
Clock Routing for High Performance
Microprocessor Designs

TIAN，Haitong

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
August 2011

Thesis/Assessment Committee:

Professor XL) Qiang (Chair)

Professor YOUNG Fung Yu (Thesis Supervisor)

Professor ZHANG Sheng Yu (Committee Member)

Professor HU Jiang (External Examiner)

Abstract of thesis entitled:
Clock Routing for High Performance Microprocessor Designs

Submitted by T IAN, Haitong
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in August 2011

Clock distribution in VLSI designs is of crucial importance and it is also a major source
of power dissipation of a system. Most of the chips today are based on a synchronous
sequential circuit design methodology. For these circuits, a global clock signal is need-
ed to synchronize the operations of different components across the chip. The clock
signal is usually generated using an external reference and delivered to the entire chip
by a clock network. Since the clock signal coordinates all the elements of the chip, de-
signing a good clock network is very important to secure high performance. As a clock
network connects to a large number of chip elements e.g, latches, flip-flops and gates,
and has high switching frequency, it is also responsible to a large portion of the total
power consumption of the chip. Therefore, the clock network must be carefully de-
signed to optimize the chip performance and the power consumption. For today's high
performance microprocessors, clock signals are usually distributed by a global clock
grid covering the whole chip, followed by post-grid routing that connects clock loads
to the clock grid. Early study [50] shows that about 18.1% of the total clock capac-
itance dissipation was due to this post-grid clock routing, i.e., lower mesh wires plus
clock twig wires. This post-grid clock routing problem is thus an important one but
not many previous works have addressed it. This "grid-to-ports" routing is critical in
securing high quality of the clock signal and in reducing power consumption. In this
thesis, we try to solve this problem of connecting clock ports to the clock grid through
reserved tracks on multiple metal layers with delay constraint. Note that a set of routing
tracks are reserved for this grid-to-ports clock wires in practice because of the conven-
tional modular design style of high-performance microprocessors. We propose a new

i

expansion algorithm based on the heap data structure to solve the problem effectively.
Experimental results on industrial test cases show that our algorithm can improve over
the latest work on this problem [65] significantly by reducing the capacitance by 24.6%
and the wire length by 23.6%. To make our approach more practical and complete,
we have extended our approach to use non-tree structures to further optimize the delay.
We also proposed a partitioning technique that can improve the running time by 26.1%
without sacrificing the solution quality. We validate our results using hspice simulation.
Finally, our approach is very efficient and for larger test cases with about two thousands
ports, the running time is just in seconds.

ii

論文摘要

芯片的時鐘佈線在集成電路設計領域有著至關重要的作用，它也是系統中的

主要功耗部件之一。當今的大多數芯片都採用的同步時鐘設計工藝。對於這些

芯片，我們需要一個全局的時鐘信號來同步芯片内各個部件的工作。時鐘信號一

般是由外來時鐘源產生，繼而經過時鐘網絡到達芯片的各個部件。設計高性能的

時鐘樹對於保證芯片的性能有著非常重要的作用。因為時鐘網絡連接著大量的芯

片原件（如鎖存器，觸發器和門電路），並且工作在極高的頻率下，它是系統中

的主要功耗部件之一。因此，爲了降低功耗并確保芯片的性能，我們需要仔細的

設計芯片的時鐘結構。對當今的高性能處理器來講，時鐘樹一般採用全局的時鐘

線外加局部的時鐘線后的時鐘樹來提供芯片需要的時鐘信號。早期的研宄表明，

全局時鐘樹后的時鐘佈線所佔用的電容占到整個時鐘網絡的18.1%所以全局時鐘樹

后的時鐘佈線問題顯得額外重要。在這篇論文中，我們致力於解決有一定時

延要求的高性能時鐘佈線問題。在這個問題中，我們給定了待佈線的電路原件，

能夠使用的電路線位置以及全局的多時鐘源線。我們提出了線路擴張的算法來解

決這個問題。實驗結果表明，和最新的算法相比，我們的算法能夠減少電容使用

量24.6%，能夠減少佈線長度23.6%。爲了處理更為複雜的情況，我們還將算法

擴展到了非樹結構的時鐘佈線算法來進一步降低時鐘結構的時延。我們提出了一

種分割方法，能夠將沒有採納分割方法算法的時間提高26.1%，同時構建出的時

鐘樹性能並沒有降低。我們用Hspice仿真驗證了我們算法的正確性。我們的算

法非常高效，對於有兩千多個待佈線原件的芯片，我們的算法運行時間在幾秒鐘

之内。

Acknowledgement

First, I would like to express my deepest and most sincere gratitude to professor E-
vangeline F.Y. Young, my supervisor, for her continuous help, constant encouragement
and instructions through my MPhi l studies. Without her patient guidance and insightful
comments, this thesis could not has reached its present form.

Second, I would like to express my heartfelt gratitude to Mr. Wai-Chung Tang in
CSE department in CUHK. He gave me many valuable help and support when I was
investigating this clock routing problem. I also want to thank Dr. C.N. Sze from I B M
Austin Research Laboratory in USA. It is with his helpful advices and valuable com-
ments that I am able to extend my work with different perspectives and methodologies.

Last but not least, I would thank all my friends for their valuable help and friendship!

iii

This work is dedicated to my family,

iv

Contents

Abstract i

Acknowledgement iii

1 Introduction 1

1.1 Motivations 1
1.2 Our Contributions 2
1.3 Organization of the Thesis 3

2 Background Study 4
2.1 Traditional Clock Routing Problem 4

2.2 Tree-Based Clock Routing Algorithms 5

2.2.1 Clock Routing Using H-tree 5

2.2.2 Method of Means and Medians(MMM) 6

2.2.3 Geometric Matching Algorithm (GMA) 8

2.2.4 Exact Zero-Skew Algorithm 9

2.2.5 Deferred Merge Embedding (DME) 10

2.2.6 Boundary Merging and Embedding (BME) Algorithm 14

2.2.7 Planar Clock Routing Algorithm 17

2.2.8 Useful-skew Tree Algorithm 18

2.3 Non-Tree Clock Distribution Networks 19

2.3.1 Grid (Mesh) Structure 20

2.3.2 Spine Structure 20

2.3.3 Hybrid Structure 21

2.4 Post-grid Clock Routing Problem 22

V

2.5 Limitations of the Previous Work 24

3 Post-Grid Clock Routing Problem 26
3.1 Introduction 26

3.2 Problem Definition 27

3.3 Our Approach 30

3.3.1 Delay-driven Path Expansion Algorithm 31
3.3.2 Pre-processing to Connect Critical ports 34

3.3.3 Post-processing to Reduce Capacitance 36
3.4 Experimental Results 39

3.4.1 Experiment Setup 39

3.4.2 Validations of the Delay and Slew Estimation 39

3.4.3 Comparisons with the Tree Grow (TG) Approach 41
3.4.4 Lowest Achievable Delays 42

3.4.5 Simulation Results 42

4 Non-tree Based Post-Grid Clock Routing Problem 44
4.1 Introduction 44

4.2 Handling Ports with Large Load Capacitances 46

4.2.1 Problem Ports Identification 47
4.2.2 Non-Tree Construction 47

4.2.3 Wire Link Selection 48

4.3 Path Expansion in Non-tree Algorithm 51

4.4 Limitations of the Non-tree Algorithm 51

4.5 Experimental Results 51
4.5.1 Experiment Setup 51
4.5.2 Validations of the Delay and Slew Estimation 52

4.5.3 Lowest Achievable Delays 53
4.5.4 Results on New Benchmarks 53
4.5.5 Simulation Results 55

vi

5 Efficient Partitioning-based Extension 57
5.1 Introduction 57

5.2 Partition-based Extension 58

5.3 Experimental Results 61

5.3.1 Experiment Setup 61

5.3.2 Running Time Improvement with Partitioning Technique 61

6 Conclusion 63

Bibliography 65

vii

List of Figures

2.1 H-tree structure 6

2.2 Recursive partitioning of M M M algorithm 7

2.3 Recursive grouping of the G M A Algorithm. Solid points denote the

sink nodes, and empty points denote merging points on the connec-

tion. A t each level,a geometric matching algorithm is performed on the

merging points at the previous level 8

2.4 Merging Two Subtrees 11

2.5 An example of multiple merging points. For both figure a and b, any

point along the segment PaPh satisfy the zero-skew requirement 12

2.6 Construction of merging segments between two nodes in the bottom-up

phase of DME. The merging segments are shown in thick solid blue line. 13

2.7 Construction of merging segments between two segments in the bottom-

up phase of D M E 13

2.8 An example of the merging region when the skew bound is non-zero. . . 15

2.9 Merging of four sinks S'2, S^, and S4. The shaded part 7nr{vl) is the

merging region of sinks Si and S2, and mr{v2) is the merging region

of sinks Ss and S4 16

2.10 Merging of four sinks 6\，6^2,场，and S4. The darker region mr{v3) is

the merging region of mr{vl) and mr{v2) 16

2.11 Planar routing of three sinks 18

2.12 Clock mesh structure. The figure is from [14] 20

2.13 Spine structure of a microprocessor 21

2.14 (a) A routing graph example of tree growing (TG) algorithm, (b) The

final solution contains five trees, T i , ... , T5 23

viii

2.15 (a) Routing graph with sources 5i and S2, ports p i , p2 and pa, and via
nodes ci and C2. The numbers near the edges denote the wire capaci-
tances. (b) Routing solution of [65]. (c) A better topology with a 36%

reduction in wire capacitance 24

3.1 Typical clock distribution of microprocessors 27

3.2 Post-grid clock network distribution 28

3.3 Post-grid clock routing problem 29

3.4 An overall flow of our approach 32

3.5 Comparisons between computed and simulated delays in a tree structure 40

3.6 Comparisons between computed and simulated slews in a tree structure 40

4.1 General post-grid clock routing algorithm 45

4.2 Example of adding links 48

4.3 Delay comparisons (Non-tree structure) 52

4.4 Slew comparisons (Non-tree structure) 53

5.1 A sample circuit divided into four regions 58

5.2 An overall flow of our partition-based algorithm 59

5.3 An example of partitioning 60

ix

List of Tables

3.1 Comparisons with TG (with topology refinement only for post-processing) 37

3.2 Comparisons with TG (using all techniques) 38

3.3 Lowest achievable delays 42

3.4 Simulation results for tree 43

4.1 Lowest achievable delays (with non-tree technique) 54

4.2 Non-tree algorithm 55

4.3 Simulation results for non-tree 56

5.1 Running time comparisons 62

X

Chapter 1

Introduction

1.1 Motivations

For most of chips today, data transfer between different function units is synchronized

by a single global clock signal. Synchronizing the clock signals is one of the most

important tasks in designing a high-performance microprocessor. A l l the functional

units within a chip should be connected to the clock source very carefully to satisfy

some delay, skew and/or slew constraints, as those factors directly affect the operating

frequency and the performance of the chip. There have been many clock routing algo-

rithms in the literature, such as the H-tree algorithm [6,26,27], the Method of Means and

Medians (M M M) algorithm [32], the Geometric Matching Algorithm (GMA) [19,33],

the Exact Zero Skew algorithm [71], the Deferred Merge Embedding(DME) algorith-

m [10,38], the Bounded Skew Clock Routing algorithm [18,20,35], the Planar-DME

algorithm [36,81], the UST/DME algorithm [70], the clock routing algorithms consider-

ing process variation [41,44,75] and the non-tree clock routing algorithms [40,52,77].

From the skew minimization perspective, the above algorithms can be classified into

four categories according to the way the skew is handled: (i) clock skew minimiza-

tion design [6,19, 26, 27, 32, 33], (i i) exact zero skew design [10, 36, 38, 71, 81], (i i i)

bounded clock skew design [18,20,35,70], and (iv) process variation-aware clock de-

sign [40,41，44,48,49,52,77].

In today's high performance systems, clock signals are usually distributed through a

global clock grid [5,39,47,50,59,60,64,65], followed by post-grid routing that connects

clock loads to the grid. Early studies show that most of the clock power dissipation

1

CHAPTER 1. INTRODUCTION 2

was due to three major categories of capacitances - (i) clock load, (ii) clock twig and
clock mesh wires, and (ii i) clock grid buffers. The second category of post-grid clock
routing wires, i.e., lower mesh wires and clock twig wires, comprises 18.1% of the total
capacitance [50]. This post-grid clock routing problem is thus a very important one,
although not many previous works have addressed it.

Due to the high complexity of microprocessor design, the clock distribution net-
work is usually synthesized and tuned at the same time when different design teams
are working on their logic modules. In this case, the clock distribution between the
clock grid and the block-level clock ports is subject to conflict of routing resources for
data signals. To resolve this conflict and to facilitate simultaneous work between d-
ifferent design teams, a subset of routing tracks have to be reserved for this post-grid
clock routing. As a result, this post-grid clock routing problem assumes a given set of
reserved tracks, forming a virtual grid structure. The quality of this routing step is of
significant importance as it w i l l directly affect the total power consumption, the clock
skews and slews at the input of the ports and finally the quality of the whole chip. These
provide motivations to solve this multi-source multi-port post-grid clock routing prob-
lem with an objective to minimize the interconnect capacitance while meeting a given
delay constraint. Traditionally, this step is done manually and iteratively to satisfy the
delay/slew constraints, resulting in a long time to market, especially when the problem
size has increased to thousands of clock ports in the layout region. This also motivates
the research of a fast algorithm to resolve this clock routing problem effectively.

1.2 Our Contributions

Given the importance of clock network in microprocessor systems, it is crucial to design

a good clock distribution scheme in order to ensure a low power consumption and a

high quality performance. The contributions of this research [69] can be summarized

as follows:

• We have devised an efficient algorithm for the post-grid clock routing problem that
can satisfy user given delay bound while minimizing the total wire capacitance.
In our problem, the clock skew is optimized by minimizing the maximum delay,

CHAPTER 1. INTRODUCTION 3

which is an upper bound of the skew. This delay bound is set to be very stringent,
e.g., within 5ps, which is in reality the l imit for the clock skew. We compared our
approach with the previous work [65] and show that compared with [65] with the
same delay constraint, our approach can reduce wire capacitance and wire length
by 24.6% and 23.6%, respectively.

• We have extended our approach to use non-tree structures in our algorithm, which
makes our approach more complete and practical. Our non-tree based clock rout-
ing algorithm can satisfy more stringent delay constraints compared with the tree-
based approach.

• We have proposed a partitioning-based technique to reduce the running time of our
algorithm. We can achieve a 26.1% running time improvement after applying this
technique without sacrificing the solution quality.

• We have simulated our clock network using HSPICE and the simulation results

confirm the effectiveness and correctness of our approach.

Our algorithm can be applied to high performance microprocessor designs in the 45nm
technology, and it can also be extended to applications for ASICs with hybrid clock
structures.

1.3 Organization of the Thesis

In the following, we wi l l first give a preliminary overview in Chapter 2 on different
clock routing algorithms in the literature. Problem definition, motivations and our rout-
ing algorithm wi l l be presented in Chapter 3. An non-tree based routing algorithm wi l l
be detailed in Chapter 4. Partitioning-based acceleration technique wi l l be introduced
in Chapter 5, followed by a conclusion in Chapter 6.

• End of chapter.

Chapter 2

Background Study

2.1 Traditional Clock Routing Problem

Clock routing has been extensively studied in the past. Clock distribution schemes can
be classified into two categories: the global networks and the local networks. A survey
of different clock construction algorithms is detailed in [11,66]. Tree structure is widely
used in global clock networks since it uses less routing resources, consumes less energy
and is simpler to implement and simulate [4,47]. At the same time, mesh structure is
proposed to tackle the challenges introduced by process variation, especially when the
industry advances into the very deep sub-micron era. Top level trees followed by a mesh
structure have been used in some practical microprocessor designs, and improved local
clock skews under process variation compared with a pure tree topology [4] are result-
ed obtained. Tree and mesh structures are also used for the local clock construction in
the literature. Basic algorithms include the H-tree algorithm [6,26,27], the Method of
Means and Medians (M M M) [32], the Geometric Matching Algorithm (GMA) [19,33],
the Exact Zero Skew Algorithm [71], the Deferred Merge Embedding(DME) [10,38],
the Bounded Skew Clock Routing algorithm [18, 20, 35], the Planar-DME algorith-
m [36, 81], the UST/DME algorithm [70] and process variation-aware clock routing
algorithms [41,44,75]. These basic clock structures can be further extended to hybrid
clock distribution schemes by inserting crosslinks [45,52-55,74,79] or using a global
mesh [14,73,77] to reduce clock skews incurred by process variation.

Capacitance usage and skews are the two major issues traditional clock routing algo-
rithms target at. The purpose of reducing the total capacitance usage is quite straightfor-

4

CHAPTER 2. BACKGROUND STUDY 5

ward. We can reduce the power consumption and relieve the heat problem by reducing
the chip capacitance usage. According to some previous studies [15,31,51], the power
usage of a microprocessor can be classified into two categories: dynamic power con-
sumption and leakage power consumption. While the leakage power consumption of
a circuit can be estimated as a constant P, the dynamic power is closely related to the
capacitance usage of the chip and can be calculated as follows [51]:

P{s) = C^ffV^s (2.1)

where s and Ceff, Vu Vdd^ and k denote the effective switch capacitance,

the threshold voltage, the supply voltage, and a hardware-design-specific constant, re-
spectively. By reducing the total capacitance usage, we can effectively reduce Ce/ j and
thus reduce the power consumption of the whole chip.

Synchronous clock strategies continue to be the dominant clock distribution schemes
for microprocessors nowadays [5,39,58,59,64,65]. We need to control the clock arriv-
ing times from the clock source to different units in order to ensure a proper function-
ing of the chip. The clock skews refer to the clock arrival time difference between two
points in the chip. It could be caused by asymmetric routes to different functional units,
different interconnect parameters, different threshold voltages or process variation [32].
As frequency increases, the same skew value wi l l correspond to a larger percentage of
one clock period and the chip performance wi l l be more adversely affected. This wi l l
cause serious problems when designing high performance microprocessors. Uncertain-
ties of those arrival times, especially between nearby points, can l imit clock frequency
or even lead to functional errors [58]. Therefore, reducing clock skews is very important
in constructing a robust clock network.

2.2 Tree-Based Clock Routing Algorithms

2.2.1 Clock Routing Using H-tree

H-tree structure is used to construct balanced and low skew clock network by main-

taining the same length from the clock source to all the clocking elements on the

chip [6,26,27]. We can recursively construct a H-tree structure from the sink nodes

CHAPTER 2. BACKGROUND STUDY 6

M M • • • •
i i i i

Figure 2.1: H-tree structure

of the chip in a bottom-up style. Ideally, i f all the sink nodes bear the same capacitance
and there is no process variation, a H-tree constructed as described above becomes a
zero-skew tree. H-tree structures can significantly reduce clock skew when all the clock
sinks bear the same capacitance and are placed in a symmetric array. Fig. 2.1 shows a
simple example of H-tree with 16 sinks. In general the sinks are randomly distributed
all over the chip, and bear different capacitances. In such circumstances, using H-tree
can yield a clock structure with significantly large clock skews. So for general clock
routing problems, more complicated routing algorithms are desired.

2.2.2 Method of Means and Medians(MMM)

The Method of Means and Medians(MMM) [32] algorithm is a generalization of the H-

tree algorithm. The M M M algorithm is conceptually simple. Let S 二 {s i , 5 2 , b e

a set of points representing the clock sinks on a two-dimensional plane. The coordinates

of each ŝ are denoted as (x^, yi). Define

x,{S) = 工 1 (2.2)
n

yc{S) - ^ ^ ^ (2.3)
n

{xc{S),yc{S)) represents the center of mass of the set of points. We can divide the set

S into two sets Sl and Sr according to the median's x coordinate. Similarly, we can

CHAPTER 2. BACKGROUND STUDY 7

S L S R

‘

• I

. 丨 •
Center of mass I

of set Sl ^ 丄 • •

K y " " ^ " ^ I Cen ter of mass
I \ c.fset Sr

• I Center of mass of
I the whole set

I
• 丨 書

I ^ 1
Median of the whole

set in X direction

Figure 2.2: Recursive partitioning of MMM algorithm

also divide the set S into two sets Sb and St according to the median's y coordinate.

I f the number of sinks is even, the number of sinks in the two subsets w i l l be equal to

each other. Otherwise, they w i l l be differ by one. In fact, \\Sl\ — \Sr\\ < 1. After

that, connections are made from the center of mass of the set S to the centers of mass

of the two subsets, ensuring that there is no length skew at the current level of the

clock tree. One interesting property of this algorithm is that given a set of points S =

{s i , 5 2 , w h e n n is an even integer,

⑶-x,{Sl{S))\ + \y,{S) - yc{SL{S))\二 4)

(約 - x , { S n [S)) \ + I 从 (約 — ‘

A similar result holds for the sets St and Sb, where St and Sb are the two sets obtained

by dividing S according to the median y coordinate. This property tells us that whenever

we divide a set into two subsets with equal number of sinks, the wire lengths from

the center of mass to the center of mass of the two subsets are always equal to each

other. Thus, at every level of the clock tree, the algorithm can achieve locally zero-skew

result (but it is not zero-skew globally.). When choosing the partitioning direction, the

algorithm incorporates a delay equalization look-ahead technique. Both x-then-y and

CHAPTER 2. BACKGROUND STUDY 8

… / . .� Ji 〜

• 、 、 、 X V > • • > 、

0 户•••r\ 0 o.».
• • • 0 •省 I » • - < } " » I 、參

I ••…〇-••人
V V 、 i N \ V 、 i N

Figure 2.3: Recursive grouping of the GMA Algorithm. Solid points denote the sink nodes, and emp-
ty points denote merging points on the connection. At each level,a geometric matching algorithm is
performed on the merging points at the previous level.

y-then-x directions are tried, and the one minimizing the clock skew at the end points is

selected. The above techniques w i l l be used to recursively construct a clock tree until

there is only one sink left in each subset. The time complexity of M M M is 0(nlogn),
where n is the number of sinks to be routed. Fig. 2.2 shows an example of the M M M

algorithm. In this simple example, the eight sink points are divided into two sets Sl and

Sr according the median of the whole set in the X direction. The center of mass of the

set Sl and the center of mass of the set Sr are connected to the center of mass of the

whole set.

2.2.3 Geometric Matching Algorithm (GMA)

Aiming at the same problem as the Method of Means and Medians(MMM) algorithm,

geometric matching algorithm (GMA) [19,33] uses a bottom-up recursive approach to

construct a binary clock tree. A geometric matching for k points refers to a set of |

segments, with no two segments connecting to the same point. At the very beginning,

each sink is a subtree itself. The geometric matching algorithm (GMA) wi l l merge these

CHAPTER 2. BACKGROUND STUDY 9

trees by connecting them in pairs and finding a merging point on the connection in such
a way to minimize the maximum difference in path lengths from the merging point to
the leaves of the subtrees. Note that when there are only two sinks in the subtree, the
optimal merging point is the midpoint of the connection, so that the clock signal w i l l
have zero skew^ • At the next level, merging point is set to be the point that minimizes the
maximum path length skew from it to the leaves of the two subtrees being connected.
The resulting new subtrees wi l l be recursively merged until a final clock network is
constructed for the whole chip. Fig. 2.3 shows an example of the GMA algorithm when
there are 16 sinks in the plane. Although the GMA algorithm produces better results
compared with the M M M approach according to the experimental results of [33], GMA
still cannot guarantee a zero-skew clock structure.

2.2.4 Exact Zero-Skew Algorithm

The underlying assumption behind both the geometric matching algorithm(GMA) and

the Method of Means and Medians (M M M) algorithm is that the delay from the source

to a sink is linearly proportional to the path length. They mainly focus on balancing

the path lengths from the source to different sinks on the chip. An exact zero-skew

algorithm based on a more accurate and desirable Elmore delay model is proposed by

Tsay [71] to construct exact zero-skew clock network. The algorithm adopts a hierar-

chical method for computing the Elmore delays in a bottom-up fashion. It assumes that

a tree topology is given beforehand, and it w i l l recursively connect pairs of nodes and

tune the new merging points in a bottom-up fashion. The finally constructed tree has

exact zero-skew under the Elmore delay model, which has been widely used in practice

to estimate delay due to its simplicity and high fidelity.

The algorithm is a recursive one proceeding from the leaves to the root. Assume

that at a certain stage, a number of exact zero-skew subtrees have been constructed (this

is true at the beginning when there are only sink nodes). To connect two zero-skew

subtrees and to ensure exact zero-skew of the combined tree, the algorithm finds a good

merging point on the connection of the two subtrees, such that the delays from the new

'The skew here refers lo path length skew, which is defined to be the maximum di(Terence of the path Icnglhs in ihc ircc
from the root to any two 丨eaves.

CHAPTER 2. BACKGROUND STUDY 10

merging point to the leaf nodes of the two subtrees are the same. Let's consider an
example with two subtrees 7\ and T2 as shown in Fig 2.4. The interconnection of the
two subtrees is divided into two segments, Wi and W2. Each wire is represented by a
TT-model as shown in the figure. Let t i and 力2 denote the internal delays (i.e.,delay from
the root to the leaves of the subtree) of subtrees 7] and T2. I f we want to merge these
two subtrees to form a new zero-skew tree, it requires that

n (c i / 2 + Ci) + t i = r2(C2/2 + C2) + t2 (2.5)

where Ci denote the total capacitance of subtree Ti , C2 denote the total capacitance of
subtree T2, n and ci denote the total wire resistance and capacitance of wire segment
Wi , and r2 and C2 denote the total wire resistance and capacitance of wire segment W2
respectively. Assume that the total wire length connecting the two subtrees is I, the
length of wire segment Wi is xl and length of wire segment W2 is { l - x) L Denote a as
the resistance per unit length of the wire and (3 as the capacitance per unit length of the
wire. We have r = al, ri = axl, r〗 a (l - x)l, c =队 Ci = /3xl, and C2 = 々 (1 x)l
respectively. After solving equation 2.5, we wi l l get

— (力 2 - t i) + M ((7 2 + f))

Thus, the exact location of the merging point can be determined when 0 < x < 1. I f x <
0 or X > 1, detouring, e.g., snaking of wires, is needed to ensure that the constructed
clock network is an exact zero-skew tree. I f the two subtrees are too much out of balance
and detouring wi l l significantly degenerate the routability of the chip, adding buffers,
delay lines or capacitance terminators can be used to handle such extreme cases. To
minimize the total wire length, pattern routing, e.g., one-bend connection, is used. The
pattern that gives shorter wire length in the next higher level wi l l be selected.

However, the algorithm assumes that the tree topology is given beforehand. To con-
struct a zero-skew tree, we can first pair up all sink nodes using M M M or GMA before
using the exact zero skew approach to construct the tree.

2.2.5 Deferred Merge Embedding (DME)

The Deferred Merge Embedding (DME) algorithm proposed in [10,25,38] makes use

of the fact that for each pair of sink nodes, there can be multiple choices in selecting the

CHAPTER 2. BACKGROUND STUDY 11

subtree Ti
n i j""i
^ 1 ti ^ h

^ ^ Ci/2 Ci/2 Ci

Merging point

W2 subtree T2
「2 i "|"""i

Wv 1 h ~k
~ C2/2 TC2/2 丨 丁 C2 I

Figure 2.4: Merging Two Subtrees

merging point in order to construct a better zero-skew clock tree. An example is shown
in Fig. 2.5 to illustrate that point. Consider Fig. 2.5(a). Let Pi and P2 be the merging
points of two previously constructed subtrees 7\ and T2 respectively, and now we are
trying to connect T i and T2 together. After considering the delay from Pi and P2 to
the leaves in and T2 respectively, we can compute the required distances from the
new merging point x to Pi and P2 respectively. Let the required distance from x to Pi

be 5 units and that from x to P2 be 4 units respectively. We can identify two potential
merging points, which are Pa and P5 respectively. However, one can easily see that any
point on the segment PaPh wi l l satisfy the exact zero skew requirement, as any point on
the segment PaPh wi l l have a distance of 4 units from node P2 and a distance of 5 units
from node Pi. Similar result holds for the example in Fig. 2.5(b). The Deferred Merge
Embedding (DME) algorithm is proposed to construct better zero-skew clock networks
by fully exploring all the merging points. We use a merging segment to represent all
possible placement locations for each merging point. The DME algorithm consists of
two phases. First, a bottom-up phase to find all the merging segments. Second, a top-
down embedding phase fixing the location of each merging point.

Denote ms{v) as the merging segment that represents all possible placement loca-
tions of a merging point v. We use a simple example to illustrate the bottom-up phase
of the DME algorithm. Suppose that we are now connecting four sinks, A, B, C, and D

using the DME algorithm as shown in Fig. 2.6. Consider the merging segment nis{E)

CHAPTER 2. BACKGROUND STUDY 12

_:::画；：
• •：• -'W'…： r.…華 : ：• •：華 r.. • …：
. . : P T . • . . . • • . . • • • … … • . … ； P i ： ； • • • • . - .Q l；；….；Qa • • • …

⑶ （b)

Figure 2.5: An example of multiple merging points. For both figure a and b, any point along the segment
PaPb satisfy the zero-skew requirement.

of node A and B. According to some delay models, i.e., the Elmore delay model, we

can first compute the distance (Iae from A to the merging at E and the distance dsE

from Bio E such that the skew is zero and dAE + duE is the shortest Manhattan distance

between A and B, Then ms{E) is set to be the set of all points at a distance (Iae from

A and at a distance duE from B. The merging segment ms{F) of sinks C and D can be

found similarly. Next, we wi l l merge the two merging segments, ms{E) and ms、F),
to form a new merging segment ms{G) as shown in Fig. 2.7. The distance between

ms{E) and ms{F) is set to be the minimum distance between any point on ms{E) and

any point on ms{F). After determining the distance between ms{E) and ms{F), cIeg

and dpG can be calculated similarly. Finally, we set ms{G) to be the set of all points at

a distance of (Ieg from some points on ms{E) and at a distance dpc from some points

on ms{F). Each merging segment can be found in constant time. The whole bottom-up

phase requires linear time.

After all the merging segments are determined, a top-down phase wi l l be invoked to

determine the exact locations of all the merging points. For merging point v, its location

wi l l be selected as follows:

• I f 1； is the root node, any point on the corresponding merging segment can be
chosen.

CHAPTER 2. BACKGROUND STUDY 13

\ C

Figure 2.6: Construction of merging segments between two nodes in the bottom-up phase of DME. The
merging segments are shown in thick solid blue line.

ms(E)

ms(F)

Figure 2.7: Construction of merging segments between two segments in the bottom-up phase of DME.

CHAPTER 2. BACKGROUND STUDY 14

• i f V is an internal node other than the root, v can be embedded at any point in the

corresponding merging segment that is at distance dyp (determined in the bottom-

up phase) f rom p, where p is the parent of v.

The top-down phase also takes linear time. Therefore, the overall D M E algorithm is

a linear time algorithm. The D M E algorithm can achieve optimal wire length for lin-

ear delay models. It could be further extended to handle problems with general skew

constraints.

2.2.6 Boundary Merging and Embedding (BME) Algorithm

Some generalizations of the D M E algorithms have been proposed, such as the bounded-

skew clock and steiner routing algorithm (BST/DME) in [20, 35] and the Boundary

Merging and Embedding (BME) algorithm in [18] to solve the bounded skew clock

routing problem. "Exact zero skew" can typically be obtained at the expense of in-

creased wir ing area and higher power consumption. However, in practice a chip can

still function correctly within a given skew tolerance, and exact zero skew is sometimes

not a realistic design requirement [34]. For such cases, constructing a clock tree satisfy-

ing a given skew bound is of interest. The Minimum-Cost Bounded Skew Routing Tree
(BST) Problem [18] is defined as follows: given a set S' = { s i , S N } C 况2 of sink

locations and a skew bound B, find a routing topology G and a minimum-cost clock

tree TG{S) that satisfies SKEW{TG{S)) < B. In [20,35], the bounded skew tree problem

is solved under the path length delay model, while in [18] a more accurate Elmore delay

model in considered. In the following, we mainly introduce the Boundary Merging and

Embedding (BME) algorithm proposed in [18:.

Let mr{v) denote the merging region of two subtrees being merged, which contains

all possible locations of the merging point that satisfy the skew requirement. We first

illustrate the point that when the required skew is non-zero, the "merging segment" in

the D M E algorithm becomes a merging region. Consider the example shown in Fig. 2.8,

Sl and S2 denote the sinks to be merged. When the skew is zero, the merging segment

w i l l be P1P2 as shown in the figure. Note that P1P2 is indeed the merging segment used

in the D M E algorithm. When we have a non-zero skew bound, any node within the

shaded region mr{v) in Fig. 2.8 can be the merging point of the two sinks, as any node

CHAPTER 2. BACKGROUND STUDY 15

S2， P2

I mr(\^ Z y

P1 ,S1

Figure 2.8: An example of the merging region when the skew bound is non-zero.

within mr{v) connecting and S2 w i l l have a skew within the required skew bound.
Thus, the merging segment becomes a merging region when we have non-zero skew
requirement.

The BME algorithm incorporates two phases: a bottom-up phase finding all merg-
ing regions and a top-down phase fixing the location for each merging point within the
merging regions. We use a simple example to illustrate how the BME algorithm works.
Suppose we are now connecting the four sinks, S2, Sz and as shown in Fig. 2.9.
Assume that the required skew bound B is non-zero, we can compute the merging re-
gion mr{vl) for sinks Si and S2 according to the technique proposed in [18]. Similarly,
we can compute the merging region mr{v2) for sink Ss and S4. Note that all points
within the merging region satisfy the skew bound B. In the next step, we wi l l merge
the two merging regions mr{vl) and mr{v2). We first determine the closest bound-
ary segment between the two merging regions mr{vl) and mr{v2), which are la and k
in Fig. 2.10. Based on the locations of la and we can compute the merging region
mr{v3), the darker region, in Fig. 2.10. The bottom-up phase is a recursive process.
After determining all the merging regions, a top-down phase, which is similar to the
original DME algorithm, is invoked to find the exact locations of all the merging points.
In the BME algorithm, only boundaries of the current merging regions are considered
when computing the next level merging regions. To overcome the drawback of the BME
algorithm, the author in [18] also proposed an Interior Merging and Embedding (IME)
approach utilizing the internal regions as the merging points to fully exploit the skew

CHAPTER 2. BACKGROUND STUDY 16

S2 f 7
丨 Z S3

K /i K/ I
/ i f y4nr(v2) \

L

Figure 2.9: Merging of four sinks ^ i , S2, S3, and S4. The shaded part mr{vl) is the merging region of
sinks Sl and S2, and mr{v2) is the merging region of sinks S^ and 54.

S2 f 7
丨 / S3
I inr(v1/ J . * ^ [I

Y 丨

Figure 2.10: Merging of four sinks S2, S3, and S4. The darker region mr{v3) is the merging region

of 'mr(vl) and mr{v2).

CHAPTER 2. BACKGROUND STUDY 17

bound. Better experimental results are reported in [18] compared with the results of the
B M E approach.

2.2.7 Planar Clock Routing Algorithm

Routing of planar clock trees was studied in [36, 81]. The Planar Equal Path Length

Steiner Tree Problem can be formally defined as follows: given a source point and a
set of sink points, find a planar Steiner tree T with minimum total cost such that the
lengths of the paths from the source point to all the sink points are exactly the same.
Planar intuitively means that we can draw the trees on a plane without edge crossing.
In [81], the authors proposed an algorithm to construct a planar clock tree which can be
embedded on a single metal layer. In this clock tree construction algorithm, the length
of the paths from the clock source to the clock terminals are all the same. The algorithm
also guarantees that the path length from the source to the clock terminals is minimum.
Let Ti denote the partial tree being constructed in which the first i sinks are connected.
The algorithm works as follows. At the very beginning, the sink that has the largest
Manhattan distance to the source wi l l be selected and connected to the source. This wi l l
generate the first partial tree J \ . A l l the sinks are classified into two types by this partial
tree: (i) free sinks which are the sinks that have not been connected to the partial tree,
and (ii) connected sinks that have been added to the tree. In the following steps, a free
sink wi l l be selected and connected to a branch of the tree maintaining the same length
from the source to the sink. Assume that the current partial tree has already included
i sinks, and we now want to connect it with one more sink. The point on T] that has
the same Manhattan distance to a free sink and to a connected sink in tree J\ is called a
balance point. For a particular sink, it may have several balance points on tree J\. The
balance point with the minimum Manhattan distance wi l l be chosen. The order in which
the sinks being processed wi l l affect the final solution. In the algorithm, the following
two rules are used to select the balance point and to determine the order of processing
the sinks:

• Min-rule: Always connect a free sink to the balance point which has the minimum

Manhattan distance to the free sink, called minimal balance point.

CHAPTER 2. BACKGROUND STUDY 18

S 、 S1

參 S3 /

• Source • Source

(a) (b)

Figure 2.11: Planar routing of three sinks

• Max-rule: At each stage, the free sink that has the largest minimal balance point

w i l l be selected.

Fig 2.11 shows an example with three sink nodes. For sink 53, its balance point is po.
For sink S2, there are two balance points p i and pz, and the one with the minimum
Manhattan distance, i.e., pz, w i l l be selected.

The partial tree under construction wi l l divide the free sinks which are not connected

yet into several clusters by its branches. Parallel processing is applied to speed up the

method by applying the algorithm on different clusters of free sinks simultaneously. S-

ince the clock tree solutions given by other DME algorithms cannot be easily embedded

on a layout plane, this planar zero-skew clock routing algorithm can be applied i f we

want to route on one layer and eliminate the usage of vias.

2.2.8 Useful-skew Tree Algorithm

The underlying assumption behind the Boundary Merging and Embedding (BME) al-
gorithm is that for all pairs of sinks, we have the same global skew range B. However,
in practice we may have different skew requirements among different sink pairs and we
may even be able to make use of such differences for further optimization. An useful-
skew tree (UST/DME) algorithm is proposed in [70] to deal with the problem that dif-

CHAPTER 2. BACKGROUND STUDY 19

ferent skew requirements exist among different sink pairs. The global skew bound B is
used at all levels when we merge the subtrees in the BME algorithm. In the useful-skew
algorithm, B w i l l be changed. The UST/DME approach also incorporates two phases:
a bottom-up phase to construct a binary tree of merging regions (or segments), and a
top-down phase to determine the exact locations of the merging points. In the bottom-
up phase, the skew requirements between different node pairs (they could be the sinks
or the roots of subtrees.) are formulated as a constraint graph G{V, E), in which the
vertices V correspond the nodes and the edges in E denote the skew constraint between
the nodes. At the very beginning, a subtree contains the sinks only. We can merge
two nodes using a similar approach as the BST/DME algorithm, except that the skew
bound B is now calculated using the constraint graph G{V, E) we have previously con-
structed. As we are incrementally merging the subtrees, new trees are generated and
the constraint graph wi l l be updated accordingly. Finally, we can construct a tree of
merging segments (or merging regions) as in the BST/DME algorithm. After that, the
top-down phase which is the same with that used in [18,38] wi l l be invoked to locate the
exact locations of the merging points. According to the experimental results in [18,38],
the UST/DME approach achieves better results in terms of wire length compared with
the BST/DME algorithm.

2.3 Non-Tree Clock Distribution Networks

Al l the above algorithms focus on how to a clock tree with small or zero skew can be
constructed. In practice, the clock network constructed using the above algorithms still
cannot guarantee to meet the del ay/slew requirements of the circuit. The undesirable
process variation can seriously affect the timing of the circuit. According to the study
of [43], interconnection variation alone can cause up to 25% change on clock skew.
Those algorithms without considering process variation can hardly satisfy the stringent
delay/skew constraints in real designs today. Tree structures have been known to be
very sensitive to process variation, as for each element on the circuit, there is only one
path delivering the clock signal. Mesh structures are known to be more robust to process
variation due to its inherent interconnect redundancies. To combine the virtues of dif-
ferent clock topologies and to combat the undesirable effects due to process variation.

CHAPTER 2. BACKGROUND STUDY 20

Clock driver

Figure 2.12: Clock mesh structure. The figure is from [14].

extensive research works have been conducted on non-tree clock distribution networks.
In the following, we mainly introduce three categories of non-tree clock distribution
schemes.

2.3.1 Grid (Mesh) Structure

Grid (or mesh) has been used in the clock networks in some practical chip design-

s [5,7,23,29,57,60] and has been widely studied in the literature [8，14,17,60,72,77,80].

Clock grid is very effective in reducing local clock skew, as two points can be directly

connected. The inherent redundancy in a mesh structure smooths out undesirable varia-

tions between signal nodes spatially distributed over a chip. Some analysis on the mesh

structure are conducted in [14]. Unlike the tree structures, clock mesh is quite robust

and insensitive to placement details, which makes chip design easier. The main concern

over clock grid is the excessive wire resources it uses. This w i l l inevitably lead to a

significant increase in power consumption of the chip. A mesh structure is shown in

Fig. 2.12.

2.3.2 Spine Structure

The spine structure proposed in [42] also can provide a stable clock signal, and has

been used in a few practical Intel microprocessor designs [39,62,63]. Each spine can

CHAPTER 2. BACKGROUND STUDY 21

Vertical sp ne
— ^ ^

— — •

" T
^ 7 “

Horizontal spine microprocessor
Figure 2.13: Spine structure of a microprocessor.

be tuned and gated independently without affecting others. However, i f the system bears
a large amount of clock elements, it w i l l require many spine routes, which wi l l in turn
introduce a high burden of wire resources and power consumption. A spine structure is
shown in Fig. 2.13.

2.3.3 Hybrid Structure

Hybrid structures combining tree and mesh are also a popular way to distribute clock

signals for a chip [46,64,65,67,76,77]. Several practical designs using stable hybrid

clock distribution schemes have been discussed in [60]. For some chips, the perfor-

mance requirement may be too stringent for a pure tree structure or a pure mesh struc-

ture. Using a hybrid clock schemes, we can combine the virtues of tree structures in

minimizing the power consumption and mesh structures in reducing skew variability

together to achieve a high quality clock distribution scheme. Mesh with local trees was

studied in [67] and tree with local meshes (TLM) was studied in [76]. Experimental

results in these works show that the hybrid architecture offers significant advantages

over both a pure mesh - lower power and faster analysis at an expense of slightly worse

skew, and over a tree — smaller skew and more robust to parameter variation.

CHAPTER 2. BACKGROUND STUDY 22

Tree with crosslinks [45,52-55,74,79] has also been extensively studied in the lit-
erature. Aiming at reducing clock skews (global skew or local skew), cross links are
either inserted between the leaf nodes or the internal nodes within the clock tree. The
major issue of these link insertion algorithms is to find good positions to insert links,
which can significantly reduce clock skews of the chip. Some analysis are conducted
in [45,52,79] to explain the effects when a particular link is inserted into the clock net-
work. Experiment results in [45] show that i f we properly insert crosslinks, comparable
local skew results can be achieved compared with the results produced by mesh struc-
tures. However, the algorithm in [52] only considers inserting crosslinks between the
terminal nodes (sink pairs), which can limit the potentials of reducing clock skews with
this crosslink insertion technique. In [45], the authors proposed an algorithm consider-
ing crosslinks insertion between the internal tree nodes, and experiment results show the
superiority of this approach by reducing more clock skews than the approach in [52:.

2.4 Post-grid Clock Routing Problem

The post-grid clock routing problem investigated in this thesis bears a fundamental
difference with those previous works on constructing clock trees, since the available
routing tracks on different metal layers are given and can be very scarce. Besides, in
our problem, there are multiple ports and multiple sources in the layout region. There is
one very recent work addressing the same problem by Shelar [64,65] and he proposed
a tree growing algorithm to solve the problem with delay and slew constraints. In the
algorithm, the clock network is generated by expanding from the sources step by step,
and the frontier edge with the smallest wire capacitance is added into the clock network
every time. Checking against delay and slew constraints is done whenever a port is
being connected.

The algorithm described in [64，65] formulates the problem on one routing graph
C{V, E). The nodes V in this graph correspond to ports and via nodes, while the edges
hj denote the reserved tracks. Trees, which correspond to clock routes, are initialized
by assigning source nodes as their roots. At the very beginning, a pool F of frontier
nodes, which is initialized to be all sourcc nodes, is used to store all the current nodes
to be expanded. The following steps arc performed recursively until all the ports arc

CHAPTER 2. BACKGROUND STUDY 23

© © ^

了 11 T 12 r 13

© 0 ^ feMJ) (k A

feM^

© ^ (k

<t) © © — — © ^ — —
⑶ (b)

Figure 2.14: (a) A routing graph example of tree growing (TG) algorithm, (b) The final solution contains
five trees, Ti, ... , T5.

connected to the sources. First, all unexplored edges adjacent to a frontier node in F are

stored in an edge pool Ej and sorted in an ascending order of their edge capacitances.

Then, the clock network is built by a greedy edge expansion process, in which all the

edges in E f are sequentially added into the clock network. Whenever an edge is to

be added in the network, the algorithm wi l l ensure that (i) it is not in some other trees

already, (ii) adding the edge does not violate any delay or slope constraint. As a result,

the routes created by the algorithm are always correct-by-construction. Furthermore,

the frontier node pool F wi l l also be updated with the end nodes of the newly added

edges. I f a port is added into the tree, it wi l l be removed from the set of ports to be

connected to the grid wires. After all the ports are connected to the sources, the final

clock network is obtained by deleting redundant edges in the trees. The time complexity

of this algorithm is 0{\E\~lo(j\E\), where \E\ 二 ()[n + I + /;?), and nj、m are the

number of port nodes, the number of candidate via nodes, and the number of source

nodes respectively. Delay and slew constraints are considered in the algorithm. The

delay from a source to a port is computed using the Elmore delay model. The slope,

i.e., 10-90% transition time, is computed using the mctric in [371. According to the

study in [37], the slope of a signal at the end of a wire segment with resistance R and

capacitancc C is given by {2.2RCY + (5'/)-, where Sj is the slope of the wavctorm al

CHAPTER 2. BACKGROUND STUDY 24

20 20

20 工]20

© ^ ® ,,,
($) —

20

(c)

Figure 2.15: (a) Routing graph with sources 6 � a n d S2, ports pi, p2 and 仍，and via nodes ci and C2. The
numbers near the edges denote the wire capacitances, (b) Routing solution of [65]. (c) A better topology
with a 36% reduction in wire capacitance.

the input of the segment. In the algorithm, they wi l l lump the resistance and capacitance
of the unique path from the root to a node in the tree to compute the slope. A routing
example which contains six ports (Pi to PQ), six sources ⑶ to SQ), and several via
nodes (denoted as Cj) is shown in Fig. 2.14. Using this tree growing (TG) approach,
we can connect the six ports using five trees, to T}” as shown in the right sub-figure
of Fig. 2.14.

2.5 Limitations of the Previous Work

As this post-grid clock routing problem is different from traditional clock routing prob-
lem, algorithms such as H-tree, M M M , GMA and exact zero skew routing discussed
above cannot be directly employed here. Furthermore, the routing method in [65] which
deals with the post-grid clock routing problem has a couple of intrinsic drawbacks. First
of all, it uses a top-down tree growing heuristic in which the downstream capacitance
information is not available when the trees are being constructed, and it thus can hardly
optimize the delay. In addition, its slew calculation is based on the lumped-RC model
instead of the distributed RC model, and this may lead lo accuracy and fidelity prob-
lem. Al l these problems make ihc hcurislic in [64,65] oversimplified for clock network

CHAPTER 2. BACKGROUND STUDY 25

designs of high performance microprocessors.
In Fig. 2.15, we show a simple example to illustrate the deficiency of Shelar's ap-

proach. In this example, three ports p i , p2 and p^ are to be connected to two sources
Si and S2. Ci and C2 denotes the via nodes. Fig. 2.15(b) shows the routing topology
obtained by the tree growing approach in [65]. Fig. 2.15(c) shows a better clock topol-
ogy in terms of wire length and capacitance usage. In this example, the topology of
Fig. 2.15(c) can achieve a 36% reduction in wire capacitance compared with the result
of the tree growing approach.

n End of chapter.

Chapter 3

Post-Grid Clock Routing Problem

3.1 Introduction

An overall clock distribution scheme for high performance microprocessors is shown in
Fig. 3.1. The external clock signals are typically generated by a phase locked loop (PLL)
and reach the global grid through grid buffers. The grid, typically lying on the topmost
metal layer, is usually implemented using spines and wi l l distribute clock signals to
different regions of the chip. The grid and PLL are usually designed manually. The
grid clock signals wi l l be further routed through a set of pre-reserved tracks on the
lower metal layers to the clock ports of different blocks, and this step is called post-
grid clock routing. The block-level ports wi l l be created in such a way to align with
the reserved tracks and the clock signals wi l l be further sent to different sequentials
inside the blocks using buffered clock trees. Thus, the buffered trees are connected at
some specific locations (ports), which are connected to the clock grid by routing along
the reserved tracks on the lower metal layers. During the block-level synthesis when
designing a chip, replicating, placing, sizing of clock cells and routing of clock wires
wil l be performed and this wi l l create the block-level ports, aligned with the reserved
tracks for post-grid clock routing. There can be thousands of ports in each layout region
in a real post-grid clock routing problem. As shown in Fig. 3.2, the global grid wires
arc driven by multiple grid buffers and deliver the clock signals to block-level ports by
routing along the reserved tracks on the lower metal layers.

A simple example of this post-grid clock routing problem is shown in Fig. 3.3(a). In
this example, there are five metal layers (from layer 3 to layer 7) with six ports lying

2 6

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 27

External l i ^ i Regional Local j
Clock ... - ~ — Clock ~ ^ Clock i

~ ^ I buffers buffers I
4 ： ^ i i

PUL —^ … 1 i
^ I ——：—— j

I Regional Local :
~ - ~ ^ Clock ——^ Clock ；

> I buffers buffers [;

I I

O I 一

Grid Bufer Post-grid Clock clock Grid Local Clock
Distribution Network

Figure 3.1: Typical clock distribution of microprocessors

on metal layer 3 and the source grid is on metal layer 7. Routing can only be done on

those reserved tracks (dashed lines). A sample routing solution is shown in Fig. 3.3(b).

The target is to connect all the ports to the sources without exceeding a very stringent

delay bound (which is also an upper bound of the skew), and to minimize the total

wire capacitance. Note that for this particular instance, our algorithm gets the optimal

solution as shown in Fig. 3.3(b).

3.2 Problem Definition

In this post-grid clock routing problem, we are given (1) a set of reserved tracks (in-

cluding the source grid which is always on the topmost metal layer) on different metal

layers which have alternate routing directions, (2) the locations and capacitances of n

ports P = {P i , Po,Pu} on some lower metal layers, and (3) the types of wires (with

different capacitance/resistance tradeoffs) available on cach metal layer. Wc assume

that the clock grid on the topmost layer provides zero-skew clock signals. The objec-

tive of this post-grid clock routing problem is to conncct all the ports to the sources' by

making use of the reserved tracks and different wire types so as to satisfy the constraints

'These sources arc vias to the sourcc grid on the topmost metal layer.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 28

I I V I / \ Grid Buffer
I 「I丨,,,:,:：,::;'j I L ^
i rM . F \
i j Blocks

I / \ / \ I Reserved
丨 L \ L——\ i L Tracks

丨 〒 I • Port
i ‘ “‘ , i ‘ til . I" -- ";j i
I J . r - - , I 丨 _ Sequential
I a ls\、、‘ - V - 、 > • ' I fe888S888888i •

I MsaaaJ ^ '' ' ' \ ^^^MMlZ^]
i I ^ ^ ^ Global Grid

！ I Local Clock

i Z A I . . . 」 B u f f e r
I I「 1 Layout

」L 丨 Region

Figure 3.2: Post-grid clock network distribution

on the maximum delay bound D, and to minimize the total wire capacitance. The delay

here is computed according to the Elmore delay model due to its simplicity and high

fidelity.

Similar to the previous work [65], we do not optimize the skew directly. This is

because the grid-to-ports delay bound (also upper bound the skew) is very stringent and

is set to be within 5ps for all the data sets, which is very small compared with the overall

circuit skew budget. Therefore, it is not necessary to put the skew as another optimizing

objective specifically. We can estimate the slew of signals us ing〈 {2 .2RC〒 +
according to [37], where R and C denote the resistance and capacitance of the wire

segment respectively, and Si denotes the input slew. To estimate the slew at a particular

port, we can simply replace RC by the Elmore delay of the particular port. In the

experiment part, we can see that the estimated slew and the simulated slew correlate

to each other quite well, and are also very close to each other in their absolute values.

In addition, similar to [65], we do not consider buffer insertion in this post-grid clock

routing. A very detailed explanation is provided in [65]. In fact, the well-defined grid

and reserved tracks make buffer insertion unnecessary for this post-grid clock routing

problem.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 29

.......r----.....
I ； ： ；

： ； ； ；.......

： ： ：
： ： ：

i i ：一....〉、-〈: 丨： J
： • ,•• ：

6、 ： .••... . .： -.••‘.T‘,. ： ：
• 一 ； - 一 ： ： ： ； • ‘ : . 一 —

： ： ： ：
； ：

： ： J ；
： ： ••••： ： ••..

I • 丨 丨 ：

0) ： ；••••...

丨••..•••、.....」 ；丨丨....、.......
： ...、-.-.」.

丨 丨..i......::.:、.::；；----―—•-
4�-.-:..............：....丨 i ^..............r: ：一一

： - ：

.一"‘；J.......‘ ；.•..••：“" ； i

、 丄 \ 、 、 、 、
^ ^ 、.-•. - 1 4 0 0

800

(a) Initial routing problem

I 、、 , I 、“ 、 I 、、-
、、、、、“r i >、、、

r � � � .一一 r 、-、
"T、、 J—T
丄-二、-: _^丄一 一一

6 、 一 叫 、 一 一 一 f - " " ^ ^ r i 一 一 一 一 T 丄一一一一 I
^ 丁 丨、、、、

^ r r ！ i 、、、、、

�T�丄、、 一 一 - 丄 一 一 一 丨
J-一〉〜一一； 一-一广一

4 、 卞 J 一 一 一 广 _ 二 - 一

_ 二^^r一一 J 一 一 一 丁
- 丄 一 一 r 1 I

I I

、 ‘ • U 〜 、 、
、、、、、、 、 、 、 、 、 、 誦

_ _ 600

1 5 0 0 ^ 200

(b) Sample Routing Solution

Figure 3.3: Post-grid clock routing problem

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 30

Algorithm 1: Wire replacement

1 begin
2 Tr all trees;
3 while Tr is not empty do
4 Ti select one tree in TV ；

5 Pi •(— port with the largest Elmore delay in
6 Px all terminal ports in Ti except Pi ；

7 while Px is not empty do
8 Pi •(— port node in P^ with the smallest Elmore delay;
9 Pa lowest common ancestor of Pi and Pi；

10 repeat
11 Replace e{Pi) using the second type of wire if no violation occurs;
12 Pi parent {Pi);
13 until 3Pk e Ti where d{Pk)〉D or Pi = Pa.,
14 P^ ^ - Pi-
15 end
16 Pi ^ Pi, Pa ^ tree root of J];

17 repeat steps 10-13;

18 Tr^Tr- Ti-
19 end
20 end

3.3 Our Approach

This post-grid clock routing problem can be seen as a multi-source multi-sink^ tree
construction problem with a delay bound and an objective to minimize the total wire
capacitance. We first model the virtual grid of reserved routing tracks by a graph G.
The set of vertices contain (1) the block-level clock ports (i.e., the sinks), (2) the pos-
sible via positions between reserved tracks on adjacent metal layers, and (3) the clock
sources (which are the vias connecting to the source grid). The edges in G represent the
wire segments on the reserved tracks connecting ports, vias or sources. Our approach
includes a pre-processing step that performs segment merging, finds segment intersec-
tions and construction of the graph G and uses some techniques in [12,13] and it w i l l
not be detailed here.

We devise a delay-driven path expansion algorithm to solve this clock routing prob-
lem. To make our illustration more clear, we define a new term path in our approach

2These "sinks" are block-level clock ports in our problem and are different from the "sinks", which are flip-flops or latches,

in traditional clock routing problems.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 31

Algorithm 2: Topology refinement

1 begin

2 Py all terminal ports;

3 sort{Py) in a non-increasing order of their Elmore delays;

4 while Py is not empty do
5 Pi 卜 a port in Py ；

6 modified path-expansionQ on Pi ；

7 // Paths expand toward all directions, and the
8 // path with smallest wire capacitance will be
9 // expanded first

10 Py — Py _ Pi.,
11 end

12 end

as follows: a path is a routing between an intermediate node (a via node or a source
node) and a block-port along the reserved tracks. During the expansion process, we
wi l l always select the path with the smallest Elmore delay (note that it is the total de-
lay from the last node of the path to the first node of the path) in the current path pool
to be further processed. A path p w i l l be taken when it reaches a source. Then, all
the paths that intersect with p w i l l also be considered and taken i f no delay violation
occurs. This path expansion step wi l l be repeated until all the ports are connected, or
no more ports can be connected without violating the delay constraint. These are the
basic steps of our partition-based delay-driven path expansion algorithm. It w i l l be in-
voked repeatedly (except that the partition of ports wi l l be performed only once) with
a pre-processing step that w i l l connect up some critical ports first. Finally, some post-
processing techniques are performed to further reduce the total wire capacitance. A
flow of our approach is illustrated in Fig. 3.4.

3.3.1 Delay-driven Path Expansion Algorithm

In this delay-driven path expansion algorithm, we wi l l propagate from all the ports

simultaneously along the reserved tracks to reach a source. A heap data structure H is

used to store all the currently expanding paths sorted according to their Elmore delays.

At the beginning, the heap H is initialized with all the ports, which can be regarded as

zero length paths with zero delay.

In each step, we wi l l pick a path p from the top of the heap, which has the smallest

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 32

Input

Y
Initialize the set
of critical ports

as empty

M
Y

Path expansion on

critical ports

y

Path expansion on
remaining ports

y
Add those

^^^^^^Any ports n o t ^ ^ ^ ^ Yes unconnected ports
connected? ^ into the set of

^ ^ ^ ^ ^ critical ports

No
5

Post-processing

y

Output

Figure 3.4: An overall flow of our approach

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 33

Algorithm 3: Main program

1 begin
2 P f - all ports;
3 Pc 0； II critical ports
4 k=0;
5 repeat
6 Initialize H as Pc\
7 path^expansionQ with H initialized as Pc\
8 Initialize H as P - Pd
9 path-expansionQ with H initialized as P — P^,

10 Pc ^Pc + ports that fail to be connected to a source;

11 k ^ k+U
12 until all sinks are connected or k > K\
13 if all sinks are connected then
14 Post-process;
15 // wire replacement and topology refinement

16 else
17 No solutions under current constraints;

18 end
19 end

Elmore delay among all the paths in H. We wi l l then check whether p has reached a
source. I f not yet, we wi l l expand p vertically up i f a via ^ exists at the endpoint last{p)
of p or w i l l otherwise expand sideways (horizontally or vertically, depending on the
track direction of the metal layer the last node of p is lying on) along the reserved
tracks. We wi l l first compute the Elmore delays of these new paths. Those new paths
with Elmore delay smaller than the delay l imit D w i l l be inserted into the heap H. The
path p w i l l then be removed from H.

However, i f the path p has reached a source, we wi l l first check against the delay
constraint. I f no violation occurs, we wi l l take this path p into our routing solution.
Suppose that the path p is expanded from a port port[p), all the paths originating from
port{p) w i l l be removed from H. Furthermore, we wi l l process every path q where q
intersects with p. A l l these paths wi l l be considered in a non-decreasing order of their
Elmore delays. For each of these paths q, we wi l l check whether connecting g' to p in
the routing solution wi l l violate the delay constraint at port{q) as well as at any port in

3Note that the capacitance and resistance of the vias are neglected here for simplicity. The same assumption was made
in the previous work [65]. However, the via capacitance and resistance can be easily incorporated into our framework by
considering them when computing the delay of a path.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 34

the current clock tree under construction. I f any violation occurs, we wi l l just neglect
q and consider the next candidate. Otherwise, we wi l l take q into the routing solution
and connect it to p. We call these paths which do not come to the top of the heap but
are processed chain paths. Note that once a path is taken into the routing solution, all
the nodes on it w i l l be regarded as "sources" for later expansions, and all the paths
originating from its port w i l l be removed from H.

Wire length reduction is not directly addressed in our algorithm. But as we always
choose a path with the minimum delay to expand and delay is closely related to wire
length, paths with shorter wire lengths wi l l have a higher chance to be selected and
processed. Therefore, we can expect a reduction in wire length using our approach. A
pseudo-code of this path expansion algorithm is shown in Algorithm 4.

Processing of Chain Paths

In the above path expansion algorithm, after a path p is taken into the routing solution,

we wi l l process all the paths that intersect with p in the algorithm. First of all, we w i l l

initialize a current routing tree Tp as the single path p and initialize a set chain{p) with

all the paths in H that intersect with p. The paths in chain{p) are sorted according their

Elmore delays in a non-decreasing order. We wi l l then do the following recursively

until the set chain{p) becomes empty. First, we wi l l pick and remove a path pi from

chain{p) that has the smallest Elmore delay. We wi l l then check i f connecting pi to Tp
wi l l violate the delay constraint for port{pi) as well as for all the existing ports in Tp. I f

yes, Pi w i l l be neglected and the next path in chain{p) w i l l be considered. Otherwise, pi
wi l l be added into Tp and all the paths originating from port{pi) w i l l be removed from

H. Furthermore, all the paths in H that intersect with pi w i l l be added into chain{p)
recursively.

3.3.2 Pre-processing to Connect Critical ports

The path expansion algorithm does not guarantee connecting all the ports to the sources
successfully, especially when the user specified delay constraint is too stringent. I f there
are critical ports (far away from sources or with very large port capacitance) which are
harder to satisfy the requirement, it w i l l be better to generate smaller trees for them

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 35

Algorithm 4: Path expansion algorithm 一 “

1 begin

2 while H is not empty do

3 p = delete jmin{H)\

4 \ip connects to source and d{p) < D then

5 Tp

6 clean up H\

7 II remove all paths in H that originate from port p

8 foreach p' intersects with p do

9 chain{p) 4 -

10 end

11 while chain (p) is not empty do

12 q = delete jmin{chain{p));

13 if adding q to Tp does not violate D constraint then

14 connect g to Tp;

15 foreach p' intersects with q do

16 chain (p) p' •’

17 e n d

18 clean up H.,

19 II remove all paths in H that

20 // originate from port q

21 end

22 end

23 Store Tp as one clock tree in the solution;

24 else
25 H -(— expansion of p in selected directions;

26 end

27 end

28 end

first before handling others. Therefore, our post-grid clock routing algorithm involves

iterations of the path expansion algorithm and w i l l identify critical ports that fail to be

connected to a source in the previous iteration. Those critical ports w i l l be given higher

priority to be processed in the next path expansion iteration such that smaller clock trees

are more likely to be generated to connect them.

The pseudo-code in Algori thm 3 summarizes the overall flow of our approach. We

create a set of critical ports Pc which is initialized as empty We then enter the path

expansion iterations in which we first execute the path expansion algorithm on the set

of ports in P。. This gives the critical ports a higher priority to be routed to the sources.

We wi l l then invoke the path expansion algorithm on the remaining ports P — P。Note

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 36

that these remaining ports may also be connected to the trees constructed for the critical
ports. After that, all the ports that cannot be routed to a source in this round wi l l be
added to P。. Priorities also exist in P。in which a higher priority is given to those most
recently added ports. We repeat these steps until all the ports are connected or the
number of iterations exceeds a user defined l imit K ^

3.3.3 Post-processing to Reduce Capacitance

For all the data sets, there are two types of wires on each layer with capacitance and

resistance tradeoffs^. The first type has higher capacitance but lower resistance per

unit length, while the second type has lower capacitance but higher resistance per unit

length. The per unit length delay of type-one wire is less than that of type-two wire on

all the layers. In our path expansion algorithm, we wi l l first use type-one wire on all

layers to optimize delay as much as possible. A post-processing step is then performed

to reduce the total wire capacitance as long as the delay constraint is maintained by

replacing the wire types. Two techniques, wire replacement and topology refinement,

are invoked in this post-processing step.

Wire Replacement

This refinement process is done for all trees in the clock network one after another with
the following steps. First, all the terminal ports in the current tree are stored in a port
pool Px in which they are sorted in a non-decreasing order of their Elmore delays, and
the port Pi with the largest delay in the tree wi l l be recorded. We wi l l then sequentially
explore all the ports in Pj：. Without loss of generality, lets assume that the currently
processing port is Pi, and node Pj is the parent node of Pi in the tree. We use e{Pi)
to denote the edge connecting Pi and Pj. We wi l l then check whether any violation
occurs i f e(Pi) is replaced by the second type of wire. I f not, we wi l l replace it with the
second type of wire and set Pi 二 Pj. This step is repeated until the delay constraint is
violated at any port in the current tree, or when Pi becomes an ancestor of the node Pi
(since we do not want to increase the largest delay in this tree). Port Pi wi l l be finally

4ln this case, the algorithm fails to converge to a feasible solution. Note that this may happen when the delay constraint is

too stringent.
5Our algorithm can also handle the case that multiple types of wire are available on each layer.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 37

explored after all other ports in the tree have been processed. In our implementation, the
above process is repeated three times, as we find that for most test cases, running more
iterations of this wire replacement process brings little or no capacitance reduction. The
pseudo-code in Algorithm 1 details the flow of this wire replacement process.

Table 3.1: Comparisons with TG (with topology refinement only for post-processing)

Test No. Capacitance Wire Length Delay Runtime

Cases Sinks (pf) (mm) (ps) (s)

TG PE* Improvement TG PE* Improvement
TG PE*

a^i 灼 〒 % yi y2 〒 %
testl 300 3.3 2.6 (2.8) 20.9 (16.0) 12.6 10.0(10.6) 20.1 (15.5) 0.45 0.02 0.27

test2 1846 13.7 9.7 (10.6) 29.2 (22.4) 42.9 32.3 (34.9) 24.8 (18.6) 1.15 0.10 2.72

tests 836 8.1 5.2 (5.8) 36.7 (28.2) 32.2 20.6 (23.1) 36.7 (28.5) 0.80 1.35 3.01

test4 502 5.3 4.0 (4.5) 23.8 (14.6) 12.4 9.5 (11.0) 22.8 (11.0) 1.35 0.03 2.89

tests 137 1.4 1.1 (1.2) 21.0(15.7) 3.4 2.7 (3.1) 19.4(10.5) 1.10 0.01 0.09

test6 724 7.9 5.7 (6.2) 27.0 (21.7) 18.8 14.2(15.5) 24.6 (17.4) 1.25 0.05 0.68

test? 981 9.9 7.5 (8.2) 23.8 (17.2) 23.2 17.9 (19.9) 22.9 (14.1) 1.45 0.05 1.00

tests 538 5.9 4.5 (4.8) 24.6 (18.0) 14.1 10.8 (12.2) 23.8 (13.3) 1.80 0.04 0.49

test9 1915 19.9 14.3 (15.6) 28.3 (21.5) 46.1 33.1 (37.0) 28.0(19.7) 2.75 0.13 3.27

testlO 1134 10.7 8.6(9.4) 19.6 (12.4) 25.8 20.1 (22.0) 22.2 (14.8) 1.90 0.09 6.92

testl 1 724 6.6 4.9 (5.3) 25.0 (18.9) 13.5 10.5 (11.3) 23.3 (16.5) 1.05 0.04 2.95

testl2 225 2.5 2.0 (2.1) 20.1 (13.8) 6.3 4.9 (5.4) 21.9 (13.7) 1.30 0.01 0.17

testis 859 9.5 7.2 (7.6) 24.1 (19.3) 24.1 18.8 (20.4) 22.2 (15.4) 1.10 0.06 0.93

testl4 366 3.9 3.1 (3.3) 20.7 (15.9) 9.5 7.8 (8.5) 18.3 (10.8) 0.95 0.04 0.30

Ave. 792 7.7 5.7 (6.2) 24.6 (18.2) 20.4 15.2 (16.8) 23.6 (15.7) 0.14 1.84

Note 1: PE* denotes our delay-driven path expansion algorithm with topology refinement only for post-processing.
Note 2: Both TG and PE* use just type one wire on every layer.

Note 3: The figures inside brackets denote the results before the post-processing techniques.

Topology Refinement

In the path expansion algorithm, we wi l l expand a path p upwards as long as the end

node of p is at a via connecting to the upper layer. Besides, chain paths are greedily

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 38

Table 3.2: Comparisons with TG (using all techniques)

Test No. Capacitance Wire Length Delay Runtime

Cases Sinks (pf) (mm) (ps) (s)

TG PE TG PE TG PE

testl 300 3.3 2.3 12.6 10.6 0.45 0.02 0.23

test2 1846 13.7 4.9 42.9 33.4 1.15 0.10 2.85

tests 836 8.1 4.2 32.2 22.4 0.80 1.35 2.78

test4 502 5.3 1.6 12.4 9.9 1.35 0.03 2.99

test5 137 1.4 0.5 3.4 2.8 1.10 0.01 0.10

test6 724 7.9 2.4 18.8 14.5 1.25 0.05 0.78

test? 981 9.9 3.0 23.2 17.9 1.45 0.05 1.14

tests 538 5.9 1.8 14.1 10.8 1.80 0.04 0.58

test9 1915 19.9 5.2 46.1 32.6 2.75 0.13 3.68

testlO 1134 10.7 3.2 25.8 19.6 1.90 0.09 7.08

testl 1 724 6.6 1.8 13.5 10.4 1.05 0.04 3.02

testl2 225 2.5 0.9 6.3 5.0 1.30 0.01 0.20

testis 859 9.5 3.2 24.1 19.1 1.10 0.06 1.07

testl4 366 3.9 1.3 9.5 7.9 0.95 0.04 0.34

Ave. 792 7.7 2.6 20.4 15.5 0.14 1.92

Note 1: "PE" denotes our regular approach of having two choices of
wires on each layer

processed as long as the delay bound is maintained. Thus, there are still chances to
bring down the capacitance by changing the topology of the initially constructed trees.
To achieve this, we wi l l employ a topology refinement step on all the terminal ports as
follows. First, we wi l l sort all the ports that are terminal nodes in the trees in a non-
increasing order of their Elmore delays in a port pool Py. These ports wi l l be processed
sequentially in the algorithm. For any port Pi being processed, we wi l l first disconnect
P^ from the tree it is currently connecting to, and record the total wire capacitance Cb of
the removed path pi. A new path expansion algorithm wi l l then be invoked at Pi which
is different from the previous path expansion algorithm that (1) only the second type
of wire w i l l be used during the path expansion process, (2) paths w i l l be expanded in
all possible directions and (3) the path with the minimum wire capacitance (instead of

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 39

the minimum wire delay) wi l l be selected and processed first in the expansion process.
New paths with wire capacitance less than C^ wi l l be inserted into the heap. Once
a path reaches a source or a tree (note that all trees are connected to sources now),
we w i l l check whether delay violation occurs i f the new path is taken. This new path
wi l l be taken i f no violation occurs. Otherwise, we wi l l continue the modified path
expansion algorithm until another path reaches a source or a tree, or when all the paths
are exhausted. I f all the paths are explored but no path is successfully connected, we
wi l l simply restore the original path pi. The above steps are repeated three times in our
implementation. Algorithm 2 shows the flow of this topology refinement process.

3.4 Experimental Results

3.4.1 Experiment Setup

The path expansion algorithm proposed in this paper is implemented in C++ and all
the experiments are carried out on a Linux machine with 4GB R A M and a Pentium 4
microprocessor running at 3.2GHz. We have also implemented the tree growing ap-
proach (TG) in [65] using C++ for comparisons. In the experiments, we assume that
the slew of the source signals is lOps. In the simulation, we are observing the 50%
delays to compare with the Elmore delays calculated using our algorithm. It has been
shown in [28] that the Elmore delay serves as a 50% delay upper bound with respect
to any ramp input signals of the chip. The first three test cases (test 1-3) are provided
by industry. The remaining eleven test cases are obtained from the circuits used in the
ISPD 2010 Clock Network Synthesis Contest [1]. For the ISPD test cases which have
no layer information given, five layers of reserved tracks are added according to the
track conventions used in test 1-3.

3.4.2 Validations of the Delay and Slew Estimation

As we have simplified our problem to consider only maximum delay constraint, we
want to validate the assumption that delay and slew of the circuit are closely related. We
have constructed a simple circuit containing only one port, and run our path expansion
algorithm to construct a tree structure for this port. For the tree we have constructed,

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 40

Tree delay

80(1

•

-5m丨
I 4(10 I—•—C.lcul.tedDel.y
"S —•»•—Simulated Delay
�311(1

2m丨
lUO ^
0 丨

1 2 3 4 5 6 7 8 9 10 n 12 13
node lD

Figure 3.5: Comparisons between computed and simulated delays in a tree structure

Tree Slew

10.15

10.1

： 1 0 . 0 5 """""^

3 • Calculated Slew

I 扮 欲 一 - Simulated Slew

M 10 —^―^ • • • —
9.95

9,9 I I I 1 I I I I I I I I
1 2 3 4 5 6 7 8 9 10 11 12 13

nodcID

Figure 3.6: Comparisons between computed and simulated slews in a tree structure

there are totally 13 nodes (including the source node and the port). We compare the
delays and slews we have calculated with the delays and slews we got by running hspice
simulations. The detailed results for the tree structure are shown in Fig. 3.5 and Fig. 3.6.

We can see that for all the 13 nodes, the delays we calculated and the delays we
obtained from simulations are closely correlated to each other. For the slew, there is a
small gap between the estimated ones using the formula J { 2 . 2 R C y + {SiY and the
ones using hspice simulation. They are still very close to each other, and are highly
correlated with each other. We can also see that the differences between the simulated
slew and the calculated slew are very small, which confirms the correctness of the above

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 41

slew estimation.

3.4.3 Comparisons with the Tree Grow (TG) Approach

Since the approach in [65] considers only one type of wire on each layer, for fair com-

parison, we compare the result of our approach using just the first type of wire on every

layer (i.e., without the wire replacement step and use only type one wire in all the other

steps) with the result of [65] using the first type of wire on every layer. "PE*" de-

notes the approach using just the first type of wire on every layer and using topology

refinement only in post-processing step. In these experiments, we first get the lowest

achievable delays obtained by TG empirically on all the test cases and use these delays

as our delay bounds. The results are shown in Table 3.1. Column 3 and 6 show the total

wire capacitance and the total wire length generated by TG. The results of our approach

are shown in column 4 and 7. On average, our approach provides a 24.6% improve-

ment in the total wire capacitance and a 23.6% improvement in the total wire length

compared with TG respectively. The running times of both algorithm are shown in the

last two columns. As we can see that though our approach is slower, the runtimes are

still very practical. For all the test cases, the running times of our approach are within

seconds.

I f we allow both types of wires on each layer, further reduction in wire capacitance

can be obtained and the results are shown in Table 3.2. As we can see from the result,

our approach can make good use of the availability of different wire types to further

reduce the capacitance. For example, in test2, the wire capacitance can be reduced sig-

nificantly by 49% (from 9.68pf to 4.95pf) with the wire replacement step. On average,

the major path expansion algorithm, the topology refinement step and the wire replace-

ment step take 44%, 31% and 25% of the total running time respectively. Note that in

some cases, the running time of “PE，，is even larger than that of "PE*" although "PE"

does not perform the wire replacement step. This is because the inputs to the topology

refinement procedure in "PE*" and "PE" are different as "PE" does not perform wire

replacement. There are thus variations in the running times of the topology refinement

step.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 42

3.4.4 Lowest Achievable Delays

Our approach can actually produce solution with better delay than the TG approach.
We have run our algorithm on all the test cases to get the smallest achievable delays.
The results are shown in Table 3.3. For almost all the test cases, we can further reduce
the delays generated by TG. Take testS as an example, we can significantly reduce
the delay from O.SOps to 0.55ps, which shows an advantage of using our method in
satisfying stringent user specified delay limits. In practice, designers may not know
whether a delay l imit is achievable for a circuit. Our approach can help in determining
the lowest achievable delay by embedding the algorithm in a binary search loop. This
is possible since our approach wi l l take the delay l imit as an input constraint.

Table 3.3: Lowest achievable delays

Test Capacitance Wire Length Delay Runtime

Cases (pf) (mm) (ps) (s)

testl 2.27 10.6 0.45 0.20

test2 6.08 34.6 0.47 4.69

tests 5.06 24.6 0.55 4.56

test4 1.75 10.2 1.00 2.12

tests 0.55 3.0 0.86 0.12

test6 2.83 15.5 0.83 1.01

test? 3.02 18.0 1.35 1.60

tests 1.86 11.2 1.32 0.50

test9 5.45 33.7 1.95 28.22

testl 0 3.28 20.1 1.67 22.27

testl 1 1.92 10.7 0.89 2.87

test l2 0.91 5.1 1.12 0.22

tes t i s 3.43 19.9 0.90 1.47

test 14 1.48 8.4 0.67 0.40

3.4.5 Simulation Results

We further validate our results using hspice simulations. The slew of the input signals

are set to be lOps. The estimated slew of the circuits are shown in column three us-

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 43

ing y/ {2.2RCY + (茂尸 according to [37], where RC is replaced by the largest Elmore
delay of the circuit. Detailed results are shown in Table 3.4. As we can see from the
simulation results, The delay and slew we calculated is very close to the simulation
results.The correlation coefficient is over 99% between the simulated delay and calcu-
lated delay while it is over 98% between the simulated slew and calculated slew. This
verifies the correctness of our method.

Table 3.4: Simulation results for tree
Test

Calculated Results Simulation Results
Cases

Delay (ps) Slew (ps) Delay (ps) Slew (ps)

testl 0.45 10.05 0.45 10.07

test2 1.14 10.32 1.14 10.24

tests 0.80 10.15 0.80 10.14

test4 1.35 10.43 1.35 10.36

tests 1.09 10.29 1.09 10.25

test6 1.24 10.37 1.24 10.32

test? 1.43 10.50 1.43 10.51

tests 1.78 10.76 1.78 10.90

test9 2.75 11.69 2.70 11.41

testlO 1.90 10.84 1.90 11.02

testl 1 1.05 10.26 1.05 10.24

testl 2 1.29 10.40 1.28 10.31

test is 1.09 10.29 1.09 10.24

test 14 0.95 10.22 0.95 10.20

Chapter 4

Non-tree Based Post-Grid Clock Routing
Problem

4.1 Introduction

A l l the above techniques focus on constructing trees for the clock distribution network.
To make our approach more practical and to handle some difficult cases, we have al-
so considered non-tree structures in our algorithm. Our main objective with non-tree
topology is to reduce the maximum delays of the ports. In practice, there are cases
in which a small number of ports have exceptionally large capacitances that even its
shortest direct connection to the nearest source wi l l have a delay exceeding the l imit
D. Since the shortest path delay is a lower delay bound one can achieve using tree
structure, we can never satisfy the delay requirement for this kind of problematic ports
without using non-tree topologies. For our general post-grid clock routing algorithm,
we wi l l first identify those problematic ports and construct some non-tree structures to
bring down their delays to be within the delay l imit D. After connecting all those prob-
lematic ports, the remaining ports wi l l be connected using the previous post-grid clock
routing algorithm in chapter 3. Note that for the remaining ports, they are also allowed
to connect to the non-tree structures constructed for the problematic ports, as long as no
delay violation occurs. Fig. 4.1 shows the overall flow of our general post-grid clock
routing algorithm.

A general RC network can be denoted by a graph G 二 (V"’ E), where V denotes all
the sources, sinks and internal nodes, and E denotes the interconnections between all

44

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 45

Input

Initialize the set
of critical ports

as empty

i
Problematic port

identification

— i
Non-tree

construction

< ; ^ a t i s f y delay l im i t?^^^^
NO ^ ^ ^ ^

Yes
1 r

Path expansion on
critical ports

，r
Sequentially path

expansion on ports in
subclusters

，‘

^ ^ ^ ^ ^ ^ ^ ^ Yes Add those
Any ports n o t ^ ^ ^ - ^ unconnected ports
connected? into the set of

critical ports

No
V

Post-processing
•

•
Output

Figure 4.1: General post-grid clock routing algorithm

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 46

the nodes in y . The Elmore delay at node i, denoted as ti, can be expressed as

力厂E(茂，灼 （4.1)
j

where Cj is the ground capacitance at a node j in V. The transfer resistance Rij is
equal to the voltage at node i when l A current is injected into node j while all other
node capacitances are zero [61,78]. In the special case where we have a tree topology,
R、j is simply the total resistance along the common path shared by node i and j [61,78].
We can decompose a general RC network into a spanning tree T 二 (V, Et) and several
crosslinks Ei [9]. The computational model in [9] can be used to evaluate the delay at
different nodes when crosslinks exist in the clock network. Consider a particular sink
i and assume that its original delay is U. For a l ink connecting node u and w with
capacitance C/ and resistance Ri, its effects on the delay of sink i can be analyzed as
follows.

To consider the effect of the link capacitance, we first add a load capacitance of 警

at node u and w. The delay of sink i after adding the load capacitance, denoted as U,
becomes

U = t, + + (4.2)
A

According to [9] the delay at node i, denoted by ti, after considering the l ink resis-

tance and can be computed as
f — f

r r , ^u ^w , A 1 、

U = U + n (4.3)
Rl+Vu- Vuj

where r “ r^,, and Vyj are the Elmore delay at node i, u, w respectively, when Cu = I, C^
= - 1 and all other node capacitances are set to be zero.

Using the above technique, we can evaluate the effects of a l ink on the Elmore delays
of the ports in a non-tree structure. We can further decide whether to accept or reject a
l ink based on the computed delays.

4.2 Handling Ports with Large Load Capacitances

For problematic port with its shortest delay to the closest source larger than the delay

limit, there is no way to satisfy the delay constraint using a tree-based clock tree. We

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 47

must resort to non-tree topology for the clock network in order to solve the problem
successful. Details are shown in the following sections.

4.2.1 Problem Ports Identification

Here, we define problem ports as those ports whose smallest Elmore delays from the
source are still beyond our target delay l imit D. Identifying the problematic ports is
quite straightforward. A modified path expansion algorithm w i l l be utilized on all the
ports individually to first identify those problems ports, in which the ports can expand
toward all possible directions. When a port reaches a first source, the corresponding
delay Dmin wi l l be the lower bound delay we can achieve using tree structures. A l l
those ports with Dmin larger than our delay l imit D w i l l be classified as problematic
ports. Those problematic ports wi l l be selected to be processed first in our general
post-grid clock routing algorithm.

4.2.2 Non-Tree Construction

To handle these problematic ports whose shortest path delays exceed the delay l imit
D, we have extended our algorithm to first connect those problematic ports by a non-
tree structure to several sources to bring down the delay to within the l imit D, and
then connect the remaining ports to the sources. The non-tree structure is constructed
by connecting the problematic port to more than one sources by several paths and by
adding crosslinks between those paths.

Consider a particular problematic port P^, after we make a shortest path connection
Pi for port Pg we wi l l do the following steps to create a non-tree structure. First, we
wi l l expand from the first node rii of p i in the opposite direction to find another nearest
source. Let p2 be the new path. p2 wi l l be taken into the routing solution i f it helps in
reducing the delay of Pg. Then, all the crosslinks between and (note that crosslinks
can only exist at locations with reserved tracks) wi l l be recorded and examined. The
computational model in [9] is used to calculate the delays at the ports when crosslinks
exist. A l l the crosslinks that can reduce the delay of P^ wi l l be taken into the routing
solution one by one until the delay constraint is met, or when all the crosslinks are
exhausted. I f the delay is still violated after adding all the crosslinks, we wi l l set /?/ =

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 48

“；/\人
\八亡

Figure 4.2: Example of adding links

parent{ni) and repeat the above steps recursively with one edge up the original path pi
to find more sources and crosslinks.

After handling all the problematic ports, other ports wi l l be handled as usual ac-
cording to Algorithm 3. Note that we also allow other ports to connect to the non-tree
structures, as long as the delay constraint is not violated.

4.2.3 Wire Link Selection

Assume that we are dealing with the topology as shown in Fig. 4.2, the resistance and
capacitance of the currently inserted l ink mn are ri and q respectively. The impact of
the link capacitance can be analyzed by adding a capacitance of q / 2 at node n and node
m. Define rij as the lumped resistance along the unique path from node i to node j in
the tree. Let the vector i denote the delays of all the nodes in the tree after we added the
l ink capacitance, and U denote the delay at node i after we added the l ink capacitance.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 49

The vector i can be expressed as

tm + + Tarn)

i 二 ... (4.4)

tn + + an)

where tm and in are the original delays at node m and n
The Elmore delay of the network after inserting the l ink resistance r i can be com-

puted using the techniques proposed in [9]. Here, we use the vector p with n elements

where n is the number of nodes in the tree. We use pi to denote the element correspond-
• 八

ing to node i in p. Let t denote the delay vector after considering the resistance of the
A

crosslink. The delay at node i, denoted by ti, can be expressed as

r 7 tn ~ ^m / / t c 、

U = U , Pi (4.5)
ri + Pn — Pm

where pi, pn and pm are the Elmore delay at node i, n, and m respectively when Cn = 1,
Cm = — 1 and all the other nodes have zero capacitance. For p, we have

—厂am

P = ... (4.6)

” an

From equation (4.4), equation (4.5) and equation (4.6), the delay vector, i, can be cal-

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 50

Ciliated as

_r 7 ^n ——tm ~ t — t p
r i + P n - Pm

tm + 'o (^TgQ, + Tarn)
t - t +£L(r —r 、
^n im I o an ’ am J ~

= . . . P
『1 + 厂 a m + 『 a n

t n + 厂 sa + T a n)

十 \ £l(Or- r \ I (� _ 力 + 厂腿)
^m 丁 2 V sa 丁 ’ am J 丁 Rioop am

= ... (4.7)
十 I £L{Or r �—(亡广力计
f^n I 2 V sa ‘ ’ an J Rioop cm

where node a is the lowest common ancestor of node m and n, and Rioop is the total
resistance along the loop m ^ a ^ n ^ m. Denote the value of —(|(2r^sa + 厂am) +
—~川)2、a "_^ r纖）by I. Assume that we are now trying to reduce the delay at node

^Moop
m. For all the links between the two paths a — m and a 4 n, we wi l l calculate their

values of I and then sort them in descending order according to their values. The value

of I gives us some information on how effective a l ink is in order to reduce the Elmore

delay at node m. The larger the I is, the more effective wi l l be the l ink in reducing

the delay at node m and also possibly the delay of the descendant node of m. In our

implementation, all the links wi l l be considered sequentially and added to the network

temporally to check i f it w i l l help in reducing the delays of the problematic ports (Note

that when a crosslink is inserted, we wi l l compute the delays of the problematic ports

using the approach in [9].). A crosslink wi l l be accepted i f it can reduce the delay of the

problematic port. The crosslink insertion process wi l l be repeated until the user defined

delay l imit is satisfied or when all the links are exhausted.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 51

4.3 Path Expansion in Non-tree Algorithm

The path expansion algorithm here is basically the same as that in the previous tree

construction algorithm. Additionally, we also allow ports to connect to a non-tree struc-

ture as long as the delay l imit is not violated. In every new iteration, we also keep the

non-tree structures constructed in the previous iteration unchanged. For example, i f a

regular port a connect to a non-tree structure T constructed for the problematic ports,

the port a w i l l not be routed again in the next iteration of the main algorithm. A l l the

non-tree structures constructed in the previous round wi l l stay unchanged. Then the

next round of the path expansion algorithm starts. By doing this, we want to ensure that

the difficult ports are routed first before routing other relatively easier ports.

4.4 Limitations of the Non-tree Algorithm

Due to the limited number of available tracks, our non-tree algorithm does not always

converge to a feasible solution, especially when a large number of ports lie within a

small region of the chip with less available tracks. In this case, we can hardly find

useful sources and crosslinks, and the algorithm wi l l finally fail to find a feasible solu-

tion. Moreover, the existence of non-tree structures can “block，，the paths of other ports,

which is also a contributing factor to possible failure of the algorithm. When such fail-

ure occurs, we wi l l increase the user specified delay l imit D to further explore possible

solutions. When D is larger than the minimum delay among all the ports, which means

that there are no problematic ports, the non-tree algorithm automatically degenerates

into the path expansion algorithm.

4.5 Experimental Results

4.5.1 Experiment Setup

In the experiments, we use the same settings as used in section 3.4. The slew of the

source signal is set to be lOps. In hspice simulation, 50% delay is measured to compare

with the Elmore delay we have calculated. In addition, we have create another 14 test

cases based on the original benchmarks we have. We increase the capacitance of a

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 52

Nontree delay

500
450 f
400 ^
350 ^ ^

S 300 ^ ^ ^ ^ _

；250 / \ \ 二 一 ― t e d Delay
S 200 参 ^ i J » ! f C - Simulated Delay

� i ^
0 I I I I I I I I I 1 I

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

nodcID

Figure 4.3: Delay comparisons (Non-tree structure)

certain amount of ports (see section 4.5.4) in all the test cases and run our general clock

routing algorithm. Detailed experiment results are explained in the following sections.

4.5.2 Validations of the Delay and Slew Estimation

We use the same circuit that contains only one port as used in section 3.4.2 to validate

our delay and slew estimations. We have constructed a non-tree structure containing

53 nodes in total for this simple circuit. Detailed results about the delay and slew are

shown in Fig. 4.3 and Fig. 4.4.

We can see that the delay computational model can accurately compute the delays

of all the nodes within this non-tree structure. The slew predication is similar with the

results of the tree path expansion algorithm detailed in section 3.4.2. Although there is a

gap between the calculated results and the simulated results, their difference is relatively

small. From Fig. 4.4, we can see that they also correlate to each other quite well. This

again verifies the correctness of our slew predication method.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 53

Nontree slew

10.08 I

^ 1
酬 _ _ J ^

9 . 9 8 \

9 . 9 6 I I ^ • • • I

1 3 5 7 9 I I 13 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9 4 1 4 3 4 5 4 7 4 9 5 1 5 3

node l l)

Figure 4.4: Slew comparisons (Non-tree structure)

4.5.3 Lowest Achievable Delays

With the above non-tree techniques, our approach can actually produce solution with
even tighter delay bound than that in section 3.4.4. We have run our non-tree algo-
rithm on all test cases to get the smallest achievable delays. The results are shown in
Table 4.1. Compared with the original path expansion algorithm, our general post-grid
routing algorithm can further decrease the lowest achievable delays by constructing
non-tree structures for those problematic ports. Take testl as an example, we can fur-
ther reduce the lowest achievable delay from 0.45ps to 0.37ps. Actually, we can satisfy
more stringent delay limits for 10 out of 14 test cases compared with the results in
section 3.4.4. This clearly shows the effectiveness of our general post-grid routing al-
gorithm incorporating non-tree structures.

4.5.4 Results on New Benchmarks

To further validate the effectiveness of our proposed non-tree algorithm, we generate 14

test cases from the original ones (the new test cases have their names starting with an

"n"). These new test cases are generated as follows. We first sort the ports according to

their minimum Elmore delays, which is the delay when a port is connected to its nearest

source directly. Then we increase the capacitances of the first three ports in the list so

that their minimum delays increase by at least 50%. Detailed results on these new test

cases are shown in Table 4.2.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 54

Table 4.1: Lowest achievable delays (with non-tree technique)

Test Capacitance Wire Length Delay Runtime

Cases (pf) (mm) (ps) (s)

testl 2.70 10.8 0.37 0.19

test2 7.60 35.0 0.35 2.40

tests 5.45 23.7 0.55 4.08

test4 2.06 10.0 0.95 1.50

tests 0.74 3.0 0.78 0.10

test6 3.68 16.2 0.68 0.67

testV 3.68 17.6 1.32 1.55

tests 2.47 11.7 0.92 0.51

test9 6.52 32.8 1.95 6.81

testlO 3.93 19.5 1.57 7.90

testl 1 2.41 10.8 0.75 5.21

test 12 1.17 5.1 1.00 0.19

test is 4.54 20.6 0.65 3.70

testl4 2.02 8.9 0.52 0.74

Total capacitance, total wire length, delay limits, running time and number of prob-
lematic ports are shown in column 2-5 respectively. The delay limits D is obtained
empirically for all test cases. The second last column Dmin in Table 4.2 shows the
minimum delay of the problematic ports when they are connected to the nearest source
directly. Therefore, these are the lower bound delays achievable using a tree struc-
ture. We can see from the comparsion in the last column that our non-tree approach
can reduce further the delay by 23.4% on average. For ntestS and ntestl2, our non-tree
algorithm does not help much and it automatically degenerates into the original path
expansion algorithm (the result is thus a set of trees) because of the high density of the
ports especially in the surroundings of the problematic ports. For all the other test cases,
our proposed non-tree approach can successfully generate a solution in which the max-
imum port delay is less than the lower bound delay shown in the second last column.
This clearly demonstrates the effectiveness of our proposed non-tree algorithm.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 55

4.5.5 Simulation Results

We also validate our results using hspice simulation. The slew of the input signals are
set to be lOps. The estimated slew of the circuits are shown in column three using
^ { 2 . 2 R C y + {SiY according to [37], where RC is replaced by the largest Elmore de-
lay of the circuit. Detailed results are shown in Table 4.3. As we can see from the
simulation results, The delay and slew we calculated is very close to the simulation
results. The correlation coefficient is over 99% between the simulated delay and calcu-
lated delay while it is over 96% between the simulated slew and calculated slew. This
verifies the correctness of our method.

Table 4.2: Non-tree algorithm
Test Capacitance Wire Length Delay Dmin Improvement

Runtime(s) k —
Cases (pf) (mm) {x ps) (y ps) (〒％)

ntestl 2.4 11.1 0.45 0.1 3 0.68 33.8

ntest2 6.5 36.7 0.45 1.0 3 0.71 36.6

ntestS 5.1 25.2 0.60 3.3 3 0.51 -18.5

ntest4 2.0 11.3 1.00 1.0 3 1.26 20.8

ntest5 0.7 3.2 1.03 0.1 3 1.29 20.3

ntest6 3.5 17.6 0.66 0.5 3 1.25 47.0

ntestV 3.3 20.0 1.35 0.8 3 2.02 33.3

ntestS 2.1 12.5 1.30 0.2 3 1.98 34.4

ntest9 6.2 38.0 2.00 3.5 3 2.42 17.4

ntestlO 3.6 22.1 1.80 3.1 3 2.33 22.6

ntestl 1 2.3 12.1 0.80 3.2 3 1.24 35.4

ntestl 2 0.9 5.5 1.70 0.1 3 1.65 -3.0

ntestl 3 3.5 20.7 1.25 0.4 3 1.35 7.2

ntestl 4 1.8 9.5 0.58 0.3 3 0.98 40.8

Ave. 3.1 17.5 1.3 3 23.4
Note: k denotes the number of problematic ports in the test case.

CHAPTER 4. NON-TREE BASED POST-GRID CLOCK ROUTING PROBLEM 56

Table 4.3: Simulation results for non-tree
Test

Calculated Results Simulation Results
Cases

Delay (ps) Slew (ps) Delay (ps) Slew (ps)

ntestl 0.45 10.05 0.45 10.07

ntest2 0.45 10.05 0.45 10.08

ntestS 0.60 10.09 0.60 10.11

ntest4 1.00 10.24 0.99 10.24

ntest5 1.03 10.25 1.03 10.23

ntest6 0.66 10.10 0.66 10.14

ntest? 1.35 10.43 1.35 10.43

ntestS 1.29 10.40 1.29 10.37

ntest9 2.00 10.93 2.00 11.15

ntestl 0 1.80 10.76 1.80 10.92

ntestl 1 0.80 10.15 0.80 10.17

ntestl 2 1.70 10.68 1.68 10.73

ntestl 3 1.25 10.37 1.25 10.33

ntestl 4 0.58 10.08 0.58 10.11

Chapter 5

Efficient Partitioning-based Extension

5.1 Introduction

Partitioning is a widely used technique to solve a difficult problem by partitioning the
problem into smaller and, usually, easier ones. Moreover, one can expect a running
time speed up by partitioning a problem into smaller ones, since it is easier and faster
to solve these smaller problems. Partitioning has been successfully used in many place-
ment, floorplanning and routing algorithms [2,3,16,21,22,24,30,56,68]. A drawback
of this partitioning approach is that the solution quality wi l l usually degenerate, as the
algorithm wi l l fail to consider the global information when dealing with individual sub-
problems. However, in our problem, this technique can be applied successfully without
affecting the solution quality because that we can observe from the resulting clock net-
work that a port w i l l be connected to the nearer grid most of the time. Motivated by these
works and with an objective of reducing the runtime, we also proposed our partitioning-
based clock routing algorithm, in which we partition all the ports into several smaller
clusters. For each cluster, we wi l l run our clock routing algorithm to construct clock
trees for that particular cluster. After connecting the ports in each cluster, we combine
the results to form the final clock network. Fig. 5.1 shows a sample circuit which is
divided into four regions using our partition technique.

57

CHAPTER 5. EFFICIENT PARTITIONING-BASED EXTENSION 58

；；；：；：；.；：；：；：；；；：；；̂：；：；：；；；；：；；；；；：：；：：：；：：：：：：：：：：：三;:::::::::::::::::;：. A

:-」•….二 -?:--’_;- I 丄二 ‘ [. __[-_：*：_ ：•：：：：I*：；：. ；.... 1 ； ；

二...:...:::..-:.:…：•："•••：：•：：：：：：：：：：：；：：：：：；：：：：：：：：：：：•：：；：：：•：:-.•:.:-.:-.:...-——B

-i：：.̂-.®----：：：̂^ ； ‘“ ， !：•--•-•「 ；：：：•" 二 ： 9

二] [： 二 二 二 ：：：士：：二̂ ^

.•"•-.•-•-， ，-參 ••'•-•1 •-•-T----'-

Figure 5.1: A sample circuit divided into four regions

5.2 Partition-based Extension

With the well designed source grid and multi-layer reserved tracks, a port can always
be expected to connect to the nearest source grid as long as no delay violation occurs.
Actually in the final clock network obtained using the path expansion algorithm de-
scribed in Chapter 3 and Chapter 4, we found that a port would rarely navigate away
from the nearer source grid and connect to a far away one. With this observation, we
propose a technique to cluster all the ports into several small clusters, and employ the
same path expansion algorithm as described in Chapter 3 and Chapter 4 on these smaller
clusters to construct the clock network. Fig. 5.2 shows the flow of our main algorithm
incorporating this partitioning technique.

The whole chip is divided into several smaller regions according to the source grid
(either horizontal or vertical). The positions of the source grid^ wi l l be recorded. The
intermediate positions between two successive source grids wi l l be used as the guideline
to split the chip into smaller partitions. After we get all the partitions, partitioning of

I If the source grid is hor izonta l , y coord ina tes will be recorded , o therwise x will be recorded .

CHAPTER 5. EFFICIENT PARTITIONING-BASED EXTENSION 59

Input

i
Initialize the set
of critical ports

as empty

Y
Partition ports into

clusters

M
Y

Path expansion on
critical ports

Y
Sequentially path

expansion on ports in
clusters

女
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Add those

Any ports n o t ^ " " ^ ^ ^ Yes ^ unconnected ports
^ ^ ^ ^ ^ connected? ^ into the set of

^ ^ ^ ^ ^ critical ports

No
Y

Post-processing

y

Output

Figure 5.2: An overall flow of our partition-based algorithm

CHAPTER 5. EFFICIENT PARTITIONING-BASED EXTENSION 60

I A ！ —
I I Source
「 7 " Grid

“I B r A B C D
. . . . p . ^ . . Partit ion

I C] ^ j Region

‘ I J i Middle Line of two
i I source grid l ines

Figure 5.3: An example of partitioning

ports is rather straightforward: all the ports lies in the same partition w i l l be grouped
into the same cluster. We can also employ the same idea on these smaller clusters to
further divide them into even smaller ones. For example, i f the source grid is horizontal,
we can further divide the cluster vertically, and vice versa. However, we found that this
second level clustering might have adverse effect on the solution quality. This is mainly
because we do not have a good guideline on where this second level division should be
made. Unlike the first level division that we can safely partition the ports according to
the positions of the source grids, there is no natural partitioning of the ports at the second
level. This has been verified in our experiments that when incorporating this second
level division, the path expansion algorithm usually fails to find a feasible solution
under a particular delay limit. However, i f we use only one level of partitioning, we can
successfully satisfy the delay limit. Therefore in our implementation, we only group
all the ports into smaller clusters horizontally or vertically (according to the direction
of the source grid) without further dividing the clusters into sub-clusters. As shown in
Fig. 5.3, we can partition this simple circuits into sub-regions A, B, C and D using the
method described above.

After dividing the ports into clusters, we wi l l sequentially employ the path expan-
sion algorithm on those clusters to connect all the ports. This procedure is embedded
into the main algorithm in line 9 while keeping all the other parts of the main algorithm
unchanged. Since the original problem is divided into smaller ones, we can see signif-
icant improvement in running time compared with the original methods without using

CHAPTER 5. EFFICIENT PARTITIONING-BASED EXTENSION 61

partitioning technique. As detailed in section 5.3, the largest running time improvement
is over 48% among all the test cases, while the average run time improvement is over
26%.

5.3 Experimental Results

5.3.1 Experiment Setup

In the experiments, we use the same settings as in section 3.4. The slew of the source

signal is set to be lOps. In the hspice simulation, 50% delay is measured to compare

with the Elmore delay we have calculated. Detailed experimentalal results are explained

as follows.

5.3.2 Running Time Improvement with Partitioning Technique

To demonstrate the effectiveness of our proposed partition-based path expansion algo-
rithm, we compare its results with that without using this partitioning technique. The
running times of both algorithm are shown in Table 5.1.

We can see that our proposed partition-based acceleration technique can further im-
prove the running time by 26.1% on average while maintaining approximately the same
solution quality (with minor improvement on average). The largest running time im-
provement is over 48%. These results clearly prove the effectiveness of this technique.

CHAPTER 5. EFFICIENT PARTITIONING-BASED EXTENSION 62

Table 5.1: Running time comparisons

Test Capacitance Running Time Delay

Cases (pf) (s) (ps)

PE PPE Improvement
PE PPE

XI X2 ^ ^ %

testl 2.61 2.61 0.27 0.24 9.8 0.45

test2 9.68 9.67 2.72 1.39 48.9 1.15

tests 5.16 5.12 3.01 2.67 11.5 0.80

test4 4.01 4.00 2.89 1.51 48.0 1.35

tests 1.09 1.09 0.09 0.08 11.8 1.10

test6 5.73 5.73 0.68 0.48 29.2 1.25

test? 7.50 7.51 1.00 0.61 38.8 1.45

tests 4.45 4.45 0.50 0.37 25.2 1.80

test9 14.28 14.26 3.27 2.04 37.7 2.75

test 10 8.60 8.59 6.92 7.15 -3.4 1.90

testl 1 4.93 4.92 2.95 1.76 40.5 1.05

testl2 1.98 1.98 0.17 0.14 16.0 1.30

testis 7.20 7.19 0.93 0.62 33.0 1.10

test 14 3.10 3.10 0.30 0.25 17.8 0.95

Ave. 5.74 5.73 1.84 1.38 26.1
Note : PE denotes the original algorithm without this partitioning technique.

Note 2: PPE denotes the partitioning-based path expansion algorithm.

Chapter 6

Conclusion

In this thesis, we review the clock routing problem in the literature and describe many
classical clock routing algorithms, such as H-tree, Method of Means and Medians (M-
MM) , Geometric Matching Algorithm (GMA), Deferred Merge Embedding(DME), and
Tree Growing (TG) algorithm on this topic. For the problem of post-grid clock routing
that appears in high performance microprocessor designs today, we present an efficient
delay-driven path expansion algorithm using the heap data structure to construct post-
grid clock networks on reserved multi-layer metal tracks. We also propose a partition-
based acceleration technique to further speed up the running time based on some key
observations of this particular post-grid clock routing problem. Experimental results
show the effectiveness of our proposed partitioning-based technique. We have com-
pared our approach with the state-of-the-art algorithm on this problem and show that
our algorithm can significantly improve over this work with a 24.6% reduction in wire
capacitance and 23.6% reduction in wire length on average while maintaining very
practical runtimes. Our algorithm also outperforms the previous method in terms of
minimum achievable delays. To make our approach more robust and complete, we have
extended the algorithm to allow non-tree structures in order to handle the ports with
exceptionally large load capacitances. A l l our results are verified using hspice simula-
tions. Our algorithm is expected to bring down the energy consumption and improve
grid-to-port delay in post-grid clock networks. Our algorithm can be applied to high
performance microprocessor designs in 45nm technology, and it may also be extended
to applications for ASICs with hybrid clock structures.

63

CHAPTER 6. CONCLUSION 64

• End of chapter.

Bibliography

1] ISPD 2010 High Performance Clock Network Synthesis Contest.
http://www.sigda.org/ispd/contests/10/ispdl0cns.html.

[2] S. Adya, S. Chaturvedi, J. Roy, D. Papa, and L Markov. Unification of partitioning,
placement and floorplanning. In Proceedings of the 2004 IEEE/ACM International
Conference on Computer-aided Design, pages 550-557. IEEE Computer Society,
2004.

3] C. Alpert and A. Kahng. Recent directions in netlist partitioning: a survey. INTE-

GRATION, the VLSI journal 19(1-2):1-81, 1995.

[4] F. Anderson, J. Wells, and E. Berta. The core clock system on the next generation

itaniuml microprocessor. In IEEE International Solid-State Circuits Conference,
volume 1, pages 146453, 2002.

[5] D. Bailey and B. Benschneider. Clocking design and analysis for a 600-MHz

Alpha microprocessor. IEEE Journal of Solid-State Circuits, 33(11): 1627-1633,
Nov 1998.

:6] H. Bakoglu, J. Walker, and J. Meindl. A symmetric clock-distribution tree and
optimized high-speed interconnections for reluced clock skew in ULSI and WSI
circuits. Proceedings of IEEE International Confrence of Computer Design, pages
118-122, 1986.

[7] W. Bowhill, R. Allmon, S. Bell, E. Cooper, D. Donchin, J. Edmondson, T. Fis-

cher, P. Gronowski, A. Jain, P. Kroesen, et al. A 300 MHz 64 b quad-issue C-

MOS RISC microprocessor. In IEEE International Solid-State Circuits Confer-
ence, pages 182—183. IEEE, 1995.

65

http://www.sigda.org/ispd/contests/10/ispdl0cns.html

BIBLIOGRAPHY 66

:8] P. Camporese, A. Deutsch, T. McNamara, P. Restle，and D. Webber. X Y grid tree

tuning method, Mar 2001. US Patent 6,205,571.

[9] P. Chan and K. Karplus. Computing signal delay in general RC networks by tree

link partitioning. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 9(8): 898-902, Aug. 1990.

10] Chao T.-H. and Hsu Y.-C. and Ho, J.-M. Zero skew clock net routing. In Proceed-

ings of the 29th ACM/IEEE Design Automation Conference, pages 518-523, Jun
1992.

11] Charles J. Alpert, Dinesh p. mehta, Sachin S. Sapatnekar. Handbook of Algorithms

for Physical Automation. CRC Press, 2007.

[12] B. Chazelle. Filtering search: A new approach to query-answering. In 24th Annual

Symposium on Foundations of Computer Science, pages 122-132, 1983.

13] B. Chazelle and H. Edelsbmnner. An optimal algorithm for intersecting line seg-

ments in the plane. In 29th Annual Symposium on Foundations of Computer Sci-
ence, pages 590-600, 1988.

[14] H. Chen, C. Yeh，G. Wilke, S. Reddy, H. Nguyen, W. Walker, and R. Murgai. A

sliding window scheme for accurate clock mesh analysis. In IEEE/ACM Interna-

tional Conference on Computer-Aided Design, pages 939-946, Nov. 2005.

[15] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-efficient schedul-

ing of real-time tasks in multiprocessor systems. IEEE Real-Time and Embedded

Technology and Applications Symposium, 0:408-417, 2006.

[16] T. Chen, Y. Chang, and S. Lin. IMF: Interconnect-driven multilevel floorplanning

for large-scale building-module designs. In IEEE/ACM International Conference

on Computer-aided Design, pages 159-164. IEEE, 2005.

[17] E. Chiprout. Fast flip-chip power grid analysis via locality and grid shells. In

Proceedings of the 2004 IEEE/ACM International Conference on Computer-aided
Design, pages 485-488. IEEE Computer Society, 2004.

BIBLIOGRAPHY 67

[18] J. Cong, A. Kahng, C. Koh, and C. Tsao. Bounded-skew clock and steiner routing
under elmore delay. In Proceedings of the 1995 IEEE/ACM International Confer-
ence on Computer-aided Design, pages 66-71. IEEE Computer Society, 1995.

[19] J. Cong, A. Kahng, and G. Robins. Matching-based methods for high-performance
clock routing. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 12(8): 1157-1169, 1993.

[20] J. Cong and C. Koh. Minimum-cost bounded-skew clock routing. In IEEE In-

ternational Symposium on Circuits and Systems, volume 1, pages 215-218. IEEE,
1995.

[21] J. Cong, M. Romesis, and J. Shinnerl. Fast floorplanning by look-ahead enabled
recursive bipartitioning. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 25(9): 1719-1732, 2006.

22] J. Cong and Y. Zhang. Thermal-driven multilevel routing for 3-D ICs. In Proceed-

ings of the 2005 Asia and South Pacific Design Automation Conference, pages
121-126. ACM, 2005.

；23] D. Dobberpuhl, R. Witek, R. Allmon, R. Anglin, D. Bertucci, S. Britton, L. Chao,
R. Conrad, D. Dever, B. Gieseke, et al. A 200-MHz 64-b dual-issue CMOS mi-
croprocessor. IEEE Journal of Solid-State Circuits, 27(11): 1555-1567’ 1992.

[24] A. Dunlop and B. Kernighan. A procedure for placement of standard cell VLSI

circuits. IEEE Transactions on Computer-Aided Design, 4(l):92-98, 1985.

25] M. Edahiro. Minimum skew and minimum path length routing in VLSI layout

design. NEC Research and Development, 32(4):569-575, 1991.

[26] A. Fisher and H. Kung. Synchronizing large systolic arrays. Technical report,

Camegie-Mellon Univ., Pittsburgh, PA (USA). Dept. of Computer Science, 1982.

27] M. Franklin and D. Warm. Asynchronous and clocked control structures for VLSI

based interconnection networks. In ACM SIGARCH Computer Architecture News,
volume 10, pages 50-59. IEEE Computer Society Press, 1982.

BIBLIOGRAPHY 68

28] R. Gupta, B. Tutuianu, and L. Pileggi. The Elmore delay as a bound for RC trees
with generalized input signals. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 16(1):95-104, Jan 1997.

:29] R. Heald, K. Aingaran, C. Amir, M. Ang, M. Boland, A. Das, R Dixit, G. Goulds-
berry, J. Hart, T. Horel, et al. Implementation of a 3rd-generation SPARC V9 64
b microprocessor. In IEEE International Solid-State Circuits Conference, pages
412-413. IEEE, 2000.

[30] D. Huang and A. Kahng. Partitioning-based standard-cell global placement with
an exact objective. In Proceedings of the 1997 International Symposium on Phys-
ical Design, pages 18-25. ACM, 1997.

31] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In Proceedings

of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
37-46. Society for Industrial and Applied Mathematics, 2003.

32] Jackson, Srinivasan, and Kuh. Clock routing for high-performance ICs. Proceed-

ings of the 27th Design Automation Conference, 0:573-579, 1990.

33] A. Kahng, J. Cong, and G. Robins. High-performance clock routing based on

recursive geometric matching. In Proceedings of the 28th Design Automation
Conference, pages 322-327, 1991.

34] A. Kahng and G. Robins. On optimal interconnections for VLSI. Kluwer Academ-

ic Pub, 1995.

[35] A. Kahng, C. Tsao, and D. Huang. On the bounded-skew clock and steiner routing

problems. In Proceedings of the ACM/IEEE Design Automation Conference, pages
508-513. A C M Press, 1995.

36] A. Kahng and C.-W. A. Tsao. Planar-DME: a single-layer zero-skew clock tree

router. IEEE Transactions on Computer-A ided Design of Integrated Circuits and
Systems, 15(1):8 -19, Jan 1996.

[37] C. Kashyap, C. Alpert, F. Liu, and A. Devgan. Closed-form expressions for ex-

tending step delay and slew metrics to ramp inputs for RC trees. IEEE Transaction-

BIBLIOGRAPHY 69

^ on Computer-Aided Design of Integrated Circuits and Systems, 23(4):509-516,
Apri l 2004.

[38] B. K.D. and K. A.B. Zero-skew clock routing trees with minimum wirelength.
In Proceedings of Fifth Annual IEEE International ASIC Conference and Exhibit,
pages 17-21, Sep. 1992.

[39] N. Kurd, J. Barkamllah, R. Dizon, T. Fletcher, and P. Madland. A multigigahertz
clocking scheme for the Pentium(R) 4 microprocessor. IEEE Journal of Solid-

State Circuits, 36(11): 1647-1653, Nov. 2001.

[40] W. Lam, J. Jam, C. Koh, V. Balakrishnan, and Y. Chen. Statistical based link in-
sertion for robust clock network design. In Proceedings of the 2005 IEEE/ACM

International Conference on Computer-aided Design, pages 588-591. IEEE Com-
puter Society, 2005.

41] W. Lam and C. Koh. Process variation robust clock tree routing. In Proceedings of

the 2005 Asia and South Pacific Design Automation Conference, pages 606-611.
ACM, 2005.

42] S. L in and C. Wong. Process-variation-tolerant clock skew minimization. In Pro-

ceedings of the 1994 IEEE/ACM International Conference on Computer-aided De-
sign, pages 284-288. IEEE Computer Society Press, 1994.

[43] Y. Liu, S. Nassif, L. Pileggi, and A. Strojwas. Impact of interconnect variations on

the clock skew of a gigahertz microprocessor. In Proceedings of the 37th Annual

Design Automation Conference’ pages 168-171. ACM, 2000.

44] B. Lu, J. Hu, G. Ellis, and H. Su. Process variation aware clock tree routing.
In Proceedings of the 2003 International Symposium on Physical Design, pages
174-181. ACM, 2003.

[45] T. Mittal and C. Koh. Cross l ink insertion for improving tolerance to variations in

clock network synthesis. In Proceedings of the 2011 International Symposium on

Physical Design, pages 29-36. ACM, 2011.

BIBLIOGRAPHY 70

[46] M. Mori, H. Chen, B. Yao, and C. Cheng. A multiple level network approach for

clock skew minimization with process variations. In Proceedings of the 2004 Asia

and South Pacific Design Automation Conference, pages 263-268. IEEE Press,
2004.

47] M. Mori, H. Chen, B. Yao, and C.-K. Cheng. A mulitple level network approach
for clock skew minimization with process variations. In Proceedings of Asia and

South Pacific Design Automation Conference, pages 263-268, 2004.

48] U. Padmanabhan, J. Wang, and J. Hu. Statistical clock tree routing for robustness

to process variations. In Proceedings of the 2006 International Symposium on
Physical Design, pages 149-156. ACM, 2006.

49] U. Padmanabhan, J. Wang, and J. Hu. Robust clock tree routing in the presence of

process variations. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(8): 1385-1397, 2008.

[50] D. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Har-

vey, R Harvey, H. Hofstee, C. Johns, et al. Overview of the architecture, circuit

design, and physical implementation of a first-generation cell processor. IEEE

Journal of Solid-State Circuits, 41(1): 179-196, Jan. 2006.

51] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital integrated circuits. Prentice

Hall, 2002.

[52] A. Rajaram, J. Hu, and R. Mahapatra. Reducing clock skew variability via

crosslinks. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 25(6): 1176-1182, Jim. 2006.

；53] A. Rajaram and D. Pan. Fast incremental l ink insertion in clock networks for
skew variability reduction. In Proceedings of the 7th International Symposium on
Quality Electronic Design, pages 79-84. IEEE Computer Society, 2006.

[54] A. Rajaram and D. Pan. Variation tolerant buffered clock network synthesis with

cross links. In Proceedings of the 2006 International Symposium on Physical
Design, pages 157-164. ACM, 2006.

BIBLIOGRAPHY 71

55] A. Rajaram, D. Pan, and J. Hu. Improved algorithms for link-based non-tree clock

networks for skew variability reduction. In Proceedings of the 2005 International

Symposium on Physical Design, pages 55-62. ACM, 2005.

[56] A. Ranjan, K. Bazargan, S. Ogrenci, and M. Sarrafzadeh. Fast floorplanning for

effective prediction and construction. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 9(2):341-351, 2001.

[57] P. Restle, C. Carter, J. Eckhardt, B. Krauter, B. McCredie, K. Jenkins, A. Weger,

and A. Mule. The clock distribution of the power4 microprocessor. In IEEE

International Solid-State Circuits Conference, volume 1, pages 144-145. IEEE,
2002.

[58] P. Restle, T. McNamara, D. Webber, P. Camporese, K. Eng, K. Jenkins, D. Allen,

M. Rohn, M. Quaranta, D. Boerstler, et al. A clock distribution network for mi-

croprocessors. IEEE Journal of Solid-State Circuits, 36(5):792-799, 2001.

[59] P. Restle, A. Ruehli, and S. Walker. Mult i-GHz interconnect effects in micropro-

cessors. In Proceedings of the 2001 International Symposium on Physical Design,
pages 93-97, Apr. 2001.

[60] Restle P.J. and McNamara, T.G. and Webber, D.A. and Camporese, P.J. and Eng,

K.F. and Jenkins, K.A. and Allen, D.H. and Rohn, M.J. and Quaranta, M.P. and

Boerstler, D.W. and others. A clock distribution network for microprocessors. In

IEEE Journal of Solid-State Circuits, pages 184-187, 2000.

[61] A. Ruehli. Circuit analysis，simulation, and design: general aspects of circuit

analysis and design. North-Holland Publishing Co. Amsterdam, The Netherlands,

1986.

[62] R. Senthinathan, S. Fischer, H. Rangchi, and H. Yazdanmehr. A 650-MHz, lA -

32 microprocessor with enhanced data streaming for graphics and video. IEEE

Journal of Solid-State Circuits, 34(11): 1454-1465, 1999.

[63] G. Shamanna, N. Kurd, J. Douglas, and M. Morrise. Scalable, sub-lW, sub-1 Ops

clock skew, global clock distribution architecture for Intel Core i7/i5/i3 micropro-

cessors. In IEEE Symposium on VLSI Circuits (VLSIC), pages 83-84, June 2010.

BIBLIOGRAPHY 72

"64] R. Shelar. An algorithm for routing with capacitance/distance constraints for clock
distribution in microprocessors. In Proceedings of the 2009 International Sympo-
sium on Physical Design, pages 141-148, 2009.

[65] R. Shelar. Routing with constraints for post-grid clock distribution in micropro-

cessors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 29(2):245-249, Feb. 2010.

66] N. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer Academic
Publishers, 3rd edition, 1998.

67] H. Su and S. Sapatnekar. Hybrid structured clock network construction. In Pro-

ceedings of the 2001 IEEE/ACM International Conference on Computer-aided De-
sign, pages 333-336. IEEE Press, 2001.

68] P. Suaris and G. Kedem. An algorithm for quadrisection and its application to

standard cell placement. IEEE Transactions on Circuits and Systems, 35(3):294-
303, 1988.

69] H. Tian, W. Tang, E. F. Young, and C. Sze. Grid-to-ports clock routing for high

performance microprocessor designs. In Proceedings of the 2011 international

symposium on physical design, pages 21-28. ACM, 2011.

70] C. Tsao and C. Koh. UST/DME: a clock tree router for general skew con-

straints. ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 7(3):359-379, 2002.

71] R.-S. Tsay. An exact zero-skew clock routing algorithm. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 12(2):242-249, Feb.
1993.

72] G. Venkataraman, Z. Feng, J. Hu, and P. Li. Combinatorial algorithms for fast
clock mesh optimization. In Proceedings of the 2006 IEEE/ACM International
Conference on Computer-aided Design, pages 563-567. ACM, 2006.

BIBLIOGRAPHY 73

[73] G. Venkataraman, Z. Feng, J. Hu, and P. Li. Combinatorial algorithms for fast
clock mesh optimization. IEEE Transactions on Very Large Scale Integration (VL-
SI) Systems, 18(1):131-141, Jan. 2010.

[74] G. Venkataraman, N. Jayakumar, J. Hu, P. L i , S. Khatri, A. Rajaram, R McGuin-
ness, and C. Alpert. Practical techniques to reduce skew and its variations in
buffered clock networks. In Proceedings of the IEEE/ACM International Confer-
ence on Computer-aided Design, pages 592-596. IEEE, 2005.

75] G. Venkataraman, C. Sze, and J. Hu. Skew scheduling and clock routing for im-

proved tolerance to process variations. In Proceedings of the 2005 Asia and South
Pacific Design Automation Conference, pages 594-599. ACM, 2005.

76] G. Wilke and R. Murgai. Design and analysis of tree+ local meshes clock architec-
ture. In International Symposium on Quality Electronic Design, pages 165-170.
IEEE, 2007.

77] L. Xiao, Z. Xiao, Z. Qian, Y. Jiang, T. Huang, H. Tian, and E. Young. Local clock
skew minimization using blockage-aware mixed tree-mesh clock network. In 2010

IEEE/ACM International Conference on Computer-Aided Design, pages 458-462,
Nov. 2010.

78] T. Xue and E. S. Kuh. Post routing performance optimization via multi-l ink inser-
tion and non-uniform wiresizing. In In IEEE-ACM International Conference on
Computer-Aided Design, pages 575-580, 1995.

[79] J.-S. Yang, A. Rajaram, N. Shi, J. Chen, and D. Pan. Sensitivity based link inser-
tion for variation tolerant clock network synthesis. In International Symposium on

Quality Electronic Design, pages 398^03, Mar. 2007.

[80] X. Ye, P. Li , M. Zhao, R. Panda, and J. Hu. Analysis of large clock meshes via

harmonic-weighted model order reduction and port sliding. In Proceedings of

the 2007 IEEE/ACM International Conference on Computer-aided Design, pages
627-631. IEEE Press, 2007.

BIBLIOGRAPHY 74

81] Q. Zhu and W.-M. Dai. Perfect-balance planar clock routing with minimal path-
length. In IEEE/ACM International Conference on Computer-Aided Design’ pages
473-476, Nov, 1992.

CUHK L i b r a r i e s

0 0 4 8 6 5 8 0 6

