1,503 research outputs found

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    Metaheuristic approaches to virtual machine placement in cloud computing: a review

    Get PDF

    An Algorithm for Network and Data-aware Placement of Multi-Tier Applications in Cloud Data Centers

    Full text link
    Today's Cloud applications are dominated by composite applications comprising multiple computing and data components with strong communication correlations among them. Although Cloud providers are deploying large number of computing and storage devices to address the ever increasing demand for computing and storage resources, network resource demands are emerging as one of the key areas of performance bottleneck. This paper addresses network-aware placement of virtual components (computing and data) of multi-tier applications in data centers and formally defines the placement as an optimization problem. The simultaneous placement of Virtual Machines and data blocks aims at reducing the network overhead of the data center network infrastructure. A greedy heuristic is proposed for the on-demand application components placement that localizes network traffic in the data center interconnect. Such optimization helps reducing communication overhead in upper layer network switches that will eventually reduce the overall traffic volume across the data center. This, in turn, will help reducing packet transmission delay, increasing network performance, and minimizing the energy consumption of network components. Experimental results demonstrate performance superiority of the proposed algorithm over other approaches where it outperforms the state-of-the-art network-aware application placement algorithm across all performance metrics by reducing the average network cost up to 67% and network usage at core switches up to 84%, as well as increasing the average number of application deployments up to 18%.Comment: Submitted for publication consideration for the Journal of Network and Computer Applications (JNCA). Total page: 28. Number of figures: 15 figure

    EQUAL: Energy and QoS Aware Resource Allocation Approach for Clouds

    Get PDF
    The popularity of cloud computing is increasing by leaps and bounds. To cope with resource demands of increasing number of cloud users, the cloud market players establish large sized data centers. The huge energy consumption by the data centers and liability of fulfilling Quality of Service (QoS) requirements of the end users have made resource allocation a challenging task. In this paper, energy and QoS aware resource allocation approach which employs Antlion optimization for allocation of resources to virtual machines (VMs) is proposed. It can operate in three modes, namely power aware, performance aware, and balanced mode. The proposed approach enhances energy efficiency of the cloud infrastructure by improving the utilization of resources while fulfilling QoS requirements of the end users. The proposed approach is implemented in CloudSim. The simulation results have shown improvement in QoS and energy efficiency of the cloud

    A Survey on Scheduling the Task in Fog Computing Environment

    Full text link
    With the rapid increase in the Internet of Things (IoT), the amount of data produced and processed is also increased. Cloud Computing facilitates the storage, processing, and analysis of data as needed. However, cloud computing devices are located far away from the IoT devices. Fog computing has emerged as a small cloud computing paradigm that is near to the edge devices and handles the task very efficiently. Fog nodes have a small storage capability than the cloud node but it is designed and deployed near to the edge device so that request must be accessed efficiently and executes in time. In this survey paper we have investigated and analysed the main challenges and issues raised in scheduling the task in fog computing environment. To the best of our knowledge there is no comprehensive survey paper on challenges in task scheduling of fog computing paradigm. In this survey paper research is conducted from 2018 to 2021 and most of the paper selection is done from 2020-2021. Moreover, this survey paper organizes the task scheduling approaches and technically plans the identified challenges and issues. Based on the identified issues, we have highlighted the future work directions in the field of task scheduling in fog computing environment

    Enhanced Cuckoo Search Algorithm for Virtual Machine Placement in Cloud Data Centers

    Get PDF
    In order to enhance resource utilisation and power efficiency in cloud data centres it is important to perform Virtual Machine (VM) placement in an optimal manner. VM placement uses the method of mapping virtual machines to physical machines (PM). Cloud computing researchers have recently introduced various meta-heuristic algorithms for VM placement considering the optimised energy consumption. However, these algorithms do not meet the optimal energy consumption requirements. This paper proposes an Enhanced Cuckoo Search (ECS) algorithm to address the issues with VM placement focusing on the energy consumption. The performance of the proposed algorithm is evaluated using three different workloads in CloudSim tool. The evaluation process includes comparison of the proposed algorithm against the existing Genetic Algorithm (GA), Optimised Firefly Search (OFS) algorithm, and Ant Colony (AC) algorithm. The comparision results illustrate that the proposed ECS algorithm consumes less energy than the participant algorithms while maintaining a steady performance for SLA and VM migration. The ECS algorithm consumes around 25% less energy than GA, 27% less than OFS, and 26% less than AC

    Classification and Performance Study of Task Scheduling Algorithms in Cloud Computing Environment

    Get PDF
    Cloud computing is becoming very common in recent years and is growing rapidly due to its attractive benefits and features such as resource pooling, accessibility, availability, scalability, reliability, cost saving, security, flexibility, on-demand services, pay-per-use services, use from anywhere, quality of service, resilience, etc. With this rapid growth of cloud computing, there may exist too many users that require services or need to execute their tasks simultaneously by resources provided by service providers. To get these services with the best performance, and minimum cost, response time, makespan, effective use of resources, etc. an intelligent and efficient task scheduling technique is required and considered as one of the main and essential issues in the cloud computing environment. It is necessary for allocating tasks to the proper cloud resources and optimizing the overall system performance. To this end, researchers put huge efforts to develop several classes of scheduling algorithms to be suitable for the various computing environments and to satisfy the needs of the various types of individuals and organizations. This research article provides a classification of proposed scheduling strategies and developed algorithms in cloud computing environment along with the evaluation of their performance. A comparison of the performance of these algorithms with existing ones is also given. Additionally, the future research work in the reviewed articles (if available) is also pointed out. This research work includes a review of 88 task scheduling algorithms in cloud computing environment distributed over the seven scheduling classes suggested in this study. Each article deals with a novel scheduling technique and the performance improvement it introduces compared with previously existing task scheduling algorithms. Keywords: Cloud computing, Task scheduling, Load balancing, Makespan, Energy-aware, Turnaround time, Response time, Cost of task, QoS, Multi-objective. DOI: 10.7176/IKM/12-5-03 Publication date:September 30th 2022

    Energy-Efficient Virtual Machine Placement using Enhanced Firefly Algorithm

    Get PDF
    The consolidation of the virtual machines (VMs) helps to optimise the usage of resources and hence reduces the energy consumption in a cloud data centre. VM placement plays an important part in the consolidation of the VMs. The researchers have developed various algorithms for VM placement considering the optimised energy consumption. However, these algorithms lack the use of exploitation mechanism efficiently. This paper addresses VM placement issues by proposing two meta-heuristic algorithms namely, the enhanced modified firefly algorithm (MFF) and the hierarchical cluster based modified firefly algorithm (HCMFF), presenting the comparative analysis relating to energy optimisation. The comparisons are made against the existing honeybee (HB) algorithm, honeybee cluster based technique (HCT) and the energy consumption results of all the participating algorithms confirm that the proposed HCMFF is more efficient than the other algorithms. The simulation study shows that HCMFF consumes 12% less energy than honeybee algorithm, 6% less than HCT algorithm and 2% less than original firefly. The usage of the appropriate algorithm can help in efficient usage of energy in cloud computing
    • …
    corecore