1,778 research outputs found

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    Domain knowledge specification for energy tuning

    Get PDF
    To overcome the challenges of energy consumption of HPC systems, the European Union Horizon 2020 READEX (Runtime Exploitation of Application Dynamism for Energy-efficient Exascale computing) project uses an online auto-tuning approach to improve energy efficiency of HPC applications. The READEX methodology pre-computes optimal system configurations at design-time, such as the CPU frequency, for instances of program regions and switches at runtime to the configuration given in the tuning model when the region is executed. READEX goes beyond previous approaches by exploiting dynamic changes of a region's characteristics by leveraging region and characteristic specific system configurations. While the tool suite supports an automatic approach, specifying domain knowledge such as the structure and characteristics of the application and application tuning parameters can significantly help to create a more refined tuning model. This paper presents the means available for an application expert to provide domain knowledge and presents tuning results for some benchmarks.Web of Science316art. no. E465

    SPH-EXA: Enhancing the Scalability of SPH codes Via an Exascale-Ready SPH Mini-App

    Full text link
    Numerical simulations of fluids in astrophysics and computational fluid dynamics (CFD) are among the most computationally-demanding calculations, in terms of sustained floating-point operations per second, or FLOP/s. It is expected that these numerical simulations will significantly benefit from the future Exascale computing infrastructures, that will perform 10^18 FLOP/s. The performance of the SPH codes is, in general, adversely impacted by several factors, such as multiple time-stepping, long-range interactions, and/or boundary conditions. In this work an extensive study of three SPH implementations SPHYNX, ChaNGa, and XXX is performed, to gain insights and to expose any limitations and characteristics of the codes. These codes are the starting point of an interdisciplinary co-design project, SPH-EXA, for the development of an Exascale-ready SPH mini-app. We implemented a rotating square patch as a joint test simulation for the three SPH codes and analyzed their performance on a modern HPC system, Piz Daint. The performance profiling and scalability analysis conducted on the three parent codes allowed to expose their performance issues, such as load imbalance, both in MPI and OpenMP. Two-level load balancing has been successfully applied to SPHYNX to overcome its load imbalance. The performance analysis shapes and drives the design of the SPH-EXA mini-app towards the use of efficient parallelization methods, fault-tolerance mechanisms, and load balancing approaches.Comment: arXiv admin note: substantial text overlap with arXiv:1809.0801

    POSTER: Exploiting asymmetric multi-core processors with flexible system sofware

    Get PDF
    Energy efficiency has become the main challenge for high performance computing (HPC). The use of mobile asymmetric multi-core architectures to build future multi-core systems is an approach towards energy savings while keeping high performance. However, it is not known yet whether such systems are ready to handle parallel applications. This paper fills this gap by evaluating emerging parallel applications on an asymmetric multi-core. We make use of the PARSEC benchmark suite and a processor that implements the ARM big.LITTLE architecture. We conclude that these applications are not mature enough to run on such systems, as they suffer from load imbalance. Furthermore, we explore the behaviour of dynamic scheduling solutions on either the Operating System (OS) or the runtime level. Comparing these approaches shows us that the most efficient scheduling takes place in the runtime level, influencing the future research towards such solutions.This work has been supported by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of Excellence. The Mont-Blanc project receives funding from the EU's Seventh Framework Programme (FP7/2007-2013) under grant agreement number 610402 and from the EU's H2020 Framework Programme (H2020/2014-2020) under grant agreement number 671697. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243).Peer ReviewedPostprint (author's final draft
    corecore