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culated as

tn - tm t CQ_I(Ta.n - Tam) =

Tl + Tam + Tan
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where node a is the lowest common ancestor of node m and n, and R, 1s the total

resistance along the loop m — a — n — m. Denote the value of —(% (275, + Tam) +
("n "lm )+%(run _rtun)
Rlnnp

m. For all the links between the two paths a — m and a — n, we will calculate their

Tam) by I. Assume that we are now trying to reduce the delay at node

values of / and then sort them in descending order according to their values. The value
of I gives us some information on how effective a link is in order to reduce the Elmore
delay at node m. The larger the I is, the more effective will be the link in reducing
the delay at node m and also possibly the delay of the descendant node of m. In our
implementation, all the links will be considered sequentially and added to the network
temporally to check if it will help in reducing the delays of the problematic ports (Note
that when a crosslink is inserted, we will compute the delays of the problematic ports
using the approach in [9].). A crosslink will be accepted if it can reduce the delay of the
problematic port. The crosslink insertion process will be repeated until the user defined

delay limit is satisfied or when all the links are exhausted.
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Table 4.3: Simulation results for non-tree

Test
s Calculated Results Simulation Results
Delay (ps) | Slew (ps) | Delay (ps) | Slew (ps)
ntest] 0.45 10.05 0.45 10.07
ntest2 0.45 10.05 0.45 10.08
ntest3 0.60 10.09 0.60 10.11
ntest4 1.00 10.24 0.99 10.24
ntestS 1.03 10.25 1.03 10.23
ntest6 0.66 10.10 0.66 10.14
ntest7 1.35 10.43 1.35 10.43
ntest8 1.29 10.40 1.29 10.37
ntest9 2.00 10.93 2.00 11.15
ntest10 1.80 10.76 1.80 10.92
ntest11 0.80 10.15 0.80 10.17
ntest12 1.70 10.68 1.68 10.73
ntest13 1:25 10.37 1.25 10.33
ntest14 0.58 10.08 0.58 10.11
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Figure 5.1: A sample circuit divided into four regions

5.2 Partition-based Extension

With the well designed source grid and multi-layer reserved tracks, a port can always
be expected to connect to the nearest source grid as long as no delay violation occurs.
Actually in the final clock network obtained using the path expansion algorithm de-
scribed in Chapter 3 and Chapter 4, we found that a port would rarely navigate away
from the nearer source grid and connect to a far away one. With this observation, we
propose a technique to cluster all the ports into several small clusters, and employ the
same path expansion algorithm as described in Chapter 3 and Chapter 4 on these smaller
clusters to construct the clock network. Fig. 5.2 shows the flow of our main algorithm
incorporating this partitioning technique.

The whole chip is divided into several smaller regions according to the source grid
(either horizontal or vertical). The positions of the source grid' will be recorded. The
intermediate positions between two successive source grids will be used as the guideline

to split the chip into smaller partitions. After we get all the partitions, partitioning of

'If the source grid is horizontal, y coordinates will be recorded, otherwise 2 will be recorded.
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Figure 5.3: An example of partitioning

ports is rather straightforward: all the ports lies in the same partition will be grouped
into the same cluster. We can also employ the same idea on these smaller clusters to
further divide them into even smaller ones. For example, if the source grid is horizontal,
we can further divide the cluster vertically, and vice versa. However, we found that this
second level clustering might have adverse effect on the solution quality. This is mainly
because we do not have a good guideline on where this second level division should be
made. Unlike the first level division that we can safely partition the ports according to
the positions of the source grids, there is no natural partitioning of the ports at the second
level. This has been verified in our experiments that when incorporating this second
level division, the path expansion algorithm usually fails to find a feasible solution
under a particular delay limit. However, if we use only one level of partitioning, we can
successfully satisfy the delay limit. Therefore in our implementation, we only group
all the ports into smaller clusters horizontally or vertically (according to the direction
of the source grid) without further dividing the clusters into sub-clusters. As shown in
Fig. 5.3, we can partition this simple circuits into sub-regions A, B, C and D using the
method described above.

After dividing the ports into clusters, we will sequentially employ the path expan-
sion algorithm on those clusters to connect all the ports. This procedure is embedded
into the main algorithm in line 9 while keeping all the other parts of the main algorithm
unchanged. Since the original problem is divided into smaller ones, we can see signif-

icant improvement in running time compared with the original methods without using
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