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ABSTRACT

Measurements of the response of superconducting nanowire single photon detector

(SNSPD) devices to changes in various forms of input power can be used for character-

ization of the devices and for probing device-level physics. Two niobium nitride (NbN)

superconducting nanowires developed for use as SNSPD devices are embedded as the

inductive (L) component in resonant inductor/capacitor (LC) circuits coupled to a

microwave transmission line. The capacitors are low loss commercial chip capacitors

which limit the internal quality factor of the resonators to approximately Qi = 170.

The resonator quality factor, approximately Qr = 23, is dominated by the coupling

to the feedline and limits the detection bandwidth to on the order of 1MHz. In our

experiments with this first generation device, we measure the response of the SNSPD

devices to changes in thermal and optical power in both the time domain and the

frequency domain. Additionally, we explore the non-linear response of the devices to

an applied bias current. For these nanowires, we find that the band-gap energy is

∆0 ≈ 1.1meV and that the density of states at the Fermi energy is N0 ∼ 1010/eV/µm3.

We present the results of experimentation with a superconducting nanowire that

can be operated in two detection modes: i) as a kinetic inductance detector (KID) or

ii) as a single photon detector (SPD). When operated as a KID mode in linear mode,

the detectors are AC-biased with tones at their resonant frequencies of 45.85 and

91.81MHz. When operated as an SPD in Geiger mode, the resonators are DC biased

through cryogenic bias tees and each photon produces a sharp voltage step followed by

a ringdown signal at the resonant frequency of the detector. We show that a high AC

bias in KID mode is inferior for photon counting experiments compared to operation

in a DC-biased SPD mode due to the small fraction of time spent near the critical

current with an AC bias. We find a photon count rate of ΓKID = 150 photons/s/mA
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in a critically biased KID mode and a photon count rate of ΓSPD = 106 photons/s/mA

in SPD mode.

This dissertation additionally presents simulations of a DC-biased, frequency-

multiplexed readout of SNSPD devices in Advanced Design System (ADS), LTspice,

and Sonnet. A multiplexing factor of 100 is achievable with a total count rate of

> 5MHz. This readout could enable a 10000-pixel array for astronomy or quantum

communications. Finally, we present a prototype array design based on lumped

element components. An early implementation of the array is presented with 16

pixels in the frequency range of 74.9 to 161MHz. We find good agreement between

simulation and experimental data in both the time domain and the frequency domain

and present modifications for future versions of the array.
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Chapter 1

INTRODUCTION

“All the fifty years of conscious brooding have brought me no closer to
answer the question, ’What are light quanta?’ Of course today every rascal
thinks he knows the answer, but he is deluding himself.”
–Albert Einstein

A single photon is the smallest possible discrete unit of light. The most sensitive

detectors are therefore required to analyze single photons. This chapter begins with

a description of the physical properties of single photons and the fields which they

compose and follows up with a short history leading up to the advent of superconduct-

ing single photon detectors (SSPD). This includes a discussion on the photoelectric

effect, photomultiplier tubes (PMT), and single photon avalanche diodes (SPAD).

Additionally, an overview of the two detector types relevant to the content in this

dissertation, superconducting nanowire single photon detectors (SNSPD) and kinetic

inductance detectors (KID), is presented. Finally, superconducting nanowire resonator

single photon detectors (SNRSPD), the merger of these two detector types and the

focus of this dissertation, are discussed.
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Table 1: Physical Properties of Single Photons.

Property Value

Mass 0
Charge 0
Spin 1

1.1 Single Photons

1.1.1 Physical Properties

Photons are one of many elementary particles and, in particular, are classified as

gauge bosons. A bosonic particle is not restricted by the Pauli exclusion principle to

singularly occupy a particular quantum state. Gauge bosons are integer spin particles

that carry the fundamental interactions of nature; moreover, they are force carriers.

Specifically, photons carry the electromagnetic force in the form of virtual particles.

This can be represented in a spacetime diagram called a Feynman diagram. Figure 1

shows the Feynman diagrams for the photon propagator and the annihilation of an

electron and its antiparticle, the positron. The photon propagator (Figure 1a) is a

function that describes the amplitude of the probability that a particle will travel from

one spacetime point to another spacetime point. In Figure 1b, the photon propagator

represents the exchange of a virtual particle and specifies the rate of the e+e− → µ+µ−

event.

More important to the present dissertation is that photons are the substance of
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(a) (b)

Figure 1: Feynman diagrams: (a) photon propagator, (b) electron-positron annihila-
tion (e+e− → µ+µ−).

electromagnetic radiation. Electromagnetic radiation moves at c = 3× 108m/s within

a vacuum. A photon does not carry any charge and is a massless particle (Table 1).

Regardless of its zero mass, a photon does carry momentum and therefore can exert

force on matter. This can be shown with the relativistic relation between energy and

momentum given by

E2 = p2c2 +m2c4, (1.1)

where E is the energy of a photon, p is the momentum, c is the speed of light, and m

is the mass. For m = 0, we arrive at

p =
E

c
, (1.2)

where the Planck relation E = hν gives

~p = ~~k, (1.3)
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where ~ is the reduced Planck constant and |~k| = 2π/λ is the magnitude of the wave

vector. ν is the frequency of the radiation and λ is the wavelength and they are related

with c = νλ.

Photons also carry angular momentum and, in particular, spin angular momentum

and orbital angular momentum. These two components of the angular momentum are

independent. Spin angular momentum is the component of the angular momentum

that corresponds to the polarization of the photon and is a quantum observable. For

a single photon, spin angular momentum has two possible eigenvalues and, therefore,

two possible eigenstates given by

~Sz = ±~~, (1.4a)

|±〉 =
1√
2

 1

±i

 , (1.4b)

where these two states represent the left-handed and right-handed circular polarizations

of the photon. The spin angular momentum of a single photon is easy to measure

using a waveplate and a polarizing beam splitter (Beijersbergen et al. 1994).

Orbital angular momentum states are not as easily measured due to having an

infinite number of possible orthogonal eigenstates (Molina-Terriza, Torres, and Torner

2001). The eigenvalues of orbital angular momentum are given by

~Lz = m~~, (1.5a)

~L2 = ` (`+ 1)~~2, (1.5b)

where m ∈ {. . . ,−2,−1, 0, 1, 2, . . .} and ` ∈ {0, 1, 2, . . .}. These values determine the

wavefront shape. In terms of a single photon, measurement of the azimuthal quantum

number, `, can be measured with an interferometric method (Leach et al. 2002) with

100% efficiency.
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1.1.2 Black Body Gas

A common example of photonic behavior is black body radiation. A black body is

a non-reflective physical object. This object comprises of a system that encompasses

a collection of photons. Photons are non-interacting and indistinguishable and, at

thermal equilibrium, exhibit a behavior governed by Bose-Einstein statistics (Bose

1924; Einstein 1924). These statistics describe the way a collection of photons in a

system may occupy a set of discrete energy states intrinsic to and available within the

given system. The statistical properties of a single photon in this system are described

by the partition function given by

Z =
1

1− exp ((µ− ε) /kBT )
, (1.6)

where µ is the chemical potential, ε is the energy of the photon state, kB is the

Boltzmann constant, and T is the absolute temperature of the system. The average

photon number is then given by

〈N〉 = kBT
1

Z

(
∂Z
∂µ

)
V,T

=
1

exp ((µ− ε) /kBT )− 1
, (1.7)

where the volume V and temperature T of the system is unvarying.

In the case of black body radiation, or a photon gas, µ = 0 due to the lack of a

constraint on the number of photons in the system. Moreover, the photon number

is not conserved. This can be explained by the possible circumstance arising from a

photon of energy E1 being absorbed by an electron in the wall of the black body cavity.

The electron will be excited to a higher energy state. When the electron returns to its

initial energy state, it may do so in a series of steps that result in two photons being

emitted of energies E2 and E3 such that E1 = E2 + E3. Furthermore, photons have
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energy ε = hν such that the spectral energy density is given by (Planck 1900)

uνdν =
8πhν3

c3

dν

exp (hν/kBT )− 1
, (1.8)

where h is the Planck constant and ν is the frequency of the photon. The spectral

radiance of the body is then given by

Bν(T ) =
uν(T )c

4π
, (1.9)

since the radiation travels at the speed of light in all directions.

1.1.3 Incoherent and Coherent States

A Heisenberg-type order-of-magnitude relationship can be used to describe the

level of order in incoherent and coherent states of the radiation field with respect to

the frequency span of the field and is given by (Wolf 1958)

∆τc∆ν ∼ 1, (1.10)

where ∆τc is the coherence time and ∆ν is the effective spectral frequency range.

The coherence time is the time over which a beam of light has a well defined phase

relationship and therefore characterizes how dispersed the frequency is over time. The

larger the bandwidth of the source, the more polychromatic the light is coming from

the source and, therefore, the shorter the coherence time is.

Incoherent light is a state of the radiation field with a coherence time that ap-

proaches zero. This occurs with a field that has randomly varying phase and amplitude.

To see this, consider the wave equation of light given by

�Ψ = 0, (1.11)
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where −� = ~∇2 − c−2(∂2/∂t2) is the d’Alembert operator and Ψ is the generic

waveform upon which it acts. By experimentation, we know that electromagnetism is

linear. Therefore, we have the following constraints for some constants, α and β:

� (αΨ) = 0→ α�Ψ = 0, (1.12a)

�Ψ = 0→ � (αΨ1 + βΨ2) = 0→ α�Ψ1 + β�Ψ2 = 0, (1.12b)

where Equation 1.12a demonstrates homogeneity and Equation 1.12b demonstrates

additivity. These properties show that electromagnetic radiation conforms to the

superposition principle.

The electric field of two plane waves propagating in free space are solutions to

Equation 1.11 and can be written as

~E1 = ~E01e
i(~k1·~r−ωt+φ1), (1.13a)

~E2 = ~E02e
i(~k2·~r−ωt+φ2), (1.13b)

where ~E0 is the peak magnitude of the oscillation, ~k is the wavenumber, ~r is the

position vector, ω is the angular frequency, and φ is the phase. The total electric field

is just the addition of the two fields given by

~ET = ~E1 + ~E2 = e−iωt
[
~E01e

i(~k1·~r+φ1) + ~E02e
i(~k2·~r+φ2)

]
. (1.14)

The time-averaged intensity of the total field is then given by

IT = 〈 ~ET · ~E∗T 〉 = I1 + I2 + 2
√
I1I2 cos δ, (1.15)

where δ = (~k1−~k2) · ~r+ (φ1− φ2) is the phase difference between the two waves. One

can imagine a superposition of N fields with varying frequencies of light. The intensity

of an incoherent source shifts with time as the phase difference changes between the

multiple frequencies of light. Thermal light is one such field that exhibits incoherence.
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Consider again N harmonic oscillators such that the total field is given by

E(t) =
N∑
j=1

E0e
−i[ωt−φj(t)], (1.16)

where φj(t) is the phase of the j-th oscillator. The probability distribution of the

time-varying intensity is then given by

p(I(t)) =
1

〈I(t)〉
e−I(t)/〈I(t)〉, (1.17)

where 〈I(t)〉 = NE2
0 is the average intensity of the field and I(t) = E2

0 |β(t)|2 is the

instantaneous intensity. β(t) is the sum of the phases of the oscillators and represents

the complex amplitude of the total field.

Applying Mandel’s formula (Mandel 1959) to Equation 1.17, we arrive at the

probability distribution for thermal light given by

Pn =
1

〈n〉+ 1

(
〈n〉
〈n〉+ 1

)2

, (1.18)

where n is the number of photon counts registered at an ideal detector. The variance

of Pn is given by

∆n2 = 〈n〉+ 〈n〉2 . (1.19)

Moreover, for thermal light, the average value of the registered number of photons

fluctuates by the square of the average value.

Coherent light is a state of the radiation field with a coherence time that is

infinite since the intensity is constant over time and is best handled with a quantum

mechanical analysis. A single photon detection can be represented with an operation

on the oscillator state given by (Mandel and Wolf 1965)

â |α〉 = α |α〉 , (1.20)

where â is the annihilation operator and |α〉 is the single-mode wave function of the

photon field. The state of the field is coherent if it satisfies this equation because
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when â acts on |α〉, the state remains unchanged. In this way, the phase of the field is

preserved upon detection, or annihilation, of a photon.

Consider the photon number eigenstate equation for the quantum harmonic oscil-

lator given by

n̂ |n〉 = n |n〉 , (1.21)

where n is the number of photons in the field, n̂ is the photon number operator, and

|n〉 is the wave function. |n〉 is given by

|n〉 =
1√
n!

(
â†
)n |0〉 , (1.22)

where â† is the creation operator. For a full analysis of the harmonic oscillator state

see Appendix I.

We follow a derivation of the coherent states of a single-mode oscillator (Glauber

1963). We begin by taking the inner product on both sides of Equation 1.20 with the

arbitrary excited state given by Equation 1.21:

〈n| â |α〉 = α 〈n|α〉 . (1.23)

It follows from Equation A18a that 〈n| â =
√
n+ 1 〈n+ 1|, such that Equation 1.23

takes the following form:

√
n+ 1 〈n+ 1|α〉 = α 〈n|α〉 . (1.24)

It is then clear that the inner products 〈n|α〉 are recursive and given by

〈n|α〉 =
αn√
n!
〈0|α〉 , (1.25)

where we obtain the oscillator state |α〉 via a summation over all states with 〈n|α〉 as

the expansion coefficients:

|α〉 =
∑
n

|n〉 〈n|α〉 = 〈0|α〉
∑
n

αn√
n!
|n〉 . (1.26)
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It remains to us to find the factor 〈0|α〉 via normalization and invoking the

definition of the exponential function:

〈α|α〉 = |〈0|α〉|2
∑
n

|α|2n

n!
= |〈0|α〉|2 exp

(
|α|2
)

= 1 (1.27a)

⇒ 〈0|α〉 = exp

(
−1

2
|α|2
)
.

Finally, we have the coherent states of the harmonic oscillator given by

|α〉 = exp

(
−1

2
|α|2
)∑

n

αn√
n!
|n〉 . (1.28)

Using the Born rule (Born 1926) by projecting the number eigenstate |n〉 onto the

coherent states of the harmonic oscillator we obtain

Pn = |〈n|α〉|2 =
|α|2n

n!
exp

(
− |α|2

)
, (1.29)

which is of a Poisson distribution form representative of the average occupation number

of photons in the n-th state. The variance of Pn is then given by

∆n2 = 〈n〉 . (1.30)

Moreover, for coherent light, the average value of the registered number of photons

does not fluctuate.

1.1.4 Wave-Particle Duality

Robert Hooke and Issac Newton had differing views on the nature of light. Hooke

believed that light was made up of waves (Hooke 1672). On the other hand, Newton

was a proponent of the corpuscular theory of light (Newton 1672). It turns out that

photons have both wave and particle properties (Bohr 1928). This is best demonstrated
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Figure 2: Classic double-slit experiment. Plane waves are incident on two slits.
The wavefronts propagate outward to a detector and an interference pattern is
observed. Minima pertain to total destructive interference and maxima pertain to
total constructive interference.

with the double-slit experiment. The original double-slit experiment was carried out

by Thomas Young which displayed the wave nature of light (Young 1802). When

waves are incident on small apertures, they diffract. Diffraction in this case is a

spreading out of the waves into circular propagating wavefronts. Young’s experiment

involved two narrow slits upon which monochromatic light was incident. The result

was a predictable interference pattern projected onto a flat surface perpendicular to
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the direction of propagation of the original light waves (Figure 2). The intensity of

the resulting light pattern is given by (Jenkins and White 1950)

I(θ) ∝ cos2 (γ) sinc2 (β) , (1.31)

where the arguments of the trigonometric functions are given by

γ =
πd

λ
sin(θ) (1.32a)

β =
πb

λ
sin(θ). (1.32b)

γ and β are functions of the wavelength of the light λ and the angle θ that defines

the path difference between the two waves. d is the distance between the centers of

the slits and b is the slit width.

The cosine function in Equation 1.31 is a result of the interference of the two

waves due to a phase difference between the waves. The cardinal sine function is a

result of single-slit diffraction. Therefore, the intensity observed in the double-slit

experiment is zero when either the diffraction term or the interference term is zero.

Maxima occur when γ = 0 which occurs when d sin(θ) takes on values that are integer

increments of the wavelength of the light. Due to the properties of constructive and

destructive interference being being a well-known consequence of interacting waves, it

was concluded that light was wave-like.

It may come to no surprise that light has the properties of wave-mechanics, but

the double-slit experiment has been performed explicitly with particles that have mass

(Donati, Missiroli, and Pozzi 1973; Eibenberger et al. 2013) with an interference pattern

result. Therefore, at small scales, relatively massive particles exhibit measurable wave-

like properties and wave-particle duality is demonstrated. Additionally, the particle

nature of photons has been explored at length (Pfleegor and Mandel 1967, 1968;

Grangier, Roger, and Aspect 1986; Mandel 1999).
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The peculiarity of the double-slit experiment that makes it a superlative example

of wave-particle duality is that the same interference pattern as in Young’s continuous

wave experiment is obtained when only one particle at a time passes through the

double-slitted partition. If the process of the photon passing through one or the other

slit is measured, the interference pattern is destroyed. The act of monitoring the path

of the photon destroys its wave-like properties. If the photon path is left unchecked,

it retains its wave-like properties and an interference pattern is recovered. It can

therefore be concluded, since the single photon particle must interfere with itself,

that a photon exhibits both wave- and particle-like properties. Moreover, the photon

arrives like a particle, but interferes like a wave. The the classical, or wave-like, and

quantized, or particle-like, nature of the photon are two detectable conditions of a

single object. This necessitates that the photon be considered a quantum object.

1.2 Photon Detectors

1.2.1 The Photoelectric Effect

It turns out, as discussed previously, that light is not a continuous wave but rather

composed of discrete quanta of energy called photons. This dissertation is particularly

invested in single photon detection and therefore the particle nature of photons. The

possibility of the detection of single photons began when Albert Einstein realized why

the kinetic energy of electrons being emitted from a metallic surface were independent

of the intensity of the light incident on the surface (Einstein 1905).

If the wavelength of a photon that is incident on the surface is below a certain

threshold that is defined by the material, electrons will not be emitted because there is
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Figure 3: φ is the minimum amount of energy required to remove an electron from
the metallic surface. Red light (~ω1 < φ) is less energetic than blue light (~ω2 > φ).
Shining light of energy ~ω > φ on a metallic surface results in the emission of
photoelectrons with kinetic energy T (ω), but light of energy ~ω < φ will not free an
electron. This is called the photoelectric effect.

not a sufficient amount of energy transfered from the photon. No amount of intensity

increase of photons below this threshold wavelength will result in an emission event.

This is contradictory to the wave-model of light. If the wavelength is above the

threshold, then a photoelectron will be emitted with kinetic energy T given by

T = Eγ − φ, (1.33)

where Eγ = ~ω is the energy of the photon and φ = ~ω0 is the work function of the

material.

Figure 3 illustrates the frequency dependence of the emission process. The amount

of light incident on the surface does not affect the maximum kinetic energy of the

photoelectrons emitted. This is due to the particle nature of light and how energy is
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transfered to the electrons in the metal. If the intensity of the light in increased, the

photoelectrons emitted will retain the same maximum kinetic energy.

1.2.2 Photomultiplier Tubes

One consequence of the photoelectric effect was the invention of the photomultiplier

tube (PMT). A PMT is an evacuated glass tube that accepts small light signals and

alters the input into a measurable output. PMTs were the first detectors capable of

detecting the signals from a single photon (Kiepenheuer 1937; Allen 1939). There are

four major components that are necessary for the operation of a PMT: a window, a

photocathode, a dynode network, and an anode. The window accepts the photons and

contains a thin layer of photo-emissive material. This layer acts as the photocathode

in that it emits electrons via the photoelectric effect. The emitted photoelectrons will

have kinetic energy equal to the energy of the incident photon minus the work function

of the material. The photoelectrons are fed onto the first dynode by electrodes within

the tube. The signal is amplified by a cascading of electrons through a network of

dynodes coated in emissive material. The anode receives the amassed electrons and

produces the measurable output in the form of an electric current.

1.2.3 Single Photon Avalanche Diodes

A single photon avalanche photodiode (SPAD) is another device that operates

through the photoelectric effect. SPADs are semiconductor devices that are voltage

biased just above the breakdown voltage of the p-n junction (Stipčević, Skenderović,

and Gracin 2010). This is the voltage at which the the material to be exposed to
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Figure 4: The interior of a SPAD showing how the electric field across the length of
the multiplication region induces the avalanche effect.

the photons conducts. A single photon event causes the semiconductor material to

conduct and commences the avalanche effect. When a photon creates an electron-hole

pair in the multiplication region of a SPAD, the strong electric field formed at the p-n

junction motivates impact ionization and results in an avalanche pulse that coincides

with a photon arrival. The SPAD returns to an operational state by a reset of the

voltage bias. See Figure 4 for a visual representation of how the electric field varies in

the detector.
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1.2.4 Superconducting Nanowire Single Photon Detectors

Figure 5: Detection mechanism of an SNSPD. (a) The superconducting state of a
section of nanowire biased with a current below the switching current. (b) When a
photon is absorbed by the nanowire, it creates a hotspot. The current is diverted
around the hotspot. (c) The critical current density is exceeded and a resistive strip
is formed across the width of the nanowire, shunting the current and resulting in a
readable voltage pulse. (d) The bias current is diverted to the load and the resistive
region is dissipated. The nanowire returns to the superconducting state.

Superconducting nanowire single photon detectors (SNSPD) are fabricated with

materials that are capable of reaching a superconducting state. One such material is

niobium nitride (NbN) (Zhang et al. 2003). When cooled below the critical temperature

of NbN, the nanowire becomes superconducting. When the superconducting nanowire

is biased close to its switching current, a single photon carries enough energy to drive

a section of the nanowire normal (Natarajan, Tanner, and Hadfield 2012).

Initially, the superconducting state of a section of nanowire is undisturbed with

a bias current just below the switching current. The switching current is the char-

acteristic current of the material at which superconductivity is destroyed. At some

point, a photon strikes this section of the wire. This incident photon is absorbed and

a resistive hotspot is formed. The current is repelled to the sides, causing the local

current density to exceed the critical current density. The hotspot then grows and

switches a local cross section of the nanowire to the resistive state. The current is

completely blocked such that a measurable voltage pulse is generated. Finally, since
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the bias current is diverted to the load, there is not enough current in the nanowire to

sustain the generated resistive strip and the nanowire returns to the superconducting

state (Figure 5).

The experimental parameters of SNSPD devices consist of detection efficiency,

maximum count rate, dark count rate, dead time, and timing jitter. In order for a

single photon detector to be maximally useful, it must detect a large fraction of the

photons incident on it. This detected fraction is called the detection efficiency. It is

the probability that a count is recorded if a photon is incident on the detector. A

variety of factors affect the detection efficiency. When the photon field enters the

environment of the experimental apparatus, photons may be scattered or absorbed.

The geometry of the nanowire and the properties of the film, such as composition and

thickness, also determine how many photons are detected. The detection efficiency is

highly dependent on the wavelength of the observed radiation (Hofherr et al. 2010).

The count rate is the number of photon counts per second. Only a fraction of the

incident photons will be detected as determined by the detection efficiency, but the

detector dead time also affects the number of recorded counts. The dead time τ is the

amount of time that it takes for the detector to return to a state in which the detector

is capable of a second detection. If a photon is incident on the detector during this

dead time, it is likely that the photon will not be detected. Likewise, if the detector

reaches a saturated state in a time before can it can reset, it will be unable to detect

additional incident photons. The maximum count rate (MCR) is related to the dead

time by

MCR =
1

τ
. (1.34)

Dark counts are false counts that are impossible to differentiate from real counts

from photons incident on the detector. Dark counts are intrinsic to many detectors
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due to thermal fluctuations. One source of these fluctuations occurs via blackbody

radiation in fiber-coupled devices (Yamashita et al. 2010; Shibata et al. 2013). Another

source involves current-assisted unbinding of vortex-antivortex pairs (Yamashita et

al. 2011). The dark count rate (DCR) depends on the material used and is the number

of dark counts per second. The number of dark counts over the total number of counts

gives the probability that a registered count is a dark count. Therefore, the dark

count fraction is high if the detection efficiency is low or if the occupation number of

the field is low, resulting in a small number of real counts per second.

Timing jitter ∆t is the uncertainty in the arrival time of an individual photon.

Moreover, it is the spread in the span of time that occurs between the incidence of

the photon on the detector and the detection of the corresponding output signal. The

typical parameters of the aforementioned single photon detectors are summarized in

Table 2. SNSPD devices significantly outperform PMTs and SPADs at the operating

wavelength of 1550nm.

Table 2: Typical parameters of single photon detectors (Hadfield 2009). Top is the
operating temperature, η is the detection efficiency, ∆t is the timing jitter, DCR is
the dark count rate, and MCR is the maximum count rate.

Detector Top(K) η(%@1550nm) ∆t(ps) DCR(Hz) MCR(MHz)

PMT(InP/InGaAs) 200 2 300 2× 105 10
SPAD(InGaAs) 200 10 370 91 0.01
SNSPD(NbN) 1-4 57 30 10 1000
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1.2.5 Kinetic Inductance Detectors

Figure 6: Measured response with respect to the transfer function S21 of a low
frequency KID. The breaking of Cooper pairs due to absorbed photons causes a shift
in the resonant frequency δf and the power level δP as represented by the S21 curves.

Kinetic Inductance Detectors (KID) have been developed and analyzed extensively

(Mazin et al. 2001; Day et al. 2003; Mazin 2004; Doyle et al. 2008; Gao 2008). KIDs

are based on a resonator mechanism that responds to a change in the population

of Cooper pairs and quasiparticles in a superconducting material. Cooper pairs are

electrons that experience zero DC resistance due to electron-phonon interaction in

the material lattice (Cooper 1956). Quasiparticles are electrons of an effective mass

that is different from the free-particle mass due to interactions with other particles in
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the material (Kaxiras 2003). The basic principle of KID operation is the detection of

incident radiation by the breaking of Cooper pairs due to the energy of the absorbed

photon flux. The kinetic inductance of the inductive component of the resonator

changes as a function of the number density of Cooper pairs. Since the resonant

frequency is a function of the inductance, it shifts as a function of absorbed power

in the inductor. From this measurable shift in resonant frequency (Figure 6) the

absorbed power of a KID can be determined.

Electrons form into Cooper pairs in superconducting material that is cooled below

its critical temperature. These electrons are bound by an energy given by (Lynton

1962)

2∆0 ∼ 3.5kBTC , (1.35)

where ∆0 is the binding energy at low temperatures, kB is the Boltzmann constant,

and TC is the critical temperature. Breaking of these Cooper pairs by phonons

or photons of energy E > 2∆0 results in the formation of quasiparticles. It will

be of importance in this dissertation to extract ∆0 from experimental data and to

determine the quasiparticle density as a function of temperature for a KID-style

detector developed at Arizona State University (ASU).

Monitoring the number of quasiparticles in a superconducting film at a constant

temperature gives insight into the power incident on the film. Breaking of the Cooper

pairs by a single photon results in the creation of a quasiparticle density given by

nqp ∼
ηhν

∆0

, (1.36)

where η is the efficiency of quasiparticle formation from photon energy, h is the Planck

constant, and ν is the frequency of the photon energy. When multiple photons are

absorbed in steady-state the density of quasiparticles will change with respect to the

21



total power absorbed within the quasiparticle lifetime given by (Mauskopf 2018)

dnqp =
ηPabsτqp

∆0

, (1.37)

where Pabs is the total power absorbed and τqp is the quasiparticle lifetime.

The main applications of KID-style detectors are in observational astronomy.

Mazin incorporated KIDs as sensitive x-ray detectors (Mazin et al. 2006). Schlaerth

showed that KIDs at the Caltech Submillimeter Observatory could be used to map

objects such as Jupiter, Saturn, and G34.3 (Schlaerth et al. 2008). Baselmans describe

the the use of KIDs for sub-mm astronomy (Baselmans et al. 2008). Vardulakis

expands on the use of KIDs for sub-mm and x-ray imagining arrays for astrophysics

(Vardulakis et al. 2008). Che provides a contemporary and comprehensive report on

advancements in KID technologies for mm-wave astronomy (Che 2018).

1.2.6 Superconducting Nanowire Resonator Single Photon Detectors

In this dissertation, the characterization of a new type of nanowire device based on

the KID principle is discussed. This detector will be referred to as a Superconducting

Nanowire Resonator Single Photon Detector (SNRSPD). The primary difference

between a KID and an SNRSPD is the implementation of an inductive component

with dimensions on the order of nanometers instead of micrometers. SNSPD devices

are readily available for implementation into resonant circuits and to subsequently

create SNRSPD devices.

To operate an array of SNSPD devices with the traditional approach, each device

needs to be wired individually from cryogenic temperatures to a room temperature

environment. This increases system complexity and heat load on the coldplate and

results in high power consumption. Implementing the SNSPD in a resonant circuit
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allows the multiplexing scheme already well-developed for KIDs to be used with

SNRSPD devices. Since the capacitive portion of the resonant circuit is easily tuned,

the resonant frequency of each SNRSPD pixel can be uniquely read out on the same

feedline. Additionally, the SNRSPD can be tuned by varying the dimensions of the

nanowire (A. J. Annunziata et al. 2010b). It is possible to bias the nanowires with

RF-power instead of DC (Doerner et al. 2016). Doerner et al. have demonstrated

a two-pixel proof-of-concept multiplexed SNSPD array biased with RF-power. The

circuits used included one capacitor per pixel.

In this dissertation we will explore a SNRSPD circuit setup that includes an

additional parallel capacitor modeled after the standard KID. First, we will present

a two-pixel, proof-of-concept SNSPDR package with surface mount device (SMD)

capacitors. We will characterize the SNRSPD response to changes in base temperature

and to changes in bias current. From the results, we will obtain band-gap information

and insight into the non-linear behavior of the kinetic inductance. We will calculate

the density of states at the Fermi energy at zero temperature in order to obtain the

quasiparticle number for each SNRSPD pixel. Additionally, we will present designs

and a prototype for an imager array that consists of several pixels on a single chip

that is biased by a single DC source.
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Chapter 2

SCIENTIFIC MOTIVATION

This chapter is a an overview of four advanced applications that SNSPDs or

SNRSPDs may be used for: intensity interferometry, the fast imaging of exoplanet

signals, deep space optical communication, and quantum information. Intensity

interferometry in particular is discussed at length due to concentration in this subject

in the early years of the work done in the Astronomical Instrumental Lab at ASU for

this dissertation.

2.1 Intensity Interferometry

An immediate application of SNSPDs is intensity interferometry. Stars are in-

coherent (thermal) sources of light that radiate over a wide range of frequencies.

Correlations in the intensity of filtered thermal radiation can be measured within a

coherence time that is determined by the central wavelength and bandwidth of the

filtered light by correlating signals from two or more detectors observing the same

source. Moreover, the amplitude of this second order correlation function is a function

of spatial separation between detectors and depends on the angular size of the source.

Measurements of diameters of stars using this technique, called intensity inter-

ferometry, were first accomplished by Hanbury Brown and Twiss (HBT) (Hanbury

Brown 1956) as they were able to accurately determine the diameter of Sirius using

photomultiplier tubes to detect the fluctuations in intensity of the starlight. Our

motivation for the reinvestigation of this measurement technique is the advent of
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SNSPD technology. The speed of these detectors allow for the measurement of more

compact and dimmer objects than previously possible.

In this section, we describe the experimental setup required for measurements of

intensity correlations from laboratory sources and for measuring diameters of bright

stars with small-to-moderate sized telescopes using SNSPDs. With a sensitive detector,

the raw signal that is measured is a superposition of signals from multiple sources

across a given area containing the object from which the signal is desired. This skews

the desired result. Therefore, intensity interferometry is used to isolate the correlated

light from the desired source. This is done through the use of (at least) two separated

detectors measuring light from the source at the same time.

2.1.1 Correlation Function

The correlation function is an nth-order function that relates the electromagnetic

field at multiple spacetime points. The first-order correlation function is given by

C(1)(r1t1, r2t2) = 〈E∗(r1t1)E(r2t2)〉 , (2.1)

where E is the electric field and rt represents the position in space and time of the

detectors. For r1 = r2 and t1 = t2, C(1) is simply the intensity of the field. For r1 = r2

and t1 6= t2, C(1) is a time-dependent intensity; if the intensity varies in time, it can

be measured. For r1 6= r2 and t1 = t2, C(1) is a spatially-dependent intensity; if the

intensity varies with distance across the wavefront, it an be measured.

The second-order correlation function is measured by correlating the intensity of

the radiation field emitted by a source at two different detectors separated in space and

time. Coherent radiation exhibits random intensity fluctuations due to the stochastic

nature of the arrival and detection time of the photons that are uncorrelated between
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any two detectors measuring the same source. However, incoherent light exhibits

additional intensity fluctuations corresponding to photon bunching that are correlated

at some level between detectors.

The second-order correlation function is given as (Foellmi 2009)

C(2)(r1t1, r2t2) = 〈I(r1t1)I(r2t2)〉 , (2.2)

where I is the intensity of the electric field at the detectors. For r1 6= r2 and t1 = t2, C(2)

provides a spatially-dependent measurement of the wavefront state; if the distribution

of photons vary with distance across the wavefront, it can be measured. This is the

key to measuring the coherence pockets in the radiation field from the source and to

performing the HBT experiment.

The signal-to-noise ratio (SNR) for detecting second-order intensity fluctuations

from an incoherent light source is given by

S

N
= εnoccNmodes

√
τint
τdet

C(2)(r1t1, r2t2), (2.3)

where ε is the overall efficiency of the system, nocc is the occupation number of a single

radiation mode, Nmodes is the number of expected modes, τint is the integration time,

τdet is the detector time constant, and C(2)(r1t1, r2t2) is the normalized second-order

correlation function as discussed previously. Modern PMTs have time constants on the

order of 300ps. SNSPDs have time constants on the order of 10ps. This corresponds

to over a factor of 5 increase in signal-to-noise. See Appendix VII for a derivation of

the SNR.

C(2)(r1t1, r2t2) is experimentally obtained by varying the distance between the two

detectors. The maximum separation between detectors, or baseline, where spatial

correlations can be detected is given approximately by the Rayleigh criterion (Rayleigh
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1879):

sin θ =
1.22λ

d
, (2.4)

where θ is the angular size of the source, λ is the central wavelength of the observed

bandwidth of light, and d is the baseline.

The baselines required to determine stellar diameters are on the order of a kilometer

(Dravins, Lagadec, and Nuñez 2015). Intensity interferometry has advantages for large

baselines compared to conventional phase interferometry. Phase interferometry requires

the light from multiple telescopes observing the same source to be physically combined

so that an interference pattern is formed and can be analyzed while maintaining

phase coherence. Fluctuations in the path lengths between telescopes and through the

atmosphere limit the duration of a fixed fringe pattern and therefore the detectable

source magnitude. This is not a problem for lab experiments taking advantage of

sources with a large angular size and the corresponding small required variations of

the baseline. For stars, which have small angular sizes, the baselines are too large for

this conventional setup to work without significant difficulty. The attenuation alone

from the large distances of fiber optics required to combine the beams is enough to

derail any attempts to accurately measure stellar diameters.

For intensity interferometry, instead of the physical recombination of the beams,

the time streams from two detectors corresponding to the arrival times of photons

can be stored digitally. In post-processing, the two steams can be combined and

correlations can be determined. Therefore, in principle, a baseline of any size can be

used for intensity interferometry measurements.

By increasing the distances over which correlated beams of light can be analyzed,

incoherent light sources with small angular diameters can be measured. In addition

to typical stellar objects such as Sirius, other extra-solar objects may be considered
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for measurement such as neutron stars and perhaps even exoplanets. Since there is no

loss in signal by adding additional baselines in intensity interferometry, a large array

of commercially available telescopes with a combined area equal to or greater than

existing large telescopes may be used.

2.1.2 SNSPD Packaging

(a) (b)

Figure 7: (a) Liquid helium Infrared Laboratories, Inc. HD-3 cryogenic dewar. (b)
Setup inside of the dewar with a single-mode fiber optic cable attached to the cover of
the device package via a bare ferrule situated in a low tolerance guiding circular bore.
The position of the ferrule was carefully determined via measurements made of the
position of the nanowires under a high-magnification microscope. The single-mode
fiber connected to the SCONTEL device was directed coupled to the nanowire with
adhesive before shipment to ASU.

We mounted two SNSPDs in a small liquid helium Infrared Laboratories, Inc.

HD-3 cryogenic dewar coupled to single mode fiber optic cables which pass through a
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hermetic feed-through built in-house (Figure 7). The detectors were read out with

microwave amplifiers and FPGA-based coincidence electronics.

The SNSPDs used in this experiment were from two different collaborators. The

first SNSPD was obtained from Cardiff University and was fabricated by SCONTEL.

This device was pre-packaged and fiber-coupled. We characterized the nanowire at

ASU where we determined the critical temperature to be 9.65K. The second device

was fabricated at the Massachusetts Institute of Technology. This device was packaged

and coupled to fiber optics at ASU.

We modified an existing package primarily used for low noise amplifiers. We had a

pocket milled in the bottom of the package to mount the chip. We also had a cover

made with alignment pin-holes and holes for the fiber optic ferrule to rest in above

the detector. Due to imperfections in this process, the ferrule-hole was not aligned

with the detector. We aligned the ferrule-hole above the detector by hand with an

optical microscope and were able to place the center of the hole to within ±30µm of

the detector.

The fiber used to couple to the MIT detector was made in-house with materials

from ThorLabs, Inc. (Figure 8b). On the detector side, a bare ferrule was inserted

with single-mode fiber and polished. The other side was fitted with an FC-connector in

order to be coupled with an FC-FC connector to a matching single-mode fiber through

a hermetic feedthrough also made at ASU (Figure 8a). The feedthrough contains four

D-shaped holes with o-ring grooves extruded from a stainless steel NW-40 vacuum

flange.

Based on the uncertainty in alignment, we calculated the expected efficiency as a

function of vertical separation between the fiber and the nanowire. The percentage of
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light falling on a detector can be approximated by

% =
(dsnspd

dspot

)2

=
( dsnspd

2 ∗ z ∗ tan(arcsin(NA))

)2

, (2.5)

where dsnspd is the diameter of the detector, dspot is the diameter of the spot of light

incident on the detector chip, z is the ferrule-to-chip vertical displacement, and NA

is the numerical aperture of the fiber optic cable. Given the numerical aperture of

our single-mode fiber NA = 0.13, a vertical distance of 300µm between the ferrule

and the detector chip yields a spot size of diameter 78.7µm compared to the detector

diameter of 15.0µm and we arrive at % = 2.63.

(a) (b)

Figure 8: (a) NW-40 vacuum flange designed in Autodesk Inventor with two SMA
input/output ports and two fiber optic input/output ports that lead to the two
detectors. (b) Single-mode fiber optic cables assembled for the photon counting
experiment.
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2.1.3 Lab Setup

2.1.3.1 Optical Setup

Figure 9: (a) Thermal light source (b) 12.5µm pinhole (c) 2.5cm lens (d) narrow band
filter (e) polarizing beam splitter (f) 2.5cm lens (g) beam splitter and detector channel
1 (h) detector channel 2. A portion of the optical setup is shown above the diagram.
From left to right: polarizing beam splitter with filter, focusing lens, beam slitter and
two stages to house the optical cables coupled to the detectors. The focusing lens is
on a stage which allows for z-axis (depth) control. Both fibers are on up-down (y-axis)
and left-right (x-axis) stages, giving three degrees of freedom for alignment.
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In the original HBT lab experiment, photomultiplier tubes were used as photon

detectors. A stream of incoherent photons was generated by a mercury arc lamp.

This source was chosen because it contained an emission line that corresponded to the

high-efficiency region of the photomultiplier tubes and had a bandwidth of 10pm. This

bandwidth resulted in a coherence time that was smaller than the timing accuracy of

the detectors, which allowed them to probe the intensity fluctuations of the source. If

the coherence time was larger than the timing accuracy that the detectors can resolve

a photon event, then the fluctuations would not be resolved because the light collected

at the detectors would not necessarily be light contained in the same coherence packet

and therefore much of the light collected would be uncorrelated.

At ASU, an optical table setup was fashioned to allow us to detect spatial intensity

correlations with a laboratory thermal source. Our artificial star consisted of a 12.5µm

pinhole illuminated by a '2100K incandescent lamp. A 2.5cm diameter lens was

placed at its focal length of ∼40cm from the pinhole in order to collimate the light

which was then passed through a narrow band filter. Collimation of the light beam

is necessary for efficient operation of the filter. From here, the collimated beam was

fed through a 50/50 polarizer as differing polarizations are uncorrelated. Now that

the beam has some bandwidth ∆ν and is polarized, the light was passed through an

additional 2.5cm lens with a ∼30cm focal length for refocusing into the two detector

receptacles via a 50/50 beam splitter. The beam is fed into two single-mode fibers

with an active area of 10µm.
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2.1.3.2 Readout

The electronic pulses from both detectors must be amplified before entering the

readout electronics. The SNSPDs require a relatively high frequency microwave

readout chain with low phase noise (timing jitter) components. This microwave

readout chain consists of a low noise current source which is low-pass filtered to the

DC port of a Mini-Circuits bias-tee (ZFBT-4R2G+). The AC+DC port biases the

nanowires and the AC output port is amplified with two Mini-Circuits amplifiers

(ZKL-1R5+). To reduce the risk of standing waves forming in the AC output chain,

an attenuator is added before and after the first amplifier. This chain is successful in

producing 1.5V pulses which are capable of being read by the timing electronics.

2.1.4 Lab Results

We measured the efficiency for the setup with the SCONTEL SNSPD compared

to measurements and efficiency curves for a 4-channel single photon avalanche diode

(SPAD) from Excelitas (SPCM-AQ4C). The SPCM-AQ4C was used in an optical

setup that contained a 1000nm filter with a 10nm bandwidth and a single mode fiber.

With this illumination the photon count rate for the SPAD was approximately 50kHz.

The same setup was used and coupled to the SCONTEL SNSPD. For the same optical

setup, the photon count rate in the SNSPD was approximately 8.6kHz. The number

of detected photons can be expressed by

N = γεSPAD, (2.6)
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where γ is the number of photons incident on the detector and εSPAD is the efficiency

of the SPAD. Given that the efficiency of the SPAD at 1000nm is approximately 10%,

the efficiency of the SNSPD is then found to be εSNSPD = 1.7% at 1000nm.

2.1.5 Existing Optical Telescopes

A key motivation for this experiment is the pre-existence of suitable telescopes.

Commercially available telescopes in the 8-20 inch range can be used. In addition to

convenience, this is useful because the more telescopes that are integrated into the

system, the more baselines there are to construct. The signal-to-noise scales as the

square root of the number of baselines.

Medium and large optical telescopes arrays are also available to the scientific

community. For example, Kitt Peak National Observatory in Arizona has many

suitable telescopes that can provide baselines up to 650 meters (Pilyavsky et al. 2017).

On November 2, 2016, we measured a 1MHz photon count rate from Capella (m =

+0.08) at the Bok 2.3m telescope with an SNSPD device (Figure 10).

2.1.6 Magnitude Limits Achievable

The number of photons per second per Hertz from a selected source of magnitude

M can be found via the following equation:

Γγ = 0.05λf02.512∆mA, (2.7)

where λ is the observed central wavelength, f0 is the calibrated flux (in Jy) at a given

λ of an m = 0 star (Bessell 1979; Schneider, Gunn, and Hoessel 1983; Campins, Reike,

and Lebofsky 1984), ∆m is the change in magnitude of the star from m = 0, and A is

34



(a) (b) (c)

Figure 10: (a) The Bok dome (foreground) on Kitt Peak. (b) The Bok telescope. (c)
The cryogenic system coupled to the Bok telescope.

the collecting area of the telescope. The signal-to-noise ratio is then related to the

magnitude of the target by

S

N
= ε0.05λf02.512∆mA

√
τint
τdet

, (2.8)

where ε is the system efficiency, τint is the integration time, and τdet is the detector

time constant.

Table 3 shows the achievable magnitudes based on a zero-point measurement with

S/N = 10 and for different values of the parameters λ, telescope diameter dtele, and

detector time constant τdet. τdet is taken to be the achievable timing resolutions from

SPADs and SNSPDs. τint was taken to be the course of a single night, or 8 hours. An

overall system efficiency of 5% was assumed.
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Table 3: Limiting magnitudes of stars for which zero-point correlation is achievable in
8 hours with 5% system efficiency. The calibration flux (f0) was obtained from the
Gemini Observatory magnitudes-to-flux calculator.

Observation Calibration Telescope Detector Apparent
Wavelength Flux Diameter Resolution Magnitude
(nm) (Jy) (m) (ps) Limit

671 2841 0.36 500 Sirius (mR)
671 2841 4.0 500 4.1 (mR)
1150 1725 0.36 60 0.1 (mJ)
1150 1725 4.0 60 5.3 (mJ)

2.1.7 Science Targets

Once the system is optimized and intensity correlations are measured in the lab,

the optical setup can be coupled to telescopes and stellar diameters will be measured.

When this is accomplished, intensity interferometry will have been reinstated as a

viable science tool with single photon detector technology.

The timing accuracy of SNSPDs and therefore increased signal-to-noise ratio will

have opened the door to the measurement of stellar diameters to a higher precision

than ever before. Perhaps even stellar feature resolution such as star spots will be

possible. The lower magnitude measurement possibilities may also allow for the

detection of more exotic objects such as exoplanets. Other interesting science targets

include measuring the precise rotation periods of neutron stars, the behavior of binary

objects such as a black hole accretion disk and an OB star (Cygnus X-1), and tests of

quantum gravity.
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2.2 Other Applications

2.2.1 Fast Imaging of Exoplanet Signals

There have been many methods developed in order to image exoplanets. Angular

differential imaging (ADI) is a technique that involves the reduction of speckle noise

from a slowly evolving imaging plane in order to detect companion bodies in the

proximity of a highly luminous star (Marois et al. 2006; Bottom, Ruane, and Mawet

2017). Raw images from a telescope configured to stay aligned with the instrumentation

and images created from a reference point-spread function (PSF) are rotated and

combined to resolve the exoplanet. Locally optimized combination of images (LOCI)

is a technique that dispenses with PSF processing to subtract starlight from an

image (Lafrenière et al. 2007). Instead, the reference frame is constructed using a

linear combination of library reference images to produce an improvement in effective

contrast. Reference star differential imaging (RSDI) singles out a target by subtracting

a compilation of images taken at different times with respect to a reference star (Marois

et al. 2005). Non-redundant aperture masking interferometry (NRM) is a technique

that combines the views of N-telescopes with pupils obstructed by a non-redundant

mask to produce a single image (Baldwin et al. 1986; Haniff et al. 1987).

Several exoplanets of been directly imaged. 2M1207b (Figure 11a) was the first

and was imaged at the Very Large Telescope (VLT) in 2004 using adaptive optics

infrared wavefront sensing (Chauvin et al. 2004). It is a gas giant that is five times

more massive than Jupiter. 2M1207b orbits the brown dwarf 2M1207 and its distance

form Earth is approximately 170 light years (Mamajek 2005). Fomalhaut b (Dagon)

was directly imaged in 2008 using RSDI (Kalas et al. 2008). Dagon (Figure 11b) is
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approximately 7.7 parsecs from Earth and was the first exoplanet to be predicted

to exist before discovery (Quillen 2006). The prediction was made based on the

eccentricity and sharpness of the disc surrounding the star being caused by a revolving

planet near the edge of the disc.

Using SPDs for the fast imaging of exoplanet signals could dramatically improve

the signal-to-noise ratio of direct images. Due to the low photon flux of exoplanets,

it has been suggested that a 256×256 array of APDs be used for NASA exoplanet

missions with > 106 photons/s/pixel (Figer, Lee, et al. 2011). Additionally, sensitivity

is maximized due to the elimination of read noise inherent to CMOS and CCD sensors

(Figer, Aull, et al. 2011). One challenge to this approach is the presence of after-

pulsing in APD devices. It has been suggested that the Wide-Field Infrared Survey

Telescope (WFIRST) use APDs for exoplanet detection (Kolb and Figer 2015). An

SNSPD camera with high maximum count rates and low timing jitter is proposed

to capture rapidly moving exoplanets (McCaughan 2017). SNSPDs are preferable

when compared to APDs due to having little-to-no after-pulsing probability and a

shorter dead time. Additionally, exoplanets emit thermal radiation in the near-infrared

(NIR). This band eliminates the problem of small angular separation because thermal

emission is independent from the separation between the star and the exoplanet to be

imaged. NIR is the frequency range that the SPDs presented in this dissertation are

most efficient.

Lumped element kinetic inductance detectors (LEKID) have been extensively

developed (Doyle 2008). An interesting investigation involving LEKID technology

that would allow for the characterization of exoplanets is being carried out (Dzifa

Akua Parrianen et al. 2018). It is suggested that spectroscopy can be preformed on

exoplanet signals with energy-resolving LEKIDs. This would eliminate the need for
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(a) (b)

Figure 11: (a) 2M1207b (Image Credit: European Southern Observatory) (b) Dagon
(Image Credit: National Aeronautics and Space Administration)

additional optical components such as diffraction gratings to separate the incident

spectrum and would lower the total number of detectors required for the instrument

to operate.

2.2.2 Deep Space Optical Communication

RF/microwave signals have traditionally been used to transmit information to and

from satellites. Radio waves in the HF- and VHF-band were used to receive signals

from humanities first satellite, Sputnik 1, launched in 1957 by the Soviet Union. The

United States responded with Explorer 1 in 1958. The Ka-band and X-band ranges

of the electromagnetic spectrum were used for the first deep space network involving

spacecraft (Smith 1985; Dickinson 1985).

Deep space optical communication (DSOC) is essential for the success of future
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satellite missions. The capability to use optical lasers for DSOC was first demonstrated

in 1993 (Wilson, Lesh, and Yan 1993). Beams from two Earth-based lasers were

detected from a distance of 6-million kilometers by the CCD on board the Galileo

satellite. An infrared laser was used to communicate with the Messenger satellite at a

distance of 24-million kilometers in 2005 (Neumann et al. 2008).

In 2022, the Psyche orbiter will launch to study a unique metallic asteroid (16

Psyche) that is approximately 348-million kilometers from Earth (Elkins-Tanton

et al. 2014). It is possible that 16 Psyche is the remnant core of a failed protoplanet.

To achieve efficient communication with the Psyche orbiter at ranges up to and

over 2AU, high-efficiency photon counting detector arrays will be required in order

to differentiate between the weak signal and background noise. The ground based

receiver will implement tungsten silicide (WSi) SNSPD arrays to detect 1550nm laser

signals from the orbiter (Biswas et al. 2018).

2.2.3 Quantum Information

Quantum information is a field that is rapidly coming to the forefront of industrial

pursuit after decades of academic inquiry. As technology has advanced, it is natural

that the quantum limit is sought in applications such as communication and computing.

Quantum key distribution (QKD) is of particular interest with respect to single photon

detector technology.

Circa 1970, the idea that set in motion the groundwork for what would become

QKD was presented by Stephen Wiesner. What Wiesner proposed was a multiplexed

quantum messaging system that allowed for the transmission of two messages to a

receiver (Wiesner 1983). The receiver would have the ability to choose which message

40



to read with the consequence that the other message would be destroyed due to the

properties of quantum mechanics.

In addition to this quantum multiplexing, Wiesner also proposed using quantum

mechanics to produce secure currency (Lo, Popescu, and Spiller 2002). The mechanism

that drives the security is a sequence of two-state quantum systems each in either one

predefined basis or another. Someone trying to forge the banknote would be likely

to disrupt the state without knowing with respect to which basis to measure each

member of the sequence. If even one state is measured in the wrong basis, then the

forged banknote will have an incorrect sequence. Assuming knowledge of the bases and

a sequence of N required measurements, the probability of guessing all of the correct

bases and thereby recreating the banknote with the proper states is P = (3/4)N .

QKD is a form of communication that invokes quantum mechanics in order to

provide security for the sender and the intended receiver. Additionally, it is possible

to detect the presence of intrusion on the message. The mechanism by which this

works is the production of a randomized key by the sender and receiver in order to

provide a tool for encryption and decryption of the messages. If the undesired third

party attempts to measure the quantum key, the key will depart from its original form

in a detectable way. QKD became a serious consideration of the academic community

upon the advent of the BB84 protocol in 1984 in which the polarization states of

photons were the suggested two-state quantum systems to be used for this application

(Bennett and Brassard 1984). Moreover, BB84 was a prepare-and-measure-based

protocol. In 1991, the E91 protocol provided an alternative to BB84. In this version

of QKD, quantum entanglement is utilized in order to secure messages (Ekert 1991).

The intended sender and receiver share an entangled pair of objects. The intruder on

the message will alter the system by intercepting one of the objects.
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Since QKD is mostly done at a single photon level, loss is the primary limitation in

achieving a long-distance reception of a secure message. SNSPD devices play a crucial

role in achieving a secure transmission distance of 100km or longer (Baek et al. 2009).

Additionally, since the devices discussed in this dissertation are highly sensitive at

1550nm, SNSPDs are a clear choice for QKD in optical fibers. 1550nm is also the

wavelength at which losses in optical fibers are the lowest (Gisin et al. 2002). Many

academic groups have performed QKD experiments with SPDs at and over 100km

(Chen et al. 2013; Takemoto et al. 2015; Tretyakov et al. 2016).

Another application for SNRSPDs is quantum computing and in particular linear

optics quantum computation (LOQC). LOQC was first realized in 1999 and is a

variation of quantum computing that takes advantage of photons as information

carriers (Adami and Cerf 1999). Linear optical elements are used to manipulate

the photons and SPDs are used to detect processed photons (Knill, Laflamme, and

Milburn 2001). LOQC is an active area of research in the field and is being developed

by many groups in order to provide realistic system performance (Pittman, Jacobs,

and Franson 2004; Kok et al. 2007; Jennewein, Barbieri, and White 2011). In order to

make LOQC practical, nanophotonics is being developed to miniaturize the required

linear optical components (Goban et al. 2014).

The ability to encode bits of information on a single photon is clearly of importance

to these applications. The obvious way to do this is with polarization encoding as

previously discussed. Encoding can also be done with respect to momentum states. In

2002, the ability to encode two bits of information on a single photon via the sorting of

four orbital angular momentum states was demonstrated (Leach et al. 2002). A decade

later, using a mode transformer method to convert orbital angular momentum states

to transverse momentum states, 3.46 bits of information per photon was encoded
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(Lavery et al. 2012). Recently, up to 10.5 bits have been attributed to a single photon

with a strategy that involves a grid of symbols (Tentrup et al. 2017). A photon that

is incident on a particular symbol encodes information with respect to that symbol.

Time-bin encoding of bits is a technique that involves a single photon taking one of

two possible paths of differing lengths. The path taken determines the state. For

this type of analysis, SNSPDs are ideal detectors due to their inherent free-running

operation and superior dead time performance (Valivarthi et al. 2014).
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Chapter 3

SUPERCONDUCTIVITY THEORY

This chapter is a review of the fundamentals of superconductivity theory and

the physics of superconducting films. We discuss the carriers of the superconducting

current and the theory that describes their behavior. We discuss important parameters

of superconducting films including quasiparticle number, conductivity, and surface

impedance.

3.1 Fundamentals of Superconductivity Theory

3.1.1 Cooper Pairs and the Bardeen–Cooper–Schrieffer Theory

Bardeen–Cooper–Schrieffer (BCS) theory is a microscopic theory of superconduc-

tivity that describes the phenomenon in terms of the net attractive potential between

electrons that are inherently repulsive toward each other via the Coulomb force

(Bardeen, Cooper, and Schrieffer 1957a, 1957b). These electrons are known as Cooper

pairs. Cooper pairs conduct without dissipation via electron-phonon interactions

within the material lattice. These interactions cause the paired electrons to bypass the

Pauli exclusion principle and act as an effective bosonic particle (with integer spin).

In turn, this allows for the overlap of electron pairs and the formation of a condensed

state. This state is maintained at low temperatures because the thermal energy is less

than the energy barrier of the super-fluid. This interaction results in zero resistance

at DC. The coupling of these electrons into pairs takes place on the order of a few
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hundred nanometers, which is greater than the crystalline lattice structure spacing in

the metal (Rohlf 1994).

BCS theory is particularly useful because it provides a formulation for the tem-

perature dependent gap energy of superconductors and the coherence length. The

attraction between the electrons is a ground state energy on the order of milli-electron

volts (meV). This is called the binding energy and is given by (Tinkham 1996)

∆(T ) ≈ 1.764kBTC
√

1− (T/TC), (3.1)

where ∆(T ) changes slowly at low temperatures but increases as T → TC . TC is the

critical temperature of the superconducting material set by the material composition.

When T → 0, we recover the zero-point binding energy ∆0 given by Equation 1.35.

The coherence length for a pure superconducting metal ξ0 is on the order of the

minimum size of a Cooper pair as prescribed by the Heisenberg uncertainty principle

(Pippard 1953). In terms of the zero-point binding energy and the Fermi velocity vF ,

this coherence length is given by (Annett 2004)

ξ0 =
~vF
π∆0

. (3.2)

For pure niobium, ξ0 ≈ 39nm (Finnemore, Stromberg, and Swenson 1966; Buckel

1991).

3.1.2 The Two-Fluid Model

The behavior of a superconducting material in a time varying electromagnetic field

can be described with the two-fluid model (Bardeen 1958). There exist two groups

of charge carriers that constitute the two paths through which current can flow in a

superconductor: non-dissipative Cooper pairs and normal-conducting quasiparticles.
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Cooper pairs behave in a manner that causes current to move with zero resistance at

DC and quasiparticles behave as electrons in a normal metal.

The total density of charge carriers in a superconducting material can be expressed

as

n = ncp + nqp, (3.3)

where ncp is the density of the Cooper pairs and nqp is the density of the quasiparticles.

This is a conserved quantity, but the populations of the Cooper pairs and quasiparticles

can change with respect to each other. The ratio of Cooper pairs to quasiparticles

depends on the proximity of the base temperature to the critical temperature. At

T = 0, n = ncp such that all of the charge carriers in the material constitute the

super-fluid. As T → TC , the number of quasiparticles increases as the number of

Cooper pairs decreases. At T > TC , n = nqp such that all of the charge carriers in

the material constitute normal electrons. The relationship between nqp and ncp with

respect to temperature can be expressed as follows:

ncp
ncp + nqp

= 1−
(
T

TC

)4

. (3.4)

An experimental determination of nqp as a function of temperature for NbN nanowires

is carried out in Chapter 5.

3.1.3 The London Equations and Penetration Depth

The London equations are a set of equations that describe the relationships between

the electric field, the magnetic field, and the superconducting current in a material.

The relationship between the superconducting current density with the electric field

in a material can be obtained by substituting the superconducting current density

into the equation of motion for Cooper pairs.

46



The superconducting current density is given as

~icp = −ncpe~vcp, (3.5)

where ncp is the Cooper pair number density, e is the elementary charge, and ~vcp is

the Cooper pair group velocity. The equation of motion for Cooper pairs in an electric

field is given as

ncpme
dvcp
dt

= −ncpe ~E, (3.6)

where me is the mass of an electron, and ~E is the electric field. We then arrive at

d~icp
dt

=
e2ncp
me

~E, (3.7)

which is the first London equation.

The second London equation is a the relationship between the superconducting

current density and the magnetic field. Moreover, the application of Ampère’s law to

this equation reveals the nature of the material with respect to the penetration depth

of the magnetic field.

Ampère’s law is given as

~∇× ~H =~icp, (3.8)

and the second London equation is given as

~∇×~icp = −e
2ncp
me

~H, (3.9)

where ~H is the magnetic field in the material. Substituting Ampère’s law into the

second London equation results in

∇2 ~H =
~H

λ2
L

, (3.10)

where λL the London penetration depth of the magnetic field in the material. The

magnetic field will decay exponentially to a point within the material with respect to

this parameter of the material. This is know was the Meissner effect.
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The London penetration depth can be written more explicitly as

λL =

√
me

µ0ncpe2
, (3.11)

where it is evident that since there is a dependence on the Cooper pair density, there

must be a dependence of the penetration depth on temperature. Moreover,

λL(T ) =
λL,0√

1− (T/TC)4
, (3.12)

where λL,0 is the penetration depth at T = 0 and TC is the critical temperature of the

material. For pure niobium, λL ≈ 39nm (Van Duzer and Turner 1981).

3.2 Physics of Superconducting Films

3.2.1 Density of States and Quasiparticle Number Density

The density of states at the Fermi level N0 is the number of possible states of

electrons at zero temperature per energy level per volume. In a superconductor, a

band-gap forms around the Fermi level with width 2∆ where all of the electrons that

would have occupied that energy band are available to form Cooper pairs. The number

of electrons that can form Cooper pairs is given approximately by N ≈ 2∆N0V , where

V is the volume of the material.

The number density of quasi-particles can be found with (Rohlf 1994)

nqp(T ) = 4

∫ ∞
∆

N(E)E√
E2 −∆2

f(E)dE (3.13)

where E is the possible energy states of the quasiparticles and E/
√
E2 −∆2 modifies

the single-spin density of states N(E) to include only the states that the quasiparticles

can occupy. f(E) is given as (Fermi 1926; Dirac 1926)

f(E) =
1

1 + eE/kBT
, (3.14)
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which is the Fermi-Dirac distribution that represents the probability that a particular

energy state will be occupied.

Assuming that thermal quasiparticles dominate the total number of quasiparticles

in the nanowire in the absence of incident radiation and for kBT � ∆ and ~ω � ∆,

the number density of quasiparticles as a function of temperature is given as (Mauskopf

2018)

nqp(T ) ∼= 2N0

√
2πkBT∆0e

−∆/kBT , (3.15)

for low temperatures (T � TC). The number of quasiparticles is dependent on the

density of states at the Fermi energy.

At the critical temperature, when all of the charge carriers are in the form of

quasiparticles,

nqp(T = TC) = 4N0

∫ ∞
0

dE

1 + eE/kBTC
= 4N0kBTC ln(2), (3.16)

where this population of particles is available for Cooper pair production should the

temperature drop below the critical temperature.

3.2.2 The Drude Model of Conductivity

In order to discuss the dynamics of superconducting films, the conductivity of

materials must be understood. How current responds to a change in voltage is

described by the conductivity of the material:

~i = σ0
~E, (3.17)

where σ0 is the conductivity of the material at DC and ~E is the electric field. As

discussed previously, ~i = ene~v, such that we arrive at

σ0 =
ene~v

~E
, (3.18)
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where ~E can be described by the equation of motion for a charge carrier in a material

with finite conductivity. The equation of motion is given as

me
d~v

dt
= e ~E − me~v

τ
, (3.19)

where τ is the characteristic scattering time of a charge carrier in the material. At

DC, d~v/dt→ 0 such that ~E = mev/eτ and with Equation 3.18 we arrive at

σ0 =
e2neτ

me

, (3.20)

which is the DC conductivity of the material.

For an AC field, ~E = ~E0e
iωt, the linear response to the equation of motion is given

as

σd(ω) = σd,r(ω)− iσd,i(ω), (3.21)

where ω is the frequency of oscillation of the applied field, σd,r(ω) is the real part, and

σd,i(ω) is the imaginary part. These parts can be expressed as

σd,r(ω) =
σ0

1 + ω2τ 2
, (3.22a)

σd,i(ω) =
σ0ωτ

1 + ω2τ 2
, (3.22b)

such that, for normal metals, the Drude model (Drude 1900a, 1900b) predicts the

complex conductivity with respect to the scattering time between collision events as

σd(ω) =
nee

2τ

me (1 + ω2τ 2)
− i nee

2ωτ 2

me (1 + ω2τ 2)
=

σ0

1 + iωτ
, (3.23)

where the imaginary part of the Drude conductivity is an effect of the resistance of

the charge carriers to an instantaneous change in applied voltage; the electrons take a

non-zero time to react to an applied field during the time τ between collisions (Doyle et

al. 2008). This inertia of the charge carriers is the manifestation of kinetic inductance.

A similar form of conductivity as presented here is present in superconductors.
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3.2.3 The Mattis-Bardeen Equations

As discussed previously, conductivity is a measure of the ability of a material to

transmit an electrical current and is given generally by (Doyle 2008)

σ(ω) = σ1(ω)− iσ2(ω), (3.24)

where σ1(ω) is the real part of the conductivity and σ2(ω) is the complex part.

The physical interpretation in the case of the two-fluid model (Bardeen 1958) of

superconductivity is that σ1 is the conductivity due to resistive quasiparticle excitations

and σ2 is the conductivity associated with superconducting Cooper pairs.

Mattis and Bardeen (Mattis and Bardeen 1958) give the general relationship

between the complex conductivity of a superconductor to the normal state conductivity

as follows:

σ1(ω)

σn
=

2

~ω

∫ ∞
∆

[f(E)− f(E + ~ω)]g(E, ~ω)dE (3.25a)

+
1

~ω

∫ −∆

∆−~ω
[1− 2f(E + ~ω)]g(E, ~ω)dE,

σ2(ω)

σn
=

1

~ω

∫ −∆

max(∆−~ω,−∆)

√
E2 −∆2

∆2 − E2
[1− 2f(E + ~ω)]g(E, ~ω)dE, (3.25b)

where E is the energy of the particle state,

g(E, ~ω) =
E2 + ∆2 + ~ωE√

E2 −∆2
√

(E + ~ω)2 −∆2
, (3.26)

and f(E) is the Fermi-Dirac distribution as given in Equation 3.14. The Fermi-

Dirac distribution governs the behavior of quasiparticles in thermal equilibrium

as these particles have half-integer spin. These equations for the conductivity of

superconductors are valid for T � TC .
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The Mattis-Bardeen equations can be related to the quasiparticle density with

(Gao 2008)

σ1(nqp, T )

σn
=

2∆0

~ω
nqp

N0

√
2πkBT∆0

sinh(χ)K0(χ), (3.27a)

σ2(nqp, T )

σn
=
π∆0

~ω

[
1− nqp

2N0∆0

(
1 +

√
2∆0

πkBT
e−χI0(χ)

)]
, (3.27b)

where χ = ~ω/2kBT , I0 is the modified zeroth-order Bessel function of the first kind,

and K0 is the modified zeroth-order Bessel function of the second kind. From these

equations, it is evident that incident photons that break apart Cooper pairs and create

quasiparticles will cause the conductivity of the material to change and therefore will

create a measurable response.

It is instructive to quantify how the conductivity of the superconducting material

changes with a change in the density of quasiparticles. This is achieved by taking the

derivative with respect to the quasiparticle density:

dσ1

dnqp
=

σn
N0~ω

√
2∆0

πkBT
sinh(χ)K0(χ), (3.28a)

dσ2

dnqp
= − πσn

2N0~ω

(
1 +

√
2∆0

πkBT
e−χI0(χ)

)
, (3.28b)

where Equation 3.28b is used in Chapter 5 to calculate the thermal response of

SNRSPD devices.

3.2.4 Surface Impedance

The photon sensitive components of SNRSPD devices, the inductive nanowires,

are formed using electron-beam lithography on a thin film. During KID mode mea-

surements, the surface impedance of the thin film nanowire varies with the absorption
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of photons of energy ~ω > 2∆ and the concurrent generation of quasiparticles. It is

therefore appropriate to derive the surface impedance of thin films.

The superconducting surface impedance is given by

ZS = RS + iXS, (3.29)

where RS is the superconducting surface resistance and XS is the superconducting

surface reactance. We will discuss two limits were the surface impedance can be

related to the complex conductivity: t� λeff and t� λeff , where t is the thickness

of the film and λeff is the effective penetration depth of the magnetic field and is

given by

λeff =

√
~

πµ0∆σn
. (3.30)

µ0 is the permeability of free space, ∆ is the temperature dependent energy gap, and

σn is the normal state conductivity.

Respectively, for t� λeff and t� λeff (Gao 2008),

ZS,thick(ω, T ) =
ZS(ω, 0)√

ζ
, (3.31a)

ZS,thin(ω, T ) =
ZS(ω, 0)

tζ
, (3.31b)

where ZS(ω, 0) = iωµ0λeff is the superconducting surface impedance at zero tempera-

ture. The factor ζ is given by

ζ = 1 +
iδσ(ω, T )

σ2(ω, 0)
, (3.32)

where δσ(ω, T ) = σ1(ω, T ) − iδσ2(ω, T ) and σ1(ω, T ) and σ2(ω, T ) are given by

Equations 3.27a and 3.27b.

Nanowire devices have films with thickness on the order of a few nanometers. In

this case, the mean free path of the electrons is much larger than the thickness and
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the superconducting surface impedance is given by

ZS,nano ≈
1

tσ2
2

(σ1 + iω2), (3.33)

where RS,nano = σ1/tσ
2
2 and XS,nano = 1/tσ2. This thin film impedance can be related

to the conductivity with (Zmuidzinas 2012)

δZS,nano(ω, T )

ZS,nano(ω, 0)
≈ −δσ(ω, T )

σ(ω, 0)
, (3.34)

where δZS,nano(ω, T ) = ZS,nano(ω, T ) − ZS,nano(ω, 0). Probing the superconducting

surface impedance therefore allows for information on the complex conductivity to be

obtained.
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Chapter 4

SUPERCONDUCTING RESONATOR THEORY

This chapter is a review of resonator theory in the context of superconducting

nanowire devices. Two types of inductance will be reviewed: geometric and kinetic.

The resonator circuit and its properties will be discussed along with various forms of

responsivity.

4.1 Classification of Inductance

To understand inductance, we will consider a perfectly conducting wire. With

respect to the inductance, the wire has two principle quantities: the rate of change in

the current through the wire and the voltage across it. The inductance in the wire is

the coefficient of proportionality between these two quantities. There are two types of

inductance: geometric and kinetic. For superconducting nanowires, the kinetic term

of the total inductance dominates over the geometric term but, for completion, both

types of inductance are derived and discussed.

4.1.1 Geometric Inductance

The first type of inductance we will discuss is the geometric inductance. Geometric

inductance arises due to the energy stored in the magnetic field of the wire. This

stored energy results in a resistance to an instantaneous response of the current to a

change in applied voltage.
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Consider a perfectly conducting wire of length ` and cross-sectional area A as

shown in Figure 12. Any current that flows through this wire must conform to

Ampère’s law which is given as

~∇× ~H =~i, (4.1)

where ~H is the magnetic field and ~i is the current density. The energy density

associated with the field is given as wm = µH2/2, where µ is the permeability of the

material. From this, we arrive at the total stored magnetic energy:

WM =
µ

2

∫
H2dV =

1

2
LMI

2, (4.2)

where V is the total volume and LM is the geometric inductance. It is important to

note that LM is dependent only on the geometry of the conductor.

The stored energy in the magnetic field is related to the current in the wire. Each

electron experiences a force proportional to the applied voltage, F = eV/`, such

that the power contribution, or rate of change of the energy in the magnetic field

(P = dWe/dt), by a single electron is given as

P = Fv =
eV v

`
, (4.3)

where e is the charge of an electron, V is the applied voltage, and v is the speed of the

charge carriers. The total power (Ptot = NP , where N = neA` is the total number of

charge carriers and ne is the electron number density) is then given as

Ptot = neAeV v, (4.4)

where the current in the wire is I = neevA, which gives, as expected, Ptot = dWM/dt =

IV . It is therefore straightforward to show that given Equation 4.2, we arrive at

V = LM
dI

dt
, (4.5)
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where it is clear that the geometric inductance is a ratio of the voltage across the wire

and the rate of change of the current.

Figure 12: A simplified model of a wire of length `, cross-sectional area A, and current
density I.

4.1.2 Kinetic Inductance

The second type of inductance, and the most important type to the present work,

is kinetic inductance. Kinetic inductance arises due to the inertia of the charge carries

in the wire. Moreover, the inertia of the charge carriers resists an instantaneous change

to the applied voltage.

Consider a force acting on a object. The force on the object can be found using

the household equation F = ma, where m is the mass of an object and a is the
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acceleration of the object. Mass can be thought of as a measure of an objects inertia,

or its tendency toward remaining in its initial state given an applied force. Moreover,

the more mass an object has, the slower its speed will increase over time. Kinetic

inductance is analogous to the object of mass m undergoing acceleration.

Voltage is related to the force on the charge carriers in a wire by the equation

F = qE, where q = e is the charge of the electron and E = V/` is the magnitude of

the electric field due to the applied voltage V over a length ` of wire. The voltage

applied across some wire can be found using V = LKdI/dt, where LK is the kinetic

inductance of the wire and I is the current. Current can be expressed as I = neevA,

where ne is the number of charges per unit volume, e is the elementary charge, v is the

average velocity of the charge carriers, and A is the cross-sectional area of the wire.

It follows that

F =
eV

`
= m

dv

dt
=⇒ V =

m`

e

dv

dt
, (4.6)

where dv/dt can be expressed in terms of the current density given above such that

V =
m`

nee2A

dI

dt
, (4.7)

where the coefficient LK0 = m`/nee
2A is the kinetic inductance. The kinetic induc-

tance of a nanowire changes in a non-linear way as a function of bias current as

follows:

LK = LK0

[
1 +

(
I

I∗

)2
]
, (4.8)

where I is the bias current and I∗ is a parameter of the material and the geometry of

the nanowire. This will be explored in Chapter 5.

For nanowire geometries, LK >> LM , where LM is the magnetic inductance and

is given by (Annunziata 2010)

LM =
µ0`

2π

[
ln

(
2`

r

)
− 1

]
, (4.9)
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where µ0 is the permeability of free space and r is the effective radius of the nanowire.

In the case of nanowire inductors, since LK ∼ `/A and ` is large and A is small, the

kinetic inductance dominates over LM . Therefore, any contribution from LM will be

ignored in the following analysis and it will be held that (Gao 2008)

α =
LK
LT

= 1, (4.10)

where LT = LK + LM is the total inductance and is virtually equal to LK . The

kinetic inductance of superconducting films is the phenomenon that underlies every

technology we analyze in this dissertation.

4.2 Quality Factors and Time Constants

Resonators can be characterized based on their ability to store energy. This

characterization can be discussed in terms of the quality factors and the intrinsic time

constants associated with a given resonator.

4.2.1 Resonator Detector Quality Factors

The total resonator quality factor is given by (Tooley 2006)

Qr =
f0

∆f3dB

, (4.11)

where f0 is the central resonant frequency and ∆f3dB is the half-power bandwidth

of the resonance dip. Qr scales with the sharpness of the resonance feature, which

corresponds to a change in energy storage efficiency. Qr can be written as a combination

of quality factors given by

Qr =

(
1

Qi

+
1

Qc

+
1

Q`

)−1

, (4.12)
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where Qi is the internal quality factor, Qc is the coupling quality factor, and Q` is

the quality factor associated with processes that induce loss in addition to the loss

associated with the quasiparticle density.

Assuming that the capacitors are non-limiting, the internal quality factor of the

resonator is dependent only on the inductive component. An inductor with a series

loss resistance has a quality factor given by

Qi =
ω0LK
R

, (4.13)

where ω0 is the angular resonant frequency, LK is the kinetic inductance, and R is the

series loss resistance.

The coupling to a microwave feedline is described by the coupling quality factor

Qc. Moreover, Qc is a measure of the amount of energy that leaks from the resonator

(Gao 2008) and is given by

Qc =
2(CP + CC)

ω0C2
CZ0

, (4.14)

where Z0 is the characteristic impedance of the microwave feedline.

4.2.2 Two-Fluid Model Quality Factor

The internal quality factor with respect to the two-fluid model can be derived

via a consideration of the impedance of the inductive branch of the resonator. The

inductive branch consists of the inductor in series with a resistor representing the

quasiparticles. This can be further represented by considering the magnetic component

of the inductance to be in series with a parallel combination of the kinetic component

of the inductance and the resistive quasiparticles.

Assuming that the associated quality factors of the capacitors are non-limiting,
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the internal quality factor of this branch can be found with (Di Paolo 2000)

Qi =
Im{ZL(ω0)}
Re{ZL(ω0)}

=
XL(ω0)

RL(ω0)
, (4.15)

where XL(ω0) is the reactance of the inductor, RL(ω0) is the series resistance of the

inductor, and ZL(ω0) is the impedance of the inductor which is evaluated at the center

of the resonance feature. For a variable frequency ω, ZL(ω) is given as

ZL(ω) =iωLM +
1

1
Rqp

+ 1
iωLK

(4.16)

=iωLM +
iωLKR

2
qp + ω2L2

KRqp

R2
qp + ω2L2

K

,

where Rqp is the resistance due to the quasiparticle density in the material. The first

term is a consequence of the magnetic inductance and the second term is a consequence

of the series contribution to the impedance from the kinetic inductance of the Cooper

pairs and the resistance of the quasiparticles.

The devices relevant to this dissertation are operated well below the critical

temperature of the material from which they are fabricated. Therefore, since T � TC ,

the impedance contribution from the quasiparticles dominates and we can write

Equation 4.16 as

ZL(ω) =
ω2L2

K

Rqp

+ iω(LM + LK). (4.17)

Applying Equation 4.17 to Equation 4.15, we arrive at

Qi =
LM + LK

LK

Rqp

ω0LK
=

Rqp

ω0LK
, (4.18)

for LK >> LM as is the case for nanowires. The conductivity of the quasiparticles

varies with frequency such that the dependence of Qi on Rqp is indicative of a variation

of the resonator quality factor as a function of frequency because Rqp itself is a function

of frequency.
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4.2.3 Time Constants

The resonator time constant is defined as the period over which the resonator loses

energy during an oscillation (Wernis 2013) and is given in terms of Qr by

τr =
Qr

πf0

. (4.19)

The quasiparticle time constant at low temperatures for clean materials is given

as (Kaplan et al. 1976)

τqp =
τ0√
π

(
kBTC
2∆0

)5/2
√
TC
T
e∆0/kBT (4.20)

=
τ0

nqp

N0(kBTC)2

2∆2
0

,

were τ0 is the material dependent electron-phonon interaction time which can easily

found in the literature (e.g. for Niobium, τ0 = 1.49× 108s (Kaplan et al. 1976)). τqp

corresponds to the lifetime of a quasiparticle before recombination into a Cooper pair.

4.3 Impedance of a Parallel Resonator with a Coupling Capacitor

To understand the behavior of the SNRSPD circuit, we analyze the impedance of

the circuit coupled to a microwave feedline. The circuit contains a parallel resonator

coupled to the feedline via a capacitor. We can write the total impedance as the sum

of two impedances,

ZT = Z1 + Z2, (4.21)

where Z1 is the impedance of the coupling capacitor CC , and Z2 is the impedance of

the parallel inductor L and capacitor CP . It is instructive to consider the ideal case

without added series resistance due to quasiparticles. The reactance equations for
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ideal inductors and capacitors are XL = iωL and XC = 1/iωC such that Equation

4.21 may be written as:

ZT =
1

iωCC
+

L/CP
iωL+ 1/iωCP

, (4.22)

where the resonant frequency ω0 may be calculated by setting the impedance ZT to

zero and is found to be:

ω0 = 2πf0 =
1√

L(CC + CP )
. (4.23)

With series resistance added due to the existence of quasiparticles in the inductive

component, the shunt impedance to ground is given by

Zr(ω) =
1

iωCC
+

1

iωCP + 1
iωL+R

(4.24)

=
1

iωCC

[
1− ω2L(CP + CC) + iωR(CP + CC)

1− ω2LCP + iωRCP

]
,

where using Equation 4.23, we arrive at

Zr(ω0) = R

(
CP + CC
CC

)2
1

1 + iω0RC
(
CP+CC
CC

) =
Z0

2

Qc

Qi

1

1 + iε
, (4.25)

where

ε = ω0RC

(
CP + CC
CC

)
=

CP
QiCC

(4.26)

and Qi is given in Equation 4.14.

We can modify Equation 4.25 to include frequencies near resonance with a Taylor

expansion:

Zr(ω) ∼=
(
Z0

2

Qc

Qi

+ iZ0Qcx

)
1

1 + iε
, (4.27)

where x is the fractional detuning of the resonant frequency given by

x =
δω

ω0

=
ω − ω0

ω0

. (4.28)
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4.4 Scattering Matrix of an Ideal Parallel Resonator with a Coupling Capacitor

Figure 13: S21 is shown for a resonator (red) and for a transmission line (blue).

In general, the response of resonators embedded in a two-port network can be

characterized based off of a scattering matrix given by

V −1
V −2

 =

S11 S12

S21 S22


V +

1

V +
2

 ,

where V −1 and V −2 are the voltage waves traveling from port 1 and 2, and V +
1 and

V +
2 are the voltage waves incident on port 1 and 2. From this, it is clear that the
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outgoing waves take the following form:

V −1 = S11V
+

1 + S12V
+

2 , (4.29a)

V −2 = S21V
+

1 + S22V
+

2 . (4.29b)

In the case of a realistic measurement, the scattering parameters are measured in a

calibrated setup such that the impedance of the load is matched to the characteristic

impedance of the current carrying lines (ZL = Z0). This ensures that there will be no

reflected waves from the load (V +
2 = 0) due to an impedance mismatch. Moreover, we

arrive at the reflection and transmission coefficients in terms of the traveling waves:

S11 =
V −1
V +

1

, (4.30a)

S21 =
V −2
V +

1

. (4.30b)

S11 and S21 are of particular importance to resonator analysis because they describe

the reflected voltage signal and the transmitted voltage signal, respectively. These

two scattering parameters are related by

S11 = S21 − 1, (4.31a)

|S11|2 + |S21|2 = 1, (4.31b)

which shows that if a signal is injected into port 1, then any portion that is not

transmitted to port 2 must be reflected and arrive back at port 1.

For an ideal transmission line and for all frequencies, no reflection occurs (S11 = 0)

and the signal is completely transmitted (S21 = 1) in accordance to with Equation

4.31a. In the case of a resonator, at and around the resonant frequency of the circuit,

power is reflected such that a Lorentzian resonant feature is observed in S11 and S21

(Figure 13).
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The reflection coefficient can be written as a function of the impedance of the

resonator and the characteristic impedance and is given by

S11 = − 1

1 + 2Zr/Z0

, (4.32)

where using Equation 4.31a, S21 is found to be

S21 = 1− 1

1 + 2Zr/Z0

. (4.33)

Making a substituting of Equation 4.27 into Equation 4.33, we obtain

S21 = 1− 1 + iε

1 + iεQr/Qc

Qr

Qc

[
1

1 + 2iQrx/(1 + iεQr/Qc)

]
, (4.34)

where Qr is given by Equation 4.12 with Q` = 0, Qc is given by Equation 4.14, x is

given by Equation 4.28, and ε is given by Equation 4.26.

In the limit where ε� 1 (QiCC � CP ), we arrive at the following expressions:

S11(x) ∼= −
Qr

Qc

1

1 + 2iQrx
, (4.35a)

S21(x) ∼= 1− Qr

Qc

1

1 + 2iQrx
, (4.35b)

where it is clear from these equations and from the definition of x that off-resonance,

S21 → 1, which corresponds to perfect transmission, and as the frequency approaches

the resonant frequency, S21 → 0 limited by Qr and Qc (Figure 13).

The analyses of that last two sections shows that a resonator detector is adequately

described by the impedance of the resonator Zr(ω) and by the transfer function S21.

Equations 4.24 and 4.33 are a function of circuit parameters (L,CC ,CP ,R,Z0) that

can be described by empirical parameters (ε,ω0,Qr,Qc). Equations 4.27 and 4.35b are

a function of these empirical parameters.
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4.5 Thermal Response

The resonant frequency of an SNRSPD varies as a function of base temperature.

This is due to the change in the population of quasiparticles present in the supercon-

ducting film. Heat quanta known as phonons that have an energy greater than twice

the superconducting gap energy are able to break apart Cooper pairs. The response of

the frequency with respect to a change in base temperature and therefore a change in

quasiparticle number can be predicted with a chain-rule approach given by (Mauskopf

2018)
df0

dT
=
df0

dσ2

dσ2

dnqp

dnqp
dT

, (4.36)

where f0 is the resonant frequency, σ2 is the complex conductivity of the NbN nanowire

material, nqp is the number density of quasiparticles, and T is the base temperature.

The resonant frequency can be written as

f0 =
1

2π
√
LKCT

, (4.37)

where LK is the kinetic inductance and CT is the total capacitance of the coupling

capacitor and the resonator capacitor. The kinetic inductance is dependent on the

complex conductivity in the following fashion:

LK =
1

ω0σ2t
, (4.38)

where ω0 is the angular resonant frequency and t is the thickness of the NbN film.

The total conductivity of the NbN nanowire is given in Equation 3.24. For low

temperatures where the Cooper pairs dominate the conductivity, σ2 >> σ1, such that

σ → σ2. The first factor of Equation 4.36, df0/dσ2, can then be found to be

df0

dσ2

=
d

dσ2

[
1

2π

(
CT
ω0σ2t

)− 1
2

]
=

f0

2σ2

, (4.39)
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where this dependence of the resonant frequency on the conductivity indicates that

the dependence of the frequency on the base temperature will be dependent on the

frequency itself.

Mattis-Bardeen theory gives σ2 as a function of quasiparticle number density and

base temperature as shown in Equation 3.28b. Since ~ω0/2kT → 0 for ω0 in the Very

High Frequency (VHF) band, σ2 simplifies to

σ2 =
π∆0

~ω0

(
1− nqp

2N0∆0

)
, (4.40)

where, at low temperatures, the number density of quasiparticles is given by Equation

3.15.

The second factor of Equation 4.36, dσ2/dnqp, can then be found as

dσ2

dnqp
=

d

dnqp

[
π∆0

~ω0

(
1− nqp

2N0∆0

)]
=

−π
2~ω0N0

, (4.41)

where multiplying by a factor of σ2/σ2 and taking the limit where N0 >> nqp, we

arrive at
dσ2

dnqp
=
−σ2

2N0∆0

, (4.42)

where the σ2 dependence will cancel out when multiplied by df0/dσ2.

The third factor of Equation 4.36, dnqp/dT , can be found as

dnqp
dT

=
d

dT

[
2N0

√
2πkT∆0e

−∆0
kT

]
= nqp

(
∆0

kT 2
+

1

2T

)
, (4.43)

and by combining all three factors, we arrive at

df0

dT
= −f0

√
πk

2∆0T

(
∆0

kT
+

1

2

)
e−

∆0
kT . (4.44)

4.6 Optical Response

The usefulness of an astronomical detector is determined by its ability to respond

to incident power from photons. This is achieved through the breaking of Cooper pairs

68



by absorbing incident photons of sufficient energy. In the case of SNRSPD devices, we

are able to sense this process through a change in resonant frequency. The resonant

frequency changes as a function of absorbed power such that (Mauskopf 2018)

df0

dPabs
=
df0

dσ2

dσ2

dnqp

dnqp
dPabs

, (4.45)

where Pabs is the total power absorbed by the nanowire within the quasiparticle

lifetime. Noting that the first two factors of Equation 4.45 are given by Equations

4.39 and 4.42, we arrive at
df0

dσ2

dσ2

dnqp
=
−f0

4N0∆0

. (4.46)

If we are in the regime where optically generated quasiparticles dominate the total

number of quasiparticles, then the third factor of Equation 4.45 takes the form

dnqp
dPabs

=
nqp

2Pabs
. (4.47)

This results in a dependence of the shift in frequency on the inverse square root of

the absorbed power Pabs and detector volume Σ given by

df0

dPabs
=
−f0nqp

8N0∆0Pabs
∝ 1√

PabsΣ
, (4.48)

where the absorbed photon power Pabs is not directly attainable within our experi-

mental setup. One solution is to find an equivalent Pabs from thermal response data

for the same change in quasiparticle number density nqp.

If we are in the regime where thermally generated quasiparticles dominate the

total number of quasiparticles, then the third factor of Equation 4.45 takes the form

dnqp
dPabs

=
ητqp
∆0Σ

. (4.49)

This results in a dependence of the shift in frequency on the quasiparticle lifetime τqp

and on the inverse of the detector volume Σ given by

df0

dPabs
=
−f0ητqp
4N0∆2

0Σ
∝ τqp

Σ
. (4.50)
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In the cases of both Equations 4.48 and 4.50, the intrinsically small volume of nanowire

detectors results in an improvement in optical responsivity over other traditional

KID-style detectors.

Given that we know how nqp changes with a change in base temperature, we can

find dnqp for a particular shift in resonant frequency df0 as a function of temperature.

Using results for ∆0 and for Σ, we can determine ηPabsτqp. We can then find Pabs for a

given frequency shift if we assume values for η and τqp. By adding optical power with

a calibrated light source at a constant base temperature until we reach the same df0

and therefore the same dnqp, we can determine how much optical power was required

to cause the shift. In this way, we can calibrate the SNRSPD to measure absorbed

power from a source of unknown calibration such as light collected by a telescope

from a star.

4.7 Non-Linear Response

The resonant frequency changes as a function of kinetic inductance such that

df0

dLK0

= − 1

2π
√
LK0CT

1

2LK0

= − f0

2LK0

, (4.51)

where LK0 is the kinetic inductance in the linear regime with no applied current. It

can then be deduced that for small changes in the resonant frequency, we obtain

corresponding small changes in the kinetic inductance such that

dLK = −df0

f0

2LK0, (4.52)

where df0 is the change in the resonant frequency.

For small changes in the kinetic inductance due to an applied current, Equation
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4.8 gives

dLK = LK0

(
dI

I∗

)2

, (4.53)

where I is the applied current and I∗ is a property of the nanowire material and

geometry.

From Equations 4.52 and 4.53:

− df0

f0

2LK0 = LK0

(
dI

I∗

)2

(4.54)

=⇒ df0

dI2
= −f0

2

1

I2
∗
, (4.55)

where I∗ can be determined by measuring the frequency shift as a function of bias

current.

4.8 Power Dissipation and Energy Stored in a Resonator

The amount of the total readout power dissipated in a resonator can be written

in terms of the reflection and transmission coefficients given in Equations 4.35a and

4.35b. This is expressed as

Pdiss = Preadout(1− |S11|2 − |S21|2) = Preadout

(
2Q2

r

QiQc

1

1 + 4Q2
rx

2

)
, (4.56)

where x is the fractional detuning defined in Equation 4.28.

The energy stored in a resonator is then given as a function of the dissipated power

by

Er =
QiPdiss
ω0

=
2Q2

r

Qc

1

1 + 4Q2
rx

2

Preadout
w0

, (4.57)

which can be related to the current in the inductor by the familiar formula for energy

stored in the magnetic field, Er = LI2/2.
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Chapter 5

SNRSPD TWO-PIXEL PROTOTYPE

In this chapter, the characterization of an SNRSPD two-pixel prototype is presented.

This includes an overview of the experimental apparatus and the measurements taken.

From the experimental data, parameters of the SNRSPD devices are determined

including kinetic inductance, parasitic resistance, quality factors, band-gap energy,

critical temperature, and characteristic current. Additionally, calculations of the

quasiparticle number from thermal and non-linear response data are presented.

Following the characterization of the SNRSPD devices, the performance of two

detection modes is discussed: i) as a kinetic inductance detector (KID) or ii) as a

single-photon detector (SPD). The two superconducting nanowires developed for use

as single-photon detectors (SNSPD) are embedded as the inductive (L) component

in resonant inductor/capacitor (LC) circuits coupled to a microwave transmission

line. The capacitors are low loss commercial chip capacitors and limit the internal

quality factor of the resonators to approximately Qi = 170. The resonator quality

factor, approximately Qr = 23, is dominated by the coupling to the feedline and limits

the detection bandwidth to on the order of 1MHz. When operated in KID mode,

the detectors are AC biased with tones at their resonant frequencies of 45.85 and

91.81MHz. In the low-bias, standard KID mode, a single photon produces a hot spot

that does not turn an entire section of the line normal but only increases the kinetic

inductance. In the high-bias, critical KID mode, a photon event turns a section of the

line normal and the resonance is destroyed until the normal region is dissipated. When

operated as an SPD in Geiger mode, the resonators are DC biased through cryogenic
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bias tees and each photon produces a sharp voltage step followed by a ringdown signal

at the resonant frequency of the detector which is converted to a standard pulse with

an envelope detector. We show that AC biasing in the critical KID mode is inferior

to the sensitivity achieved in DC-biased SPD mode due to the small fraction of time

spent near the critical current with an AC bias.

5.1 Characterization of Superconducting Nanowire Resonator Single Photon Detec-

tors

5.1.1 Experimental Apparatus

5.1.1.1 Preliminary Setup

In order to prove the concept of an SNRSPD array, preliminary testing was done

in a liquid helium Infrared Laboratories, Inc. HD-3 cryogenic dewar and analysis was

carried out in AWR Microwave Office. A resonator detector was assembled with two

10pF surface mount device (SMD) capacitors. The resonator was cooled to a bath

temperature of T = 4.2K. A cryogenically cooled 30dB attenuator was used at the RF

input of the resonator package and a cryogenically cooled low noise amplifier (LNA)

developed at ASU was used to boost the signal with 30dB of power gain at the output

with 4K of input referred noise temperature. The full setup is shown as a schematic in

Figure 14 and the physical assembly inside the dewar is shown in Figure 15. A model

with a parasitic resistance of 12Ω matches the measured resonance curve shown in

Figure 16. This resistance is likely due to nano-bridging within the nanowires active

area due to oxidization of the material over time. The critical current was found to
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Figure 14: (a) VNA. (b) & (c) 200MHz LPFs. (d) 60dB Attenuator. (e) 30dB
Cryogenic Attenuator. (f) SNRSPD Package. (g) 30dB Cryogenic Low Noise Amplifier
(LNA). (h) & (i) 40dB Amplifiers.

be abnormally low (IC = 1.5µA). At this point, though the concept was proven, the

device was considered to be defective and two new devices were connected to the

microwave feedline for further testing.
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Figure 15: The inside of the liquid helium Infrared Laboratories, Inc. HD-3 cryogenic
dewar. The implemented cold 30dB attenuator and ASU cryogenic LNA are connected
to the SNRSPD package. A 1300nm central-wavelength LED was situated above the
nanowire chip for photon power absorption experiments.

5.1.1.2 Final Setup

In order to better characterize SNRSPD devices, nanowires with critical currents

of IC ∼ 5µA were chosen to be measured. Figure 17a shows the circuit diagram of
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Figure 16: A model was drawn in AWR Microwave office and was matched to the
measured resonance curve. An effective series resistance of 12Ω was found to provide
a curve that matched the data.

the two devices. The physical assembly is shown in Figure 17b. The central chip

contains an array of 32 individual meandering NbN nanowires on a silicon nitride-

on-silicon substrate and was fabricated at MIT by the Quantum Nanostructures and

Nanofabrication Group. The nanowires consist of serially connected parallel sections

with nominal widths of 60nm. The total length of the nanowire is 500µm and the

thickness is ∼ 4nm.

For each SNRSPD, an SMD coupling capacitor CC is connected in series with

the parallel resonator made up of the nanowire and an SMD capacitor CP . For the

first device, CC1 = 3pF and CP1 = 1pF. For the second device, CC2 = 10pF and

CP2 = 10pF. This concept is similar to that proposed by Doerner et al., where instead

of SMD capacitors, interdigital capacitors are used. 50Ω lines lead to input/output

ports on each side. Each nanowire is connected to its respective circuit with 25µm
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(a)

(b) (c)

Figure 17: (a) Circuit diagram of two devices on the same feedline. V1 and V2 are
the input and output ports. L1 and L2 are the inductive nanowires. CC1 and CC2

are the coupling capacitors. CP1 and CP2 are the parallel capacitors. B1 and B2 are
bias-tees. G is the common ground. (b) Micro-assembly inside the detector package.
(c) Fiber-coupled detectors mounted inside the Sumitomo RP-082 cryostat on the
cold-plate.

diameter aluminum wire. A bias tee is also implemented on each side in order to

apply a DC bias to the nanowire and probe non-linear effects.
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A Sumitomo RP-082 closed-cycle cryogenic cooler was used to cool the resonators

to a bath temperature of T = 2.7K. A cryogenically cooled 30dB attenuator was used

at the RF input of the resonator package and a cryogenically cooled low noise amplifier

(LNA) developed at ASU was used to boost the signal with 30dB of power gain at the

output with 4K of input referred noise temperature. Figure 17c shows the mounted

package coupled to a multi-mode fiber optic cable. A 1.3µm central-wavelength LED

is situated above the nanowire chip and was used to apply optical power. The LED

was biased with a Keithley 2400 series precision source measurement unit (SMU). The

implemented cold attenuator and ASU cryogenic LNA are connected to the SNRSPD

package and a temperature sensor is mounted nearby.

The readout system is made up of an Agilent E5072A vector network analyzer

(VNA), low pass filters (LPFs), attenuators, and amplifiers as shown in Figure 14.

−20dBm is outputted by the VNA which results in −110dBm of power incident on

the SNRSPDs. The measurements that follow were carried out with an unvarying

−110dBm of power. The low pass filters and attenuators were added to reduce noise.

The signals from the SNRSPDs were amplified in order to be distinguishable from the

baseline noise.

5.1.2 Critical Temperature

The critical temperature TC was determined to be 8.5K by heating the coldplate

near the device in small steps with a 50Ω resistor. Figure 18 shows the resulting

superconducting phase transition. For bulk NbN, the critical temperature is ≈16.2K

(Matthias, Geballe, and Compton 1963; Beebe et al. 2016). Bulk values essentially

refer to the properties that a material of infinite volume would possess when surface
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Figure 18: Superconducting phase transition for the nanowires with the critical
temperature found to be 8.5K with ∆TC ∼ 1K.

effects are negligible. The film thickness of the NbN nanowire measured here is ≈4nm.

In this regime, the bulk value of the critical temperature is modified as a function

of film thickness. Our value of TC = 8.5K matches the value reported by Bedorf for

a film thickness of ≈3-4nm (Bedorf 2005) and Smirnov et al. for a film thickness of

≈5nm (Smirnov et al. 2016).

Ivry et al. report that superconductivity scales as dTC(RS) and is quantifiable as

a power law, where d is the film thickness, TC is the critical temperature, and RS

is the sheet resistance (Ivry et al. 2014). There will also be variance of the critical

temperature in separate batches of NbN due to uncertainty in the exact ratio between
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the niobium and the nitrogen during deposition. This is known as stoichiometry. It

has been found that adding an aluminum nitride (AlN) buffer layer to to NbN films

increase the critical temperature of the film. For an 8nm film, the critical temperature

of NbN increased from 7.3K to 10.5K (Shiino et al. 2010).

5.1.3 Kinetic Inductance

Figure 19: The resonant frequencies 46.5MHz and 93.1MHz are shown for SNRSPD1
and SNRSPD2, respectively. The physical temperature of the package was T = 2.80K
and the microwave power was at P = −110dBm.

The kinetic inductance of the nanowires can be found by rearranging Equation
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(a) (b)

Figure 20: (a) A schematic of SNRSPD1 made in Microwave Office. An effective series
resistor is added in order to tune the resonance depth to find the internal resistance.
(b) Raw S21 data and the matched simulation curve for SNRSPD1.

4.37 such that

LK =
1

(2πf0)2CT
, (5.1)

where f0 is the resonant frequency of the pixel of interest as shown in Figure 19 and

CT is the total capacitance of the resonator. For SNRSPD1, the resonant frequency

was found to be f0 = 46.5MHz and the total capacitance was CT = 20pF which gives

LK = 586nH. For SNRSPD2, the resonant frequency was found to be f0 = 93.1MHz

and the total capacitance was CT = 4pF which gives LK = 731nH.

5.1.4 Parasitic Resistance

An ideal superconductor has zero DC resistance when the device is at a temperature

that is less than the critical temperature of the material. As mentioned previously,

parasitic resistance can occur in forms such as bridging between meandered segments
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(a) (b)

Figure 21: (a) A schematic of SNRSPD2 made in Microwave Office. An effective series
resistor is added in order to tune the resonance depth to find the internal resistance.
(b) Raw S21 data and the matched simulation curve for SNSPDR2.

of the nanowire due to oxidation of the material or due to fabrication defects. This

causes a lowering of the internal quality factor given in Equation 4.18. Figures 20 and

21 show the results of a simulation including an effective series resistance fit to the

frequency data. For SNRSPD1, R = 0.9Ω. For SNRSPD2, R = 5.2Ω. The higher

resistance for SNRSPD2 may be due to increased oxidization compared to SNRSPD1.

5.1.5 Quality Factors

Quality factors are important parameters for describing how resonators will behave

in the presence of incident microwave, thermal, and optical power. Dissipated power

and stored energy can be determined with respect to quality factors. An analysis of

the quality factors of SNRSPD1 and SNRSPD2 can be done given Equations 4.11,

4.13, and 4.14.
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For SNRSPD1: f0 = 46.5MHz, ∆f3dB = 2.00MHz, ω0 = 292MHz, L = 586nH,

R = 0.9Ω, and CC = CP = 10pF. The quality factors are then found to be Qr = 23.3,

Qi = 190, and Qc = 27.4. For SNRSPD2: f0 = 93.1MHz, ∆f3dB = 2.50MHz,

ω0 = 585MHz, L = 731nH, R = 5.2Ω, CC = 3pF, and CP = 1pF. Following the same

procedure: Qr = 37.2, Qi = 82.2, and Qc = 30.4. In both cases, the SNRSPD devices

are coupling quality factor limited such that Qc < Qi and Qr ∼ Qc.

The period over which the resonator loses energy can then be calculated via

Equation 4.19. For SNRSPD1, τr = 159ns. For SNRSPD2, τr = 127ns. Equation 4.25

can be used to calculate the dissipative part of the impedance and the reactive part.

This is achieved by finding the real and imaginary components of the impedance. For

SNRSPD1, R = Re{Zr} = 3.61Ω and X = Im{Zr} = −1.90× 10−2Ω. For SNRSPD2,

R = Re{Zr} = 9.25Ω and X = Im{Zr} = −3.75× 10−2Ω.

5.1.6 Thermal Response

Measurements were made of the resonant frequency dependence as a function of

base temperature as shown in Figures 22a and 23a. In order to analyze the thermal

response, Equation 4.44 can be integrated as follows:∫
1

f0

df0 = −
∫ √

πk

2∆0T

(
∆0

kT
+

1

2

)
e−

∆0
kT dT (5.2)

⇒ ln (f0) = −
√
πkT

2∆0

e−
∆0
kT + C

⇒ f0 = De
−
√
πkT
2∆0

e−
∆0
kT

,

where C and D are combined constants of integration.

Figures 22b and 23b show the data and the corresponding curve fit with respect

to Equation 5.2. As Equation 5.2 is derived via Mattis-Bardeen theory, the curve
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(a)

(b)

Figure 22: (a) S21 for varying base temperature values of the SNRSPD1 package. (b)
Resonant frequency data as a function of base temperature with a curve fits based on
the Mattis-Bardeen and Ginzburg-Landau theories of superconductivity.
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(a)

(b)

Figure 23: (a) S21 for varying base temperature values of the SNRSPD2 package. (b)
Resonant frequency data as a function of base temperature with a curve fits based on
the Mattis-Bardeen and Ginzburg-Landau theories of superconductivity.
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is only valid at low temperatures. This is due to the anomalous skin effect upon

which the theory is derived, where non-local electric fields effect charge carriers in a

non-classical way (Aude 2010). Since the theory is based upon this effect, it breaks

down as T → TC . The fits for both SNRSPD1 and SNRSPD2 agree with the result of

the band-gap energy ∆0 ≈ 1.1meV. Correspondingly, and according to Equation 1.35,

∆0 ≈ 1.764kBTC , (5.3)

such that the critical temperature is given by TC ≈ 7.15K.

For temperatures near the critical temperature, the data can be fit with Ginzberg-

Landau theory. This is due to the theory being based on the behavior of a system

near linear instability (Hohenberg and Krekhov 2015). At the phase transition from

the normal state to the superconducting state, a macroscopic quantum wave function

can be considered as an order parameter and expanded in order to be equated with

the free energy density of the system. Since the theory is only valid near the critical

point of the system, it breaks down as T → 0.

The density of Cooper pairs as a function of temperature in Ginzberg-Landau

theory is given by (A. J. Annunziata et al. 2010a)

ncp(T ) ≈ ncp(0)

(
1− T

TC

)
. (5.4)

The ratios of the kinetic inductance and density of Cooper pairs at some temperature

T to the corresponding values at zero temperature are inversely related such that

LK(T )/LK(0) = ncp(0)/ncp(T ). We can then write the kinetic inductance as

LK(T ) ≈ LK(0)

(
1

1− T/TC

)
. (5.5)

Plugging this into Equation 4.23, we obtain

f0 =

√
1− T/TC

2π
√
LK(0)(CC + CP )

. (5.6)
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Fitting this curve to the data (Figures 22b and 23b), we find that both devices

agree with a critical temperature value of TC = 9K. This differs from the result

given by Mattis-Bardeen theory and may be due to having a sub-optimal number

of data points. Furthermore, we find values for the zero-point kinetic inductance of

LK1(0) = 225nH and LK2(0) = 285nH. These values increase as a function of base

temperature.

5.1.7 Non-Linear Kinetic Inductance Response

As discussed previously, the non-linear response of the kinetic inductance can

be used to determine the characteristic current I∗ for the given nanowire material

and geometry. Equation 4.55 shows the relationship between the frequency shift as

a function of current and I∗. Measurements were made of the resonant frequency

dependence and are shown in Figures 24 and 25, where df0/dI
2 is the slope of the

curve. For SNRSPD1, the slope is −31.3kHz/µA2. For SNRSPD2, the slope is

−65.9kHz/µA2. It follows that for T = 2.80K, I∗ = 27.3µA for SNRSPD1 and

I∗ = 26.6µA for SNRSPD2.

5.1.8 Determination of the Density of States and Number of Quasiparticles

According to Swenson et al. (Swenson et al. 2013), the density of states at the

Fermi Energy at a temperature T can be found by equating the scaling energy with

the condensation energy of the superconductor:

LKI
2
∗ =

1

2
ΣN0∆2

0, (5.7)
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(a)

(b)

Figure 24: (a) S21 for varying DC bias values of the SNRSPD1 package. (b) Resonant
frequency data as a function of DC bias squared with a linear curve fit.
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(a)

(b)

Figure 25: (a) S21 for varying DC bias values of the SNRSPD2 package. (b) Resonant
frequency data as a function of DC bias squared with a linear curve fit.
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where LK is the kinetic inductance, I∗ is the scaling current, Σ is the volume of the

nanowire, and ∆0 is the band-gap energy. The active surface area of the nanowire

was estimated to be 71.65µm2 via drawings in Layout Editor. Given a thickness of

∼4nm, Σ = 2.866× 10−19m3.

Given the results from the previous sections for LK , I∗, and ∆0: N0 ≈ 1.6 ×

1010/eV/µm3 for SNRSPD1 and N0 ≈ 1.9× 1010/eV/µm3 for SNRSPD2. These values

are comparable to the value N0 ≈ 2.25× 1010/eV/µm3 found by Smirnov et al. for a

5nm film thickness (Smirnov et al. 2016). The number of quasiparticle excitations as

a function of base temperature can then be found with (Doyle et al. 2008)

Nqp = nqp × Σ, (5.8)

where nqp is given by Equation 3.15. Figure 26 shows Nqp as a function of base

temperature for SNRSPD1 and SNRSPD2. At our operating temperature of 2.8K,

Nqp = 1.22× 105 quasiparticles for SNRSPD1 and Nqp = 1.44× 105 quasiparticles for

SNRSPD2.

5.2 Operation of a Superconducting Nanowire in Two Detection Modes: KID and

SPD

As we have discussed, SNSPD devices are biased close to the switching current

such that a single photon carries enough energy to drive a section of the nanowire

normal and produce a countable voltage pulse. To operate an array of SNSPDs

with this traditional approach, each device needs to be wired individually from

cryogenic temperatures to a room temperature environment. This increases system

complexity and heat load on the coldplate, resulting in higher power consumption.

Implementing the nanowire in a resonant circuit allows the multiplexing scheme
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Figure 26: The number of quasi-particles present in the nanowire volume as a function
of base temperature for SNRSPD1 and for SNRSPD2.

already well-developed for kinetic inductance detectors (KID) to be used. Since the

capacitive portion of the resonant circuit is easily tuned and therefore the resonant

frequency is easily varied, the resonant frequency of each pixel can be uniquely read

out on the same feedline. Additionally, the resonators can be tuned by varying the

dimensions of the nanowire (A. J. Annunziata et al. 2010b).

It is also possible to bias the nanowires with RF-power instead of DC (Doerner

et al. 2016). Doerner et al. demonstrated an early two-pixel proof-of-concept for

multiplexed SNSPDs biased with RF-power. Their resonant circuits consisted of

coupling capacitors in addition to the inductive nanowires. More recently, an RF-
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biased 16-pixel array was developed and tested by this group. The pixels consisted of

an coupling capacitor, a parallel resonator formed with a capacitor and an inductor,

and the photo-sensitive nanowire (Doerner et al. 2017).

A time-tagged readout has been developed by coupling SNSPDs in an array with

a superconducting delay line (Hofherr et al. 2013). This method involves the use of

one bias supply for the whole chain and produces an effective temporal resolution

of photon events. Another method for building a nanowire-based imager has been

carried out based on a single superconducting nanowire that is read out at both ends

(Zhao et al. 2017). This allows for the determination of the location along the wire

and the time at which a single photon event occurred.

In this section we consider two modes of SNSPD operation: linear mode and

Geiger mode. Linear mode detectors give a response proportional to fluctuations in

absorbed power and include calorimeters such as transition edge sensors (TES), and

KIDs. Given enough sensitivity and speed, these detectors can resolve individual

photons and measure photon energy. Geiger-mode detectors such as photomultipliers

or avalanche photodiodes are threshold detectors and produce uniform pulses in

response to absorption of photons. We operate the nanowire in a resonant LC circuit

as a KID (linear mode) with low-AC readout power and high-AC readout power. We

also operate the nanowire with a DC current bias embedded in the resonant circuit

and convert the ringing signal to a standard, countable pulse (Geiger mode).

5.2.1 Experimental Apparatus

A 1.3µm LED situated above the package with a copper bracket (Figure 27) was

used to apply optical power and was biased with a Keithley 2400 series precision source
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Figure 27: Free-space coupled detectors mounted inside the Sumitomo RP-082
cryostat on the coldplate.

measurement unit (SMU). The microwave response of the devices were read out with

an Agilent E5072A vector network analyzer (VNA). In Geiger mode, the devices were

biased with a temperature stabilized, battery operated, precision, constant current

source made at ASU. The waveforms (Figure 28) were recorded using a Tektronix

TDS 7104 oscilloscope and the pulses were counted using a Tektronix FCA 3100

frequency counter. Figure 29 shows how the experiment was set up outside and inside

the cryostat.
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5.2.2 Operation in Linear Mode

5.2.2.1 Standard Kinetic Inductance Detector

When operated in KID mode, the detectors are AC biased with tones at their

resonant frequencies of 45.85 and 91.81MHz. We investigated the effect of two regimes

of AC biasing. The first regime was a standard, low-current bias of the nanowire

such that the critical current is never exceeded. In this regime, the nanowire remains

superconducting under optical loading. The incident photons break Cooper pairs and

a change in kinetic inductance results in a shift of the resonant frequency as shown in

Figure 30a. A shift of 94± 7.51Hz/mA of LED current was measured. Above a few

mA, the LED current is proportional to the emitted power.

Using the measured frequency shift, we can estimate the absorbed optical power

by dividing by the responsivity as

df

dPabs
=

df

dNqp

dNqp

dPabs
, (5.9)

where df is the frequency shift, dPabs is the absorbed optical power, and dNqp is the

number of quasiparticles.

The shift in frequency due to a change in quasiparticle number density is given by

(Gao et al. 2012)
df

dNqp

∼=
−αf0

4N0∆0

1

Σ

(
1 +

√
2∆0

πkT

)
, (5.10)

where f0 is the resonant frequency, α = 1 is the kinetic inductance fraction, N0 is the

density of states at the Fermi level, ∆0 is the band-gap energy, Σ is the volume of

the superconducting nanowire, and T is the base temperature. For f0 = 45.87MHz,

N0 = 2.55× 1010/eV/µm3 (Smirnov et al. 2016), ∆0 = 1.1meV, Σ = 0.2866µm3, and

T = 2.7K, the frequency shift with respect to the generation of a single quasiparticle
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is −4Hz/qp. The change in quasiparticle number density as a function of absorbed

power is given as
dNqp

dPabs
=
ητ0

∆0

, (5.11)

where η is the internal quasiparticle generation efficiency for absorbed optical power

and τ0 is the characteristic time constant of the material. τ0 is estimated to be ∼250ps-

1.3ns based on the time it takes for the energy deposited by the absorbed photon to

escape the nanowire (Smirnov et al. 2016). This relaxation time arises from the process

of quasiparticle recombination into Cooper pairs and phonons. The phonons have the

energy of the superconducting gap such that if they do not thermalize then the net

effect should be to effectively increase the energy relaxation time to the phonon escape

time modified by positive electrothermal feedback. For η ∼ 0.5 and ∆0 = 1.1meV, the

total number of quasiparticles changes by ∼ 1− 6× 10−7/qp/eV.

The shift in resonant frequency as a function of absorbed power is then given as

df

dPabs
≈ 6− 24× 10−7 Hz

eV s
, (5.12)

where since the measured shift is 94Hz/mA, the absorbed power per mA is 0.4− 2×

108eV/mA/s. Each photon at the the operating wavelength of 1.3µm has an energy of

∼ 0.95eV such that for the standard KID mode we arrive at a photon absorption rate

per mA of LED current of

Γstan ≈ 0.4− 2× 108 photons/s

mA
. (5.13)

5.2.2.2 Critical Kinetic Inductance Detector

The second regime of operation was a high-current bias of the nanowire. In this

regime, the resonant frequency is not only shifted, but the signal also changes in
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amplitude as shown in Figure 30b. This effect is due to the averaging of two states

of the resonator. The first state is when the AC bias amplitude is below the critical

current and the incident photons act only to change the kinetic inductance and shift

the resonant frequency. The second state is a normal state that occurs when a photon

acts to drive the nanowire normal as the AC amplitude approaches the critical current.

The fraction of time spent in the normal state can be determined by analyzing

the dependence of the change in amplitude of the resonance on the change in current

in the LED. For LED currents from 0 to 50mA, the resonator amplitude rises from

∼ −16.00dB to ∼ −15.93dB. This corresponds to amplitude scale factors of 0.15848

and 0.15977, respectively. Performing the weighted average,

0.15977 =
tnorm
T

+ 0.15848
(

1− tnorm
T

)
, (5.14)

where tnorm is the time spent in the normal state and T is the total time of the

measurement, the fractional time spent in the normal state was found to be 3 ×

10−5/mA. The pulse recovery time is approximately 200ns so that the photon count

rate where an incident photon causes the resonator to switch to the normal state for

the critical KID mode is

Γcrit ≈ 150
photons/s

mA
. (5.15)

This corresponds to a detection efficiency of approximately 4× 10−6 of the absorbed

photons as estimated from the frequency shift.

5.2.3 Operation in Geiger Mode

When operated as an SPD in Geiger mode, the resonators were DC-biased through

cryogenic bias tees and each photon produced a sharp voltage step followed by a
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ringdown signal at the resonant frequency of the detector. This signal was converted

to a standard pulse with an envelope detector.

Geiger mode detection of photons has a few key advantages over linear mode

operation, with one being the availability of higher operating temperatures. SNSPD

devices need to satisfy the requirement of operating below the critical temperature of

the material they are fabricated from. For NbN, this critical temperature can be as

high as 16 K (Suzuki, Baba, and Anayama 1987). KIDs generally require sub-Kelvin

operating temperatures in order to be sensitive enough to overcome the inherent noise

in the superconducting film.

Another advantage of Geiger mode is the existence of an in-built noise filter in

the form of the threshold detection of photons with a given energy. Also, an in-built

amplification of the single photon signal is brought about by the cascading effect of

the hotspot into a normal region of metal. It is therefore more straightforward to

detect single photons in this mode.

At a fixed temperature, the detectors were biased with DC and were illuminated

by a 1.3µm LED. When a photon is incident on the nanowire, a fast voltage step

occurs. Since the nanowire is embedded in a resonant circuit, the signal rings down at

the resonant frequency of the detector as shown in Figure 31a. The pulses that ring

down were rectified with an analog circuit and converted to a standard pulse with

an envelope detector. These pulses were counted with a frequency counter and the

resulting count rate as a function of LED power is shown in Figure 31d for a device

DC bias of 5µA. The photon count rate per mA of LED current for SPD mode is

determined to be

ΓSPD ≈ 106 photons/s

mA
. (5.16)
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This corresponds to a detection efficiency of approximately 2.5% of the absorbed

photons.

5.2.4 Discussion

In this section, we have investigated three modes of detection: standard KID,

critical KID, and SPD. The frequency shifts for the low-current bias and the high-

current bias KID modes were approximately the same. The predominant effect of the

high-current bias was a decrease in amplitude as the power incident on the device was

increased. This indicates that some of the time the resonator was switching to normal

and transmitting the AC signal.

The relative efficiency of AC bias mode to DC bias mode can be estimated by

calculating the average of the product of the time-dependent AC current with the

corresponding current dependent count rate. In the case where the internal quantum

efficiency is a very steep function of current near the critical current, this can be

approximated as an effective fraction of time where the current is above the threshold

for efficient photon detection.

The bias currents used in this investigation for single photon counting in critical

KID mode and SPD mode were approximately 95% of the critical current. We note

that these bias currents may not have been optimal for sensitivity and that further

experimentation should be executed in order to definitively declare superior sensitivity

with a DC bias. However, in our analysis, when compared to DC biasing in SPD

mode, AC biasing in critical KID mode had a much lower quantum efficiency due

to the small fraction of time spent near the critical current of the superconducting

nanowire. We therefore concluded that it was desirable to focus our future efforts on

98



the multiplexing of nanowire arrays with a DC bias. These efforts are discussed in

Chapter 6.
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(a)

(b)

Figure 28: (a) Snapshot of the AC (red) and DC (blue) single photon pulses in a 10
µs span recorded on the oscilloscope. Due to a lower quantum efficiency, the required
AC bias is greater than the required DC bias to achieve the same rate of pulse events.
(b) Averaged single photon pulses.

100



(a)

(b)

Figure 29: (a) Typical experimental setup for counting photons and measuring S-
parameters. (b) Assembled RF circuit on the coldplate.
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(a) (b)

(c) (d)

Figure 30: (a) S21 resonance shift as a function of LED current for the standard KID
mode. (b) S21 resonance shift as a function of LED current for the critical KID mode.
(c) Thermal response of the transmission from the superconducting state at 2.7K to
the normal state. (d) Shifts of 94.0± 7.51Hz/mA and 107± 5.06Hz/mA are measured
for the standard KID and critical KID mode.
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(a) (b)

(c) (d)

Figure 31: (a) Amplified and averaged waveform produced by a single-photon incident
on the nanowire and traveling through the 10pF coupling capacitor. (b) Rectified
waveform produced by a diode. (c) Filtered pulse produced by an RC-circuit. (d)
Count rate as a function of LED current bias.
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Chapter 6

DEVELOPMENT OF AN SNRSPD IMAGER ARRAY

In this chapter, we describe simulations of a DC-biased, frequency-multiplexed

readout of superconducting nanowire single photon detectors (SNSPD) in Advanced

Design System (ADS), LTspice, and Sonnet. We address issues of latching for designs

with low capacitance, interdigital capacitors. We suggest a solution to latching

involving a parallel-plate capacitor design. A multiplexing factor of 100 is achievable

with a total count rate of > 5MHz. This readout could enable a 10000-pixel array

for astronomy or optical communications. Additionally, we present a prototype array

design based on lumped element components. An early implementation of the array

is presented.

6.1 Simulations of a DC-Biased Frequency Multiplexed Nanowire Array

6.1.1 Motivation

Superconducting nanowire devices are useful for applications that require fast

detection of photons. As previously discussed, one difficulty with SNSPDs is that

they are not easily multiplexed for reading out large imaging arrays. A solution

is multiplexing in the frequency-domain. This can be achieved by embedding the

nanowires as the inductive components of resonant circuits that are embedded along

a single transmission line. It was shown in Chapter 5 that AC biasing is inferior to
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the sensitivity achieved by DC biasing due to the small fraction of time spent near

the critical current with an AC bias.

6.1.2 Concept

Figure 32: ADS layout of two SNRSPD pixels.

We have simulated a two-pixel, DC-biased array of frequency multiplexed SNSPDs

in Advanced Design System (ADS) as shown in Figure 32. Both nanowires were

modeled as ideal 230nH inductors. Both coupling capacitors were 0.01685pF. The

parallel capacitors were 0.0255 and 0.0266pF. These superconducting nanowire res-

onator single photon detectors (SNRSPD) can be DC-biased with 10µA of current

along a single line with a 3V source and 0.3MΩ resistors in series with each pixel. In

this simulation, the resonant frequencies were 1.592 and 1.612GHz (∆f0 = 20MHz) as

shown in Figure 33a.
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(a)

(b)

Figure 33: (a) ADS simulation of two pixels showing resonances at 1.592 and 1.612GHz.
(b) The ringing transient pulses of the two pixels.
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In the superconducting state there is applied DC, but zero voltage. When a photon

is incident on the nanowire, there is a sharp voltage pulse with a ringdown signal at

the resonant frequency of the resonator that was hit as shown in Figure 33b. This

response was simulated in ADS with a voltage controlled switch that switched between

resistances of 0.1Ω and 1kΩ, which is the resistance that an incident photon in the

presence of DC is expected to produce by driving a section of the nanowire normal

through hot-spot production and the exceeding of the critical current. The rise and

fall times of the pulses were set to 1ps. The width of the pulses were set to 30ps.

This setup allows for the multiplexing of SNSPDs because we are conditioning the

pulse shapes from each detector to be unique in ringdown frequency. These unique

signals reveal where each photon hit along the array. With all of the pixels on the

same transmission line and amplifiers on either end, the arrival time of each photon

can be determined.

6.1.3 Sonnet Design & Simulation

We have simulated a proof-of-concept, 16-pixel array of frequency-multiplexed

SNSPDs in Sonnet. The nanowires were made of 4nm thick NbN with a kinetic

inductance of LK = 55.0pH/�. The interdigital capacitors were made of a lossless

planar metal. The substrate was made of 500µm thick Sapphire with a dielectric

constant of 11.5 along the z-axis. The resonant frequencies ranged from 1.814 −

2.134GHz with an average separation of ∆f0 = 22MHz.

The interdigital coupling capacitor was designed with a finger width of 250nm

and a length of 3.680µm. The interdigital parallel capacitor was designed with a

finger width of 250nm and a length of 7.360µm. The gap width was 250nm for both

107



(a)

(b)

Figure 34: (a) Sonnet layout of the pixel that produces a resonance at 2.134GHz. The
nanowire is green and the interdigital capacitors are purple. (b) The resonances of
each pixel in the 16-pixel array.

capacitors. To tune the resonant frequencies to be separated by ∼ 22MHz, the number

of fingers of the coupling capacitor and the parallel resonator capacitor was sequentially
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reduced by two. Effects from the fringing fields prevented a design that is easily tuned

by omitting one finger at a time. This configuration allows for a 100-pixel array in

the span of 1 − 3GHz. This frequency span may be shortened by implementing a

fractional finger cutting scheme.

Given a fixed nanowire inductance and a variable parallel capacitor, the addition

of a coupling capacitor allows for the adjustment of the coupling Q and the resonant

frequency independent of each other. If we are coupling Q dominated, then the total

Q can be adjusted to accommodate a desired resonance bandwidth. The bandwidth

determines the ringdown time of the single photon pulses. As the bandwidth increases,

the ringdown time becomes smaller. Therefore, the bandwidth limits the maximum

achievable count rate of each detector.

The ringdown time is given as

τring =
Qr

2πf0

, (6.1)

where Qr is the resonator quality factor and f0 is the resonant frequency. Astronomical

applications require count rates on the order of 1MHz. In order to achieve a count

rate of 1− 5MHz, an upper-bound ringdown time of τring = 200ns is required. This

ringdown time corresponds to a resonance bandwidth of 5MHz. For resonators with

resonant frequencies from f0 = 1− 3GHz, this corresponds to Qr = 1257− 3770. This

range of quality factors can be achieved by scaling the coupling capacitor appropriately.

6.1.4 The Problem of Latching

The above analysis did not account for latching within our design and a model

developed in LTspice (Berggren et al. 2018) shows that it latches. Latching occurs

because there is no alternate DC path for the current in the nanowire when it goes
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normal. Whether it latches or not depends on if there is somewhere for the DC current

to be stored while the nanowire becomes superconducting again. Implementing a

large capacitor will act like a lower shunt impedance that will prevent latching. If

the capacitor is big enough it will permit charge to be temporarily stored on it long

enough for the nanowire to reset.

It has been found that a count rate of 500MHz is possible with a nanowire

inductance of 125nH, a capacitor size of ∼0.75pF, and 2.5kΩ resistor. A 0.75pF

interdigital capacitor (∼1cm2) is unreasonably large with respect to an array of

nanowires. Since we need relatively low Q, we may use a parallel plate capacitor with

superconducting contacts and a silicon dioxide insulator (400nm thickness) to achieve

a capacitance of 0.75pF with ε = 3.9. This would result in Acap = 100× 100µm2.

6.1.5 Readout Development

A possible hardware implementation for an array in the span of 1-3GHz would

use a two-channel 2 GSPS analogue-to-digital converter (ADC), microwave filters and

splitters, a Schmitt trigger, and an FPGA development board with an RF input. A

reflectionless filter would be used as a diplexer to split the low frequency oscillatory

component from the high frequency rising edge. The oscillatory signal will be sent

to the ADCs for frequency demultiplexing while the rising edge will be sent to the

low jitter RF input of the FPGA for time tagging. After leaving the high-pass filter

port of the diplexer the rising edge is sent to a Schmitt trigger to extend the pulse to

meet the setup and hold requirements of the FPGA. For the low-pass signal, another

splitter (or diplexer) will be used to split the signal between the two ADCs. With

bandpass filters from 1-2 and 2-3 GHz the ADCs will be sampling in Nyquist zones 2
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and 3. Combining the information gained from these three inputs will provide high

timing resolution along with a capability of reading out large arrays.

A preliminary firmware design would implement a matched filter, a parallel fast

Fourier transform (FFT), a threshold detector, a TDC, and a data packetizer. The

matched filter would allow the low passed signal envelope to be used in signal dis-

crimination and reduce the amplitude of out of band signals. After passing through

the matched filter, a parallel FFT of length equal to twice the number of pixels will

sample the data and deliver an update of each frequency bin every clock cycle. The

magnitude squared of each frequency bin is calculated using a piecewise approximation

of a squaring function (hardware efficient). The positive and negative frequency bins

are added. A decision block will determine which bin has the largest magnitude every

cycle. This output will be latched into the data packetizer along with the output

from the time-to-digital converter (TDC) channel then sent to the data acquisition

computer. To keep the high timing resolution of the pulse’s rising edge, a TDC would

also be implemented in the FPGA. Calibrated delay lines would provide the highest

resolution possible.
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Figure 35: Diagram of SNRSPD array circuits. Incident photons of energy ~ω in
conjunction with a common DC bias between pixels on the same feedline results in
a frequency multiplexed readout with unique signatures based on designed varying
resonant frequencies alone the line.

Figure 36: Autodesk Inventor drawing showing the the 16-pixel array. A pin connected
to a 50Ω line is used to feed current to each SNRSPD using lumped element resistors.
Each SNRSPD has two associated capacitors.
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(a) (b)

Figure 37: Drawings of the nanowire and serial inductor for the lowest and highest
inductances in the array: (a) ∼110nH (b) ∼521nH. The nanowires are consistently
∼35nH across the array.

6.2 Implementation of a DC-Biased Frequency Multiplexed Nanowire Array with

Surface Mount Device Components

6.2.1 Setup

6.2.1.1 SNRSPD Package

A prototype with large, lumped element capacitors (∼pF) was developed to test

the concept of DC-biased frequency-multiplexed SNSPD devices. Figure 35 shows a

diagram of the prototype layout. Figure 36 shows an assembly drawn in Autodesk

Inventor with a preliminary design for the prototype. To source current to the devices,

a 50Ω line is attached to a DC pin via an aluminum 1mil bond wires. Sixteen 2.5kΩ
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Figure 38: Assembled SNRSPD array circuits. DC is sourced from the pin at the
bottom. 16 devices are connected in parallel each with a 2.5kΩ resistor, a 1.8pF
coupling capacitor, and a 6.8pF parallel capacitor. A 50Ω line is implemented in order
to readout the microwave response.

resistors are attached to the line with bond wires and are sequentially attached to

1.8pF coupling capacitors. The coupling capacitors are attached to 6.8pF resonator

capacitors. The capacitors are Skyworks lumped element capacitors.

To avoid fabrication defects, the nanowires were made to be ∼100nm wide with

a film thickness of ∼350nm. The resulting inductance was ∼80pH/�. To vary the

inductance of each pixel, the nanowire length remained constant and a serial inductor

of varying length was added to each nanowire line (Figure 37). The nanowires were

situated along a linear array with 200×200µm2 bonding pads. The chip contained four

additional and identical rows of nanowires for redundancy. Future chips will contain
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unique nanowires at each pixel location. Figure 38 shows the assembled circuits.

The inductance ranged from ∼110nH to ∼521nH in each row. This should result in

resonant frequencies ranging from ∼74.9MHz to ∼161MHz based on Equation 4.23.

6.2.1.2 Cryostat Mount

Figure 39: The SNRSPD package was mounted inside a Hammond box on the coldplate.
A temperature sensor is bolted directly to the package. A 1300nm LED was situated
above the package for direct photon coupling in free space.

Figure 39 and Figure 40 show the SNRSPD package mounted inside a Hammond
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Figure 40: The Hammond box containing the SNRSPD package was mounted on the
coldplate with a cryogenic 30dB attenuator on the input and a 30dB 10MHz-2GHz
LNA on the output.

box that is bolted to the coldplate of the cryostat. This precaution was taken

to shield from stray radiation from other experiments taking place simultaneously

during the cryogenic experimental run. While the Hammond box was a beneficial

addition, it created an issue with the proximity of the LED to the SNRSPD package.

During measurements, this caused the region around the package to heat up. Further

experiments should implement a setup with the LED situated further from the package

to avoid thermal effects.
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6.2.2 Response Measurements

Figure 41: Averaged microwave response of the SNRSPD array with -100dBm of AC
power incident on the package. The resonances ranged from ∼73.4MHz to ∼144.5MHz.

The microwave response of the array shows that the depths of the resonances for

the current configuration are on the order of half a dB. Figure 41 shows the data for

a base temperature of ∼3.5K.

The time domain response (Figure 42) shows that the pulses range from ∼8.2ns

to ∼16ns. This corresponds to resonant frequencies at and between ∼62.5MHz to

∼122MHz. The ringdown frequency of the measured single photon pulses roughly

correspond to the the expected resonant frequencies.
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Figure 42: Transient responses of the SNRSPD array with a 45µA DC bias incident
on the package.

6.2.3 Simulations

6.2.3.1 LTspice Schematic & Parameters

Figure 43: LTspice layout showing 2 of the 16 pixels.
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Figure 43 shows the LTspice layout used to simulate the response of the SNRSPD

array. The nanowires had parameters TBASE = 3.5K and L = 35nH. The serial

inductors varied from ∼75nH to ∼486nH. The resistors were varied between 2.5kΩ,

10kΩ, 30kΩ, and 50kΩ.

6.2.3.2 Pre-Measurement Simulations

The concept was developed with an optimization of the maximum count rate. This

was achieved by minimizing the decay time of the transient. Low Q resonances were

obtained by using 2.5kΩ resistors attached to the resonators. Figure 44 shows the

expected pulses from the lowest and highest frequency pixel.

6.2.3.3 Post-Measurement Simulations

In order to better understand the measurement results, the frequency domain

response was simulated and compared to the experimental data. The data was

comparable to the simulated response. It is likely that small errors in fabrication and

the subsequent estimated inductances led to the discrepancies in the spread of the

frequencies as shown in Figure 45.

Figure 46 shows the simulated transfer functions for 2.5kΩ, 10kΩ, 30kΩ, and 50kΩ

resistors. Figure 47 shows the expected pulses for the same resistance variation. Based

on the simulations, 50kΩ resistors will provide for much higher Q resonances, but

will severely limit the count rate. The count rate per pixel was maximized with the

2.5kΩ resistor variation with a predicted count rate of ∼20MHz for the last pixel in
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Figure 44: Simulated transient response of the first and last pixel in the SNRSPD
array with 2.5kΩ resistors.

the array given a match to the simulations. With 50kΩ resistors, the predicted count

rate is ∼3MHz.
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Figure 45: Simulated microwave response of the SNRSPD array with 2.5kΩ resistors
compared with experimental data.
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Figure 46: Simulated microwave responses of the SNRSPD array with 2.5kΩ, 10kΩ,
30kΩ, and 50kΩ resistors.
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(a) (b)

(c) (d)

Figure 47: Simulated transient responses of the first and last pixel in the SNRSPD
array for 2.5kΩ, 10kΩ, 30kΩ, and 50kΩ resistors.
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Chapter 7

CONCLUSION

This chapter concludes our discussion on the development of superconducting

nanowire single photon technologies for advanced applications. We began this disserta-

tion with a short consideration of the properties and behaviors of a single photon. We

followed up with a brief history of single photon detectors including PMTs, KIDs, and

SNSPD devices. Next, we provided an overview of four advanced applications that

SNSPD devices may be used for. These applications included intensity interferometry,

the fast imaging of exoplanet signals, deep space optical communication, and quantum

information.

Before delving into our investigation of developing SNSPD devices to be suitable

for these applications, we reviewed the fundamentals of superconductivity theory and

the physics of superconducting films that drive the mechanisms we studied. These

mechanisms were elaborated on in the context of resonator theory with respect to

superconducting nanowire devices. We reviewed all of the necessary formulations

required for the analysis of the devices presented in this dissertation.

We next went over characterization of an SNRSPD two-pixel prototype. We

found values for the kinetic inductance LK = 586, 731nH, parasitic resistance R =

0.9Ω, 5.2Ω, quality factors Qr = 23.3, 37.2 and Qi = 190, 82.2 and Qc = 27.4, 30.4,

critical temperature TC ≈ 8.5K, and characteristic current I∗ = 27.3, 26.6µA of each

pixel. For these nanowires, we found that the band-gap energy is ∆0 ≈ 1.1meV and

that the density of states at the Fermi energy is N0 ∼ 1010/eV/µm3. Furthermore,

we found values for the number of quasiparticles present in the material Nqp ∼ 105

124



quasiparticles at 2.8K. With respect to operational modes of the two-pixel prototype,

we found that a high AC bias in KID mode is inferior for photon counting experiments

compared to operation in a DC-biased SPD mode due to the small fraction of time

spent near the critical current with an AC bias. We found a photon count rate of

ΓKID = 150 photons/s/mA in a critically biased KID mode and a photon count rate

of ΓSPD = 106 photons/s/mA in SPD mode.

We discussed the simulations of a DC-biased, frequency-multiplexed readout of

SNSPD devices in ADS, LTspice, and Sonnet. We find that a multiplexing factor

of 100 is achievable with a total count rate of > 5MHz and are confident that this

readout could enable a 10000-pixel array to be used for advanced applications such as

exoplanet imaging or quantum communications. Finally, we presented a prototype

array design based on lumped element components along with data from an early

implementation of the array designed to have 16 pixels in the frequency range of

74.9MHz to 161MHz. Future development of this technology will involve following

through with the testing of the 16-pixel array with varying values of the biasing

resistors. Higher resistance values, while lowering the maximum count rate achievable,

will provide for more well defined signals to work with in the prototyping stage. A

final implementation of the presented DC-biased, frequency-multiplexed SNSPD array

will require the full resonant circuit of each pixel to be fabricated on a single chip

along a single feedline for optimum efficiency and maximized detector quality.
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APPENDIX I: HARMONIC OSCILLATOR
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Figure 48: Arbitrary potential with the point x0 corresponding to an approximately
parabolic region.

The harmonic oscillator system will be of importance to our analysis of the radiation

field. Here we follow the algebraic derivation of the quantum states in one dimension

as demonstrated in Introduction to Quantum Mechanics (Griffiths 2004).

Consider the arbitrary potential function in the Figure 48. The harmonic oscillator

potential is a good approximation to arbitrary potentials near the regions of vanishing

derivatives. These regions are considered to be approximated parabolic. Consider the

Taylor Series expansion of the potential function about the point x0 given by

V (x) ∼= V (x0) + V ′(x0)[x− x0] +
V ′′(x0)

2
[x− x0]2 + · · · , (1)

where the first term is a constant that has no bearing on the compulsion of the particle
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to following simple harmonic motion and the second term vanishes since x0 is a local

minimum. Terms that are of higher order than the third term have contributions

approaching zero.

We are left with a term of the following form:

V ′′(x0)

2
[x− x0]2 → 1

2
kx2, (2)

where V ′′(x0)→ k is a constant factor characteristic of the system and x0 = 0 is the

equilibrium position such that x is the displacement from this position. This potential

gives rise to Hooke’s Law given by (Hooke 1678)

F = −∇V = −kx. (3)

Via Newton’s Second Law, we have:

− kx = m
d

dt
x, (4)

where ω2 ≡ k/m and ω is the angular frequency.

Applying the Schrödinger equation (Schrödinger 1926) to Equation 2, we get{
− ~2

2m

d2

dx2
+

1

2
mω2x2

}
|ψ〉 = E |ψ〉 , (5)

where ψ is the wave function of the harmonic oscillator system that describes its

probability amplitude and E is the energy of the system. Dividing by a factor of 2m

and substituting in the momentum operator p̂ and the Hamiltonian operator Ĥ we

obtain
1

2m

{
p̂2 + (mωx)2

}
= Ĥ |ψ〉 . (6)

This can be written in terms of two operators given by

â ≡ 1√
2m

(
~
i

d

dx
− imωx

)
(7a)

â† ≡ 1√
2m

(
~
i

d

dx
+ imωx

)
, (7b)

141



where â and â† do not commute. Due to this, we can apply them sequentially to an

arbitrary function of in order to discover their effect:

ââ†f =
1

2m

(
~
i

d

dx
− imωx

)(
~
i

d

dx
+ imωx

)
f (8a)

=
1

2m

[(
~
i

d

dx

)2

+ (mωx)2 + ~mω

]
f. (8b)

This implies that operating with â†â results in an extra factor of ~ω/2:

ââ† =
1

2m

[(
~
i

d

dx

)2

+ (mωx)2

]
+

1

2
~ω. (9)

Equation 6 then becomes (
ââ† − 1

2
~ω
)
|ψ〉 = E |ψ〉 . (10)

Similarly, if the operators are applied in the opposite order Equation 6 becomes(
â†â+

1

2
~ω
)
|ψ〉 = E |ψ〉 . (11)

Consider â acting on the wave function such that(
â†â+

1

2
~ω
)
â† |ψ〉 =

(
â†ââ† +

1

2
~ωâ†

)
|ψ〉 = â†

(
ââ† +

1

2
~ω
)
|ψ〉 , (12)

where inserting Equation 10 results in

â†
(
ââ† − 1

2
~ω + ~ω

)
|ψ〉 = (E + ~ω)â† |ψ〉 . (13)

Similarly, â is a solution with energy E − ~ω. Then, â† is an energy raising operator

and â is an energy lowering operator. We know have the ability to add or subtract a

quanta of energy (e.g. a photon) from the radiation field.

ââ† is a number operator. By applying ââ† = n̂ to a state vector, the resulting

eigenvalue is the number of photons, n, in the associated field:

n̂ |ψ〉 = n |ψ〉 , (14)
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where the energy associated with each value of n is given by

En = ~ω
(
n+

1

2

)
. (15)

The wave function |ψ〉 can be found by applying the annihilation operator to the

ground state |0〉. Since we know that a state with energy less than zero is prohibited,

we obtain

â |0〉 = 0 (16a)

⇒ 1√
2m

(p̂− imωx) |0〉 = 0

⇒
(
~
d

dx
+mωx

)
|0〉 = 0

⇒
∫
d |0〉
|0〉

= −
∫
mωx

~
dx

⇒ ln |0〉 = −mωx
2

2~
+ C0

⇒ |0〉 = A0 exp

(
−mωx

2

2~

)
,

where A0 is an overall constant that can be obtained by normalizing the wave function.

Using the fact that the photon must exist somewhere in space, we obtain∫ ∞
−∞
||0〉|2 dx = 1 (17a)

⇒ |A0|2
∫ ∞
−∞

exp

(
−mωx

2

~

)
dx = 1

⇒ A0 =
(mω
~π

) 1
4

⇒ |0〉 =
(mω
~π

) 1
4

exp

(
−mωx

2

2~

)
,

where we can apply the creation operator to the ground state n times to obtain any

state |n〉. Moreover, the lowering and raising operators can be applied to any state

|n〉 to obtain the corresponding raised or lowered state with the following normalized
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equations:

â† |n〉 =
√
n+ 1 |n+ 1〉 (18a)

â |n〉 =
√
n |n− 1〉 . (18b)
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APPENDIX II: PRELIMINARY MEASUREMENTS WITH SCONTEL SNSPD

DEVICES
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Figure 49: The leftmost picture shows the SCONTEL SNSPD devices mounted on
the 4K stage. The middle picture shows the hermetic fiber optic feedthrough. The
rightmost picture shows the Janis Research Co., Inc. LN2/LHe cryostat.

Two SNSPD devices made by SCONTEL were received from Cardiff University in

May 2014. They were mounted inside a liquid helium cryostat. A hermetic fiber optic

feedthrough was designed in Autodesk Inventor to provide light to the nanowires.

Figure 49 shows the detectors, the feedthrough, and the cryostat.

The first step we took was to characterize one of the detectors to determine its

critical temperature. We took IV curves (Figure 50a) for small steps in temperature

along the superconducting transition by current biasing the SNSPD and reading out

the voltage across the device. From this data, R(T), α, P(T), and G were determined.

Resistance as a function of base temperature is found via the slope of each of the

IV curves and the temperature coefficient is found via α = 1
R
dR
dT

and is plotted along

with R(T) in Figure 51b. The superconducting phase transition is clearly evident

with the critical temperature found to be 9.65K and ∆TC ∼ 0.6K.

If we plot R versus Ibias for multiple temperatures in ∆TC , we can extract the

Ibias that it took at each chosen temperature to reach the same resistance along the
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(a)

(b)

Figure 50: (a) IV curves as a function of base temperature. (b) Superconducting
transition and temperature coefficient.

147



transition. We chose 50kΩ for the resistance (10% of the normal resistance). Figure

51a shows the IV curves used for this analysis.

As the base temperature increases, the Ibias required to reach 50 kΩ decreases,

so the required power decreases as shown in Figure 51b. Plotting power versus the

base temperature yields the thermal conductance, G, via dP/dT. We obtain G =

382.2nW/K.

Most of the cool-downs that we did were aimed at measuring the count rate at

different wavelengths ranging from the optical to the NIR. A thermal source was

coupled to a monochromator and photon counts were measured as a function of bias

current. The setup is shown in Figure 52. Figure 53 shows an example of single

photon pulses. Figure 54 shows the photon counts for varying wavelengths.
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(a)

(b)

Figure 51: (a) Resistance as a function of bias current and (b) power as a function of
base temperature for points along the superconducting phase transition.
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Figure 52: Experimental setup for counting single photon pulses. An incandescent
source was fed into a monochromator. A fiber optic cable feeds the filtered light into
the cryostat and onto the nanowire. The pulses are observed on the oscilloscope and
counted with a frequency counter.
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Figure 53: Single photon pulses from a SCONTEL SNSPD. The pulses are approxi-
mately 10ns wide and 15mV high.
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Figure 54: Count rate as a function of bias current for a SCONTEL SNSPD. A
maximum count rate of ∼18MHz was achieved for 1100nm photons. These devices
are most efficient in the near infrared range.
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APPENDIX III: SUMITOMO RP-082 CRYOSTAT TESTBED SETUP
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Most of the testing completed for this dissertation was done with a Sumitomo

RP-082, closed cycle, cryogenic cooler. The critical temperature of our devices was

determined to be ∼ 7K. Our intention was then to condition the coldplate (second

stage) of the cryostat to reach ≤ 4K. This was achieved by minimizing thermal loading

onto the second stage and by the efficient heat transferring from the cold head to the

stages of the cryostat via copper braids.

Due to a (mostly) fixed thermal mass when the first and second stage were

installed, concerns of thermal loading were focused on radiation and conduction.

Thermal shielding and isolation were therefore the focus when setting up the testbed.

The heat loading from radiation goes as the surface area of the object on which the

radiation is incident. Since the coldplate is large, this was a major concern. To

mitigate the effects of radiation, shielding in the form of aluminum cylinders encased

the plates. Additionally, multi-layer insulation (MLI) was attached to the outside

surface of both shields (see Figure 55) and aluminum tape was applied to the inside

surfaces. Aluminum tape was also applied to the first stage.

The heat transferred via radiation is given as

Q = εσT 4, (19)

where Q is the heat transferred, ε is the emissivity, σ is the Stefan-Boltzmann constant,

and T is the temperature. The first stage is made of unpolished aluminum. Due to

its low emissivity, MLI was applied to the surface and to the shield. The MLI on the

shield consisted of ten layers of aluminized mylar (high emissivity) thermally insulted

from each other and the surface with gauze netting. The plate had eight layers.

Another source of heat transfer that was minimized was that from the supporting

struts between the stages. The struts are in contact with both stages and 300K.
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Figure 55: The 300K and first stage are shown along with the inner MLI-covered
shield and supporting struts.

155



Conductive heat transfer is given as

δQ =
Ak(t)δT

L
(20)

where A is the cross-sectional area, k is the thermal conductivity factor, T is the

temperature, and L is the length. Integrating Equation 20 to arrive at the heat

transferred between regions of varying temperatures, we arrive at

Q =
AK

L
, (21)

where K is the value of the integral of thermal conductivity from the lower temperature

to the higher temperature.

The cross-sectional area was minimized by preparing hollow struts with 10mil

thick walls. The thermal conductivity was minimized by using stainless steel (high

mechanical strength, low thermal conductivity). The expected power transfered from

300K to the first stage and from the first stage to the second stage was 3W and 0.1W,

respectively. Additionally, two layers of MLI was added to the struts to minimize

radiative heat loading.

The second stage was gold plated to increase thermal contact for cooling devices

as well as to increase emissivity. Two layers of MLI were added to the bottom of

the plate. The second stage shield was fitted with ten layers of MLI. The final base

temperature reached was ∼ 2.25K (see Figure 56) with multiple devices attached to

the coldplate along with a sorption fridge.
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Figure 56: Temperature versus time for the first and second stages of the cryostat.
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APPENDIX IV: SIGNAL-TO-NOISE DERIVATION
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Our sources are incoherent and therefore follow Bose-Einstein statistics. The

occupation number in this case is

nocc =
1

e
hν
kT − 1

, (22)

where h is Plank’s constant, ν is the central frequency of the light, k is Boltzmann’s

constant, and T is the temperature of the source.

The occupation number is the number of photons per second per mode per Hertz

and is representative of the probability that a photon is occupying a particular state.

If two detectors are measuring emitted radiation from a single source, then the

probability that both detectors will measure a photon in the same state (i.e. the same

time) is P = n2
occ. If we integrate for some amount of time τint, we will detect the

following number of photons:

ncorrelations = εΓdetnoccτint, (23)

where Γdet is the number of photons per second detected by a detector, nocc is the

occupation number, and τint is the integration time. These are the correlated photons

(i.e. the signal). Multiplying Γdet and τint gives the number of photons counted at

one detector in a given amount of time and multiplying this value by the probability

of detecting a photon in the same state at the second detector gives the number of

correlations. This can be written as

S = ε2n2
occ∆ντint. (24)

In addition to photons that are occupying the same state causing these detected

coincidences, there are random coincidences that are not correlated. This is where

the noise associated with this measurement arises. Consider two detectors A and B.

The number of coincidences that are random can be determined by multiplying the
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number of coincidences in A by the probability that for a particular photon detected

in A, a photon is detected in B within the detector time constant τdet.

The number of coincidences in A is given by

nA = εnocc∆ντint. (25)

The probability that another photon will be detected in B within τdet is

P (B : A) = εnocc∆ντdet, (26)

where this is just the rate of photons detected by B in the time window for the photons

to be considered coincident with a photon arriving at A.

The number of random coincidences detected is then given by

nrandom = nAP (B : A) = ε2n2
occ∆ν

2τintτdet. (27)

Since the noise associated with random coincidences is Poissonian, we get

N =
√
nrandom = εnocc∆ν

√
τintτdet. (28)

We arrive at the signal-to-noise ratio for the HBT experiment:

S

N
= εnoccNmodes

√
τint
τdet

. (29)
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The efficiency of each detector channel can be determined by calculating the

expected throughput of the system with a given configuration and comparing it to the

measured count rates at each detector. In our system, the number of photons incident

on a detector that are detected is given by

Γdet = εnocc∆νNmodes, (30)

where ε is the overall efficiency of the system leading up to a particular detector that

determines the number of photons that are counted based on the number of photons

that arrive at the beginning of the system, nocc is the occupation number, ∆ν is the

observed bandwidth of the radiation field, and Nmodes is the number of modes.

The system efficiency for a detector is then given by

ε =
Γdet

Γdet(ε = 1)
, (31)

where Γdet is the measured count rate at the detector and Γdet(ε = 1) is the expected

throughput given 100% efficiency.

The number of modes can be determined by comparing the minimum distance

requirement for a single mode from the source to pass through the pinhole to the

actual position of our pinhole. For the pinhole to be the size of one spatial mode, the

resolving power needs to equal the angular size of the pinhole. In one-dimension, this

is given by
1.22λ

Dpinhole

=
Rsource

d
, (32)

where λ is the central wavelength, Dpinhole is the pinhole diameter, Rsource is the source

radius, and d is the distance from the source to the pinhole. For λ = 650nm, d = 0.2m.

This means that as long as the pinhole is 0.2m or greater from the source, only light

from a single spatial mode is incident on our detectors. For zero-point correlation

measurements, this is ideal.
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APPENDIX VI: PHOTON NUMBER CALCULATION FROM HOTSPOT

ANALYSIS
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When a photon is incident on the active area of a nanowire, a hotspot is formed. The

size of the hotspot can be estimated from a comparison of the number of quasiparticles

generated per photon with the number of quasiparticles available per unit volume.

The number of quasiparticles generated by a single-photon is given as

Nqp =
ηEγ
∆

, (33)

where η ∼ 50% is the internal quasiparticle generation efficiency for absorbed optical

power, Eγ ∼= 0.95eV is the energy of a 1.3µm photon, and ∆ = 1.1meV is the band-gap

energy. Nqp is then found to be ∼ 440 quasiparticles.

The number of quasiparticles available per unit volume is given as

nqp = 4N0∆ ln 2, (34)

where N0
∼= 1.6× 1010/eV/µm3 is the density of states at the Fermi level such that

nqp is found to be 4.88× 107 quasiparticles per micron.

The volume of the hotspot is then given as

Vspot =
Nqp

nqp
= 9× 103nm3, (35)

where since the thickness of the NbN film is 4 nm, the area of the hotspot is Aspot =

2250nm2. It can be shown that the change in kinetic inductance, δLK , is dependent

on this area and the width of the hotspot, wspot. While wspot and the length of the

hotspot, `spot, may vary, Aspot will remain constant (Figure 57).

The total kinetic inductance of the nanowire before a photon is incident is given as

L0
K = LKN0

�, (36)

where LK is the kinetic inductance per square and is a constant of the NbN film and

N0
� is the number of squares. N0

� can be expressed as the length of the nanowire, `n,

divided by the width of the nanowire, wn.
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Figure 57: Nanowire strip with three hotspots of equal area (A1 = A2 = A3), where
w1 6= w2 6= w3 and `1 6= `2 6= `3.

The kinetic inductance of the nanowire in the presence of a photon-generated

hotspot is given as

L1
K = L0

K − LK
`spot
wn

+ LK
`spot

wn − wspot
, (37)

where δLK = L1
K −L0

K . Then, the second term and third term account for the change

in the kinetic inductance such that

δLK = LK`spot
[ 1

wn − wspot
− 1

wn

]
∼=
LKAspotβ

w2
n

, (38)

where β is a factor that relates wn to wspot. Moreover, if α is a multiplier that gives

wn = αwspot, then β = (α−1 − α−2)−1. If wspot is ∼ 90% of wn, then α ∼= 1.11⇒ β ∼=

11.1.

The kinetic inductance per square is given as

LK = Ltot
wn
`n
, (39)

where Ltot = 600nH is the total kinetic inductance of the nanowire based on the

experimental value of the resonance and the capacitance of the pixel, wn = 60nm, and

`n = 500µm such that LK = 72pH/�.

The average change in kinetic inductance can be expressed as

δLavg = βLKΓγτε, (40)
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where Γγ is the number of photons per second incident on the nanowire and τε is the

energy relaxation time.

The average change in kinetic inductance is also a function of the measured shift

in frequency per mA of LED current and is given as

δLavg = −2
δf

f0

Ltot, (41)

where δf = 94 Hz/mA is the shift in frequency and f0 = 45.85MHz is the resonant

frequency such that δLavg = −2.46pH.

Solving for Γγ in Equation 40 we arrive at

Γγ =
δLavg
βLKτε

, (42)

where τε = 50ps such that Γγ = 6.16× 107 photons/s/mA. This can be compared to

Γγ = 1− 5× 108 photons/s/mA as calculated in Chapter 5.2.1 from the analysis of

the effect of the change in quasiparticle number as a function of absorbed power.
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APPENDIX VII: ABSORBED POWER FROM CHANGE IN QUASIPARTICLE

NUMBER
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We measured S21 for the resonators as a function of base temperature and at

a fixed base temperature (2.7K) as a function of LED current. If we compare the

frequency shift of the resonance as a function of LED current with the temperature

dependence (Figures 58 and 59), we can calculate an effective temperature shift of

the quasiparticles as a function of LED current with

δT =
∆Tbase
∆ILED

, (43)

where δTSNRSPD1 = 171µK/mA and δTSNRSPD2 = 197µK/mA. This effective temper-

ature shift is a lower estimate because it assumes that the energy from each photon is

distributed evenly throughout the nanowire. In fact, the energy from each photon is

deposited locally and creates a hotspot of normal metal around which the current has

to flow.

From the measured critical current and critical temperature, we calculated the

change in quasiparticles per mA at low temperatures with

δNqp

δT
=
Nqp

T

(
1

2
+

∆

kT

)
, (44)

where ∆ ∼ 1.764kTC = 1.29meV, for TC ≈ 8.5K, and T ≈ 2.74K. Nqp ∼ 105

quasiparticles is found via analysis of the non-linear kinetic inductance and equating

the scaling energy with the condensation energy of the superconductor.

The absorbed power per mA of LED current can be found by rearranging Equation

4.49 and is given by

Pabs = δNqp∆

ητqp
.

In NbN HEB detectors, the bandwidth is about 3 − 5GHz. This corresponds to a

time constant of 30− 50ps. We will consider a lower bound to the time constant to

be 20ps and an upper bound to be 1ns. Assuming a typical value for the production
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efficiency, η = 0.57, we find a range of Pabs = 1.65× 10−11 − 8.23× 10−10W/mA for

SNRSPD1 and Pabs = 2.24× 10−11 − 1.12× 10−9W/mA for SNRSPD2.
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(a) (b)

(c) (d)

Figure 58: (a) Zoomed-in resonance shift as a function of LED current for SNRSPD1.
(b) Linear fit for resonant frequency as a function of LED current for SNRSPD1.
This yields a shift of 111Hz/mA. (c) Zoomed-in resonance shift as a function of base
temperature. (d) Linear fit for resonant frequency as a function of base temperature.
This yields a shift of 6.51× 105Hz/K.
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(a) (b)

(c) (d)

Figure 59: (a) Zoomed-in resonance shift as a function of LED current for SNRSPD2.
(b) Linear fit for resonant frequency as a function of LED current for SNRSPD2.
This yields a shift of 252Hz/mA. (c) Zoomed-in resonance shift as a function of base
temperature. (d) Linear fit for resonant frequency as a function of base temperature.
This yields a shift of 1.28× 106Hz/K.
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APPENDIX VIII: RESONANCE CURVE FITTING
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We fit the resonance curves presented in this dissertation with emcee, which

is a Python code Markov-chain Monte-Carlo (MCMC) method developed at MIT

(Foreman-Mackey et al. 2013). The fits were consistently within a tenth of a dB

(Figure 60). Qr is limited by the coupling to the transmission line and Qi is limited

by loss in the parallel SMD capacitor.

Figure 60: Example resonance fit of an SNRSPD S21 curve using emcee.
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