17,784 research outputs found

    Automatic-repeat-request error control schemes

    Get PDF
    Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed

    A CRC usefulness assessment for adaptation layers in satellite systems

    Get PDF
    This paper assesses the real usefulness of CRCs in today's satellite network-to-link adaptation layers under the lights of enhanced error control and framing techniques, focusing on the DVB-S and DVB-S2 standards. Indeed, the outer block codes of their FEC schemes (Reed-Solomon and BCH, respectively) can provide very accurate error-detection information to the receiver in addition to their correction capabilities, at virtually no cost. This handy feature could be used to manage on a frame-by-frame basis what CRCs do locally, on the frames' contents, saving the bandwidth and processing load associated with them, and paving the way for enhanced transport of IP over DVB-S2. Mathematical and experimental results clearly show that if FEC has been properly congured for combined error correction and detection, having an uncorrected event after FEC decoding is likely to be an extremely improbable event. Under such conditions, it seems possible and attractive to optimize the way global error-control is done over satellite links by reducing the role of CRCs, or even by removing them from the overall encapsulation process

    An initial approach to distributed adaptive fault-handling in networked systems

    Get PDF
    We present a distributed adaptive fault-handling algorithm applied in networked systems. The probabilistic approach that we use makes the proposed method capable of adaptively detect and localize network faults by the use of simple end-to-end test transactions. Our method operates in a fully distributed manner, such that each network element detects faults using locally extracted information as input. This allows for a fast autonomous adaption to local network conditions in real-time, with significantly reduced need for manual configuration of algorithm parameters. Initial results from a small synthetically generated network indicate that satisfactory algorithm performance can be achieved, with respect to the number of detected and localized faults, detection time and false alarm rate

    A comparative reliability analysis of ETCS train radio communications

    Get PDF
    StoCharts have been proposed as a UML statechart extension for performance and dependability evaluation, and were applied in the context of train radio reliability assessment to show the principal tractability of realistic cases with this approach. In this paper, we extend on this bare feasibility result in two important directions. First, we sketch the cornerstones of a mechanizable translation of StoCharts to MoDeST. The latter is a process algebra-based formalism supported by the Motor/Möbius tool tandem. Second, we exploit this translation for a detailed analysis of the train radio case study

    Quantum Computing with Very Noisy Devices

    Full text link
    In theory, quantum computers can efficiently simulate quantum physics, factor large numbers and estimate integrals, thus solving otherwise intractable computational problems. In practice, quantum computers must operate with noisy devices called ``gates'' that tend to destroy the fragile quantum states needed for computation. The goal of fault-tolerant quantum computing is to compute accurately even when gates have a high probability of error each time they are used. Here we give evidence that accurate quantum computing is possible with error probabilities above 3% per gate, which is significantly higher than what was previously thought possible. However, the resources required for computing at such high error probabilities are excessive. Fortunately, they decrease rapidly with decreasing error probabilities. If we had quantum resources comparable to the considerable resources available in today's digital computers, we could implement non-trivial quantum computations at error probabilities as high as 1% per gate.Comment: 47 page

    Intelligent intrusion detection in low power IoTs

    Get PDF

    Error Characteristics of Fiber Distributed Data Interface (FDDI)

    Full text link
    Fiber Distributed Data Interface (FDDI) is a 100 megabits per second fiber optic local area network (LAN) standard being developed by the American National Standard Institute (ANSI). We analyze the impact of various design decisions on the error detection capability of the protocol. In particular, we quantify frame error rate, token loss rate, and undetected error rate. Several characteristics of the 32-bit frame check sequence (FCS) polynomial, which is also used in IEEE 802 LAN protocols, are discussed
    • …
    corecore