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Clock distribution in VLSI designs is of crucial importance and it is also a major source 
of power dissipation of a system. Most of the chips today are based on a synchronous 
sequential circuit design methodology. For these circuits, a global clock signal is need-
ed to synchronize the operations of different components across the chip. The clock 
signal is usually generated using an external reference and delivered to the entire chip 
by a clock network. Since the clock signal coordinates all the elements of the chip, de-
signing a good clock network is very important to secure high performance. As a clock 
network connects to a large number of chip elements e.g, latches, flip-flops and gates, 
and has high switching frequency, it is also responsible to a large portion of the total 
power consumption of the chip. Therefore, the clock network must be carefully de-
signed to optimize the chip performance and the power consumption. For today's high 
performance microprocessors, clock signals are usually distributed by a global clock 
grid covering the whole chip, followed by post-grid routing that connects clock loads 
to the clock grid. Early study [50] shows that about 18.1% of the total clock capac-
itance dissipation was due to this post-grid clock routing, i.e., lower mesh wires plus 
clock twig wires. This post-grid clock routing problem is thus an important one but 
not many previous works have addressed it. This "grid-to-ports" routing is critical in 
securing high quality of the clock signal and in reducing power consumption. In this 
thesis, we try to solve this problem of connecting clock ports to the clock grid through 
reserved tracks on multiple metal layers with delay constraint. Note that a set of routing 
tracks are reserved for this grid-to-ports clock wires in practice because of the conven-
tional modular design style of high-performance microprocessors. We propose a new 
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expansion algorithm based on the heap data structure to solve the problem effectively. 
Experimental results on industrial test cases show that our algorithm can improve over 
the latest work on this problem [65] significantly by reducing the capacitance by 24.6% 
and the wire length by 23.6%. To make our approach more practical and complete, 
we have extended our approach to use non-tree structures to further optimize the delay. 
We also proposed a partitioning technique that can improve the running time by 26.1% 
without sacrificing the solution quality. We validate our results using hspice simulation. 
Finally, our approach is very efficient and for larger test cases with about two thousands 
ports, the running time is just in seconds. 
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論文摘要 

芯片的時鐘佈線在集成電路設計領域有著至關重要的作用，它也是系統中的 

主要功耗部件之一。當今的大多數芯片都採用的同步時鐘設計工藝。對於這些 

芯片，我們需要一個全局的時鐘信號來同步芯片内各個部件的工作。時鐘信號一 

般是由外來時鐘源產生，繼而經過時鐘網絡到達芯片的各個部件。設計高性能的 

時鐘樹對於保證芯片的性能有著非常重要的作用。因為時鐘網絡連接著大量的芯 

片原件（如鎖存器，觸發器和門電路），並且工作在極高的頻率下，它是系統中 

的主要功耗部件之一。因此，爲了降低功耗并確保芯片的性能，我們需要仔細的 

設計芯片的時鐘結構。對當今的高性能處理器來講，時鐘樹一般採用全局的時鐘 

線外加局部的時鐘線后的時鐘樹來提供芯片需要的時鐘信號。早期的研宄表明， 

全局時鐘樹后的時鐘佈線所佔用的電容占到整個時鐘網絡的18.1%所以全局時鐘樹 

后的時鐘佈線問題顯得額外重要。在這篇論文中，我們致力於解決有一定時 

延要求的高性能時鐘佈線問題。在這個問題中，我們給定了待佈線的電路原件， 

能夠使用的電路線位置以及全局的多時鐘源線。我們提出了線路擴張的算法來解 

決這個問題。實驗結果表明，和最新的算法相比，我們的算法能夠減少電容使用 

量24.6%，能夠減少佈線長度23.6%。爲了處理更為複雜的情況，我們還將算法 

擴展到了非樹結構的時鐘佈線算法來進一步降低時鐘結構的時延。我們提出了一 

種分割方法，能夠將沒有採納分割方法算法的時間提高26.1%，同時構建出的時 

鐘樹性能並沒有降低。我們用Hspice仿真驗證了我們算法的正確性。我們的算 

法非常高效，對於有兩千多個待佈線原件的芯片，我們的算法運行時間在幾秒鐘 

之内。 
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Chapter 1 

Introduction 

1.1 Motivations 

For most of chips today, data transfer between different function units is synchronized 

by a single global clock signal. Synchronizing the clock signals is one of the most 

important tasks in designing a high-performance microprocessor. A l l the functional 

units within a chip should be connected to the clock source very carefully to satisfy 

some delay, skew and/or slew constraints, as those factors directly affect the operating 

frequency and the performance of the chip. There have been many clock routing algo-

rithms in the literature, such as the H-tree algorithm [6,26,27], the Method of Means and 

Medians ( M M M ) algorithm [32], the Geometric Matching Algorithm (GMA) [19,33], 

the Exact Zero Skew algorithm [71], the Deferred Merge Embedding(DME) algorith-

m [10,38], the Bounded Skew Clock Routing algorithm [18,20,35], the Planar-DME 

algorithm [36,81], the UST/DME algorithm [70], the clock routing algorithms consider-

ing process variation [41,44,75] and the non-tree clock routing algorithms [40,52,77]. 

From the skew minimization perspective, the above algorithms can be classified into 

four categories according to the way the skew is handled: (i) clock skew minimiza-

tion design [6,19, 26, 27, 32, 33], (i i) exact zero skew design [10, 36, 38, 71, 81], (i i i) 

bounded clock skew design [18,20,35,70], and (iv) process variation-aware clock de-

sign [40,41，44,48,49,52,77]. 

In today's high performance systems, clock signals are usually distributed through a 

global clock grid [5,39,47,50,59,60,64,65], followed by post-grid routing that connects 

clock loads to the grid. Early studies show that most of the clock power dissipation 
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CHAPTER 1. INTRODUCTION 2 

was due to three major categories of capacitances - (i) clock load, (ii) clock twig and 
clock mesh wires, and (ii i) clock grid buffers. The second category of post-grid clock 
routing wires, i.e., lower mesh wires and clock twig wires, comprises 18.1% of the total 
capacitance [50]. This post-grid clock routing problem is thus a very important one, 
although not many previous works have addressed it. 

Due to the high complexity of microprocessor design, the clock distribution net-
work is usually synthesized and tuned at the same time when different design teams 
are working on their logic modules. In this case, the clock distribution between the 
clock grid and the block-level clock ports is subject to conflict of routing resources for 
data signals. To resolve this conflict and to facilitate simultaneous work between d-
ifferent design teams, a subset of routing tracks have to be reserved for this post-grid 
clock routing. As a result, this post-grid clock routing problem assumes a given set of 
reserved tracks, forming a virtual grid structure. The quality of this routing step is of 
significant importance as it w i l l directly affect the total power consumption, the clock 
skews and slews at the input of the ports and finally the quality of the whole chip. These 
provide motivations to solve this multi-source multi-port post-grid clock routing prob-
lem with an objective to minimize the interconnect capacitance while meeting a given 
delay constraint. Traditionally, this step is done manually and iteratively to satisfy the 
delay/slew constraints, resulting in a long time to market, especially when the problem 
size has increased to thousands of clock ports in the layout region. This also motivates 
the research of a fast algorithm to resolve this clock routing problem effectively. 

1.2 Our Contributions 

Given the importance of clock network in microprocessor systems, it is crucial to design 

a good clock distribution scheme in order to ensure a low power consumption and a 

high quality performance. The contributions of this research [69] can be summarized 

as follows: 

• We have devised an efficient algorithm for the post-grid clock routing problem that 
can satisfy user given delay bound while minimizing the total wire capacitance. 
In our problem, the clock skew is optimized by minimizing the maximum delay, 
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which is an upper bound of the skew. This delay bound is set to be very stringent, 
e.g., within 5ps, which is in reality the l imit for the clock skew. We compared our 
approach with the previous work [65] and show that compared with [65] with the 
same delay constraint, our approach can reduce wire capacitance and wire length 
by 24.6% and 23.6%, respectively. 

• We have extended our approach to use non-tree structures in our algorithm, which 
makes our approach more complete and practical. Our non-tree based clock rout-
ing algorithm can satisfy more stringent delay constraints compared with the tree-
based approach. 

• We have proposed a partitioning-based technique to reduce the running time of our 
algorithm. We can achieve a 26.1% running time improvement after applying this 
technique without sacrificing the solution quality. 

• We have simulated our clock network using HSPICE and the simulation results 

confirm the effectiveness and correctness of our approach. 

Our algorithm can be applied to high performance microprocessor designs in the 45nm 
technology, and it can also be extended to applications for ASICs with hybrid clock 
structures. 

1.3 Organization of the Thesis 

In the following, we wi l l first give a preliminary overview in Chapter 2 on different 
clock routing algorithms in the literature. Problem definition, motivations and our rout-
ing algorithm wi l l be presented in Chapter 3. An non-tree based routing algorithm wi l l 
be detailed in Chapter 4. Partitioning-based acceleration technique wi l l be introduced 
in Chapter 5, followed by a conclusion in Chapter 6. 

• End of chapter. 



Chapter 2 

Background Study 

2.1 Traditional Clock Routing Problem 

Clock routing has been extensively studied in the past. Clock distribution schemes can 
be classified into two categories: the global networks and the local networks. A survey 
of different clock construction algorithms is detailed in [11,66]. Tree structure is widely 
used in global clock networks since it uses less routing resources, consumes less energy 
and is simpler to implement and simulate [4,47]. At the same time, mesh structure is 
proposed to tackle the challenges introduced by process variation, especially when the 
industry advances into the very deep sub-micron era. Top level trees followed by a mesh 
structure have been used in some practical microprocessor designs, and improved local 
clock skews under process variation compared with a pure tree topology [4] are result-
ed obtained. Tree and mesh structures are also used for the local clock construction in 
the literature. Basic algorithms include the H-tree algorithm [6,26,27], the Method of 
Means and Medians ( M M M ) [32], the Geometric Matching Algorithm (GMA) [19,33], 
the Exact Zero Skew Algorithm [71], the Deferred Merge Embedding(DME) [10,38], 
the Bounded Skew Clock Routing algorithm [18, 20, 35], the Planar-DME algorith-
m [36, 81], the UST/DME algorithm [70] and process variation-aware clock routing 
algorithms [41,44,75]. These basic clock structures can be further extended to hybrid 
clock distribution schemes by inserting crosslinks [45,52-55,74,79] or using a global 
mesh [14,73,77] to reduce clock skews incurred by process variation. 

Capacitance usage and skews are the two major issues traditional clock routing algo-
rithms target at. The purpose of reducing the total capacitance usage is quite straightfor-
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CHAPTER 2. BACKGROUND STUDY 5 

ward. We can reduce the power consumption and relieve the heat problem by reducing 
the chip capacitance usage. According to some previous studies [15,31,51], the power 
usage of a microprocessor can be classified into two categories: dynamic power con-
sumption and leakage power consumption. While the leakage power consumption of 
a circuit can be estimated as a constant P, the dynamic power is closely related to the 
capacitance usage of the chip and can be calculated as follows [51]: 

P{s) = C^ffV^s (2.1) 

where s and Ceff, Vu Vdd^ and k denote the effective switch capacitance, 

the threshold voltage, the supply voltage, and a hardware-design-specific constant, re-
spectively. By reducing the total capacitance usage, we can effectively reduce Ce/ j and 
thus reduce the power consumption of the whole chip. 

Synchronous clock strategies continue to be the dominant clock distribution schemes 
for microprocessors nowadays [5,39,58,59,64,65]. We need to control the clock arriv-
ing times from the clock source to different units in order to ensure a proper function-
ing of the chip. The clock skews refer to the clock arrival time difference between two 
points in the chip. It could be caused by asymmetric routes to different functional units, 
different interconnect parameters, different threshold voltages or process variation [32]. 
As frequency increases, the same skew value wi l l correspond to a larger percentage of 
one clock period and the chip performance wi l l be more adversely affected. This wi l l 
cause serious problems when designing high performance microprocessors. Uncertain-
ties of those arrival times, especially between nearby points, can l imit clock frequency 
or even lead to functional errors [58]. Therefore, reducing clock skews is very important 
in constructing a robust clock network. 

2.2 Tree-Based Clock Routing Algorithms 

2.2.1 Clock Routing Using H-tree 

H-tree structure is used to construct balanced and low skew clock network by main-

taining the same length from the clock source to all the clocking elements on the 

chip [6,26,27]. We can recursively construct a H-tree structure from the sink nodes 
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M M • • • • 
i i i i 

Figure 2.1: H-tree structure 

of the chip in a bottom-up style. Ideally, i f all the sink nodes bear the same capacitance 
and there is no process variation, a H-tree constructed as described above becomes a 
zero-skew tree. H-tree structures can significantly reduce clock skew when all the clock 
sinks bear the same capacitance and are placed in a symmetric array. Fig. 2.1 shows a 
simple example of H-tree with 16 sinks. In general the sinks are randomly distributed 
all over the chip, and bear different capacitances. In such circumstances, using H-tree 
can yield a clock structure with significantly large clock skews. So for general clock 
routing problems, more complicated routing algorithms are desired. 

2.2.2 Method of Means and Medians(MMM) 

The Method of Means and Medians(MMM) [32] algorithm is a generalization of the H-

tree algorithm. The M M M algorithm is conceptually simple. Let S 二 {s i , 5 2 , b e 

a set of points representing the clock sinks on a two-dimensional plane. The coordinates 

of each ŝ  are denoted as (x^, yi). Define 

x,{S) = 工 1 (2.2) 
n 

yc{S) - ^ ^ ^ (2.3) 
n 

{xc{S),yc{S)) represents the center of mass of the set of points. We can divide the set 

S into two sets Sl and Sr according to the median's x coordinate. Similarly, we can 
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• I 

. 丨 • 
Center of mass I 

of set Sl ^ 丄 • • 

K y " " ^ " ^ I Cen ter of mass 
I \ c.fset Sr 

• I Center of mass of 
I the whole set 

I 
• 丨 書 

I ^ 1 
Median of the whole 

set in X direction 

Figure 2.2: Recursive partitioning of MMM algorithm 

also divide the set S into two sets Sb and St according to the median's y coordinate. 

I f the number of sinks is even, the number of sinks in the two subsets w i l l be equal to 

each other. Otherwise, they w i l l be differ by one. In fact, \\Sl\ — \Sr\\ < 1. After 

that, connections are made from the center of mass of the set S to the centers of mass 

of the two subsets, ensuring that there is no length skew at the current level of the 

clock tree. One interesting property of this algorithm is that given a set of points S = 

{s i , 5 2 , w h e n n is an even integer, 

⑶-x,{Sl{S))\ + \y,{S) - yc{SL{S))\二 4) 

(約 - x , { S n [ S ) ) \ + I 从 ( 約 — ‘ 

A similar result holds for the sets St and Sb, where St and Sb are the two sets obtained 

by dividing S according to the median y coordinate. This property tells us that whenever 

we divide a set into two subsets with equal number of sinks, the wire lengths from 

the center of mass to the center of mass of the two subsets are always equal to each 

other. Thus, at every level of the clock tree, the algorithm can achieve locally zero-skew 

result (but it is not zero-skew globally.). When choosing the partitioning direction, the 

algorithm incorporates a delay equalization look-ahead technique. Both x-then-y and 
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Figure 2.3: Recursive grouping of the GMA Algorithm. Solid points denote the sink nodes, and emp-
ty points denote merging points on the connection. At each level,a geometric matching algorithm is 
performed on the merging points at the previous level. 

y-then-x directions are tried, and the one minimizing the clock skew at the end points is 

selected. The above techniques w i l l be used to recursively construct a clock tree until 

there is only one sink left in each subset. The time complexity of M M M is 0(nlogn), 
where n is the number of sinks to be routed. Fig. 2.2 shows an example of the M M M 

algorithm. In this simple example, the eight sink points are divided into two sets Sl and 

Sr according the median of the whole set in the X direction. The center of mass of the 

set Sl and the center of mass of the set Sr are connected to the center of mass of the 

whole set. 

2.2.3 Geometric Matching Algorithm (GMA) 

Aiming at the same problem as the Method of Means and Medians(MMM) algorithm, 

geometric matching algorithm (GMA) [19,33] uses a bottom-up recursive approach to 

construct a binary clock tree. A geometric matching for k points refers to a set of | 

segments, with no two segments connecting to the same point. At the very beginning, 

each sink is a subtree itself. The geometric matching algorithm (GMA) wi l l merge these 
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trees by connecting them in pairs and finding a merging point on the connection in such 
a way to minimize the maximum difference in path lengths from the merging point to 
the leaves of the subtrees. Note that when there are only two sinks in the subtree, the 
optimal merging point is the midpoint of the connection, so that the clock signal w i l l 
have zero skew^ • At the next level, merging point is set to be the point that minimizes the 
maximum path length skew from it to the leaves of the two subtrees being connected. 
The resulting new subtrees wi l l be recursively merged until a final clock network is 
constructed for the whole chip. Fig. 2.3 shows an example of the GMA algorithm when 
there are 16 sinks in the plane. Although the GMA algorithm produces better results 
compared with the M M M approach according to the experimental results of [33], GMA 
still cannot guarantee a zero-skew clock structure. 

2.2.4 Exact Zero-Skew Algorithm 

The underlying assumption behind both the geometric matching algorithm(GMA) and 

the Method of Means and Medians ( M M M ) algorithm is that the delay from the source 

to a sink is linearly proportional to the path length. They mainly focus on balancing 

the path lengths from the source to different sinks on the chip. An exact zero-skew 

algorithm based on a more accurate and desirable Elmore delay model is proposed by 

Tsay [71] to construct exact zero-skew clock network. The algorithm adopts a hierar-

chical method for computing the Elmore delays in a bottom-up fashion. It assumes that 

a tree topology is given beforehand, and it w i l l recursively connect pairs of nodes and 

tune the new merging points in a bottom-up fashion. The finally constructed tree has 

exact zero-skew under the Elmore delay model, which has been widely used in practice 

to estimate delay due to its simplicity and high fidelity. 

The algorithm is a recursive one proceeding from the leaves to the root. Assume 

that at a certain stage, a number of exact zero-skew subtrees have been constructed (this 

is true at the beginning when there are only sink nodes). To connect two zero-skew 

subtrees and to ensure exact zero-skew of the combined tree, the algorithm finds a good 

merging point on the connection of the two subtrees, such that the delays from the new 

'The skew here refers lo path length skew, which is defined to be the maximum di(Terence of the path Icnglhs in ihc ircc 
from the root to any two 丨eaves. 
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merging point to the leaf nodes of the two subtrees are the same. Let's consider an 
example with two subtrees 7\ and T2 as shown in Fig 2.4. The interconnection of the 
two subtrees is divided into two segments, Wi and W2. Each wire is represented by a 
TT-model as shown in the figure. Let t i and 力2 denote the internal delays (i.e.,delay from 
the root to the leaves of the subtree) of subtrees 7] and T2. I f we want to merge these 
two subtrees to form a new zero-skew tree, it requires that 

n ( c i / 2 + Ci ) + t i = r2(C2/2 + C2) + t2 (2.5) 

where Ci denote the total capacitance of subtree Ti , C2 denote the total capacitance of 
subtree T2, n and ci denote the total wire resistance and capacitance of wire segment 
Wi , and r2 and C2 denote the total wire resistance and capacitance of wire segment W2 
respectively. Assume that the total wire length connecting the two subtrees is I, the 
length of wire segment Wi is xl and length of wire segment W2 is { l - x ) L Denote a as 
the resistance per unit length of the wire and (3 as the capacitance per unit length of the 
wire. We have r = al, ri = axl, r〗 a ( l - x)l, c =队 Ci = /3xl, and C2 = 々 ( 1 x)l 
respectively. After solving equation 2.5, we wi l l get 

— ( 力 2 - t i ) + M ( ( 7 2 + f ) ) 

Thus, the exact location of the merging point can be determined when 0 < x < 1. I f x < 
0 or X > 1, detouring, e.g., snaking of wires, is needed to ensure that the constructed 
clock network is an exact zero-skew tree. I f the two subtrees are too much out of balance 
and detouring wi l l significantly degenerate the routability of the chip, adding buffers, 
delay lines or capacitance terminators can be used to handle such extreme cases. To 
minimize the total wire length, pattern routing, e.g., one-bend connection, is used. The 
pattern that gives shorter wire length in the next higher level wi l l be selected. 

However, the algorithm assumes that the tree topology is given beforehand. To con-
struct a zero-skew tree, we can first pair up all sink nodes using M M M or GMA before 
using the exact zero skew approach to construct the tree. 

2.2.5 Deferred Merge Embedding (DME) 

The Deferred Merge Embedding (DME) algorithm proposed in [10,25,38] makes use 

of the fact that for each pair of sink nodes, there can be multiple choices in selecting the 
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Figure 2.4: Merging Two Subtrees 

merging point in order to construct a better zero-skew clock tree. An example is shown 
in Fig. 2.5 to illustrate that point. Consider Fig. 2.5(a). Let Pi and P2 be the merging 
points of two previously constructed subtrees 7\ and T2 respectively, and now we are 
trying to connect T i and T2 together. After considering the delay from Pi and P2 to 
the leaves in and T2 respectively, we can compute the required distances from the 
new merging point x to Pi and P2 respectively. Let the required distance from x to Pi 

be 5 units and that from x to P2 be 4 units respectively. We can identify two potential 
merging points, which are Pa and P5 respectively. However, one can easily see that any 
point on the segment PaPh wi l l satisfy the exact zero skew requirement, as any point on 
the segment PaPh wi l l have a distance of 4 units from node P2 and a distance of 5 units 
from node Pi. Similar result holds for the example in Fig. 2.5(b). The Deferred Merge 
Embedding (DME) algorithm is proposed to construct better zero-skew clock networks 
by fully exploring all the merging points. We use a merging segment to represent all 
possible placement locations for each merging point. The DME algorithm consists of 
two phases. First, a bottom-up phase to find all the merging segments. Second, a top-
down embedding phase fixing the location of each merging point. 

Denote ms{v) as the merging segment that represents all possible placement loca-
tions of a merging point v. We use a simple example to illustrate the bottom-up phase 
of the DME algorithm. Suppose that we are now connecting four sinks, A, B, C, and D 

using the DME algorithm as shown in Fig. 2.6. Consider the merging segment nis{E) 
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Figure 2.5: An example of multiple merging points. For both figure a and b, any point along the segment 
PaPb satisfy the zero-skew requirement. 

of node A and B. According to some delay models, i.e., the Elmore delay model, we 

can first compute the distance (Iae from A to the merging at E and the distance dsE 

from Bio E such that the skew is zero and dAE + duE is the shortest Manhattan distance 

between A and B, Then ms{E) is set to be the set of all points at a distance (Iae from 

A and at a distance duE from B. The merging segment ms{F) of sinks C and D can be 

found similarly. Next, we wi l l merge the two merging segments, ms{E) and ms、F), 
to form a new merging segment ms{G) as shown in Fig. 2.7. The distance between 

ms{E) and ms{F) is set to be the minimum distance between any point on ms{E) and 

any point on ms{F). After determining the distance between ms{E) and ms{F), cIeg 

and dpG can be calculated similarly. Finally, we set ms{G) to be the set of all points at 

a distance of (Ieg from some points on ms{E) and at a distance dpc from some points 

on ms{F). Each merging segment can be found in constant time. The whole bottom-up 

phase requires linear time. 

After all the merging segments are determined, a top-down phase wi l l be invoked to 

determine the exact locations of all the merging points. For merging point v, its location 

wi l l be selected as follows: 

• I f 1； is the root node, any point on the corresponding merging segment can be 
chosen. 
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Figure 2.6: Construction of merging segments between two nodes in the bottom-up phase of DME. The 
merging segments are shown in thick solid blue line. 

ms(E) 

ms(F) 

Figure 2.7: Construction of merging segments between two segments in the bottom-up phase of DME. 
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• i f V is an internal node other than the root, v can be embedded at any point in the 

corresponding merging segment that is at distance dyp (determined in the bottom-

up phase) f rom p, where p is the parent of v. 

The top-down phase also takes linear time. Therefore, the overall D M E algorithm is 

a linear time algorithm. The D M E algorithm can achieve optimal wire length for lin-

ear delay models. It could be further extended to handle problems with general skew 

constraints. 

2.2.6 Boundary Merging and Embedding (BME) Algorithm 

Some generalizations of the D M E algorithms have been proposed, such as the bounded-

skew clock and steiner routing algorithm (BST/DME) in [20, 35] and the Boundary 

Merging and Embedding (BME) algorithm in [18] to solve the bounded skew clock 

routing problem. "Exact zero skew" can typically be obtained at the expense of in-

creased wir ing area and higher power consumption. However, in practice a chip can 

still function correctly within a given skew tolerance, and exact zero skew is sometimes 

not a realistic design requirement [34]. For such cases, constructing a clock tree satisfy-

ing a given skew bound is of interest. The Minimum-Cost Bounded Skew Routing Tree 
(BST) Problem [18] is defined as follows: given a set S' = { s i , S N } C 况2 of sink 

locations and a skew bound B, find a routing topology G and a minimum-cost clock 

tree TG{S) that satisfies SKEW{TG{S)) < B. In [20,35], the bounded skew tree problem 

is solved under the path length delay model, while in [18] a more accurate Elmore delay 

model in considered. In the following, we mainly introduce the Boundary Merging and 

Embedding (BME) algorithm proposed in [18:. 

Let mr{v) denote the merging region of two subtrees being merged, which contains 

all possible locations of the merging point that satisfy the skew requirement. We first 

illustrate the point that when the required skew is non-zero, the "merging segment" in 

the D M E algorithm becomes a merging region. Consider the example shown in Fig. 2.8, 

Sl and S2 denote the sinks to be merged. When the skew is zero, the merging segment 

w i l l be P1P2 as shown in the figure. Note that P1P2 is indeed the merging segment used 

in the D M E algorithm. When we have a non-zero skew bound, any node within the 

shaded region mr{v) in Fig. 2.8 can be the merging point of the two sinks, as any node 
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Figure 2.8: An example of the merging region when the skew bound is non-zero. 

within mr{v) connecting and S2 w i l l have a skew within the required skew bound. 
Thus, the merging segment becomes a merging region when we have non-zero skew 
requirement. 

The BME algorithm incorporates two phases: a bottom-up phase finding all merg-
ing regions and a top-down phase fixing the location for each merging point within the 
merging regions. We use a simple example to illustrate how the BME algorithm works. 
Suppose we are now connecting the four sinks, S2, Sz and as shown in Fig. 2.9. 
Assume that the required skew bound B is non-zero, we can compute the merging re-
gion mr{vl) for sinks Si and S2 according to the technique proposed in [18]. Similarly, 
we can compute the merging region mr{v2) for sink Ss and S4. Note that all points 
within the merging region satisfy the skew bound B. In the next step, we wi l l merge 
the two merging regions mr{vl) and mr{v2). We first determine the closest bound-
ary segment between the two merging regions mr{vl) and mr{v2), which are la and k 
in Fig. 2.10. Based on the locations of la and we can compute the merging region 
mr{v3), the darker region, in Fig. 2.10. The bottom-up phase is a recursive process. 
After determining all the merging regions, a top-down phase, which is similar to the 
original DME algorithm, is invoked to find the exact locations of all the merging points. 
In the BME algorithm, only boundaries of the current merging regions are considered 
when computing the next level merging regions. To overcome the drawback of the BME 
algorithm, the author in [18] also proposed an Interior Merging and Embedding (IME) 
approach utilizing the internal regions as the merging points to fully exploit the skew 
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Figure 2.9: Merging of four sinks ^ i , S2, S3, and S4. The shaded part mr{vl) is the merging region of 
sinks Sl and S2, and mr{v2) is the merging region of sinks S^ and 54. 
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Figure 2.10: Merging of four sinks S2, S3, and S4. The darker region mr{v3) is the merging region 

of 'mr(vl) and mr{v2). 



CHAPTER 2. BACKGROUND STUDY 17 

bound. Better experimental results are reported in [18] compared with the results of the 
B M E approach. 

2.2.7 Planar Clock Routing Algorithm 

Routing of planar clock trees was studied in [36, 81]. The Planar Equal Path Length 

Steiner Tree Problem can be formally defined as follows: given a source point and a 
set of sink points, find a planar Steiner tree T with minimum total cost such that the 
lengths of the paths from the source point to all the sink points are exactly the same. 
Planar intuitively means that we can draw the trees on a plane without edge crossing. 
In [81], the authors proposed an algorithm to construct a planar clock tree which can be 
embedded on a single metal layer. In this clock tree construction algorithm, the length 
of the paths from the clock source to the clock terminals are all the same. The algorithm 
also guarantees that the path length from the source to the clock terminals is minimum. 
Let Ti denote the partial tree being constructed in which the first i sinks are connected. 
The algorithm works as follows. At the very beginning, the sink that has the largest 
Manhattan distance to the source wi l l be selected and connected to the source. This wi l l 
generate the first partial tree J \ . A l l the sinks are classified into two types by this partial 
tree: (i) free sinks which are the sinks that have not been connected to the partial tree, 
and (ii) connected sinks that have been added to the tree. In the following steps, a free 
sink wi l l be selected and connected to a branch of the tree maintaining the same length 
from the source to the sink. Assume that the current partial tree has already included 
i sinks, and we now want to connect it with one more sink. The point on T] that has 
the same Manhattan distance to a free sink and to a connected sink in tree J\ is called a 
balance point. For a particular sink, it may have several balance points on tree J\. The 
balance point with the minimum Manhattan distance wi l l be chosen. The order in which 
the sinks being processed wi l l affect the final solution. In the algorithm, the following 
two rules are used to select the balance point and to determine the order of processing 
the sinks: 

• Min-rule: Always connect a free sink to the balance point which has the minimum 

Manhattan distance to the free sink, called minimal balance point. 
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Figure 2.11: Planar routing of three sinks 

• Max-rule: At each stage, the free sink that has the largest minimal balance point 

w i l l be selected. 

Fig 2.11 shows an example with three sink nodes. For sink 53, its balance point is po. 
For sink S2, there are two balance points p i and pz, and the one with the minimum 
Manhattan distance, i.e., pz, w i l l be selected. 

The partial tree under construction wi l l divide the free sinks which are not connected 

yet into several clusters by its branches. Parallel processing is applied to speed up the 

method by applying the algorithm on different clusters of free sinks simultaneously. S-

ince the clock tree solutions given by other DME algorithms cannot be easily embedded 

on a layout plane, this planar zero-skew clock routing algorithm can be applied i f we 

want to route on one layer and eliminate the usage of vias. 

2.2.8 Useful-skew Tree Algorithm 

The underlying assumption behind the Boundary Merging and Embedding (BME) al-
gorithm is that for all pairs of sinks, we have the same global skew range B. However, 
in practice we may have different skew requirements among different sink pairs and we 
may even be able to make use of such differences for further optimization. An useful-
skew tree (UST/DME) algorithm is proposed in [70] to deal with the problem that dif-
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ferent skew requirements exist among different sink pairs. The global skew bound B is 
used at all levels when we merge the subtrees in the BME algorithm. In the useful-skew 
algorithm, B w i l l be changed. The UST/DME approach also incorporates two phases: 
a bottom-up phase to construct a binary tree of merging regions (or segments), and a 
top-down phase to determine the exact locations of the merging points. In the bottom-
up phase, the skew requirements between different node pairs (they could be the sinks 
or the roots of subtrees.) are formulated as a constraint graph G{V, E), in which the 
vertices V correspond the nodes and the edges in E denote the skew constraint between 
the nodes. At the very beginning, a subtree contains the sinks only. We can merge 
two nodes using a similar approach as the BST/DME algorithm, except that the skew 
bound B is now calculated using the constraint graph G{V, E) we have previously con-
structed. As we are incrementally merging the subtrees, new trees are generated and 
the constraint graph wi l l be updated accordingly. Finally, we can construct a tree of 
merging segments (or merging regions) as in the BST/DME algorithm. After that, the 
top-down phase which is the same with that used in [18,38] wi l l be invoked to locate the 
exact locations of the merging points. According to the experimental results in [18,38], 
the UST/DME approach achieves better results in terms of wire length compared with 
the BST/DME algorithm. 

2.3 Non-Tree Clock Distribution Networks 

Al l the above algorithms focus on how to a clock tree with small or zero skew can be 
constructed. In practice, the clock network constructed using the above algorithms still 
cannot guarantee to meet the del ay/slew requirements of the circuit. The undesirable 
process variation can seriously affect the timing of the circuit. According to the study 
of [43], interconnection variation alone can cause up to 25% change on clock skew. 
Those algorithms without considering process variation can hardly satisfy the stringent 
delay/skew constraints in real designs today. Tree structures have been known to be 
very sensitive to process variation, as for each element on the circuit, there is only one 
path delivering the clock signal. Mesh structures are known to be more robust to process 
variation due to its inherent interconnect redundancies. To combine the virtues of dif-
ferent clock topologies and to combat the undesirable effects due to process variation. 
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Clock driver 

Figure 2.12: Clock mesh structure. The figure is from [14]. 

extensive research works have been conducted on non-tree clock distribution networks. 
In the following, we mainly introduce three categories of non-tree clock distribution 
schemes. 

2.3.1 Grid (Mesh) Structure 

Grid (or mesh) has been used in the clock networks in some practical chip design-

s [5,7,23,29,57,60] and has been widely studied in the literature [8，14,17,60,72,77,80]. 

Clock grid is very effective in reducing local clock skew, as two points can be directly 

connected. The inherent redundancy in a mesh structure smooths out undesirable varia-

tions between signal nodes spatially distributed over a chip. Some analysis on the mesh 

structure are conducted in [14]. Unlike the tree structures, clock mesh is quite robust 

and insensitive to placement details, which makes chip design easier. The main concern 

over clock grid is the excessive wire resources it uses. This w i l l inevitably lead to a 

significant increase in power consumption of the chip. A mesh structure is shown in 

Fig. 2.12. 

2.3.2 Spine Structure 

The spine structure proposed in [42] also can provide a stable clock signal, and has 

been used in a few practical Intel microprocessor designs [39,62,63]. Each spine can 
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Figure 2.13: Spine structure of a microprocessor. 

be tuned and gated independently without affecting others. However, i f the system bears 
a large amount of clock elements, it w i l l require many spine routes, which wi l l in turn 
introduce a high burden of wire resources and power consumption. A spine structure is 
shown in Fig. 2.13. 

2.3.3 Hybrid Structure 

Hybrid structures combining tree and mesh are also a popular way to distribute clock 

signals for a chip [46,64,65,67,76,77]. Several practical designs using stable hybrid 

clock distribution schemes have been discussed in [60]. For some chips, the perfor-

mance requirement may be too stringent for a pure tree structure or a pure mesh struc-

ture. Using a hybrid clock schemes, we can combine the virtues of tree structures in 

minimizing the power consumption and mesh structures in reducing skew variability 

together to achieve a high quality clock distribution scheme. Mesh with local trees was 

studied in [67] and tree with local meshes (TLM) was studied in [76]. Experimental 

results in these works show that the hybrid architecture offers significant advantages 

over both a pure mesh - lower power and faster analysis at an expense of slightly worse 

skew, and over a tree — smaller skew and more robust to parameter variation. 
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Tree with crosslinks [45,52-55,74,79] has also been extensively studied in the lit-
erature. Aiming at reducing clock skews (global skew or local skew), cross links are 
either inserted between the leaf nodes or the internal nodes within the clock tree. The 
major issue of these link insertion algorithms is to find good positions to insert links, 
which can significantly reduce clock skews of the chip. Some analysis are conducted 
in [45,52,79] to explain the effects when a particular link is inserted into the clock net-
work. Experiment results in [45] show that i f we properly insert crosslinks, comparable 
local skew results can be achieved compared with the results produced by mesh struc-
tures. However, the algorithm in [52] only considers inserting crosslinks between the 
terminal nodes (sink pairs), which can limit the potentials of reducing clock skews with 
this crosslink insertion technique. In [45], the authors proposed an algorithm consider-
ing crosslinks insertion between the internal tree nodes, and experiment results show the 
superiority of this approach by reducing more clock skews than the approach in [52:. 

2.4 Post-grid Clock Routing Problem 

The post-grid clock routing problem investigated in this thesis bears a fundamental 
difference with those previous works on constructing clock trees, since the available 
routing tracks on different metal layers are given and can be very scarce. Besides, in 
our problem, there are multiple ports and multiple sources in the layout region. There is 
one very recent work addressing the same problem by Shelar [64,65] and he proposed 
a tree growing algorithm to solve the problem with delay and slew constraints. In the 
algorithm, the clock network is generated by expanding from the sources step by step, 
and the frontier edge with the smallest wire capacitance is added into the clock network 
every time. Checking against delay and slew constraints is done whenever a port is 
being connected. 

The algorithm described in [64，65] formulates the problem on one routing graph 
C{V, E). The nodes V in this graph correspond to ports and via nodes, while the edges 
hj denote the reserved tracks. Trees, which correspond to clock routes, are initialized 
by assigning source nodes as their roots. At the very beginning, a pool F of frontier 
nodes, which is initialized to be all sourcc nodes, is used to store all the current nodes 
to be expanded. The following steps arc performed recursively until all the ports arc 
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Figure 2.14: (a) A routing graph example of tree growing (TG) algorithm, (b) The final solution contains 
five trees, Ti, ... , T5. 

connected to the sources. First, all unexplored edges adjacent to a frontier node in F are 

stored in an edge pool Ej and sorted in an ascending order of their edge capacitances. 

Then, the clock network is built by a greedy edge expansion process, in which all the 

edges in E f are sequentially added into the clock network. Whenever an edge is to 

be added in the network, the algorithm wi l l ensure that (i) it is not in some other trees 

already, (ii) adding the edge does not violate any delay or slope constraint. As a result, 

the routes created by the algorithm are always correct-by-construction. Furthermore, 

the frontier node pool F wi l l also be updated with the end nodes of the newly added 

edges. I f a port is added into the tree, it wi l l be removed from the set of ports to be 

connected to the grid wires. After all the ports are connected to the sources, the final 

clock network is obtained by deleting redundant edges in the trees. The time complexity 

of this algorithm is 0{\E\~lo(j\E\), where \E\ 二 ()[n + I + /;?), and nj、m are the 

number of port nodes, the number of candidate via nodes, and the number of source 

nodes respectively. Delay and slew constraints are considered in the algorithm. The 

delay from a source to a port is computed using the Elmore delay model. The slope, 

i.e., 10-90% transition time, is computed using the mctric in [371. According to the 

study in [37], the slope of a signal at the end of a wire segment with resistance R and 

capacitancc C is given by {2.2RCY + (5'/)-, where Sj is the slope of the wavctorm al 
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Figure 2.15: (a) Routing graph with sources 6 � a n d S2, ports pi, p2 and 仍，and via nodes ci and C2. The 
numbers near the edges denote the wire capacitances, (b) Routing solution of [65]. (c) A better topology 
with a 36% reduction in wire capacitance. 

the input of the segment. In the algorithm, they wi l l lump the resistance and capacitance 
of the unique path from the root to a node in the tree to compute the slope. A routing 
example which contains six ports (Pi to PQ), six sources ⑶ to SQ), and several via 
nodes (denoted as Cj) is shown in Fig. 2.14. Using this tree growing (TG) approach, 
we can connect the six ports using five trees, to T}” as shown in the right sub-figure 
of Fig. 2.14. 

2.5 Limitations of the Previous Work 

As this post-grid clock routing problem is different from traditional clock routing prob-
lem, algorithms such as H-tree, M M M , GMA and exact zero skew routing discussed 
above cannot be directly employed here. Furthermore, the routing method in [65] which 
deals with the post-grid clock routing problem has a couple of intrinsic drawbacks. First 
of all, it uses a top-down tree growing heuristic in which the downstream capacitance 
information is not available when the trees are being constructed, and it thus can hardly 
optimize the delay. In addition, its slew calculation is based on the lumped-RC model 
instead of the distributed RC model, and this may lead lo accuracy and fidelity prob-
lem. Al l these problems make ihc hcurislic in [64,65] oversimplified for clock network 
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designs of high performance microprocessors. 
In Fig. 2.15, we show a simple example to illustrate the deficiency of Shelar's ap-

proach. In this example, three ports p i , p2 and p^ are to be connected to two sources 
Si and S2. Ci and C2 denotes the via nodes. Fig. 2.15(b) shows the routing topology 
obtained by the tree growing approach in [65]. Fig. 2.15(c) shows a better clock topol-
ogy in terms of wire length and capacitance usage. In this example, the topology of 
Fig. 2.15(c) can achieve a 36% reduction in wire capacitance compared with the result 
of the tree growing approach. 

n End of chapter. 



Chapter 3 

Post-Grid Clock Routing Problem 

3.1 Introduction 

An overall clock distribution scheme for high performance microprocessors is shown in 
Fig. 3.1. The external clock signals are typically generated by a phase locked loop (PLL) 
and reach the global grid through grid buffers. The grid, typically lying on the topmost 
metal layer, is usually implemented using spines and wi l l distribute clock signals to 
different regions of the chip. The grid and PLL are usually designed manually. The 
grid clock signals wi l l be further routed through a set of pre-reserved tracks on the 
lower metal layers to the clock ports of different blocks, and this step is called post-
grid clock routing. The block-level ports wi l l be created in such a way to align with 
the reserved tracks and the clock signals wi l l be further sent to different sequentials 
inside the blocks using buffered clock trees. Thus, the buffered trees are connected at 
some specific locations (ports), which are connected to the clock grid by routing along 
the reserved tracks on the lower metal layers. During the block-level synthesis when 
designing a chip, replicating, placing, sizing of clock cells and routing of clock wires 
wil l be performed and this wi l l create the block-level ports, aligned with the reserved 
tracks for post-grid clock routing. There can be thousands of ports in each layout region 
in a real post-grid clock routing problem. As shown in Fig. 3.2, the global grid wires 
arc driven by multiple grid buffers and deliver the clock signals to block-level ports by 
routing along the reserved tracks on the lower metal layers. 

A simple example of this post-grid clock routing problem is shown in Fig. 3.3(a). In 
this example, there are five metal layers (from layer 3 to layer 7) with six ports lying 

2 6 
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Figure 3.1: Typical clock distribution of microprocessors 

on metal layer 3 and the source grid is on metal layer 7. Routing can only be done on 

those reserved tracks (dashed lines). A sample routing solution is shown in Fig. 3.3(b). 

The target is to connect all the ports to the sources without exceeding a very stringent 

delay bound (which is also an upper bound of the skew), and to minimize the total 

wire capacitance. Note that for this particular instance, our algorithm gets the optimal 

solution as shown in Fig. 3.3(b). 

3.2 Problem Definition 

In this post-grid clock routing problem, we are given (1) a set of reserved tracks (in-

cluding the source grid which is always on the topmost metal layer) on different metal 

layers which have alternate routing directions, (2) the locations and capacitances of n 

ports P = {P i , Po,Pu} on some lower metal layers, and (3) the types of wires (with 

different capacitance/resistance tradeoffs) available on cach metal layer. Wc assume 

that the clock grid on the topmost layer provides zero-skew clock signals. The objec-

tive of this post-grid clock routing problem is to conncct all the ports to the sources' by 

making use of the reserved tracks and different wire types so as to satisfy the constraints 

'These sources arc vias to the sourcc grid on the topmost metal layer. 
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Figure 3.2: Post-grid clock network distribution 

on the maximum delay bound D, and to minimize the total wire capacitance. The delay 

here is computed according to the Elmore delay model due to its simplicity and high 

fidelity. 

Similar to the previous work [65], we do not optimize the skew directly. This is 

because the grid-to-ports delay bound (also upper bound the skew) is very stringent and 

is set to be within 5ps for all the data sets, which is very small compared with the overall 

circuit skew budget. Therefore, it is not necessary to put the skew as another optimizing 

objective specifically. We can estimate the slew of signals us ing〈 {2 .2RC〒 + 
according to [37], where R and C denote the resistance and capacitance of the wire 

segment respectively, and Si denotes the input slew. To estimate the slew at a particular 

port, we can simply replace RC by the Elmore delay of the particular port. In the 

experiment part, we can see that the estimated slew and the simulated slew correlate 

to each other quite well, and are also very close to each other in their absolute values. 

In addition, similar to [65], we do not consider buffer insertion in this post-grid clock 

routing. A very detailed explanation is provided in [65]. In fact, the well-defined grid 

and reserved tracks make buffer insertion unnecessary for this post-grid clock routing 

problem. 
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Figure 3.3: Post-grid clock routing problem 
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Algorithm 1: Wire replacement 

1 begin 
2 Tr all trees; 
3 while Tr is not empty do 
4 Ti select one tree in TV ； 

5 Pi •(— port with the largest Elmore delay in 
6 Px all terminal ports in Ti except Pi ； 

7 while Px is not empty do 
8 Pi •(— port node in P^ with the smallest Elmore delay; 
9 Pa lowest common ancestor of Pi and Pi； 

10 repeat 
11 Replace e{Pi) using the second type of wire if no violation occurs; 
12 Pi parent {Pi); 
13 until 3Pk e Ti where d{Pk)〉D or Pi = Pa., 
14 P^ ^ - Pi-
15 end 
16 Pi ^ Pi, Pa ^ tree root of J]; 

17 repeat steps 10-13; 

18 Tr^Tr- Ti-
19 end 
20 end 

3.3 Our Approach 

This post-grid clock routing problem can be seen as a multi-source multi-sink^ tree 
construction problem with a delay bound and an objective to minimize the total wire 
capacitance. We first model the virtual grid of reserved routing tracks by a graph G. 
The set of vertices contain (1) the block-level clock ports (i.e., the sinks), (2) the pos-
sible via positions between reserved tracks on adjacent metal layers, and (3) the clock 
sources (which are the vias connecting to the source grid). The edges in G represent the 
wire segments on the reserved tracks connecting ports, vias or sources. Our approach 
includes a pre-processing step that performs segment merging, finds segment intersec-
tions and construction of the graph G and uses some techniques in [12,13] and it w i l l 
not be detailed here. 

We devise a delay-driven path expansion algorithm to solve this clock routing prob-
lem. To make our illustration more clear, we define a new term path in our approach 

2These "sinks" are block-level clock ports in our problem and are different from the "sinks", which are flip-flops or latches, 

in traditional clock routing problems. 
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Algorithm 2: Topology refinement 

1 begin 

2 Py all terminal ports; 

3 sort{Py) in a non-increasing order of their Elmore delays; 

4 while Py is not empty do 
5 Pi 卜 a port in Py ； 

6 modified path-expansionQ on Pi ； 

7 // Paths expand toward all directions, and the 
8 // path with smallest wire capacitance will be 
9 // expanded first 

10 Py — Py _ Pi., 
11 end 

12 end 

as follows: a path is a routing between an intermediate node (a via node or a source 
node) and a block-port along the reserved tracks. During the expansion process, we 
wi l l always select the path with the smallest Elmore delay (note that it is the total de-
lay from the last node of the path to the first node of the path) in the current path pool 
to be further processed. A path p w i l l be taken when it reaches a source. Then, all 
the paths that intersect with p w i l l also be considered and taken i f no delay violation 
occurs. This path expansion step wi l l be repeated until all the ports are connected, or 
no more ports can be connected without violating the delay constraint. These are the 
basic steps of our partition-based delay-driven path expansion algorithm. It w i l l be in-
voked repeatedly (except that the partition of ports wi l l be performed only once) with 
a pre-processing step that w i l l connect up some critical ports first. Finally, some post-
processing techniques are performed to further reduce the total wire capacitance. A 
flow of our approach is illustrated in Fig. 3.4. 

3.3.1 Delay-driven Path Expansion Algorithm 

In this delay-driven path expansion algorithm, we wi l l propagate from all the ports 

simultaneously along the reserved tracks to reach a source. A heap data structure H is 

used to store all the currently expanding paths sorted according to their Elmore delays. 

At the beginning, the heap H is initialized with all the ports, which can be regarded as 

zero length paths with zero delay. 

In each step, we wi l l pick a path p from the top of the heap, which has the smallest 
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Figure 3.4: An overall flow of our approach 
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Algorithm 3: Main program 

1 begin 
2 P f - all ports; 
3 Pc 0； II critical ports 
4 k=0; 
5 repeat 
6 Initialize H as Pc\ 
7 path^expansionQ with H initialized as Pc\ 
8 Initialize H as P - Pd 
9 path-expansionQ with H initialized as P — P^, 

10 Pc ^Pc + ports that fail to be connected to a source; 

11 k ^ k+U 
12 until all sinks are connected or k > K\ 
13 if all sinks are connected then 
14 Post-process; 
15 // wire replacement and topology refinement 

16 else 
17 No solutions under current constraints; 

18 end 
19 end 

Elmore delay among all the paths in H. We wi l l then check whether p has reached a 
source. I f not yet, we wi l l expand p vertically up i f a via ^ exists at the endpoint last{p) 
of p or w i l l otherwise expand sideways (horizontally or vertically, depending on the 
track direction of the metal layer the last node of p is lying on) along the reserved 
tracks. We wi l l first compute the Elmore delays of these new paths. Those new paths 
with Elmore delay smaller than the delay l imit D w i l l be inserted into the heap H. The 
path p w i l l then be removed from H. 

However, i f the path p has reached a source, we wi l l first check against the delay 
constraint. I f no violation occurs, we wi l l take this path p into our routing solution. 
Suppose that the path p is expanded from a port port[p), all the paths originating from 
port{p) w i l l be removed from H. Furthermore, we wi l l process every path q where q 
intersects with p. A l l these paths wi l l be considered in a non-decreasing order of their 
Elmore delays. For each of these paths q, we wi l l check whether connecting g' to p in 
the routing solution wi l l violate the delay constraint at port{q) as well as at any port in 

3Note that the capacitance and resistance of the vias are neglected here for simplicity. The same assumption was made 
in the previous work [65]. However, the via capacitance and resistance can be easily incorporated into our framework by 
considering them when computing the delay of a path. 
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the current clock tree under construction. I f any violation occurs, we wi l l just neglect 
q and consider the next candidate. Otherwise, we wi l l take q into the routing solution 
and connect it to p. We call these paths which do not come to the top of the heap but 
are processed chain paths. Note that once a path is taken into the routing solution, all 
the nodes on it w i l l be regarded as "sources" for later expansions, and all the paths 
originating from its port w i l l be removed from H. 

Wire length reduction is not directly addressed in our algorithm. But as we always 
choose a path with the minimum delay to expand and delay is closely related to wire 
length, paths with shorter wire lengths wi l l have a higher chance to be selected and 
processed. Therefore, we can expect a reduction in wire length using our approach. A 
pseudo-code of this path expansion algorithm is shown in Algorithm 4. 

Processing of Chain Paths 

In the above path expansion algorithm, after a path p is taken into the routing solution, 

we wi l l process all the paths that intersect with p in the algorithm. First of all, we w i l l 

initialize a current routing tree Tp as the single path p and initialize a set chain{p) with 

all the paths in H that intersect with p. The paths in chain{p) are sorted according their 

Elmore delays in a non-decreasing order. We wi l l then do the following recursively 

until the set chain{p) becomes empty. First, we wi l l pick and remove a path pi from 

chain{p) that has the smallest Elmore delay. We wi l l then check i f connecting pi to Tp 
wi l l violate the delay constraint for port{pi) as well as for all the existing ports in Tp. I f 

yes, Pi w i l l be neglected and the next path in chain{p) w i l l be considered. Otherwise, pi 
wi l l be added into Tp and all the paths originating from port{pi) w i l l be removed from 

H. Furthermore, all the paths in H that intersect with pi w i l l be added into chain{p) 
recursively. 

3.3.2 Pre-processing to Connect Critical ports 

The path expansion algorithm does not guarantee connecting all the ports to the sources 
successfully, especially when the user specified delay constraint is too stringent. I f there 
are critical ports (far away from sources or with very large port capacitance) which are 
harder to satisfy the requirement, it w i l l be better to generate smaller trees for them 
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Algorithm 4: Path expansion algorithm 一 “ 

1 begin 

2 while H is not empty do 

3 p = delete jmin{H)\ 

4 \ip connects to source and d{p) < D then 

5 Tp 

6 clean up H\ 

7 II remove all paths in H that originate from port p 

8 foreach p' intersects with p do 

9 chain{p) 4 -

10 end 

11 while chain (p) is not empty do 

12 q = delete jmin{chain{p)); 

13 if adding q to Tp does not violate D constraint then 

14 connect g to Tp; 

15 foreach p' intersects with q do 

16 chain (p) p' •’ 

17 e n d 

18 clean up H., 

19 II remove all paths in H that 

20 // originate from port q 

21 end 

22 end 

23 Store Tp as one clock tree in the solution; 

24 else 
25 H -(— expansion of p in selected directions; 

26 end 

27 end 

28 end 

first before handling others. Therefore, our post-grid clock routing algorithm involves 

iterations of the path expansion algorithm and w i l l identify critical ports that fail to be 

connected to a source in the previous iteration. Those critical ports w i l l be given higher 

priority to be processed in the next path expansion iteration such that smaller clock trees 

are more likely to be generated to connect them. 

The pseudo-code in Algori thm 3 summarizes the overall flow of our approach. We 

create a set of critical ports Pc which is initialized as empty We then enter the path 

expansion iterations in which we first execute the path expansion algorithm on the set 

of ports in P。. This gives the critical ports a higher priority to be routed to the sources. 

We wi l l then invoke the path expansion algorithm on the remaining ports P — P。Note 
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that these remaining ports may also be connected to the trees constructed for the critical 
ports. After that, all the ports that cannot be routed to a source in this round wi l l be 
added to P。. Priorities also exist in P。in which a higher priority is given to those most 
recently added ports. We repeat these steps until all the ports are connected or the 
number of iterations exceeds a user defined l imit K ^ 

3.3.3 Post-processing to Reduce Capacitance 

For all the data sets, there are two types of wires on each layer with capacitance and 

resistance tradeoffs^. The first type has higher capacitance but lower resistance per 

unit length, while the second type has lower capacitance but higher resistance per unit 

length. The per unit length delay of type-one wire is less than that of type-two wire on 

all the layers. In our path expansion algorithm, we wi l l first use type-one wire on all 

layers to optimize delay as much as possible. A post-processing step is then performed 

to reduce the total wire capacitance as long as the delay constraint is maintained by 

replacing the wire types. Two techniques, wire replacement and topology refinement, 

are invoked in this post-processing step. 

Wire Replacement 

This refinement process is done for all trees in the clock network one after another with 
the following steps. First, all the terminal ports in the current tree are stored in a port 
pool Px in which they are sorted in a non-decreasing order of their Elmore delays, and 
the port Pi with the largest delay in the tree wi l l be recorded. We wi l l then sequentially 
explore all the ports in Pj：. Without loss of generality, lets assume that the currently 
processing port is Pi, and node Pj is the parent node of Pi in the tree. We use e{Pi) 
to denote the edge connecting Pi and Pj. We wi l l then check whether any violation 
occurs i f e(Pi) is replaced by the second type of wire. I f not, we wi l l replace it with the 
second type of wire and set Pi 二 Pj. This step is repeated until the delay constraint is 
violated at any port in the current tree, or when Pi becomes an ancestor of the node Pi 
(since we do not want to increase the largest delay in this tree). Port Pi wi l l be finally 

4ln this case, the algorithm fails to converge to a feasible solution. Note that this may happen when the delay constraint is 

too stringent. 
5Our algorithm can also handle the case that multiple types of wire are available on each layer. 
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explored after all other ports in the tree have been processed. In our implementation, the 
above process is repeated three times, as we find that for most test cases, running more 
iterations of this wire replacement process brings little or no capacitance reduction. The 
pseudo-code in Algorithm 1 details the flow of this wire replacement process. 

Table 3.1: Comparisons with TG (with topology refinement only for post-processing) 

Test No. Capacitance Wire Length Delay Runtime 

Cases Sinks (pf) (mm) (ps) (s) 

TG PE* Improvement TG PE* Improvement 
TG PE* 

a^i 灼 〒 % yi y2 〒 % 
testl 300 3.3 2.6 (2.8) 20.9 (16.0) 12.6 10.0(10.6) 20.1 (15.5) 0.45 0.02 0.27 

test2 1846 13.7 9.7 (10.6) 29.2 (22.4) 42.9 32.3 (34.9) 24.8 (18.6) 1.15 0.10 2.72 

tests 836 8.1 5.2 (5.8) 36.7 (28.2) 32.2 20.6 (23.1) 36.7 (28.5) 0.80 1.35 3.01 

test4 502 5.3 4.0 (4.5) 23.8 (14.6) 12.4 9.5 (11.0) 22.8 (11.0) 1.35 0.03 2.89 

tests 137 1.4 1.1 (1.2) 21.0(15.7) 3.4 2.7 (3.1) 19.4(10.5) 1.10 0.01 0.09 

test6 724 7.9 5.7 (6.2) 27.0 (21.7) 18.8 14.2(15.5) 24.6 (17.4) 1.25 0.05 0.68 

test? 981 9.9 7.5 (8.2) 23.8 (17.2) 23.2 17.9 (19.9) 22.9 (14.1) 1.45 0.05 1.00 

tests 538 5.9 4.5 (4.8) 24.6 (18.0) 14.1 10.8 (12.2) 23.8 (13.3) 1.80 0.04 0.49 

test9 1915 19.9 14.3 (15.6) 28.3 (21.5) 46.1 33.1 (37.0) 28.0(19.7) 2.75 0.13 3.27 

testlO 1134 10.7 8.6(9.4) 19.6 (12.4) 25.8 20.1 (22.0) 22.2 (14.8) 1.90 0.09 6.92 

testl 1 724 6.6 4.9 (5.3) 25.0 (18.9) 13.5 10.5 (11.3) 23.3 (16.5) 1.05 0.04 2.95 

testl2 225 2.5 2.0 (2.1) 20.1 (13.8) 6.3 4.9 (5.4) 21.9 (13.7) 1.30 0.01 0.17 

testis 859 9.5 7.2 (7.6) 24.1 (19.3) 24.1 18.8 (20.4) 22.2 (15.4) 1.10 0.06 0.93 

testl4 366 3.9 3.1 (3.3) 20.7 (15.9) 9.5 7.8 (8.5) 18.3 (10.8) 0.95 0.04 0.30 

Ave. 792 7.7 5.7 (6.2) 24.6 (18.2) 20.4 15.2 (16.8) 23.6 (15.7) 0.14 1.84 

Note 1: PE* denotes our delay-driven path expansion algorithm with topology refinement only for post-processing. 
Note 2: Both TG and PE* use just type one wire on every layer. 

Note 3: The figures inside brackets denote the results before the post-processing techniques. 

Topology Refinement 

In the path expansion algorithm, we wi l l expand a path p upwards as long as the end 

node of p is at a via connecting to the upper layer. Besides, chain paths are greedily 
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Table 3.2: Comparisons with TG (using all techniques) 

Test No. Capacitance Wire Length Delay Runtime 

Cases Sinks (pf) (mm) (ps) (s) 

TG PE TG PE TG PE 

testl 300 3.3 2.3 12.6 10.6 0.45 0.02 0.23 

test2 1846 13.7 4.9 42.9 33.4 1.15 0.10 2.85 

tests 836 8.1 4.2 32.2 22.4 0.80 1.35 2.78 

test4 502 5.3 1.6 12.4 9.9 1.35 0.03 2.99 

test5 137 1.4 0.5 3.4 2.8 1.10 0.01 0.10 

test6 724 7.9 2.4 18.8 14.5 1.25 0.05 0.78 

test? 981 9.9 3.0 23.2 17.9 1.45 0.05 1.14 

tests 538 5.9 1.8 14.1 10.8 1.80 0.04 0.58 

test9 1915 19.9 5.2 46.1 32.6 2.75 0.13 3.68 

testlO 1134 10.7 3.2 25.8 19.6 1.90 0.09 7.08 

testl 1 724 6.6 1.8 13.5 10.4 1.05 0.04 3.02 

testl2 225 2.5 0.9 6.3 5.0 1.30 0.01 0.20 

testis 859 9.5 3.2 24.1 19.1 1.10 0.06 1.07 

testl4 366 3.9 1.3 9.5 7.9 0.95 0.04 0.34 

Ave. 792 7.7 2.6 20.4 15.5 0.14 1.92 

Note 1: "PE" denotes our regular approach of having two choices of 
wires on each layer 

processed as long as the delay bound is maintained. Thus, there are still chances to 
bring down the capacitance by changing the topology of the initially constructed trees. 
To achieve this, we wi l l employ a topology refinement step on all the terminal ports as 
follows. First, we wi l l sort all the ports that are terminal nodes in the trees in a non-
increasing order of their Elmore delays in a port pool Py. These ports wi l l be processed 
sequentially in the algorithm. For any port Pi being processed, we wi l l first disconnect 
P^ from the tree it is currently connecting to, and record the total wire capacitance Cb of 
the removed path pi. A new path expansion algorithm wi l l then be invoked at Pi which 
is different from the previous path expansion algorithm that (1) only the second type 
of wire w i l l be used during the path expansion process, (2) paths w i l l be expanded in 
all possible directions and (3) the path with the minimum wire capacitance (instead of 
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the minimum wire delay) wi l l be selected and processed first in the expansion process. 
New paths with wire capacitance less than C^ wi l l be inserted into the heap. Once 
a path reaches a source or a tree (note that all trees are connected to sources now), 
we w i l l check whether delay violation occurs i f the new path is taken. This new path 
wi l l be taken i f no violation occurs. Otherwise, we wi l l continue the modified path 
expansion algorithm until another path reaches a source or a tree, or when all the paths 
are exhausted. I f all the paths are explored but no path is successfully connected, we 
wi l l simply restore the original path pi. The above steps are repeated three times in our 
implementation. Algorithm 2 shows the flow of this topology refinement process. 

3.4 Experimental Results 

3.4.1 Experiment Setup 

The path expansion algorithm proposed in this paper is implemented in C++ and all 
the experiments are carried out on a Linux machine with 4GB R A M and a Pentium 4 
microprocessor running at 3.2GHz. We have also implemented the tree growing ap-
proach (TG) in [65] using C++ for comparisons. In the experiments, we assume that 
the slew of the source signals is lOps. In the simulation, we are observing the 50% 
delays to compare with the Elmore delays calculated using our algorithm. It has been 
shown in [28] that the Elmore delay serves as a 50% delay upper bound with respect 
to any ramp input signals of the chip. The first three test cases (test 1-3) are provided 
by industry. The remaining eleven test cases are obtained from the circuits used in the 
ISPD 2010 Clock Network Synthesis Contest [1]. For the ISPD test cases which have 
no layer information given, five layers of reserved tracks are added according to the 
track conventions used in test 1-3. 

3.4.2 Validations of the Delay and Slew Estimation 

As we have simplified our problem to consider only maximum delay constraint, we 
want to validate the assumption that delay and slew of the circuit are closely related. We 
have constructed a simple circuit containing only one port, and run our path expansion 
algorithm to construct a tree structure for this port. For the tree we have constructed, 
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there are totally 13 nodes (including the source node and the port). We compare the 
delays and slews we have calculated with the delays and slews we got by running hspice 
simulations. The detailed results for the tree structure are shown in Fig. 3.5 and Fig. 3.6. 

We can see that for all the 13 nodes, the delays we calculated and the delays we 
obtained from simulations are closely correlated to each other. For the slew, there is a 
small gap between the estimated ones using the formula J { 2 . 2 R C y + {SiY and the 
ones using hspice simulation. They are still very close to each other, and are highly 
correlated with each other. We can also see that the differences between the simulated 
slew and the calculated slew are very small, which confirms the correctness of the above 
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slew estimation. 

3.4.3 Comparisons with the Tree Grow (TG) Approach 

Since the approach in [65] considers only one type of wire on each layer, for fair com-

parison, we compare the result of our approach using just the first type of wire on every 

layer (i.e., without the wire replacement step and use only type one wire in all the other 

steps) with the result of [65] using the first type of wire on every layer. "PE*" de-

notes the approach using just the first type of wire on every layer and using topology 

refinement only in post-processing step. In these experiments, we first get the lowest 

achievable delays obtained by TG empirically on all the test cases and use these delays 

as our delay bounds. The results are shown in Table 3.1. Column 3 and 6 show the total 

wire capacitance and the total wire length generated by TG. The results of our approach 

are shown in column 4 and 7. On average, our approach provides a 24.6% improve-

ment in the total wire capacitance and a 23.6% improvement in the total wire length 

compared with TG respectively. The running times of both algorithm are shown in the 

last two columns. As we can see that though our approach is slower, the runtimes are 

still very practical. For all the test cases, the running times of our approach are within 

seconds. 

I f we allow both types of wires on each layer, further reduction in wire capacitance 

can be obtained and the results are shown in Table 3.2. As we can see from the result, 

our approach can make good use of the availability of different wire types to further 

reduce the capacitance. For example, in test2, the wire capacitance can be reduced sig-

nificantly by 49% (from 9.68pf to 4.95pf) with the wire replacement step. On average, 

the major path expansion algorithm, the topology refinement step and the wire replace-

ment step take 44%, 31% and 25% of the total running time respectively. Note that in 

some cases, the running time of “PE，，is even larger than that of "PE*" although "PE" 

does not perform the wire replacement step. This is because the inputs to the topology 

refinement procedure in "PE*" and "PE" are different as "PE" does not perform wire 

replacement. There are thus variations in the running times of the topology refinement 

step. 
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3.4.4 Lowest Achievable Delays 

Our approach can actually produce solution with better delay than the TG approach. 
We have run our algorithm on all the test cases to get the smallest achievable delays. 
The results are shown in Table 3.3. For almost all the test cases, we can further reduce 
the delays generated by TG. Take testS as an example, we can significantly reduce 
the delay from O.SOps to 0.55ps, which shows an advantage of using our method in 
satisfying stringent user specified delay limits. In practice, designers may not know 
whether a delay l imit is achievable for a circuit. Our approach can help in determining 
the lowest achievable delay by embedding the algorithm in a binary search loop. This 
is possible since our approach wi l l take the delay l imit as an input constraint. 

Table 3.3: Lowest achievable delays 

Test Capacitance Wire Length Delay Runtime 

Cases (pf) (mm) (ps) (s) 

testl 2.27 10.6 0.45 0.20 

test2 6.08 34.6 0.47 4.69 

tests 5.06 24.6 0.55 4.56 

test4 1.75 10.2 1.00 2.12 

tests 0.55 3.0 0.86 0.12 

test6 2.83 15.5 0.83 1.01 

test? 3.02 18.0 1.35 1.60 

tests 1.86 11.2 1.32 0.50 

test9 5.45 33.7 1.95 28.22 

testl 0 3.28 20.1 1.67 22.27 

testl 1 1.92 10.7 0.89 2.87 

test l2 0.91 5.1 1.12 0.22 

tes t i s 3.43 19.9 0.90 1.47 

test 14 1.48 8.4 0.67 0.40 

3.4.5 Simulation Results 

We further validate our results using hspice simulations. The slew of the input signals 

are set to be lOps. The estimated slew of the circuits are shown in column three us-
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ing y/ {2.2RCY + (茂尸 according to [37], where RC is replaced by the largest Elmore 
delay of the circuit. Detailed results are shown in Table 3.4. As we can see from the 
simulation results, The delay and slew we calculated is very close to the simulation 
results.The correlation coefficient is over 99% between the simulated delay and calcu-
lated delay while it is over 98% between the simulated slew and calculated slew. This 
verifies the correctness of our method. 

Table 3.4: Simulation results for tree 
Test 

Calculated Results Simulation Results 
Cases 

Delay (ps) Slew (ps) Delay (ps) Slew (ps) 

testl 0.45 10.05 0.45 10.07 

test2 1.14 10.32 1.14 10.24 

tests 0.80 10.15 0.80 10.14 

test4 1.35 10.43 1.35 10.36 

tests 1.09 10.29 1.09 10.25 

test6 1.24 10.37 1.24 10.32 

test? 1.43 10.50 1.43 10.51 

tests 1.78 10.76 1.78 10.90 

test9 2.75 11.69 2.70 11.41 

testlO 1.90 10.84 1.90 11.02 

testl 1 1.05 10.26 1.05 10.24 

testl 2 1.29 10.40 1.28 10.31 

test is 1.09 10.29 1.09 10.24 

test 14 0.95 10.22 0.95 10.20 



Chapter 4 

Non-tree Based Post-Grid Clock Routing 
Problem 

4.1 Introduction 

A l l the above techniques focus on constructing trees for the clock distribution network. 
To make our approach more practical and to handle some difficult cases, we have al-
so considered non-tree structures in our algorithm. Our main objective with non-tree 
topology is to reduce the maximum delays of the ports. In practice, there are cases 
in which a small number of ports have exceptionally large capacitances that even its 
shortest direct connection to the nearest source wi l l have a delay exceeding the l imit 
D. Since the shortest path delay is a lower delay bound one can achieve using tree 
structure, we can never satisfy the delay requirement for this kind of problematic ports 
without using non-tree topologies. For our general post-grid clock routing algorithm, 
we wi l l first identify those problematic ports and construct some non-tree structures to 
bring down their delays to be within the delay l imit D. After connecting all those prob-
lematic ports, the remaining ports wi l l be connected using the previous post-grid clock 
routing algorithm in chapter 3. Note that for the remaining ports, they are also allowed 
to connect to the non-tree structures constructed for the problematic ports, as long as no 
delay violation occurs. Fig. 4.1 shows the overall flow of our general post-grid clock 
routing algorithm. 

A general RC network can be denoted by a graph G 二 (V"’ E), where V denotes all 
the sources, sinks and internal nodes, and E denotes the interconnections between all 

44 
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Figure 4.1: General post-grid clock routing algorithm 
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the nodes in y . The Elmore delay at node i, denoted as ti, can be expressed as 

力厂E(茂，灼 （4.1) 
j 

where Cj is the ground capacitance at a node j in V. The transfer resistance Rij is 
equal to the voltage at node i when l A current is injected into node j while all other 
node capacitances are zero [61,78]. In the special case where we have a tree topology, 
R、j is simply the total resistance along the common path shared by node i and j [61,78]. 
We can decompose a general RC network into a spanning tree T 二 (V, Et) and several 
crosslinks Ei [9]. The computational model in [9] can be used to evaluate the delay at 
different nodes when crosslinks exist in the clock network. Consider a particular sink 
i and assume that its original delay is U. For a l ink connecting node u and w with 
capacitance C/ and resistance Ri, its effects on the delay of sink i can be analyzed as 
follows. 

To consider the effect of the link capacitance, we first add a load capacitance of 警 

at node u and w. The delay of sink i after adding the load capacitance, denoted as U, 
becomes 

U = t, + + (4.2) 
A 

According to [9] the delay at node i, denoted by ti, after considering the l ink resis-

tance and can be computed as 
f — f 

r r , ^u ^w , A 1 、 

U = U + n (4.3) 
Rl+Vu- Vuj 

where r “ r^,, and Vyj are the Elmore delay at node i, u, w respectively, when Cu = I, C^ 
= - 1 and all other node capacitances are set to be zero. 

Using the above technique, we can evaluate the effects of a l ink on the Elmore delays 
of the ports in a non-tree structure. We can further decide whether to accept or reject a 
l ink based on the computed delays. 

4.2 Handling Ports with Large Load Capacitances 

For problematic port with its shortest delay to the closest source larger than the delay 

limit, there is no way to satisfy the delay constraint using a tree-based clock tree. We 
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must resort to non-tree topology for the clock network in order to solve the problem 
successful. Details are shown in the following sections. 

4.2.1 Problem Ports Identification 

Here, we define problem ports as those ports whose smallest Elmore delays from the 
source are still beyond our target delay l imit D. Identifying the problematic ports is 
quite straightforward. A modified path expansion algorithm w i l l be utilized on all the 
ports individually to first identify those problems ports, in which the ports can expand 
toward all possible directions. When a port reaches a first source, the corresponding 
delay Dmin wi l l be the lower bound delay we can achieve using tree structures. A l l 
those ports with Dmin larger than our delay l imit D w i l l be classified as problematic 
ports. Those problematic ports wi l l be selected to be processed first in our general 
post-grid clock routing algorithm. 

4.2.2 Non-Tree Construction 

To handle these problematic ports whose shortest path delays exceed the delay l imit 
D, we have extended our algorithm to first connect those problematic ports by a non-
tree structure to several sources to bring down the delay to within the l imit D, and 
then connect the remaining ports to the sources. The non-tree structure is constructed 
by connecting the problematic port to more than one sources by several paths and by 
adding crosslinks between those paths. 

Consider a particular problematic port P^, after we make a shortest path connection 
Pi for port Pg we wi l l do the following steps to create a non-tree structure. First, we 
wi l l expand from the first node rii of p i in the opposite direction to find another nearest 
source. Let p2 be the new path. p2 wi l l be taken into the routing solution i f it helps in 
reducing the delay of Pg. Then, all the crosslinks between and (note that crosslinks 
can only exist at locations with reserved tracks) wi l l be recorded and examined. The 
computational model in [9] is used to calculate the delays at the ports when crosslinks 
exist. A l l the crosslinks that can reduce the delay of P^ wi l l be taken into the routing 
solution one by one until the delay constraint is met, or when all the crosslinks are 
exhausted. I f the delay is still violated after adding all the crosslinks, we wi l l set /?/ = 



CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 48 

“；/\人 
\八亡 

Figure 4.2: Example of adding links 

parent{ni) and repeat the above steps recursively with one edge up the original path pi 
to find more sources and crosslinks. 

After handling all the problematic ports, other ports wi l l be handled as usual ac-
cording to Algorithm 3. Note that we also allow other ports to connect to the non-tree 
structures, as long as the delay constraint is not violated. 

4.2.3 Wire Link Selection 

Assume that we are dealing with the topology as shown in Fig. 4.2, the resistance and 
capacitance of the currently inserted l ink mn are ri and q respectively. The impact of 
the link capacitance can be analyzed by adding a capacitance of q / 2 at node n and node 
m. Define rij as the lumped resistance along the unique path from node i to node j in 
the tree. Let the vector i denote the delays of all the nodes in the tree after we added the 
l ink capacitance, and U denote the delay at node i after we added the l ink capacitance. 
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The vector i can be expressed as 

tm + + Tarn) 

i 二 ... (4.4) 

tn + + an) 

where tm and in are the original delays at node m and n 
The Elmore delay of the network after inserting the l ink resistance r i can be com-

puted using the techniques proposed in [9]. Here, we use the vector p with n elements 

where n is the number of nodes in the tree. We use pi to denote the element correspond-
• 八 

ing to node i in p. Let t denote the delay vector after considering the resistance of the 
A 

crosslink. The delay at node i, denoted by ti, can be expressed as 

r 7 tn ~ ^m / / t c 、 

U = U , Pi (4.5) 
ri + Pn — Pm 

where pi, pn and pm are the Elmore delay at node i, n, and m respectively when Cn = 1, 
Cm = — 1 and all the other nodes have zero capacitance. For p, we have 

—厂am 

P = ... (4.6) 

” an 

From equation (4.4), equation (4.5) and equation (4.6), the delay vector, i, can be cal-
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Ciliated as 

_r 7 ^n ——tm ~ t — t p 
r i + P n - Pm 

tm + 'o (^TgQ, + Tarn) 
t - t +£L(r —r 、 
^n im I o an ’ am J ~ 

= . . . P 
『1 + 厂 a m + 『 a n 

t n + 厂 sa + T a n ) 

十 \ £l(Or- r \ I ( � _ 力 + 厂腿) 
^m 丁 2 V sa 丁 ’ am J 丁 Rioop am 

= ... (4.7) 
十 I £L{Or r �—(亡广力计 
f^n I 2 V sa ‘ ’ an J Rioop cm 

where node a is the lowest common ancestor of node m and n, and Rioop is the total 
resistance along the loop m ^ a ^ n ^ m. Denote the value of —(|(2r^sa + 厂am) + 
—~川)2、a "_^ r纖）by I. Assume that we are now trying to reduce the delay at node 

^Moop 
m. For all the links between the two paths a — m and a 4 n, we wi l l calculate their 

values of I and then sort them in descending order according to their values. The value 

of I gives us some information on how effective a l ink is in order to reduce the Elmore 

delay at node m. The larger the I is, the more effective wi l l be the l ink in reducing 

the delay at node m and also possibly the delay of the descendant node of m. In our 

implementation, all the links wi l l be considered sequentially and added to the network 

temporally to check i f it w i l l help in reducing the delays of the problematic ports (Note 

that when a crosslink is inserted, we wi l l compute the delays of the problematic ports 

using the approach in [9].). A crosslink wi l l be accepted i f it can reduce the delay of the 

problematic port. The crosslink insertion process wi l l be repeated until the user defined 

delay l imit is satisfied or when all the links are exhausted. 
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4.3 Path Expansion in Non-tree Algorithm 

The path expansion algorithm here is basically the same as that in the previous tree 

construction algorithm. Additionally, we also allow ports to connect to a non-tree struc-

ture as long as the delay l imit is not violated. In every new iteration, we also keep the 

non-tree structures constructed in the previous iteration unchanged. For example, i f a 

regular port a connect to a non-tree structure T constructed for the problematic ports, 

the port a w i l l not be routed again in the next iteration of the main algorithm. A l l the 

non-tree structures constructed in the previous round wi l l stay unchanged. Then the 

next round of the path expansion algorithm starts. By doing this, we want to ensure that 

the difficult ports are routed first before routing other relatively easier ports. 

4.4 Limitations of the Non-tree Algorithm 

Due to the limited number of available tracks, our non-tree algorithm does not always 

converge to a feasible solution, especially when a large number of ports lie within a 

small region of the chip with less available tracks. In this case, we can hardly find 

useful sources and crosslinks, and the algorithm wi l l finally fail to find a feasible solu-

tion. Moreover, the existence of non-tree structures can “block，，the paths of other ports, 

which is also a contributing factor to possible failure of the algorithm. When such fail-

ure occurs, we wi l l increase the user specified delay l imit D to further explore possible 

solutions. When D is larger than the minimum delay among all the ports, which means 

that there are no problematic ports, the non-tree algorithm automatically degenerates 

into the path expansion algorithm. 

4.5 Experimental Results 

4.5.1 Experiment Setup 

In the experiments, we use the same settings as used in section 3.4. The slew of the 

source signal is set to be lOps. In hspice simulation, 50% delay is measured to compare 

with the Elmore delay we have calculated. In addition, we have create another 14 test 

cases based on the original benchmarks we have. We increase the capacitance of a 
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Figure 4.3: Delay comparisons (Non-tree structure) 

certain amount of ports (see section 4.5.4) in all the test cases and run our general clock 

routing algorithm. Detailed experiment results are explained in the following sections. 

4.5.2 Validations of the Delay and Slew Estimation 

We use the same circuit that contains only one port as used in section 3.4.2 to validate 

our delay and slew estimations. We have constructed a non-tree structure containing 

53 nodes in total for this simple circuit. Detailed results about the delay and slew are 

shown in Fig. 4.3 and Fig. 4.4. 

We can see that the delay computational model can accurately compute the delays 

of all the nodes within this non-tree structure. The slew predication is similar with the 

results of the tree path expansion algorithm detailed in section 3.4.2. Although there is a 

gap between the calculated results and the simulated results, their difference is relatively 

small. From Fig. 4.4, we can see that they also correlate to each other quite well. This 

again verifies the correctness of our slew predication method. 
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4.5.3 Lowest Achievable Delays 

With the above non-tree techniques, our approach can actually produce solution with 
even tighter delay bound than that in section 3.4.4. We have run our non-tree algo-
rithm on all test cases to get the smallest achievable delays. The results are shown in 
Table 4.1. Compared with the original path expansion algorithm, our general post-grid 
routing algorithm can further decrease the lowest achievable delays by constructing 
non-tree structures for those problematic ports. Take testl as an example, we can fur-
ther reduce the lowest achievable delay from 0.45ps to 0.37ps. Actually, we can satisfy 
more stringent delay limits for 10 out of 14 test cases compared with the results in 
section 3.4.4. This clearly shows the effectiveness of our general post-grid routing al-
gorithm incorporating non-tree structures. 

4.5.4 Results on New Benchmarks 

To further validate the effectiveness of our proposed non-tree algorithm, we generate 14 

test cases from the original ones (the new test cases have their names starting with an 

"n"). These new test cases are generated as follows. We first sort the ports according to 

their minimum Elmore delays, which is the delay when a port is connected to its nearest 

source directly. Then we increase the capacitances of the first three ports in the list so 

that their minimum delays increase by at least 50%. Detailed results on these new test 

cases are shown in Table 4.2. 
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Table 4.1: Lowest achievable delays (with non-tree technique) 

Test Capacitance Wire Length Delay Runtime 

Cases (pf) (mm) (ps) (s) 

testl 2.70 10.8 0.37 0.19 

test2 7.60 35.0 0.35 2.40 

tests 5.45 23.7 0.55 4.08 

test4 2.06 10.0 0.95 1.50 

tests 0.74 3.0 0.78 0.10 

test6 3.68 16.2 0.68 0.67 

testV 3.68 17.6 1.32 1.55 

tests 2.47 11.7 0.92 0.51 

test9 6.52 32.8 1.95 6.81 

testlO 3.93 19.5 1.57 7.90 

testl 1 2.41 10.8 0.75 5.21 

test 12 1.17 5.1 1.00 0.19 

test is 4.54 20.6 0.65 3.70 

testl4 2.02 8.9 0.52 0.74 

Total capacitance, total wire length, delay limits, running time and number of prob-
lematic ports are shown in column 2-5 respectively. The delay limits D is obtained 
empirically for all test cases. The second last column Dmin in Table 4.2 shows the 
minimum delay of the problematic ports when they are connected to the nearest source 
directly. Therefore, these are the lower bound delays achievable using a tree struc-
ture. We can see from the comparsion in the last column that our non-tree approach 
can reduce further the delay by 23.4% on average. For ntestS and ntestl2, our non-tree 
algorithm does not help much and it automatically degenerates into the original path 
expansion algorithm (the result is thus a set of trees) because of the high density of the 
ports especially in the surroundings of the problematic ports. For all the other test cases, 
our proposed non-tree approach can successfully generate a solution in which the max-
imum port delay is less than the lower bound delay shown in the second last column. 
This clearly demonstrates the effectiveness of our proposed non-tree algorithm. 
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4.5.5 Simulation Results 

We also validate our results using hspice simulation. The slew of the input signals are 
set to be lOps. The estimated slew of the circuits are shown in column three using 
^ { 2 . 2 R C y + {SiY according to [37], where RC is replaced by the largest Elmore de-
lay of the circuit. Detailed results are shown in Table 4.3. As we can see from the 
simulation results, The delay and slew we calculated is very close to the simulation 
results. The correlation coefficient is over 99% between the simulated delay and calcu-
lated delay while it is over 96% between the simulated slew and calculated slew. This 
verifies the correctness of our method. 

Table 4.2: Non-tree algorithm 
Test Capacitance Wire Length Delay Dmin Improvement 

Runtime(s) k — 
Cases (pf) (mm) {x ps) (y ps) (〒％) 

ntestl 2.4 11.1 0.45 0.1 3 0.68 33.8 

ntest2 6.5 36.7 0.45 1.0 3 0.71 36.6 

ntestS 5.1 25.2 0.60 3.3 3 0.51 -18.5 

ntest4 2.0 11.3 1.00 1.0 3 1.26 20.8 

ntest5 0.7 3.2 1.03 0.1 3 1.29 20.3 

ntest6 3.5 17.6 0.66 0.5 3 1.25 47.0 

ntestV 3.3 20.0 1.35 0.8 3 2.02 33.3 

ntestS 2.1 12.5 1.30 0.2 3 1.98 34.4 

ntest9 6.2 38.0 2.00 3.5 3 2.42 17.4 

ntestlO 3.6 22.1 1.80 3.1 3 2.33 22.6 

ntestl 1 2.3 12.1 0.80 3.2 3 1.24 35.4 

ntestl 2 0.9 5.5 1.70 0.1 3 1.65 -3.0 

ntestl 3 3.5 20.7 1.25 0.4 3 1.35 7.2 

ntestl 4 1.8 9.5 0.58 0.3 3 0.98 40.8 

Ave. 3.1 17.5 1.3 3 23.4 
Note: k denotes the number of problematic ports in the test case. 
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Table 4.3: Simulation results for non-tree 
Test 

Calculated Results Simulation Results 
Cases 

Delay (ps) Slew (ps) Delay (ps) Slew (ps) 

ntestl 0.45 10.05 0.45 10.07 

ntest2 0.45 10.05 0.45 10.08 

ntestS 0.60 10.09 0.60 10.11 

ntest4 1.00 10.24 0.99 10.24 

ntest5 1.03 10.25 1.03 10.23 

ntest6 0.66 10.10 0.66 10.14 

ntest? 1.35 10.43 1.35 10.43 

ntestS 1.29 10.40 1.29 10.37 

ntest9 2.00 10.93 2.00 11.15 

ntestl 0 1.80 10.76 1.80 10.92 

ntestl 1 0.80 10.15 0.80 10.17 

ntestl 2 1.70 10.68 1.68 10.73 

ntestl 3 1.25 10.37 1.25 10.33 

ntestl 4 0.58 10.08 0.58 10.11 



Chapter 5 

Efficient Partitioning-based Extension 

5.1 Introduction 

Partitioning is a widely used technique to solve a difficult problem by partitioning the 
problem into smaller and, usually, easier ones. Moreover, one can expect a running 
time speed up by partitioning a problem into smaller ones, since it is easier and faster 
to solve these smaller problems. Partitioning has been successfully used in many place-
ment, floorplanning and routing algorithms [2,3,16,21,22,24,30,56,68]. A drawback 
of this partitioning approach is that the solution quality wi l l usually degenerate, as the 
algorithm wi l l fail to consider the global information when dealing with individual sub-
problems. However, in our problem, this technique can be applied successfully without 
affecting the solution quality because that we can observe from the resulting clock net-
work that a port w i l l be connected to the nearer grid most of the time. Motivated by these 
works and with an objective of reducing the runtime, we also proposed our partitioning-
based clock routing algorithm, in which we partition all the ports into several smaller 
clusters. For each cluster, we wi l l run our clock routing algorithm to construct clock 
trees for that particular cluster. After connecting the ports in each cluster, we combine 
the results to form the final clock network. Fig. 5.1 shows a sample circuit which is 
divided into four regions using our partition technique. 

57 
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Figure 5.1: A sample circuit divided into four regions 

5.2 Partition-based Extension 

With the well designed source grid and multi-layer reserved tracks, a port can always 
be expected to connect to the nearest source grid as long as no delay violation occurs. 
Actually in the final clock network obtained using the path expansion algorithm de-
scribed in Chapter 3 and Chapter 4, we found that a port would rarely navigate away 
from the nearer source grid and connect to a far away one. With this observation, we 
propose a technique to cluster all the ports into several small clusters, and employ the 
same path expansion algorithm as described in Chapter 3 and Chapter 4 on these smaller 
clusters to construct the clock network. Fig. 5.2 shows the flow of our main algorithm 
incorporating this partitioning technique. 

The whole chip is divided into several smaller regions according to the source grid 
(either horizontal or vertical). The positions of the source grid^ wi l l be recorded. The 
intermediate positions between two successive source grids wi l l be used as the guideline 
to split the chip into smaller partitions. After we get all the partitions, partitioning of 

I If the source grid is hor izonta l , y coord ina tes will be recorded , o therwise x will be recorded . 
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Figure 5.2: An overall flow of our partition-based algorithm 
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Figure 5.3: An example of partitioning 

ports is rather straightforward: all the ports lies in the same partition w i l l be grouped 
into the same cluster. We can also employ the same idea on these smaller clusters to 
further divide them into even smaller ones. For example, i f the source grid is horizontal, 
we can further divide the cluster vertically, and vice versa. However, we found that this 
second level clustering might have adverse effect on the solution quality. This is mainly 
because we do not have a good guideline on where this second level division should be 
made. Unlike the first level division that we can safely partition the ports according to 
the positions of the source grids, there is no natural partitioning of the ports at the second 
level. This has been verified in our experiments that when incorporating this second 
level division, the path expansion algorithm usually fails to find a feasible solution 
under a particular delay limit. However, i f we use only one level of partitioning, we can 
successfully satisfy the delay limit. Therefore in our implementation, we only group 
all the ports into smaller clusters horizontally or vertically (according to the direction 
of the source grid) without further dividing the clusters into sub-clusters. As shown in 
Fig. 5.3, we can partition this simple circuits into sub-regions A, B, C and D using the 
method described above. 

After dividing the ports into clusters, we wi l l sequentially employ the path expan-
sion algorithm on those clusters to connect all the ports. This procedure is embedded 
into the main algorithm in line 9 while keeping all the other parts of the main algorithm 
unchanged. Since the original problem is divided into smaller ones, we can see signif-
icant improvement in running time compared with the original methods without using 
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partitioning technique. As detailed in section 5.3, the largest running time improvement 
is over 48% among all the test cases, while the average run time improvement is over 
26%. 

5.3 Experimental Results 

5.3.1 Experiment Setup 

In the experiments, we use the same settings as in section 3.4. The slew of the source 

signal is set to be lOps. In the hspice simulation, 50% delay is measured to compare 

with the Elmore delay we have calculated. Detailed experimentalal results are explained 

as follows. 

5.3.2 Running Time Improvement with Partitioning Technique 

To demonstrate the effectiveness of our proposed partition-based path expansion algo-
rithm, we compare its results with that without using this partitioning technique. The 
running times of both algorithm are shown in Table 5.1. 

We can see that our proposed partition-based acceleration technique can further im-
prove the running time by 26.1% on average while maintaining approximately the same 
solution quality (with minor improvement on average). The largest running time im-
provement is over 48%. These results clearly prove the effectiveness of this technique. 
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Table 5.1: Running time comparisons 

Test Capacitance Running Time Delay 

Cases (pf) (s) (ps) 

PE PPE Improvement 
PE PPE 

XI X2 ^ ^ % 

testl 2.61 2.61 0.27 0.24 9.8 0.45 

test2 9.68 9.67 2.72 1.39 48.9 1.15 

tests 5.16 5.12 3.01 2.67 11.5 0.80 

test4 4.01 4.00 2.89 1.51 48.0 1.35 

tests 1.09 1.09 0.09 0.08 11.8 1.10 

test6 5.73 5.73 0.68 0.48 29.2 1.25 

test? 7.50 7.51 1.00 0.61 38.8 1.45 

tests 4.45 4.45 0.50 0.37 25.2 1.80 

test9 14.28 14.26 3.27 2.04 37.7 2.75 

test 10 8.60 8.59 6.92 7.15 -3.4 1.90 

testl 1 4.93 4.92 2.95 1.76 40.5 1.05 

testl2 1.98 1.98 0.17 0.14 16.0 1.30 

testis 7.20 7.19 0.93 0.62 33.0 1.10 

test 14 3.10 3.10 0.30 0.25 17.8 0.95 

Ave. 5.74 5.73 1.84 1.38 26.1 
Note : PE denotes the original algorithm without this partitioning technique. 

Note 2: PPE denotes the partitioning-based path expansion algorithm. 
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Conclusion 

In this thesis, we review the clock routing problem in the literature and describe many 
classical clock routing algorithms, such as H-tree, Method of Means and Medians (M-
MM) , Geometric Matching Algorithm (GMA), Deferred Merge Embedding(DME), and 
Tree Growing (TG) algorithm on this topic. For the problem of post-grid clock routing 
that appears in high performance microprocessor designs today, we present an efficient 
delay-driven path expansion algorithm using the heap data structure to construct post-
grid clock networks on reserved multi-layer metal tracks. We also propose a partition-
based acceleration technique to further speed up the running time based on some key 
observations of this particular post-grid clock routing problem. Experimental results 
show the effectiveness of our proposed partitioning-based technique. We have com-
pared our approach with the state-of-the-art algorithm on this problem and show that 
our algorithm can significantly improve over this work with a 24.6% reduction in wire 
capacitance and 23.6% reduction in wire length on average while maintaining very 
practical runtimes. Our algorithm also outperforms the previous method in terms of 
minimum achievable delays. To make our approach more robust and complete, we have 
extended the algorithm to allow non-tree structures in order to handle the ports with 
exceptionally large load capacitances. A l l our results are verified using hspice simula-
tions. Our algorithm is expected to bring down the energy consumption and improve 
grid-to-port delay in post-grid clock networks. Our algorithm can be applied to high 
performance microprocessor designs in 45nm technology, and it may also be extended 
to applications for ASICs with hybrid clock structures. 

63 
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• End of chapter. 
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