5,262 research outputs found

    Named data networking for efficient IoT-based disaster management in a smart campus

    Get PDF
    Disasters are uncertain occasions that can impose a drastic impact on human life and building infrastructures. Information and Communication Technology (ICT) plays a vital role in coping with such situations by enabling and integrating multiple technological resources to develop Disaster Management Systems (DMSs). In this context, a majority of the existing DMSs use networking architectures based upon the Internet Protocol (IP) focusing on location-dependent communications. However, IP-based communications face the limitations of inefficient bandwidth utilization, high processing, data security, and excessive memory intake. To address these issues, Named Data Networking (NDN) has emerged as a promising communication paradigm, which is based on the Information-Centric Networking (ICN) architecture. An NDN is among the self-organizing communication networks that reduces the complexity of networking systems in addition to provide content security. Given this, many NDN-based DMSs have been proposed. The problem with the existing NDN-based DMS is that they use a PULL-based mechanism that ultimately results in higher delay and more energy consumption. In order to cater for time-critical scenarios, emergence-driven network engineering communication and computation models are required. In this paper, a novel DMS is proposed, i.e., Named Data Networking Disaster Management (NDN-DM), where a producer forwards a fire alert message to neighbouring consumers. This makes the nodes converge according to the disaster situation in a more efficient and secure way. Furthermore, we consider a fire scenario in a university campus and mobile nodes in the campus collaborate with each other to manage the fire situation. The proposed framework has been mathematically modeled and formally proved using timed automata-based transition systems and a real-time model checker, respectively. Additionally, the evaluation of the proposed NDM-DM has been performed using NS2. The results prove that the proposed scheme has reduced the end-to-end delay up from 2% to 10% and minimized up to 20% energy consumption, as energy improved from 3% to 20% compared with a state-of-the-art NDN-based DMS

    A Study on Content Oriented Common Platform for Disaster Information Systems

    Get PDF
    早稲田大学博士(工学)早大学位記番号:新8116doctoral thesi

    Information-centric communication in mobile and wireless networks

    Get PDF
    Information-centric networking (ICN) is a new communication paradigm that has been proposed to cope with drawbacks of host-based communication protocols, namely scalability and security. In this thesis, we base our work on Named Data Networking (NDN), which is a popular ICN architecture, and investigate NDN in the context of wireless and mobile ad hoc networks. In a first part, we focus on NDN efficiency (and potential improvements) in wireless environments by investigating NDN in wireless one-hop communication, i.e., without any routing protocols. A basic requirement to initiate informationcentric communication is the knowledge of existing and available content names. Therefore, we develop three opportunistic content discovery algorithms and evaluate them in diverse scenarios for different node densities and content distributions. After content names are known, requesters can retrieve content opportunistically from any neighbor node that provides the content. However, in case of short contact times to content sources, content retrieval may be disrupted. Therefore, we develop a requester application that keeps meta information of disrupted content retrievals and enables resume operations when a new content source has been found. Besides message efficiency, we also evaluate power consumption of information-centric broadcast and unicast communication. Based on our findings, we develop two mechanisms to increase efficiency of information-centric wireless one-hop communication. The first approach called Dynamic Unicast (DU) avoids broadcast communication whenever possible since broadcast transmissions result in more duplicate Data transmissions, lower data rates and higher energy consumption on mobile nodes, which are not interested in overheard Data, compared to unicast communication. Hence, DU uses broadcast communication only until a content source has been found and then retrieves content directly via unicast from the same source. The second approach called RC-NDN targets efficiency of wireless broadcast communication by reducing the number of duplicate Data transmissions. In particular, RC-NDN is a Data encoding scheme for content sources that increases diversity in wireless broadcast transmissions such that multiple concurrent requesters can profit from each others’ (overheard) message transmissions. If requesters and content sources are not in one-hop distance to each other, requests need to be forwarded via multi-hop routing. Therefore, in a second part of this thesis, we investigate information-centric wireless multi-hop communication. First, we consider multi-hop broadcast communication in the context of rather static community networks. We introduce the concept of preferred forwarders, which relay Interest messages slightly faster than non-preferred forwarders to reduce redundant duplicate message transmissions. While this approach works well in static networks, the performance may degrade in mobile networks if preferred forwarders may regularly move away. Thus, to enable routing in mobile ad hoc networks, we extend DU for multi-hop communication. Compared to one-hop communication, multi-hop DU requires efficient path update mechanisms (since multi-hop paths may expire quickly) and new forwarding strategies to maintain NDN benefits (request aggregation and caching) such that only a few messages need to be transmitted over the entire end-to-end path even in case of multiple concurrent requesters. To perform quick retransmission in case of collisions or other transmission errors, we implement and evaluate retransmission timers from related work and compare them to CCNTimer, which is a new algorithm that enables shorter content retrieval times in information-centric wireless multi-hop communication. Yet, in case of intermittent connectivity between requesters and content sources, multi-hop routing protocols may not work because they require continuous end-to-end paths. Therefore, we present agent-based content retrieval (ACR) for delay-tolerant networks. In ACR, requester nodes can delegate content retrieval to mobile agent nodes, which move closer to content sources, can retrieve content and return it to requesters. Thus, ACR exploits the mobility of agent nodes to retrieve content from remote locations. To enable delay-tolerant communication via agents, retrieved content needs to be stored persistently such that requesters can verify its authenticity via original publisher signatures. To achieve this, we develop a persistent caching concept that maintains received popular content in repositories and deletes unpopular content if free space is required. Since our persistent caching concept can complement regular short-term caching in the content store, it can also be used for network caching to store popular delay-tolerant content at edge routers (to reduce network traffic and improve network performance) while real-time traffic can still be maintained and served from the content store

    Challenges and solutions for secure information centric networks: a case study of the NetInf architecture

    Get PDF
    A large number of emerging Internet applications require information dissemination across different organizational boundaries, heterogeneous platforms, and a large, dynamic population of publishers and subscribers. A new information-centric network architecture called Network of Information (NetInf) has been developed in the context of the FP7 EU-funded 4WARD project. This architecture can significantly improve large scale information distribution. Furthermore, it supports future mobile networks in situations with intermittent and heterogeneous connectivity and connects the digital with the physical world to enable better user experience. However, NetInf is still in an early stage of implementation and its security is yet to be evaluated. The security concern of NetInf is a major factor for its wide-scale adoption. Therefore, this paper uses the X.805 security standard to analyse the security of the NetInf architecture. The analysis highlights the main source of threats and potential security services to tackle them. The paper also defines a threat model in the form of possible attacks against the NetInf architecture

    Challenges and solutions for secure information centric networks: a case study of the NetInf architecture

    Get PDF
    A large number of emerging Internet applications require information dissemination across different organizational boundaries, heterogeneous platforms, and a large, dynamic population of publishers and subscribers. A new information-centric network architecture called Network of Information (NetInf) has been developed in the context of the FP7 EU-funded 4WARD project. This architecture can significantly improve large scale information distribution. Furthermore, it supports future mobile networks in situations with intermittent and heterogeneous connectivity and connects the digital with the physical world to enable better user experience. However, NetInf is still in an early stage of implementation and its security is yet to be evaluated. The security concern of NetInf is a major factor for its wide-scale adoption. Therefore, this paper uses the X.805 security standard to analyse the security of the NetInf architecture. The analysis highlights the main source of threats and potential security services to tackle them. The paper also defines a threat model in the form of possible attacks against the NetInf architecture

    Value-Based Caching in Information-Centric Wireless Body Area Networks.

    Full text link
    We propose a resilient cache replacement approach based on a Value of sensed Information (VoI) policy. To resolve and fetch content when the origin is not available due to isolated in-network nodes (fragmentation) and harsh operational conditions, we exploit a content caching approach. Our approach depends on four functional parameters in sensory Wireless Body Area Networks (WBANs). These four parameters are: age of data based on periodic request, popularity of on-demand requests, communication interference cost, and the duration for which the sensor node is required to operate in active mode to capture the sensed readings. These parameters are considered together to assign a value to the cached data to retain the most valuable information in the cache for prolonged time periods. The higher the value, the longer the duration for which the data will be retained in the cache. This caching strategy provides significant availability for most valuable and difficult to retrieve data in the WBANs. Extensive simulations are performed to compare the proposed scheme against other significant caching schemes in the literature while varying critical aspects in WBANs (e.g., data popularity, cache size, publisher load, connectivity-degree, and severe probabilities of node failures). These simulation results indicate that the proposed VoI-based approach is a valid tool for the retrieval of cached content in disruptive and challenging scenarios, such as the one experienced in WBANs, since it allows the retrieval of content for a long period even while experiencing severe in-network node failures

    Efficient content delivery through fountain coding in opportunistic information-centric networks

    Get PDF
    Opportunistic networks can increase network capacity, support collaborative downloading of content and offload traffic from a cellular to a cellular-assisted, device-to-device network. They can also support communication and content exchange when the cellular infrastructure is under severe stress and when the network is down or inaccessible. Fountain coding has been considered as espe- cially suitable for lossy networks, providing reliable multicast transport without requiring feedback from receivers. It is also ideal for multi-path and multi- source communication that fits exceptionally well with opportunistic networks. In this paper, we propose a content-centric approach for disseminating con- tent in opportunistic networks efficiently and reliably. Our approach is based on Information-Centric Networking (ICN) and employs fountain coding. When tied together, ICN and fountain coding provide a comprehensive solution that overcomes significant limitations of existing approaches. Extensive network simulations indicate that our approach is viable. Cache hit ratio can be increased by up to five times, while the overall network traffic load is reduced by up to four times compared to content dissemination on top of the standard Named Data Networking architecture
    corecore