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Abstract—Broadcast providers are looking for new opportuni-
ties to increase user experience and user interaction on their
content. Their main goal is to attract and preserve viewer
attention to create a big and stable audience. This could be
achieved with a second screen application that lets the users
select their own viewpoint in an extremely high resolution video
to direct their own first screen. By allowing the users to create
their own personalized video stream, they become involved with
the content creation itself. However, encoding a personalized view
for each user is computationally complex. This paper describes
a machine learning approach to speed up the encoding of each
personal view. Simulation results of zoom, pan and tilt scenarios
show bit rate increases between 2% and 9% for complexity
reductions between 69% and 79% compared to full encoding.

Index Terms—Future technologies and services of broadcast-
ing, video coding and processing, High Efficiency Video Coding
(HEVC), machine learning, video interaction

I. INTRODUCTION

During the last decade, the broadcasting industry expe-
rienced a dramatic increase in spatial resolution for image
and video capturing. Nowadays, well known television and
movie productions already benefit from native high resolution
capturing. At this moment, 4K ultra high definition capturing
at a corresponding resolution of 3840 by 2160 pixels is no
longer an exception and professional cameras with sensors up
to 6K resolutions are for sale. These resolutions can capture a
much wider area while preserving the details. If two or more of
these cameras are combined to create one very large image,
e.g. two 4K images that generate a combined resolution of
7680 by 2160 pixels, it is possible to capture an entire soccer
field with the same level of detail as regular sport broadcasts.

Delivering these beyond HD resolutions to a home envi-
ronment poses some challenges. First of all, current consumer
devices support spatial resolutions up to 4K. However, the
majority of installed devices are designed for full HD (1920 by
1080 pixels). This means that the majority of consumer home
devices are not yet capable of displaying beyond HD content
without scaling down or cutting out a region of interest.
Second, even if consumer devices were able to display these
ultra high resolutions with an acceptable quality and level
of detail, the current bandwidths to the home are not high
enough to cope with this image size. Even the use of the
High Efficiency Video Coding (HEVC) standard [1], which

compresses a video with the same quality as its predecessor at
half the bitrate, is insufficient to satisfy bandwidth constraints
for beyond HD video.

This paper describes a system that allows users to select
a subset of the original beyond HD video, such that it
can be transmitted to and consumed on regular consumer
devices. The goal is to allow each user to select exactly
the spatial resolution, place in the field, and zoom level he
wants. Consequently, the user can direct his personalized video
stream. Since each user might choose a different viewpoint,
and encoding typically is a big cost, special effort must be put
into reducing the complexity of these simultaneous encodings.
This paper describes a solution to reuse encoding decisions
from the beyond HD video while keeping the perceptual
quality as high as possible. This will reduce the encoding
complexity significantly.

The outline of this paper is as follows. Section II contains
a brief overview of the HEVC compression standard which
is used to compress beyond HD video in this paper. Section
III then describes the envisioned architecture together with
its main components. In section IV, the extraction and fast
encoding techniques of the views are shown. Section V
describes the results while the overall conclusion can be found
in Section VI.

II. HIGH EFFICIENCY VIDEO CODING

HEVC is a new video compression standard offering better
compression efficiency compared to its predecessors [2]. To
achieve this, HEVC uses a more flexible scheme for dividing
the picture into blocks. The picture is first divided into
CTUs of typically 64×64 pixels, which are recursively split
into smaller CUs according to a quadtree structure, with the
smallest possible block size being 8×8 pixels (illustrated in
Fig. 1). Each CU has an associated prediction mode (intra
or inter) and is split into one of the eight Prediction Unit
(PU) partitioning sizes. Depending on the mode of the CU,
each PU contains either intra- or inter- prediction information.
For residual coding, each CU is also recursively split into
Transform Units (TUs) according to a quadtree structure,
with the smallest TU size being 4×4 pixels. Determining the
optimal block structure results in the increased complexity of
HEVC compared to its predecessors.



Fig. 2. System architecture of a multi viewpoint fast encoding solution.

Fig. 1. A possible block division for HEVC video frames.

III. SYSTEM ARCHITECTURE

In this section, an overall system architecture that in-
corporates the creation, processing and distribution of the
personalized views is described and depicted in Fig. 2.

The main goal of this system is to deliver a high amount
of simultaneously encoded videos with different output reso-
lutions, zoom levels and cropping parameters. In the scenario
shown in Fig. 2, multiple users can request different personal-
ized views from within the same ultra high resolution video.
The system delivers multiple HEVC streams encoded by fast
encoders. These fast HEVC encoders achieve their complexity
reduction by reusing coding information from one full HEVC
encoder that encodes the source video as a whole. The overall
system consists of three major parts: production, processing
and distribution. The main focus and contribution of this paper
lies within the processing step.

A. Production

This part of the system describes the creation of the input
content. In Fig. 2, the content consists of two stitched 4K
camera images. This results in content of about 7680 by 2160
pixels. The creation and stitching [3] of this content goes
beyond the scope of this paper. In general, any content creation
process that results in a very high resolution image can be
used as input to this system. Applications may range from

sports as depicted in Fig. 2, to surveillance and more industrial
applications. The output of this step is directly linked to the
processing step.

B. Processing

By using coordinates provided by different users as input
to the system, the processing step creates different views and
encodes them as HEVC bitstreams ready for distribution to
the home. Because a full encode of each view would result
in a computationally complex system, this paper describes
techniques to reduce this overall complexity. The key idea
behind these complexity reducing techniques is the reuse of
coding information extracted from a full encode of the beyond
HD video to speed up the encoding of a personalized view
within the same content.

C. Distribution

The last step in the process is the video distribution.
This is the part where the HEVC encoded bitstream is sent
to the consumer devices. Because each user gets his own
personalized view, the video streams can be optimized based
upon the device parameters, e.g. tablet users might request
content with a resolution lower than full HD, while users with
full HD televisions will want exactly that resolution.

IV. EXTRACTION AND ENCODING OF VIEWS

HEVC uses a block structure as described in Section II
to divide a frame into multiple small coding blocks. Since
determining the optimal block structure of a frame is com-
putationally complex, the encoder complexity can be greatly
reduced by limiting the structures that should be considered.
This can be done by exploiting coding information from the
encoding of the original Beyond HD video.

A. Alignment and misalignment of blocks

If there is a need to reuse information from one encoder in
another encoder that encodes only a subset of the image, two
main scenarios can occur. In a first scenario, as depicted in Fig.
3 (a), the view that the user selects is perfectly aligned with
existing blocks in the original image. In this case, the block
structure of that part of the image can easily be reused [4]. In
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Fig. 3. Difference between spatial alignment (a) and spatial misalignment (b)
of selected views.

another case, the user selects a view in which misalignment
occurs. In this case, as shown in Fig. 3 (b), the boundaries
of the new view do not align with existing block boundaries.
This makes reuse of block information less trivial.

B. Virtual pan, tilt and zoom operations

In this paper, three major movements within the video are
defined. These movements are similar to the pan, tilt and zoom
camera movement known from the field of image capturing.
The first movement is panning within the content. As shown
in Fig. 4 (a), the pan operation retains the output size, but
shifts the image left or right on the horizontal axis. The second
movement depicted in Fig. 4 (b) corresponds with tilting.
Tilting is equal to panning, only now the motion is upwards or
downwards on the vertical axis. The third and last movement is
zooming into the content. As depicted in Fig. 4 (c), the zoom
operation creates a smaller image by cropping and shifting the
original image while retaining the same aspect ratio.

Pan, tilt and zoom operations correspond to a combination
of cropping, scaling and shifting the original picture to create a
new viewpoint. The outcome of these operations can result in
either alignment or misalignment as described in the previous
subsection.

C. Exploiting correlation between blocks

Because each view is created from the same input video,
there is a certain amount of correlation between the personal-

(a)
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(c)

Fig. 4. View adaptation conform to camera pan (a), tilt (b) and zoom (c).

ized view and the original video. The methodology described
in this paper exploits this correlation to reduce the overall
encoding complexity.

This paper focusses on the HEVC video codec. As described
in Section II, HEVC compresses video using flexible block
structures. The partitioning of CTUs into CUs and CUs into
PUs and TUs is a very costly operation and results in the high
computational complexity of HEVC. However, the complexity
of encoding multiple views simultaneously can be reduced
significantly if (parts of) this block structure information gets
automatically predicted from the encoding of the original
beyond HD video. In particular, this paper proposes a method
to predict the partitioning of CTUs into CUs.

To predict CU structures, a machine learning model is



TABLE I
FULL LIST OF CANDIDATE FEATURES.

Feature index Description

1 intra fraction
2–5 mean, variance, max, min CU depth
6–9 mean, variance, max, min PU depth
10–13 mean, variance, max, min TU depth
14 motion vector variance
15–16 mean and variance of transform coefficient variance
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Fig. 5. Example of the co-located blocks in an input sequence (left) for
shifting the picture 48 pixels in x- and y-direction (right). If an input block is
only partially co-located with the output block, the features associated with
the input block need to be weighted.

trained on the first 10 frames of each new view by using the
Random Forest algorithm [5]. This machine learning algorithm
creates an ensemble classifier from N decision trees. Each tree
only uses a random subset of all input features calculated on
the coding information of the beyond HD video. Based on this
subset, the tree is built by determining rules in each node in
order to maximize the entropy reduction for the given samples
[6]. In this paper, a node is not split any further if a split would
result in a node containing less than 1% of the total number
of samples used in the tree.

To determine the output label of a new input sample, each
tree in the forest returns the probability of a split for the
given samples. These probabilities are then averaged over the
complete forest. If the resulting average probability is greater
than 50%, the CU is split.

D. Extraction of coding information

In this paper, sixteen candidate features (Table I) are cal-
culated for an output block based on the coding information
of the co-located blocks in the input bitstream (Fig. 5) [7].
However, it is possible that only part of an input block is co-
located with the output block. Therefore, since information
such as the CU depth is determined for a complete block, the
mean and variance of this information need to be weighted. For
example, if only half of an input block is co-located with the
output block, the information will only carry half the weight
of a block that is completely co-located with the output block.

The first of the sixteen features is the intra fraction. This
value indicates the percentage of pixels in the co-located input
blocks that are intra-coded.

Twelve more features are based on the depth of the block
structures in the input bitstream. The depth of a block refers

to the number of times a Coding Tree Unit (CTU) has been
split. Therefore, for Coding Units (CUs) and Transform Units
(TUs), depth 0 refers to a block of 64×64 pixels, whereas
depth 4 refers to a block of 4×4 pixels. For Prediction Units
(PUs), the depth dPU is defined as

dPU =

{
dCU if PUpart size = 2N×2N

dCU + 1 other
(1)

with dCU being the depth of the CU to which the PUs
belong, PUpart size being the partitioning size of the PUs,
and 2N×2N being one of the eight possible partitioning sizes.
For each block type (CU, PU, and TU), four features (mean,
variance, maximum, minimum value) are calculated for the
depths of the co-located input blocks. The use of these features
is based on the assumption that the CU structure of a spatially
shifted picture will show high correlations with the original
block structures.

Another feature is the motion vector variance, which is
defined as

σ2
mv = σ2

x + σ2
y (2)

with σ2
x and σ2

y respectively being the variance of the x and
y component of the motion vectors in the co-located input
blocks. This feature is used to measure the similarity between
the motion vectors of the co-located blocks, since it is assumed
that for a small σ2

mv , a good match could be found for the
current output block size, meaning that it will not need to be
split. If motion vector variance information is unavailable (as
is the case with intra-coded blocks), it is not used.

The last two features are the variance σ2
DCT and the mean

µDCT of the transform coefficient variance, defined as

σ2
DCT = 16σ2

y + σ2
u + σ2

v (3)

and
µDCT =

4µy + µu + µv

6
(4)

with σ2
i and µi respectively the variance and mean of the

i-component of the transform coefficient variance. These fea-
tures are used since the transform coefficient variance will
be zero if a block in the input bitstream is skipped. This
information might be useful to combine with motion vector
variance to predict splitting behaviour of the output block.

V. RESULTS

To evaluate the algorithm for fast encoding of personalized
views, version 16.3 of the HEVC reference software was mod-
ified [8]. The Ultra HD (UHD) sequences Bosphorus, Bund-
Nightscape, Jockey, Marathon, ParkJoy and ReadySteadyGo,
which have a resolution of 3840×2160 pixels, were used as the
original video from which personalized views are extracted.
These sequences are further described in Figure 6 and Table
II. These sequences were chosen from a larger pool of UHD
sequences due to their diverse spatial and temporal activity as
measured in Spatial Index (SI) and Temporal Index (TI) (Fig.
7) [9].
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Fig. 6. Ultra HD sequences used in the simulations.
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Fig. 7. Description of the chosen test sequences in terms of spatial and
temporal activity.

TABLE II
SHORT DESCRIPTION OF TEST SEQUENCES, INCLUDING THE FRAME RATE

IN FRAMES PER SECOND (FPS). THE TOTAL NUMBER OF ENCODED FRAMES
EQUALS TEN TIMES THE FRAME RATE WITH A MAXIMUM OF 600 FRAMES.

Sequence Fps Description

Bosphorus 120 Camera moves in parallel to follow boat
BundNightscape 30 Fixed camera and small moving objects
Jockey 120 Fast camera pan and zoom to follow horse
Marathon 30 Fixed camera and many moving objects
ParkJoy 50 Camera moves in parallel to follow people
ReadySteadyGo 120 Camera pans to follow action

Each UHD sequence was encoded with quantization pa-
rameters (QP) 22, 27, 32 and 37. Each of these versions was
encoded using a low delay configuration, which consists of
an I-frame followed by P-frames. This configuration results
in a lower delay, which is a requirement for interacting with
personalized views.

To evaluate the proposed algorithm, the difference in com-
pression efficiency and encoding complexity reduction are
measured. The difference in compression efficiency is ex-
pressed in Bjøntegaard Delta (BD) rate [10]. This metric shows
the average increase in bitrate for the same Peak Signal-to-
Noise Ration (PSNR) of encoding a personalized view by
reusing information from the original UHD sequence (fast
encoder) compared to encoding this view without reusing
information (reference encoder).

Complexity reduction is determined by comparing the en-
coding time of the fast encoder Tfast to the encoding time of
the reference encoder Tref in terms of time saving (TS):

TS(%) =
Tref − Tfast

Tref
(5)

In the following subsections, two scenarios are simulated
and evaluated. First, a virtual zoom is simulated, followed by
a pan- and tilt-scenario.

A. Simulating zoom

If a user with a 720p screen wants to view a part of the
UHD video at the original resolution, the CU structure of the
relevant part of the UHD video can be copied to encode this
personalized view. However, if the user zooms out with a factor
of two, the personalized view should reuse the information
from a 1080p version of the original video. If the user zooms
out even further to watch the complete video on the 720p
screen, CU structure information for a 720p version needs
to be determined. To simulate this scenario of zooming, the
UHD video is encoded at three resolutions (2160p, 1080p and
720p) by using coding information of the UHD video encoded
at 2160p.

The results in Table III indicate that performing a fast
encode at resolutions other than 2160p does not differ greatly
in compression efficiency (with the exception of Jockey) from



TABLE III
RESULTS OF THE ZOOM SIMULATION.

BD-Rate(%) Time Saving (%)

Sequence 2160p 1080p 720p 2160p 1080p 720p

Bosphorus 4.3 4.6 5.1 78.8 77.8 77.4
BundNightscape 4.2 5.5 5.5 79.5 77.9 78.2
Jockey 4.7 8.2 9.3 78.0 77.6 77.5
Marathon 3.2 3.6 2.9 71.0 69.2 69.4
ParkJoy 2.4 2.5 2.1 72.1 69.2 69.2
ReadySteadyGo 4.5 5.6 5.5 77.1 74.3 73.8

performing a fast encode of the UHD sequence at its original
resolution of 2160p. This seems to indicate that zoom levels of
1080p and 720p are indeed viable choices for providing per-
sonalized views. Additionally, all versions also show similar
complexity reductions between 69% and 79%.

If the CU structure of encoding the UHD sequence at its
original resolution is predicted, the machine learning algorithm
reports a 100% accuracy since the encoder simply has to copy
all of the original CU information. However, the simulation
reported BD-rates between 2.4% and 4.7% (Table III), which
is far from the expected 0%. This behavior was investigated
further and can be attributed to two encoder optimizations in
the HM reference software.

The first encoder optimization speeds up inter-prediction of
asymmetrical motion partitions [11]. This optimization uses
the PU partitioning size of the parent CU to decide which
asymmetrical motion partitions will be evaluated and whether
full motion estimation will be performed in addition to merge
estimation. If the evaluation of the parent CU is skipped,
as is the case with the algorithm proposed in this paper, its
PU partitioning size is not known and the existing encoder
optimization does not function correctly.

The second encoder optimization provides an extra candi-
date starting point for motion estimation [12]. This starting
point is based on the motion vector of the most recently
calculated 2N×2N PU with the same reference picture as
the currently tested motion vector. However, if some CU sizes
are not evaluated, this value can be incorrect, leading to less
optimal encoder decisions.

Since the above encoder optimizations appear to conflict
with the proposed algorithm, future work will investigate
equivalent, non-conflicting optimizations.

B. Simulating pan and tilt

The effects of pans and tilts of the personalized view can
be simulated by shifting the view on the UHD video in x- and
y-direction. Since the size of CTUs in this paper is 64×64
pixels, shifts of k pixels are assumed to be equivalent to shifts
of k mod 64 pixels in terms of misalignment. Additionally,
a shift of k pixels is also assumed to be equivalent to a shift
of −k pixels. Hence, only shifts of up to 32 pixels will be
evaluated. To simulate these shifts, a view of 3808×2128
pixels is used on the UHD sequences. This view can shift

Fig. 8. To simulate pan and tilt for shifts of up to 32 pixels in both x- and
y-direction, the personalized view shows the complete video with 32 pixels
subtracted from both its width and height.

TABLE IV
EFFECT ON BD-RATE WHEN COMBINING PAN AND TILT MOVEMENTS, FOR

THE SEQUENCE BUNDNIGHTSCAPE.

x-shift

y-shift 0 8 16 24 32

0 4.2 5.7 5.1 5.7 4.4
8 5.7 6.0 6.0 6.2 5.6
16 5.2 5.9 5.4 6.0 5.1
24 5.8 6.2 6.2 6.2 5.9
32 4.6 5.7 5.2 5.7 4.5

up to 32 pixels in both x- and y-direction (see also Fig. 8).
In a first experiment, the relation between shifts in different

directions was investigated. As seen in Table IV for the
sequence BundNightscape, an (x, y) shift shows a similar
compression efficiency as a (y, x) shift. For this sequence, the
largest difference can be seen between e.g. a shift of (0,32)
pixels with a BD-rate of 4.6% and (32,0) pixels with a BD-rate
of 4.4%. Since the other sequences displayed similar behavior,
only shifts in a single direction are used in the next experiment.

In a second experiment, the effect of misalignment was
investigated in detail for all 32 shifts. As seen in Fig. 9, some
shifts perform better than others. Shifts of 0 and 32 pixels
perform best since they respectively preserve alignment with
the CTU-grid of 64×64 pixels and a CU-grid of 32×32 pixels.
Shifts of 16 pixels perform slightly better than surrounding
shifts, although this performance is worse than for shifts of
32 pixels. Depending on the sequence, shifts from 1 to 3
pixels and shifts of 30 and 31 pixels also perform generally
better than other shifts. This is most likely due to very small
shifts only introducing a negligible amount of misalignment
for some sequences.

Jockey and Bosphorus behave atypical in a sense that the
BD-rate does not change much between different shifts. As
seen in Fig. 7, both sequences have a lower spatial activity. The
relation between this behavior and the spatial activity should
be further investigated.

In all of the above results, the fast encoder predicts the
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Fig. 9. Effect on BD-rate when panning the virtual camera.

TABLE V
TIME SAVING WHEN PANNING THE VIRTUAL CAMERA.

Time Saving (%) (all shifts)

Sequence Average Standard deviation

Bosphorus 79.0 0.2
BundNightscape 79.0 0.1
Jockey 77.4 0.1
Marathon 70.0 0.2
ParkJoy 71.2 0.3
ReadySteadyGo 76.1 0.2

complete CU structure. As seen in Table V, this means that
the TS is similar for all shifts, since only a single CU structure
is evaluated by the encoder. Small variations between shifts
may occur if the model predicts large CU sizes more often,
since this reduces the number of evaluated CUs. Since the
complexity reduction is similar for all shifts, only the com-
pression efficiency should be taken into account to determine
the shifts that should be allowed when selecting personalized
views.

VI. CONCLUSION

In this paper, a system for encoding personalized views
extracted from beyond HD content is presented. To handle the
scalability issues of encoding many different views in parallel,
a method is proposed to reduce the encoding complexity
of each view. This method exploits the correlation with the
original encoded beyond HD video and the personalized view.

Simulation results of zoom scenarios show bit rate increases
between 2% and 9% with complexity reductions between 69%
and 79% compared to full encoding. The results also show that
zooming at three different zoom levels does not make a large
difference in compression efficiency and complexity reduction.

When panning and tilting the virtual camera, the bit rate
increases between 2% and 7% with complexity reductions be-
tween 70% and 79%. In this case, the amount of misalignment
does have an effect on the compression efficiency. As a result,
in a system with personalized views, the view should only be
shifted with multiples of 32 pixels compared to the original
encoded video.
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