2,430 research outputs found

    Privacy Intelligence: A Survey on Image Sharing on Online Social Networks

    Full text link
    Image sharing on online social networks (OSNs) has become an indispensable part of daily social activities, but it has also led to an increased risk of privacy invasion. The recent image leaks from popular OSN services and the abuse of personal photos using advanced algorithms (e.g. DeepFake) have prompted the public to rethink individual privacy needs when sharing images on OSNs. However, OSN image sharing itself is relatively complicated, and systems currently in place to manage privacy in practice are labor-intensive yet fail to provide personalized, accurate and flexible privacy protection. As a result, an more intelligent environment for privacy-friendly OSN image sharing is in demand. To fill the gap, we contribute a systematic survey of 'privacy intelligence' solutions that target modern privacy issues related to OSN image sharing. Specifically, we present a high-level analysis framework based on the entire lifecycle of OSN image sharing to address the various privacy issues and solutions facing this interdisciplinary field. The framework is divided into three main stages: local management, online management and social experience. At each stage, we identify typical sharing-related user behaviors, the privacy issues generated by those behaviors, and review representative intelligent solutions. The resulting analysis describes an intelligent privacy-enhancing chain for closed-loop privacy management. We also discuss the challenges and future directions existing at each stage, as well as in publicly available datasets.Comment: 32 pages, 9 figures. Under revie

    Robust Mobile Visual Recognition System: From Bag of Visual Words to Deep Learning

    Get PDF
    With billions of images captured by mobile users everyday, automatically recognizing contents in such images has become a particularly important feature for various mobile apps, including augmented reality, product search, visual-based authentication etc. Traditionally, a client-server architecture is adopted such that the mobile client sends captured images/video frames to a cloud server, which runs a set of task-specific computer vision algorithms and sends back the recognition results. However, such scheme may cause problems related to user privacy, network stability/availability and device energy.In this dissertation, we investigate the problem of building a robust mobile visual recognition system that achieves high accuracy, low latency, low energy cost and privacy protection. Generally, we study two broad types of recognition methods: the bag of visual words (BOVW) based retrieval methods, which search the nearest neighbor image to a query image, and the state-of-the-art deep learning based methods, which recognize a given image using a trained deep neural network. The challenges of deploying BOVW based retrieval methods include: size of indexed image database, query latency, feature extraction efficiency and re-ranking performance. To address such challenges, we first proposed EMOD which enables efficient on-device image retrieval on a downloaded context-dependent partial image database. The efficiency is achieved by analyzing the BOVW processing pipeline and optimizing each module with algorithmic improvement.Recent deep learning based recognition approaches have been shown to greatly exceed the performance of traditional approaches. We identify several challenges of applying deep learning based recognition methods on mobile scenarios, namely energy efficiency and privacy protection for real-time visual processing, and mobile visual domain biases. Thus, we proposed two techniques to address them, (i) efficiently splitting the workload across heterogeneous computing resources, i.e., mobile devices and the cloud using our Moca framework, and (ii) using mobile visual domain adaptation as proposed in our collaborative edge-mediated platform DeepCham. Our extensive experiments on large-scale benchmark datasets and off-the-shelf mobile devices show our solutions provide better results than the state-of-the-art solutions

    Visual Privacy Protection Methods: A Survey

    Get PDF
    Recent advances in computer vision technologies have made possible the development of intelligent monitoring systems for video surveillance and ambient-assisted living. By using this technology, these systems are able to automatically interpret visual data from the environment and perform tasks that would have been unthinkable years ago. These achievements represent a radical improvement but they also suppose a new threat to individual’s privacy. The new capabilities of such systems give them the ability to collect and index a huge amount of private information about each individual. Next-generation systems have to solve this issue in order to obtain the users’ acceptance. Therefore, there is a need for mechanisms or tools to protect and preserve people’s privacy. This paper seeks to clarify how privacy can be protected in imagery data, so as a main contribution a comprehensive classification of the protection methods for visual privacy as well as an up-to-date review of them are provided. A survey of the existing privacy-aware intelligent monitoring systems and a valuable discussion of important aspects of visual privacy are also provided.This work has been partially supported by the Spanish Ministry of Science and Innovation under project “Sistema de visión para la monitorización de la actividad de la vida diaria en el hogar” (TIN2010-20510-C04-02) and by the European Commission under project “caring4U - A study on people activity in private spaces: towards a multisensor network that meets privacy requirements” (PIEF-GA-2010-274649). José Ramón Padilla López and Alexandros Andre Chaaraoui acknowledge financial support by the Conselleria d'Educació, Formació i Ocupació of the Generalitat Valenciana (fellowship ACIF/2012/064 and ACIF/2011/160 respectively)

    A review on visual privacy preservation techniques for active and assisted living

    Get PDF
    This paper reviews the state of the art in visual privacy protection techniques, with particular attention paid to techniques applicable to the field of Active and Assisted Living (AAL). A novel taxonomy with which state-of-the-art visual privacy protection methods can be classified is introduced. Perceptual obfuscation methods, a category in this taxonomy, is highlighted. These are a category of visual privacy preservation techniques, particularly relevant when considering scenarios that come under video-based AAL monitoring. Obfuscation against machine learning models is also explored. A high-level classification scheme of privacy by design, as defined by experts in privacy and data protection law, is connected to the proposed taxonomy of visual privacy preservation techniques. Finally, we note open questions that exist in the field and introduce the reader to some exciting avenues for future research in the area of visual privacy.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work is part of the visuAAL project on Privacy-Aware and Acceptable Video-Based Technologies and Services for Active and Assisted Living (https://www.visuaal-itn.eu/). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 861091. The authors would also like to acknowledge the contribution of COST Action CA19121 - GoodBrother, Network on Privacy-Aware Audio- and Video-Based Applications for Active and Assisted Living (https://goodbrother.eu/), supported by COST (European Cooperation in Science and Technology) (https://www.cost.eu/)

    Exploration of media blockchain technologies for JPEG privacy and security

    Get PDF
    Privacy and security, copyright violations and fake news are emerging challenges in digital media. Social media and data leaks increase risk of user privacy. Creative media particularly images are often susceptible to copyright violations which poses a serious problem to the industry. On the other hand, doctored images using photo editing tools and computer generated images may give a false impression of reality and add to the problem of fake news. These problems demand solutions to protect images and associated metadata as well as methods that can proof the integrity of digital media. For these reasons, the JPEG standardization committee has been working on a new Privacy and Security standard that provides solutions to support privacy and security focused workflows. The standard defines tools to support protection and integrity across the wide range of JPEG image standards. Related to image integrity, blockchain technology provides a solution for creating tamper proof distributed ledgers. However, adopting blockchain technology for digital image integrity poses several challenges at the technology level as well as at the level of privacy legislation. In addition, if blockchain technology is adopted to support media applications, it needs to be closely integrated with a widely adopted standard to ensure broad interoperability. Therefore, the JPEG committee initiated an activity to explore standardization needs related to media blockchain and distributed ledger technologies (DLT). This paper explains the scope and implementation of the JPEG Privacy and Security standard and presents the current state of the exploration on standardization needs related to media blockchain applications

    Visual Content Privacy Protection: A Survey

    Full text link
    Vision is the most important sense for people, and it is also one of the main ways of cognition. As a result, people tend to utilize visual content to capture and share their life experiences, which greatly facilitates the transfer of information. Meanwhile, it also increases the risk of privacy violations, e.g., an image or video can reveal different kinds of privacy-sensitive information. Researchers have been working continuously to develop targeted privacy protection solutions, and there are several surveys to summarize them from certain perspectives. However, these surveys are either problem-driven, scenario-specific, or technology-specific, making it difficult for them to summarize the existing solutions in a macroscopic way. In this survey, a framework that encompasses various concerns and solutions for visual privacy is proposed, which allows for a macro understanding of privacy concerns from a comprehensive level. It is based on the fact that privacy concerns have corresponding adversaries, and divides privacy protection into three categories, based on computer vision (CV) adversary, based on human vision (HV) adversary, and based on CV \& HV adversary. For each category, we analyze the characteristics of the main approaches to privacy protection, and then systematically review representative solutions. Open challenges and future directions for visual privacy protection are also discussed.Comment: 24 pages, 13 figure
    corecore