

This work is dedicated to my family.

List of Tables

3.1
32
3.3
34

4.1
4.2
4.3

3.1

Comparisons with TG (with topology refinement only for post-processing) 37

Comparisons with TG (using all techniques) 38
Lowest achievable delays . «.cwwn s v s s wmes 5 5 @ smmmn 5 42
Simulation results fortree 43
Lowest achievable delays (with non-tree technique) 54
Nonstreealgofithm: . : « « cwwwms 5 5 5 cwmws & # ¢ wmwsn o 35
Simulation results for non-tree 56
Running me/CoOmpPariSOns: : « w e s « & s & 5o w@s o & ¢ &5 w5 e s 62

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 50

culated as

tn - tm t CQ_I(Ta.n - Tam) =

Tl + Tam + Tan

C (tn_trn)+ﬂ(ran_rnrn)
tm + -QL(QTSG + Tam) + RIQOOP am

= 4.7)

¢ (tn—tm)+ 2 (Tan—Tam)
tn + —2_(27‘50‘ + ’ran) —_ Rf{)ﬂp(ln am ,ran

- -

where node a is the lowest common ancestor of node m and n, and R, 1s the total

resistance along the loop m — a — n — m. Denote the value of —(% (275, + Tam) +
("n "lm)+%(run _rtun)
Rlnnp

m. For all the links between the two paths a — m and a — n, we will calculate their

Tam) by I. Assume that we are now trying to reduce the delay at node

values of / and then sort them in descending order according to their values. The value
of I gives us some information on how effective a link is in order to reduce the Elmore
delay at node m. The larger the I is, the more effective will be the link in reducing
the delay at node m and also possibly the delay of the descendant node of m. In our
implementation, all the links will be considered sequentially and added to the network
temporally to check if it will help in reducing the delays of the problematic ports (Note
that when a crosslink is inserted, we will compute the delays of the problematic ports
using the approach in [9].). A crosslink will be accepted if it can reduce the delay of the
problematic port. The crosslink insertion process will be repeated until the user defined

delay limit is satisfied or when all the links are exhausted.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM

Table 4.3: Simulation results for non-tree

Test
s Calculated Results Simulation Results
Delay (ps) | Slew (ps) | Delay (ps) | Slew (ps)
ntest] 0.45 10.05 0.45 10.07
ntest2 0.45 10.05 0.45 10.08
ntest3 0.60 10.09 0.60 10.11
ntest4 1.00 10.24 0.99 10.24
ntestS 1.03 10.25 1.03 10.23
ntest6 0.66 10.10 0.66 10.14
ntest7 1.35 10.43 1.35 10.43
ntest8 1.29 10.40 1.29 10.37
ntest9 2.00 10.93 2.00 11.15
ntest10 1.80 10.76 1.80 10.92
ntest11 0.80 10.15 0.80 10.17
ntest12 1.70 10.68 1.68 10.73
ntest13 1:25 10.37 1.25 10.33
ntest14 0.58 10.08 0.58 10.11

56

CHAPTER 5. EFFICIENT PARTITIONING-BASED EXTENSION 58

Figure 5.1: A sample circuit divided into four regions

5.2 Partition-based Extension

With the well designed source grid and multi-layer reserved tracks, a port can always
be expected to connect to the nearest source grid as long as no delay violation occurs.
Actually in the final clock network obtained using the path expansion algorithm de-
scribed in Chapter 3 and Chapter 4, we found that a port would rarely navigate away
from the nearer source grid and connect to a far away one. With this observation, we
propose a technique to cluster all the ports into several small clusters, and employ the
same path expansion algorithm as described in Chapter 3 and Chapter 4 on these smaller
clusters to construct the clock network. Fig. 5.2 shows the flow of our main algorithm
incorporating this partitioning technique.

The whole chip is divided into several smaller regions according to the source grid
(either horizontal or vertical). The positions of the source grid' will be recorded. The
intermediate positions between two successive source grids will be used as the guideline

to split the chip into smaller partitions. After we get all the partitions, partitioning of

'If the source grid is horizontal, y coordinates will be recorded, otherwise 2 will be recorded.

CHAPTER 5. EFFICIENT PARTITIONING-BASED EXTENSION 60

! A
__"E ___ E__ Source
v K Grid
: 5
....:,.......................................-...:.. Partition
H ra Region
I) ; Middle Line of two
IJ H source grid lines

Figure 5.3: An example of partitioning

ports is rather straightforward: all the ports lies in the same partition will be grouped
into the same cluster. We can also employ the same idea on these smaller clusters to
further divide them into even smaller ones. For example, if the source grid is horizontal,
we can further divide the cluster vertically, and vice versa. However, we found that this
second level clustering might have adverse effect on the solution quality. This is mainly
because we do not have a good guideline on where this second level division should be
made. Unlike the first level division that we can safely partition the ports according to
the positions of the source grids, there is no natural partitioning of the ports at the second
level. This has been verified in our experiments that when incorporating this second
level division, the path expansion algorithm usually fails to find a feasible solution
under a particular delay limit. However, if we use only one level of partitioning, we can
successfully satisfy the delay limit. Therefore in our implementation, we only group
all the ports into smaller clusters horizontally or vertically (according to the direction
of the source grid) without further dividing the clusters into sub-clusters. As shown in
Fig. 5.3, we can partition this simple circuits into sub-regions A, B, C and D using the
method described above.

After dividing the ports into clusters, we will sequentially employ the path expan-
sion algorithm on those clusters to connect all the ports. This procedure is embedded
into the main algorithm in line 9 while keeping all the other parts of the main algorithm
unchanged. Since the original problem is divided into smaller ones, we can see signif-

icant improvement in running time compared with the original methods without using

http://www.sigda.org/ispd/contests/10/ispdl0cns.html

BIBLIOGRAPHY 72

[64] R. Shelar. An algorithm for routing with capacitance/distance constraints for clock
distribution in microprocessors. In Proceedings of the 2009 International Sympo-
sium on Physical Design, pages 141-148, 2009.

[65] R. Shelar. Routing with constraints for post-grid clock distribution in micropro-

cessors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 29(2):245-249, Feb. 2010.

[66] N. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer Academic
Publishers, 3rd edition, 1998.

[67] H. Su and S. Sapatnekar. Hybrid structured clock network construction. In Pro-
ceedings of the 2001 IEEE/ACM International Conference on Computer-aided De-
sign, pages 333-336. IEEE Press, 2001.

[68] P. Suaris and G. Kedem. An algorithm for quadrisection and its application to
standard cell placement. IEEE Transactions on Circuits and Systems, 35(3):294—
303, 1988.

[69] H. Tian, W. Tang, E. F. Young, and C. Sze. Grid-to-ports clock routing for high
performance microprocessor designs. In Proceedings of the 2011 international

symposium on physical design, pages 21-28. ACM, 2011.

[70] C. Tsao and C. Koh. UST/DME: a clock tree router for general skew con-
straints. ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 7(3):359-379, 2002.

[71] R.-S. Tsay. An exact zero-skew clock routing algorithm. /EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 12(2):242-249, Feb.
1993.

[72] G. Venkataraman, Z. Feng, J. Hu, and P. Li. Combinatorial algorithms for fast
clock mesh optimization. In Proceedings of the 2006 IEEE/ACM International
Conference on Computer-aided Design, pages 563-567. ACM, 2006.

