1,309 research outputs found

    A Transcutaneous Data and Power Transfer System for Osteogenesis Monitoring Sensors

    Get PDF
    Implant devices are widely used in health care applications such as life support systems, patient rehabilitation devices and patient monitoring devices. Medical implants have enabled physicians to obtain relevant real time information regarding an organ, or a site of interest with in the body and suggest treatment accordingly. In some cases, the position of the implant within the body or threats of infections prevents wired communication techniques to extract information from the implant. Wireless communication is the alternative in such cases. Distraction osteogenesis is one such application where wireless communication can be established with callus growth monitoring sensors to obtain bone growth data and activate distraction device. As a solution for wireless communication, the computational design, fabrication and testing of a spiral antenna that can operate in the 401-406 MHz Medical Implant Communication Services (MICS) band is detailed. The proposed system uses ZL70103 MICS band transceiver from Microsemi Corporation and enables wireless communication with the implant. Antenna is tested in an in-vivo system that makes use of biomimetic material and pig femur bone to mimic an application environment. Power requirements for the implant actuator system that performs distraction cannot be satisfied by a single battery. Percutaneous wires for powering the implant poses threats of infection and frequent surgeries for battery replacement alters patient’s immune systems. Wireless charging is viable solution in this case. A short range inductive power transfer system prototype is designed and tested on a custom testbed to analyze the power transfer efficiency with change in distance

    Cardiac Arrhythmias

    Get PDF
    The most intimate mechanisms of cardiac arrhythmias are still quite unknown to scientists. Genetic studies on ionic alterations, the electrocardiographic features of cardiac rhythm and an arsenal of diagnostic tests have done more in the last five years than in all the history of cardiology. Similarly, therapy to prevent or cure such diseases is growing rapidly day by day. In this book the reader will be able to see with brighter light some of these intimate mechanisms of production, as well as cutting-edge therapies to date. Genetic studies, electrophysiological and electrocardiographyc features, ion channel alterations, heart diseases still unknown , and even the relationship between the psychic sphere and the heart have been exposed in this book. It deserves to be read

    Wireless Power Transfer Techniques for Implantable Medical Devices:A Review

    Get PDF
    Wireless power transfer (WPT) systems have become increasingly suitable solutions for the electrical powering of advanced multifunctional micro-electronic devices such as those found in current biomedical implants. The design and implementation of high power transfer efficiency WPT systems are, however, challenging. The size of the WPT system, the separation distance between the outside environment and location of the implanted medical device inside the body, the operating frequency and tissue safety due to power dissipation are key parameters to consider in the design of WPT systems. This article provides a systematic review of the wide range of WPT systems that have been investigated over the last two decades to improve overall system performance. The various strategies implemented to transfer wireless power in implantable medical devices (IMDs) were reviewed, which includes capacitive coupling, inductive coupling, magnetic resonance coupling and, more recently, acoustic and optical powering methods. The strengths and limitations of all these techniques are benchmarked against each other and particular emphasis is placed on comparing the implanted receiver size, the WPT distance, power transfer efficiency and tissue safety presented by the resulting systems. Necessary improvements and trends of each WPT techniques are also indicated per specific IMD

    Electrophysiology

    Get PDF
    The outstanding evolution of recording techniques paved the way for better understanding of electrophysiological phenomena within the human organs, including the cardiovascular, ophthalmologic and neural systems. In the field of cardiac electrophysiology, the development of more and more sophisticated recording and mapping techniques made it possible to elucidate the mechanism of various cardiac arrhythmias. This has even led to the evolution of techniques to ablate and cure most complex cardiac arrhythmias. Nevertheless, there is still a long way ahead and this book can be considered a valuable addition to the current knowledge in subjects related to bioelectricity from plants to the human heart

    Evaluation of QTc before and after exercise testing in a population of patients with severe obesity: possible association with obstructive sleep apnoea

    Get PDF
    openObesity is associated with QT interval prolongation. Obesity is also associated with OSA (obstructive sleep apnoea). OSA as well is associated with prolongation of the QT interval. The purpose of this study is to evaluate the QTc before and after exercise testing in a population of patients with severe obesity, and a possible association between QTc prolongation and OSA

    Computational and experimental characterization of intra-aortic balloon pump support

    Get PDF

    USSR Space Life Sciences Digest, issue 31

    Get PDF
    This is the thirty first issue of NASA's Space Life Sciences Digest. It contains abstracts of 55 journal papers or book chapters published in Russian and of 5 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, biological rhythms, cardiovascular and respiratory systems, endocrinology, enzymology, genetics, group dynamics, habitability and environmental effects, hematology, life support systems, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and space biology and medicine

    A POWER DISTRIBUTION SYSTEM BUILT FOR A VARIETY OF UNATTENDED ELECTRONICS

    Get PDF
    A power distribution system (PDS) delivers electrical power to a load safely and effectively in a pre-determined format. Here format refers to necessary voltages, current levels and time variation of either as required by the empowered system. This formatting is usually referred as "conditioning". The research reported in this dissertation presents a complete system focusing on low power energy harvesting, conditioning, storage and regulation. Energy harvesting is a process by which ambient energy present in the environment is captured and converted to electrical energy. In recent years, it has become a prominent research area in multiple disciplines. Several energy harvesting schemes have been exploited in the literature, including solar energy, mechanic energy, radio frequency (RF) energy, thermal energy, electromagnetic energy, biochemical energy, radioactive energy and so on. Different from the large scale energy generation, energy harvesting typically operates in milli-watts or even micro-watts power levels. Almost all energy harvesting schemes require stages of power conditioning and intermediate storage - batteries or capacitors that reservoir energy harvested from the environment. Most of the ambient energy fluctuates and is usually weak. The purpose of power conditioning is to adjust the format of the energy to be further used, and intermediate storage smoothes out the impact of the fluctuations on the power delivered to the load. This dissertation reports an end to end power distribution system that integrates different functional blocks including energy harvesting, power conditioning, energy storage, output regulation and system control. We studied and investigated different energy harvesting schemes and the dissertation places emphasis on radio frequency energy harvesting. This approach has proven to be a viable power source for low-power electronics. However, it is still challenging to obtain significant amounts of energy rapidly and efficiently from the ambient. Available RF power is usually very weak, leading to low voltage applied to the electronics. The power delivered to the PDS is hard to utilize or store. This dissertation presents a configuration including a wideband rectenna, a switched capacitor voltage boost converter and a thin film flexible battery cell that can be re-charged at an exceptionally low voltage. We demonstrate that the system is able to harvest energy from a commercially available hand-held communication device at an overall efficiency as high as 7.7 %. Besides the RF energy harvesting block, the whole PDS includes a solar energy harvesting block, a USB recharging block, a customer selection block, two battery arrays, a control block and an output block. The functions of each of the blocks have been tested and verified. The dissertation also studies and investigates several potential applications of this PDS. The applications we exploited include an ultra-low power tunable neural oscillator, wireless sensor networks (WSNs), medical prosthetics and small unmanned aerial vehicles (UAVs). We prove that it is viable to power these potential loads through energy harvesting from multiple sources

    Study and development of a sensorized platform for the monitoring of LVAD-implanted patients

    Get PDF
    In the industrialized countries, heart failure is the most frequent cause of death. The ageing of the world population and the low availability of heart donors with respect to the demand have led to the develop and experimentation of device therapy for patients with heart failure, not only as bridge to transplant, but also as destination therapy. Nowadays different mechanical ventricular assist devices (VADs) are in use but, in order to use them as alternative to transplant, an approach could be the development of a implantable platform integrating, on the VAD, miniaturized innovative flow and pressure sensors and implementing a continuous monitoring strategy, with the purpose to optimize and personalize the heart unloading degree. The main components of the implantable platform are: the LVAD, the monitoring flow and pressure sensors embedded on the pump, a transcutaneous energy transfer (TET) system, a telemetry (TEL) system and a central control unit (ARU) for the wireless transfer of data collected by the implanted sensors and the control of the VAD status. This work of thesis is about the integration of the pressure sensors on a in-vitro platform, emulating the implantable platform, the contribution on the ARU development and pc-based graphical user interface and the evaluation of the biocompatibility and efficiency of the TET and TEL systems

    Functional MRI of rat kidney using BOLD & ASL techniques

    Get PDF
    Noninvasive functional magnetic resonance imaging (fMRI) methods may provide new ways to detect and track renal hemodynamic changes in-vivo. In this thesis, two fMRI methods were correlated with simultaneous invasive hemodynamic measurements. A particular goal of this thesis was to measure the relative contributions of oxygenation and perfusion changes to changes in the relaxation rate, T2*. Also, an MRI compatible motion detector was built and along with the invasive probes was interfaced to a data acquisition system for use during scanning. Drug-induced changes in renal oxygenation and blood flow were measured by BOLD- & ASL-MRI noninvasively, while a dual oxygenation/perfusion optical-probe was used for the invasive measurements. Six sets of results were obtained. Values of T2*, LDF and pO2 correlated in four of the data sets while the other two were discrepant. BOLD images were of high quality while ASL perfusion maps were of inadequate spatial resolution and poor quality
    corecore