701 research outputs found

    Satellite on-board processing for earth resources data

    Get PDF
    Results of a survey of earth resources user applications and their data requirements, earth resources multispectral scanner sensor technology, and preprocessing algorithms for correcting the sensor outputs and for data bulk reduction are presented along with a candidate data format. Computational requirements required to implement the data analysis algorithms are included along with a review of computer architectures and organizations. Computer architectures capable of handling the algorithm computational requirements are suggested and the environmental effects of an on-board processor discussed. By relating performance parameters to the system requirements of each of the user requirements the feasibility of on-board processing is determined for each user. A tradeoff analysis is performed to determine the sensitivity of results to each of the system parameters. Significant results and conclusions are discussed, and recommendations are presented

    Compressive imaging spectrometers using coded apertures

    Get PDF
    Abstract: We describe a novel method to track targets in a large field of view. This method simultaneously images multiple, encoded sub-fields of view onto a common focal plane. Sub-field encoding enables target tracking by creating a unique connection between target characteristics in superposition space and the target's true position in real space. This is accomplished without reconstructing a conventional image of the large field of view. Potential encoding schemes include spatial shift, rotation, and magnification. We discuss each of these encoding schemes, but the main emphasis of the paper and all examples are based on one-dimensional spatial shift encoding. System performance is evaluated in terms of two criteria: average decoding time and probability of decoding error. We study these performance criteria as a function of resolution in the encoding scheme and signal-to-noise ratio. Finally, we include simulation and experimental results demonstrating our novel tracking method

    Study of efficient transmission and reception of image-type data using millimeter waves

    Get PDF
    Evaluation of signal processing and modulation techniques for transmission and reception of image type data via millimeter wave relay satellite

    NASA Tech Briefs, November 2007

    Get PDF
    Topics include: Wireless Measurement of Contact and Motion Between Contact Surfaces; Wireless Measurement of Rotation and Displacement Rate; Portable Microleak-Detection System; Free-to-Roll Testing of Airplane Models in Wind Tunnels; Cryogenic Shrouds for Testing Thermal-Insulation Panels; Optoelectronic System Measures Distances to Multiple Targets; Tachometers Derived From a Brushless DC Motor; Algorithm-Based Fault Tolerance for Numerical Subroutines; Computational Support for Technology- Investment Decisions; DSN Resource Scheduling; Distributed Operations Planning; Phase-Oriented Gear Systems; Freeze Tape Casting of Functionally Graded Porous Ceramics; Electrophoretic Deposition on Porous Non- Conductors; Two Devices for Removing Sludge From Bioreactor Wastewater; Portable Unit for Metabolic Analysis; Flash Diffusivity Technique Applied to Individual Fibers; System for Thermal Imaging of Hot Moving Objects; Large Solar-Rejection Filter; Improved Readout Scheme for SQUID-Based Thermometry; Error Rates and Channel Capacities in Multipulse PPM; Two Mathematical Models of Nonlinear Vibrations; Simpler Adaptive Selection of Golomb Power-of- Two Codes; VCO PLL Frequency Synthesizers for Spacecraft Transponders; Wide Tuning Capability for Spacecraft Transponders; Adaptive Deadband Synchronization for a Spacecraft Formation; Analysis of Performance of Stereoscopic-Vision Software; Estimating the Inertia Matrix of a Spacecraft; Spatial Coverage Planning for Exploration Robots; and Increasing the Life of a Xenon-Ion Spacecraft Thruster

    Microfabricated Tools and Engineering Methods for Sensing Bioanalytes

    Get PDF
    There is a convergence between the needs of the medical community and the capabilities of the engineering community. For example, the scale of biomedical devices and sensors allow for finer, more cost-effective quantification of biological and chemical targets. By using micro-fabrication techniques, we design and demonstrate a variety of microfluidic sensors and actuators that allow us to interact with a biochemical environment. We demonstrate the performance of microfluidic blood-filtrations chips, immune-diagnostic assays, and evaporative coolers. Furthermore, we show how micro-fabricated platinum filaments can be used for highly localized heating and temperature measurement. We demonstrate that these filaments can be used as miniature IR spectroscopic sources. Finally, we describe and demonstrate novel combinatorial coding methods for increasing the information extracted from biochemical reactions. We show proof-principle of these techniques in the context of Taqman PCR as well as persistence length PCR

    Roadmap of optical communications

    Get PDF
    © 2016 IOP Publishing Ltd. Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications

    Development of Superconducting Nanowire Single Photon Detector Technologies for Advanced Applications

    Get PDF
    abstract: Measurements of the response of superconducting nanowire single photon detector (SNSPD) devices to changes in various forms of input power can be used for characterization of the devices and for probing device-level physics. Two niobium nitride (NbN) superconducting nanowires developed for use as SNSPD devices are embedded as the inductive (L) component in resonant inductor/capacitor (LC) circuits coupled to a microwave transmission line. The capacitors are low loss commercial chip capacitors which limit the internal quality factor of the resonators to approximately Qi=170Qi = 170. The resonator quality factor, approximately Qr=23Qr = 23, is dominated by the coupling to the feedline and limits the detection bandwidth to on the order of 1MHz. In our experiments with this first generation device, we measure the response of the SNSPD devices to changes in thermal and optical power in both the time domain and the frequency domain. Additionally, we explore the non-linear response of the devices to an applied bias current. For these nanowires, we find that the band-gap energy is Δ0≈1.1\Delta_0 \approx 1.1meV and that the density of states at the Fermi energy is N0∼1010N_0 \sim 10^{10}/eV/μ\mum3^3. We present the results of experimentation with a superconducting nanowire that can be operated in two detection modes: i) as a kinetic inductance detector (KID) or ii) as a single photon detector (SPD). When operated as a KID mode in linear mode, the detectors are AC-biased with tones at their resonant frequencies of 45.85 and 91.81MHz. When operated as an SPD in Geiger mode, the resonators are DC biased through cryogenic bias tees and each photon produces a sharp voltage step followed by a ringdown signal at the resonant frequency of the detector. We show that a high AC bias in KID mode is inferior for photon counting experiments compared to operation in a DC-biased SPD mode due to the small fraction of time spent near the critical current with an AC bias. We find a photon count rate of ΓKID=150 \Gamma_{KID} = 150~photons/s/mA in a critically biased KID mode and a photon count rate of ΓSPD=106 \Gamma_{SPD} = 10^6~photons/s/mA in SPD mode. This dissertation additionally presents simulations of a DC-biased, frequency-multiplexed readout of SNSPD devices in Advanced Design System (ADS), LTspice, and Sonnet. A multiplexing factor of 100 is achievable with a total count rate of >5>5MHz. This readout could enable a 10000-pixel array for astronomy or quantum communications. Finally, we present a prototype array design based on lumped element components. An early implementation of the array is presented with 16 pixels in the frequency range of 74.9 to 161MHz. We find good agreement between simulation and experimental data in both the time domain and the frequency domain and present modifications for future versions of the array.Dissertation/ThesisDoctoral Dissertation Physics 201

    Real Time Structured Light and Applications

    Get PDF

    Interferometry-based Free Space Communication And Information Processing

    Get PDF
    This dissertation studies, analyzes, and experimentally demonstrates the innovative use of interference phenomenon in the field of opto-electronic information processing and optical communications. A number of optical systems using interferometric techniques both in the optical and the electronic domains has been demonstrated in the filed of signal transmission and processing, optical metrology, defense, and physical sensors. Specifically it has been shown that the interference of waves in the form of holography can be exploited to realize a novel optical scanner called Code Multiplexed Optical Scanner (C-MOS). The C-MOS features large aperture, wide scan angles, 3-D beam control, no moving parts, and high beam scanning resolution. A C-MOS based free space optical transceiver for bi-directional communication has also been experimentally demonstrated. For high speed, large bandwidth, and high frequency operation, an optically implemented reconfigurable RF transversal filter design is presented that implements wide range of filtering algorithms. A number of techniques using heterodyne interferometry via acousto-optic device for optical path length measurements have been described. Finally, a whole new class of interferometric sensors for optical metrology and sensing applications is presented. A non-traditional interferometric output signal processing scheme has been developed. Applications include, for example, temperature sensors for harsh environments for a wide temperature range from room temperature to 1000 degree C

    Smart optical imaging systems with automated electronics

    Get PDF
    In this dissertation, proposed and demonstrated are several novel smart electronically automated optical designs to efficiently solve existing real-world problems in the field of shape sensing and imaging. First half of the thesis proposes shape sensing techniques that use an Electronically Controlled Variable Focus Lens (ECVFL) within a smart optical design suitable for a wide range of applications including shape sensing and projection displays. The second part of this dissertation involves the use of the Digital Micromirror Device (DMD) deployed within several smart optical designs including an embedded laser beam profiler and a new camera idea which is inspired by the Telecommunication science field. Specifically, proposed and demonstrated is the design and implementation of the novel imaging device called Coded Access Optical Sensor (CAOS) where CAOS is able of operating with different application dependent working modes. Experimentally and successfully demonstrated for the first time are its use for coherent light laser imaging as well as for incoherent imaging of a high dynamic range white light scenario. It is also shown how its design can be further extended for multispectral and hyperspectral imaging applications
    • …
    corecore