280 research outputs found

    No-reference bitstream-based impairment detection for high efficiency video coding

    Get PDF
    Video distribution over error-prone Internet Protocol (IP) networks results in visual impairments on the received video streams. Objective impairment detection algorithms are crucial for maintaining a high Quality of Experience (QoE) as provided with IPTV distribution. There is a lot of research invested in H.264/AVC impairment detection models and questions rise if these turn obsolete with a transition to the successor of H.264/AVC, called High Efficiency Video Coding (HEVC). In this paper, first we show that impairments on HEVC compressed sequences are more visible compaired to H.264/AVC encoded sequences. We also show that an impairment detection model designed for H.264/AVC could be reused on HEVC, but that caution is advised. A more accurate model taking into account content classification needed slight modification to remain applicable for HEVC compression video content

    Analysis of Compressed Data Stream Content in HEVC Video Encoder

    Get PDF
    In this paper, a detailed analysis of the content of the bitstream, produced by the HEVC video encoder is presented. With the use of the HM 10.0 reference software the following statistics were investigated: 1) the amount of data in the encoded stream related to individual frame types, 2) the relationship between the value of the QP and the size of the bitstream at the output of the encoder, 3) contribution of individual types of data to I and B frames. The above mentioned aspects have been thoroughly explored for a wide range of target bitrates. The obtained results became the basis for highlighting guidelines that allow for efficient bitrate control in the HEVC encoder

    Algorithms and methods for video transcoding.

    Get PDF
    Video transcoding is the process of dynamic video adaptation. Dynamic video adaptation can be defined as the process of converting video from one format to another, changing the bit rate, frame rate or resolution of the encoded video, which is mainly necessitated by the end user requirements. H.264 has been the predominantly used video compression standard for the last 15 years. HEVC (High Efficiency Video Coding) is the latest video compression standard finalised in 2013, which is an improvement over H.264 video compression standard. HEVC performs significantly better than H.264 in terms of the Rate-Distortion performance. As H.264 has been widely used in the last decade, a large amount of video content exists in H.264 format. There is a need to convert H.264 video content to HEVC format to achieve better Rate-Distortion performance and to support legacy video formats on newer devices. However, the computational complexity of HEVC encoder is 2-10 times higher than that of H.264 encoder. This makes it necessary to develop low complexity video transcoding algorithms to transcode from H.264 to HEVC format. This research work proposes low complexity algorithms for H.264 to HEVC video transcoding. The proposed algorithms reduce the computational complexity of H.264 to HEVC video transcoding significantly, with negligible loss in Rate-Distortion performance. This work proposes three different video transcoding algorithms. The MV-based mode merge algorithm uses the block mode and MV variances to estimate the split/non-split decision as part of the HEVC block prediction process. The conditional probability-based mode mapping algorithm models HEVC blocks of sizes 16×16 and lower as a function of H.264 block modes, H.264 and HEVC Quantisation Parameters (QP). The motion-compensated MB residual-based mode mapping algorithm makes the split/non-split decision based on content-adaptive classification models. With a combination of the proposed set of algorithms, the computational complexity of the HEVC encoder is reduced by around 60%, with negligible loss in Rate-Distortion performance, outperforming existing state-of-art algorithms by 20-25% in terms of computational complexity. The proposed algorithms can be used in computation-constrained video transcoding applications, to support video format conversion in smart devices, migration of large-scale H.264 video content from host servers to HEVC, cloud computing-based transcoding applications, and also to support high quality videos over bandwidth-constrained networks

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    Fast encoding for personalized views extracted from beyond high definition content

    Get PDF
    Broadcast providers are looking for new opportunities to increase user experience and user interaction on their content. Their main goal is to attract and preserve viewer attention to create a big and stable audience. This could be achieved with a second screen application that lets the users select their own viewpoint in an extremely high resolution video to direct their own first screen. By allowing the users to create their own personalized video stream, they become involved with the content creation itself. However, encoding a personalized view for each user is computationally complex. This paper describes a machine learning approach to speed up the encoding of each personal view. Simulation results of zoom, pan and tilt scenarios show bit rate increases between 2% and 9% for complexity reductions between 69% and 79% compared to full encoding

    Information fusion based techniques for HEVC

    Get PDF
    Aiming at the conflict circumstances of multi-parameter H.265/HEVC encoder system, the present paper introduces the analysis of many optimizations\u27 set in order to improve the trade-off between quality, performance and power consumption for different reliable and accurate applications. This method is based on the Pareto optimization and has been tested with different resolutions on real-time encoders

    Guided Transcoding for Next-Generation Video Coding (HEVC)

    Get PDF
    Video content is the dominant traffic type on mobile networks today and this portion is only expected to increase in the future. In this thesis we investigate ways of reducing bit rates for adaptive streaming applications in the latest video coding standard, H.265 / High Efficiency Video Coding (HEVC). The current models for offering different-resolution versions of video content in a dynamic way, so called adaptive streaming, require either large amounts of storage capacity where full encodings of the material is kept at all times, or extremely high computational power in order to regenerate content on-demand. Guided transcoding aims at finding a middle-ground were we can store and transmit less data, at full or near-full quality, while still keeping computational complexity low. This is achieved by shifting the computationally heavy operations to a preprocessing step where so called side-information is generated. The side-information can then be used to quickly reconstruct sequences on-demand -- even when running on generic, non-specialized, hardware. Two method for generating side-information, pruning and deflation, are compared on a varying set of standardized HEVC test sequences and the respective upsides and downsides of each method are discussed.Genom att slänga bort viss information från en komprimerad video och sedan återskapa sekvensen i realtid kan vi minska behovet av lagringsutrymme för adaptiv videostreaming med 20–30%. Detta med helt bibehållen bildkvalité eller endast små försämringar. ==================== Adaptiv streaming Streaming är ett populärt sätt att skicka video över internet där en sekvens delas upp i korta segment som skickas kontinuerligt till användaren. Dessa segment kan skickas med varierande kvalité, och en modell där vi automatiskt känner av nätverkets belastning och dynamiskt anpassar kvalitén kallas för adaptiv streaming. Detta är ett system som används av SVT Play, TV4 Play och YouTube. HD- eller UltraHD-video måste komprimeras för att kunna skickas över ett nätverk – den tar helt enkelt för stor plats annars. Video som kodas med den senaste komprimeringsstandarden, HEVC/H.265, blir upp emot 700 gånger mindre med minimala försämringar av bildkvalitén. Ett segment på tio sekunder som tar 1,5 GB att skicka i rå form kan då komprimeras till strax över 2 MB. För att kunna erbjuda tittaren en videosekvens – en film eller ett TV-program – i varierande kvalité, skapar man olika kodningar av materialet. Generellt har vi inte möjlighet att förändra kvalitén på en sekvens i efterhand – omkodning av även en kort HD-video tar timmar att genomföra – så för att adaptiv streaming ska kunna fungera i praktiken genereras alla versioner på förhand och sparas undan. Men detta kräver stort lagringsutrymme. Guided transcoding Guided transcoding (”guidad omkodning”) erbjuder ett sätt att minska behovet av lagringsutrymme genom att slänga bort viss information och sedan återskapa den vid behov i ett senare skede. Vi gör detta för varje sekvens av lägre kvalité, men behåller högsta kvalitén som den är. En stympad lågkvalité-video tillsammans med videon av högsta kvalitén kan sedan användas för att exakt återskapa sekvensen. Denna process är mycket snabb i jämförelse med vanlig omkodning, så vi kan med kort varsel generera videokodningar av varierande kvalité. Vi har undersökt två metoder för plocka bort och återskapa videoinformation: pruning och deflation. Den första ger små försämringar i bildkvalitén och sparar närmare 30% lagringsutrymme. Den senare har ingen påverkan på bildkvalitén men sparar bara drygt 20% i utrymme
    corecore