28,482 research outputs found

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    A Study Resource Optimization Techniques Based Job Scheduling in Cloud Computing

    Get PDF
    Cloud computing has revolutionized the way businesses and individuals utilize computing resources. It offers on-demand access to a vast pool of virtualized resources, such as processing power, storage, and networking, through the Internet. One of the key challenges in cloud computing is efficiently scheduling jobs to maximize resource utilization and minimize costs. Job scheduling in cloud computing involves allocating tasks or jobs to available resources in an optimal manner. The objective is to minimize job completion time, maximize resource utilization, and meet various performance metrics such as response time, throughput, and energy consumption. Resource optimization techniques play a crucial role in achieving these objectives. Resource optimization techniques aim to efficiently allocate resources to jobs, taking into account factors like resource availability, job priorities, and constraints. These techniques utilize various algorithms and optimization approaches to make intelligent decisions about resource allocation. Research on resource optimization techniques for job scheduling in cloud computing is of significant importance due to the following reasons: Efficient Resource Utilization: Cloud computing environments consist of a large number of resources that need to be utilized effectively to maximize cost savings and overall system performance. By optimizing job scheduling, researchers can develop algorithms and techniques that ensure efficient utilization of resources, leading to improved productivity and reduced costs. Performance Improvement: Job scheduling plays a crucial role in meeting performance metrics such as response time, throughput, and reliability. By designing intelligent scheduling algorithms, researchers can improve the overall system performance, leading to better user experience and customer satisfaction. Scalability: Cloud computing environments are highly scalable, allowing users to dynamically scale resources based on their needs. Effective job scheduling techniques enable efficient resource allocation and scaling, ensuring that the system can handle varying workloads without compromising performance. Energy Efficiency: Cloud data centres consume significant amounts of energy, and optimizing resource allocation can contribute to energy conservation. By scheduling jobs intelligently, researchers can reduce energy consumption, leading to environmental benefits and cost savings for cloud service providers. Quality of Service (QoS): Cloud computing service providers often have service-level agreements (SLAs) that define the QoS requirements expected by users. Resource optimization techniques for job scheduling can help meet these SLAs by ensuring that jobs are allocated resources in a timely manner, meeting performance guarantees, and maintaining high service availability. Here in this research, we have used the method of the weighted product model (WPM). For the topic of Resource Optimization Techniques Based Job Scheduling in Cloud Computing For calculating the values of alternative and evaluation parameters. A variation of the WSM called the weighted product method (WPM) has been proposed to address some of the weaknesses of The WSM that came before it. The main distinction is that the multiplication is being used in place of additional. The terms "scoring methods" are frequently used to describe WSM and WPM Execution time on Virtual machine, Transmission time (delay)on Virtual machine, Processing cost of a task on virtual machine resource optimization techniques based on job scheduling play a crucial role in maximizing the efficiency and performance of cloud computing systems. By effectively managing and allocating resources, these techniques help minimize costs, reduce energy consumption, and improve overall system throughput. One of the key findings is that intelligent job scheduling algorithms, such as genetic algorithms, ant colony optimization

    An Extensive Exploration of Techniques for Resource and Cost Management in Contemporary Cloud Computing Environments

    Get PDF
    Resource and cost optimization techniques in cloud computing environments target minimizing expenditure while ensuring efficient resource utilization. This study categorizes these techniques into three primary groups: Cloud and VM-focused strategies, Workflow techniques, and Resource Utilization and Efficiency techniques. Cloud and VM-focused strategies predominantly concentrate on the allocation, scheduling, and optimization of resources within cloud environments, particularly virtual machines. These strategies aim at a balance between cost reduction and adhering to specified deadlines, while ensuring scalability and adaptability to different cloud models. However, they may introduce complexities due to their dynamic nature and continuous optimization requirements. Workflow techniques emphasize the optimal execution of tasks in distributed systems. They address inconsistencies in Quality of Service (QoS) and seek to enhance the reservation process and task scheduling. By employing models, such as Integer Linear Programming, these techniques offer precision. But they might be computationally demanding, especially for extensive problems. Techniques focusing on Resource Utilization and Efficiency attempts to maximize the use of available resources in an energy-efficient and cost-effective manner. Considering factors like current energy levels and application requirements, these models aim to optimize performance without overshooting budgets. However, a continuous monitoring mechanism might be necessary, which can introduce additional complexities

    A Multi-objective Optimization Model for Virtual Machine Mapping in Cloud Data Centres

    Full text link
    © 2016 IEEE. Modern cloud computing environments exploit virtualization for efficient resource management to reduce computational cost and energy budget. Virtual machine (VM) migration is a technique that enables flexible resource allocation and increases the computation power and communication capability within cloud data centers. VM migration helps cloud providers to successfully achieve various resource management objectives such as load balancing, power management, fault tolerance, and system maintenance. However, the VM migration process can affect the performance of applications unless it is supported by smart optimization methods. This paper presents a multi-objective optimization model to address this issue. The objectives are to minimize power consumption, maximize resource utilization (or minimize idle resources), and minimize VM transfer time. Fuzzy particle swarm optimization (PSO), which improves the efficiency of conventional PSO by using fuzzy logic systems, is relied upon to solve the optimization problem. The model is implemented in a cloud simulator to investigate its performance, and the results verify the performance improvement of the proposed model

    Climbing Up Cloud Nine: Performance Enhancement Techniques for Cloud Computing Environments

    Get PDF
    With the transformation of cloud computing technologies from an attractive trend to a business reality, the need is more pressing than ever for efficient cloud service management tools and techniques. As cloud technologies continue to mature, the service model, resource allocation methodologies, energy efficiency models and general service management schemes are not yet saturated. The burden of making this all tick perfectly falls on cloud providers. Surely, economy of scale revenues and leveraging existing infrastructure and giant workforce are there as positives, but it is far from straightforward operation from that point. Performance and service delivery will still depend on the providers’ algorithms and policies which affect all operational areas. With that in mind, this thesis tackles a set of the more critical challenges faced by cloud providers with the purpose of enhancing cloud service performance and saving on providers’ cost. This is done by exploring innovative resource allocation techniques and developing novel tools and methodologies in the context of cloud resource management, power efficiency, high availability and solution evaluation. Optimal and suboptimal solutions to the resource allocation problem in cloud data centers from both the computational and the network sides are proposed. Next, a deep dive into the energy efficiency challenge in cloud data centers is presented. Consolidation-based and non-consolidation-based solutions containing a novel dynamic virtual machine idleness prediction technique are proposed and evaluated. An investigation of the problem of simulating cloud environments follows. Available simulation solutions are comprehensively evaluated and a novel design framework for cloud simulators covering multiple variations of the problem is presented. Moreover, the challenge of evaluating cloud resource management solutions performance in terms of high availability is addressed. An extensive framework is introduced to design high availability-aware cloud simulators and a prominent cloud simulator (GreenCloud) is extended to implement it. Finally, real cloud application scenarios evaluation is demonstrated using the new tool. The primary argument made in this thesis is that the proposed resource allocation and simulation techniques can serve as basis for effective solutions that mitigate performance and cost challenges faced by cloud providers pertaining to resource utilization, energy efficiency, and client satisfaction

    ERAM2 - ENERGY BASED RESOURCE ALLOCATION WITH MINIMUM RECKON AND MAXIMUM RECKON

    Get PDF
    The emerging field of cloud computing has flexibility and dominant computational architecture that offers ubiquitous services to users. It is different from traditional architecture because it accommodates resources in a unified way. Due to rapid growth in demands for providing the resources and computation in cloud environments, Resource allocation is considered as primary issues in performance, efficiency, and cost.  For the provisioning of resource, Virtual Machine (VMs) is employed to reduce the response time and executing the tasks according to the available resources.  The users utilize the VMs based on the characteristics of the tasks for effective usage of resources. This helps in load balancing and avoids VMs being in an idle state. Several resource allocation techniques are proposed to maximize the utility of physical resource and minimize the consuming cost of Virtual Machines (VMs). This paper proposes an Energy-Based Resource Allocation with Minimum Reckon and Maximum Reckon (ERAM2); which achieves an efficient scheduling by matching the user tasks on Resource parameters like Accessibility, Availability, Cost, Reliability, Reputation, Response time, Scalability and Throughput in the terms of Maximum Reckon and Minimum Reckon. This paper proposes an Ant Colony - Maximum Reckon and Minimum Reckon (AC-MRMR) method to consolidate all the available resource based on the pheromone value; the score is calculated for each pheromone value. When the score value exceeds Threshold limit then task migration process is carried out for optimized resource allocation of tasks

    Resource provisioning in Science Clouds: Requirements and challenges

    Full text link
    Cloud computing has permeated into the information technology industry in the last few years, and it is emerging nowadays in scientific environments. Science user communities are demanding a broad range of computing power to satisfy the needs of high-performance applications, such as local clusters, high-performance computing systems, and computing grids. Different workloads are needed from different computational models, and the cloud is already considered as a promising paradigm. The scheduling and allocation of resources is always a challenging matter in any form of computation and clouds are not an exception. Science applications have unique features that differentiate their workloads, hence, their requirements have to be taken into consideration to be fulfilled when building a Science Cloud. This paper will discuss what are the main scheduling and resource allocation challenges for any Infrastructure as a Service provider supporting scientific applications
    • …
    corecore