into the polymer is residing in the free volume and the rest resides

among the polymer chains and can react with it. This fraction is called bound

water. Number moles of reacted water n2 is directly proportional to the number

of moles of the mobile water per unit volume of the polymer n1

n2 = rn1 , r̂ ≤ 1 (B.2)

Diffusion is assumed to follow Fick’s Law and is given by

D
∂2n1

∂x2
=
∂n1

∂t
+
∂n2

∂t
(B.3)

Long term weight gain of the polymer without considering the leaching is given

by

M∞ =
(n1∞ + n2∞)mw

ρ
(B.4)

For a dry slab of thickness d̄ and infinite dimension in other two orthogonal

dimensions exposed to moisture at both sides, expression for M(t) , ignoring the

leaching is given by
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M(t) ≈ 4
M∞

d̄

√

D′t

π
where t ≤ 0.05d̄2

D′
(B.5)

M(t) ≈M∞

[

1− 8

π2
exp

(

−D
′π2t

d̄2

)]

where t ≤ 0.05d̄2

D′
(B.6)

where D′ = D/(1 + r̂). Using the theory of rubber elasticity, the total number of

inter cross link chains in unit volume of the polymer is given by

N0 =
ρ

M0
c

(B.7)

where M0
c is the molecular mass between the chains in the undamaged state.

When a chain is cut M times, it produces M − 1 leachable segments. Based on

probability, total number of leachable segments per unit volume at a time t is

given by

J(t) ≈ N0

2

(

−n2(t)

N0

)2

=
[n2(t)]

2

2N0
(B.8)

If S mol of inter-crosslink chains are cut once or more than once, the remaining

number of inter crosslink chains will be

N(t) = N0 − ZS (B.9)

Where Z is the total number of chains lost when one chain is cut. Depending on

the network architecture, when one when is cut, it will reduce the total number

of effective chains by one or more than one. The numbers of moles of inter-

crosslink chains having been cut per unit volume at time t is
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S = N0

[

1− exp

(−n2(t)

N0
)

)]

(B.10)

The average number of moles of inter-crosslink chain at time t is,

N(t) = N0

[

Z exp

(−n2(t)

N0
− (Z − 1)

)]

(B.11)

The damage is quantified using a parameter φm gives by

φm(c) =
N0 −N

N0
(B.12)

Using Eq. B.11 in Eq. B.13 gives the expression of damage in terms of moisture

concentration as

φm(c) = −
[

Z exp

(

−αc(t)
N0

)

− Z

]

(B.13)

The value of φm ranges from 0 which corresponds to the pristine material and

1 which correspond to fully damaged material. The parameter α controls the

severity of degradation. It depends on the susceptibility of the polymer to mois-

ture degradation. Its value should be < 1. If the polymer is highly sensitive to

moisture, its value will be ≈ 1. At this value of α , the polymer degrades almost

completely.
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B.3 Results

The model is implemented in a FE software package ABAQUS R© using UMAT

subroutines. A rectangular thin film geometry with moisture boundary condi-

tions is considered. In the current analysis, only moisture boundary conditions

are prescribed without any mechanical loads. Simulation is done till the moisture

equilibrates in the domain and the value of the damage parameter is quantified.

We consider two sets of analysis, one in which α is kept constant and Z is varied

and in another set, Z is kept constant and α is varied.

Figure B.1 shows the results of cases with fixed α and varying Z. With the in-

creasing Z, the intensity of damage increases as more chains are lost when a

single crosslink breaks. The sensitivity of α in the response is checked by keeping

Z fixed and varying α (Fig. B.2). It shows a similar response as in the case of

varying Z. These two parameters together determine the intensity of degrada-

tion which may be inherently linked to the structure of the material (Z ) and its

propensity to react with moisture (α). Further investigations are to be done to

establish the validity of the model with a variety of materials.
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Figure B.1: Moisture induced chain scission for varying z and fixed α. The chain
scission ceases with the moisture saturation at ≈ 100 Hrs. As the damage evel-
oution depends on the moisture concentration, damage evolution curves looks
similar to moisture evolution.
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Figure B.2: Moisture induced chain scission for fixed z and varying α. The degra-
dation is very sensitive to the value of α.
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