Image sharing on online social networks (OSNs) has become an indispensable
part of daily social activities, but it has also led to an increased risk of
privacy invasion. The recent image leaks from popular OSN services and the
abuse of personal photos using advanced algorithms (e.g. DeepFake) have
prompted the public to rethink individual privacy needs when sharing images on
OSNs. However, OSN image sharing itself is relatively complicated, and systems
currently in place to manage privacy in practice are labor-intensive yet fail
to provide personalized, accurate and flexible privacy protection. As a result,
an more intelligent environment for privacy-friendly OSN image sharing is in
demand. To fill the gap, we contribute a systematic survey of 'privacy
intelligence' solutions that target modern privacy issues related to OSN image
sharing. Specifically, we present a high-level analysis framework based on the
entire lifecycle of OSN image sharing to address the various privacy issues and
solutions facing this interdisciplinary field. The framework is divided into
three main stages: local management, online management and social experience.
At each stage, we identify typical sharing-related user behaviors, the privacy
issues generated by those behaviors, and review representative intelligent
solutions. The resulting analysis describes an intelligent privacy-enhancing
chain for closed-loop privacy management. We also discuss the challenges and
future directions existing at each stage, as well as in publicly available
datasets.Comment: 32 pages, 9 figures. Under revie