
Guided Transcoding for Next-
Generation Video Coding (HEVC)

Harald Nordgren

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-13

Guided Transcoding for Next-Generation
Video Coding (HEVC)

Harald Nordgren
ada09hno@student.lth.se

May 11, 2016

Master’s thesis work carried out at Ericsson AB

Supervisors:
Kenneth Andersson, kenneth.r.andersson@ericsson.com

Ruoyang Yu, ruoyang.yu@ericsson.com
Michael Doggett, michael.doggett@cs.lth.se

Examiner:
Jörn W. Janneck, jwj@cs.lth.se

mailto:ada09hno@student.lth.se
mailto:kenneth.r.andersson@ericsson.com
mailto:ruoyang.yu@ericsson.com
mailto:michael.doggett@cs.lth.se
mailto:jwj@cs.lth.se

Abstract

Video content is the dominant traffic type on mobile networks today and this
portion is only expected to increase in the future. In this thesis we investigate
ways of reducing bit rates for adaptive streaming applications in the latest video
coding standard, H.265 / High Efficiency Video Coding (HEVC).

The current models for offering different-resolution versions of video con-
tent in a dynamicway, so called adaptive streaming, require either large amounts
of storage capacity where full encodings of the material is kept at all times,
or extremely high computational power in order to regenerate content on-
demand.

Guided transcoding aims at finding a middle-ground were we can store
and transmit less data, at full or near-full quality, while still keeping computa-
tional complexity low. This is achieved by shifting the computationally heavy
operations to a preprocessing step where so called side-information is gener-
ated. The side-information can then be used to quickly reconstruct sequences
on-demand – even when running on generic, non-specialized, hardware.

Two method for generating side-information, pruning and deflation, are
compared on a varying set of standardized HEVC test sequences and the re-
spective upsides and downsides of each method are discussed.

Keywords: Video Compression, Adaptive Streaming, Transcoding, H.265, HEVC

ii

Acknowledgements

I want to thank Ruoyang Yu for his continued support with programming and video coding
theory and Kenneth Andersson for his help with the report writing. I also want thank
Thomas Rusert and Per Hermansson for their assistance during the project.

I want thank Markus Flierl at KTH for his lectures on images and video, and Michael
Dogget and Jörn Janneck at LTH for their input on the thesis drafts.

iii

iv

Contents

Abstract i

Acknowledgements iii

Acronyms vii

1 Introduction 1
1.1 Image and Video Fundamentals . 1

1.1.1 Digitally Representing Images and Video 1
1.1.2 RGB, YCbCr and Chroma Subsampling 2
1.1.3 Binary Numbers . 3

1.2 Encoding Fundamentals . 4
1.2.1 Prediction . 5
1.2.2 Frequency Transformation and Quantization 7
1.2.3 Arithmetic Coding . 8
1.2.4 GOPs and Temporal Layers . 9

1.3 HEVC-Specific Algorithms . 9
1.3.1 RDOQ . 9
1.3.2 Sign-Bit Hiding . 10

1.4 Adaptive Streaming . 10
1.4.1 Simulcasting . 10
1.4.2 Just-in-Time Transcoding . 11
1.4.3 Scalable Video Coding . 12

1.5 My Contributions . 13

2 Guided Transcoding 15
2.1 Pruning . 15

2.1.1 Generating Side-Information . 16
2.1.2 Regenerating a Pruned Sequence 17
2.1.3 Partial Pruning . 17

2.2 Deflation . 18

v

CONTENTS

2.2.1 Generating Side-Information . 18
2.2.2 Regenerating a Deflated Sequence 19

3 Evaluation 21
3.1 The Guided Transcoding Chain . 21

3.1.1 Encoding the Original . 21
3.1.2 Re-Encoding and Pruning . 22
3.1.3 Regenerating Sequences . 23

3.2 Cluster Simulations . 23
3.3 Simulation Data . 24

3.3.1 Measuring Bit Rate . 24
3.3.2 Measuring Video Quality . 24
3.3.3 Gains . 26
3.3.4 Costs . 27

3.4 Results . 27
3.4.1 Excel Sheets . 27
3.4.2 Pruning . 27
3.4.3 Deflation . 28

4 Conclusions 39

Bibliography 41

vi

Acronyms

ABR Adaptive Bit Rate. 10, 26, 39

CABAC Context-Adaptive Binary Arithmetic Coding. 8
CTB Coding Tree Block. 5

DCT Discrete Cosine Transform. 7

fps frames per second. 1–3, 21, 22, 27

GOP Group of Pictures. 9, 22
GT Guided Transcoding. 10, 11, 15, 21, 26, 27, 39

H.264 Video coding standard. 8, 12, 39
H.265 Video coding standard, successor to H.264. 12, 39
HD High-Definition. 2
HEVC High Efficiency Video Coding, synonym of H.265. 4, 6, 8, 18, 21, 22
HM HEVC Test Model. 22
HQ High Quality. 15–19, 22–24, 26–28

JIT Just-in-Time. 10, 11, 13, 15
JVT Joint Video Team. 21

kbit/s kilobits per second. 24

LQ Low Quality. 15–19, 22–24, 26–28

MSE Mean Squared Error. 5, 26
MV Motion Vector. 5, 6

PSNR Peak Signal-to-Noise Ratio. 21, 23, 24, 26–28

QP Quantization Parameter. 7, 9, 13, 21–23

RDO Rate-Distortion Optimization. 6, 9, 10
RDOQ Rate-Distortion Optimized Quantization. 9, 21, 27, 28

vii

Acronyms

RGB Red, Green and Blue. 2

SBH Sign-Bit Hiding. 10, 13, 21, 27, 28
SHVC Scalable High Efficiency Video Coding. 12
SI Side-Information. 15–17, 19, 21–23, 26
SVC Scalable Video Coding. 10, 12, 13, 15

YCbCr Color format often used instead of RGB. 2, 24

viii

Chapter 1
Introduction

Video is the dominant traffic type on mobile networks today and is expected to take up
70% of all traffic in a few years. To effectively store and transmit high-quality video the
data needs to be encoded. Modern video coding algorithms can decrease the size of raw
video by hundreds of times with little or no discernible loss in video quality. To achieve
this, local redundancies within each frame and between neighboring pictures are utilized,
and different statistical methods guide the process to achieve the lowest file size at the least
distortion of picture quality.

The standard scenario for digital video is for the images first to be captured by a camera,
then encoded and stored somewhere, and transmitted over a network. On the receiving end
the process is reversed; the sequences is decoded and then displayed. An encoder always
goes together with a decoder, together the two are known as a codec [1].

1.1 Image and Video Fundamentals
1.1.1 Digitally Representing Images and Video
The simplest form of image, a greyscale one, can be represented as a light intensity func-
tion [2]. The intensity function exists in continuous space and has infinite precision. For
every x- and y-coordinate there is a light component representing the brightness of the
image. To get a digital image from the light intensity function we sample it at certain in-
tervals. The samples are usually confined to a rectangular area – the borders of the image.
Light samples are called pixels or pels, from the word picture element. The number of
samples in a frame are usually written in the form N ×M giving the number of horizontal
versus vertical samples [3], for example 1920 × 1080. It is also common to refer to the
frame size only by its height.

What sets video apart from still images is movement. Several images shown in rapid
succession creates the illusion of movement as long as the frame rate is at least 24 frames

1

1. Introduction

Figure 1.1: RGB to YCbCr conversion

per second (fps) [2]. Higher frame rates give a smoother-looking video, so many systems
use frame rates around 50-60 fps. High-definition (HD) or Ultra HD content will often
have frame rates ranging from 100 to 200 fps.

1.1.2 RGB, YCbCr and Chroma Subsampling
A light intensity function represents a greyscale image. To represent color we sample the
light at different frequencies and then display the components together. Classically red,
green and blue (RGB) are sampled which suffices to represent any color on the human
visual spectrum [3]. However, in most modern applications, RGB is transformed to the
YCbCr format. Here Y is the luma component, representing the overall brightness of the
image, and Cb and Cr are chroma components, representing intensity in blue and red [2],
see fig. 1.1.

Because the human eye is more sensitive to light than color [1, 2], in YCbCr the two
color components are usually subsampled so that chroma values are averaged from a neigh-
borhood of pixels, and subsequently less information is transmitted for the chroma than for
luma [3]. This subsampling is conventionally written as a ratio between luma and chroma
samples

Y : X1 : X2

with Y = 4 in most applications. X1 describes horizontal subsampling, so X1 = 2 means
that 2 chroma samples are taken horizontally for every 4 luma samples. X2 describes the
vertical subsampling in relation to X1. X1 = 0 indicates that the same chroma subsampling
is performed vertically as horizontally, while X1 = 2 indicates no vertical subsampling is
performed That is, the number of chroma samples are the same as the luma samples. See
fig. 1.2. 4 : 2 : 2 and 4 : 2 : 0 are the most common subsampling formats [2].

In 4 : 2 : 0, for every 2 × 2 = 4 luma pixels, only 1 pixel is stored in the two chroma
components, meaning that a 1920 × 1080 video subsampled at 4 : 2 : 2 contains only
960× 540 chroma samples. Naturally, this decreases the size of the stored video. One full
luma sample plus two chroma components each a one fourth of the luma size give a total
of 1.5 samples, as opposed to the 3 full samples needed in RGB. Done correctly, chroma
subsampling has little to no effect on the resultant video, and instead for the same file size
as without subsampling the overall resolution and quality can now be increased.

But even with RGB transformed to YCbCr, storing or transmitting each pixel value is

2

1.1 Image and Video Fundamentals

4:1:1 4:2:0 4:2:2 4:4:4

©
Im

ag
e

by
Br

io
n

VI
BB

ER
an

d
M

ys
id

/C
C

BY
-S

A
3.

0

Figure 1.2: Different subsampling ratios

expensive in terms of storage space and bandwidth. 10 seconds of 4 : 2 : 0 video content
with 8 bit intensity values at 1920 × 1080 resolution and 50 fps will require 1.5 × 10 ×
8 × 1920 × 1080 × 50 bits = 1.6GB of data. A two hour movie requires 1.1 TB. This is
why we need video compression.

1.1.3 Binary Numbers
To store and transmit data in any computer system, numbers are converted to binary format.
Instead of ten digits, 0–9, binary deals exclusivelywith two numbers: 0 and 1. These can be
more easily represented digitally. Both the decimal and binary systems gives significance
to digits based on their position within the number. This is called a positional system.
Take the decimal number 312, which can be re-written as

3 × 100 + 1 × 10 + 2 × 1

which furthermore can be written as

3 × 102 + 1 × 101 + 2 × 100

The internal logic of numbers is so ingrained into everyday thinking that we usually
never need to worry about it, but binary conversion forces us examine the internal logic of
a positional system. Because binary only has two digits, each positional exponent is now
a 2 instead of a 10. 312 would in binary be represented as

1 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20

which is equal to

1 × 256 + 0 × 128 + 0 × 64 + 1 × 32 + 1 × 16 + 1 × 8 + 0 × 4 + 0 × 2 + 0 × 1

and which we write as as 1001110002. We use subscript to signal the number base, but
this is usually left out when it is clear from context what number domain we are in. The
conversion itself is non-trivial, and we won’t go into detail on how to actually convert
31210 to 1001110002. However, it can easily be verified that the binary sum above sum
indeed adds up to the expected value, and it can furthermore be proven that every binary
representation is unique.

3

https://en.wikipedia.org/wiki/File:IPB_images_sequence.png
https://en.wikipedia.org/wiki/File:IPB_images_sequence.png

1. Introduction

Figure 1.3: Quadtree splitting

1.2 Encoding Fundamentals
A video encoder is a program that takes some form of raw video and produces a bitstream,
a sequence of bits, 0’s and 1’s. The encoder does this by going over the video frame-by-
frame, often in a non-sequential order, using a multitude of algorithms to codify and store
information using as few bits as possible. The decoder then turns the bitstream into pixel
data again. High Efficiency Video Coding (HEVC), like most video coding standards, only
specifies the behavior of its decoder. That is, a bitstream is said to conform to the HEVC
standard as long as it can be decoded by its decoder, regardless of the quality of the video
output. The implementer of an encoder is free to make choices about the coding as long
as the resulting bitstream conforms to the standard – which naturally limits the freedom.

A certain portion of the encoding is lossless. That is, information is repackaged in a
form so that it can be completely restored by the decoder [3]. This is done by exploiting
statistical redundancies within the data. Arithmetic coding presented below is an example
of lossless coding. Although the idea is obviously attractive, the potential gains from using
only lossless encoding are far to small to be effective which is why lossy coding techniques
are generally employed as well. Usually both are used together.

In lossy compression data is irreparably distorted. A good coding algorithm achieves
large decreases in file size without sacrificing too much quality, and any decrease in bit rate
is always weighed against the quality loss it introduces. Lossy coding techniques exploit
not only statistical redundancies but also visual ones; things that look similar in a frame
can be coded together to save space. The aim of the process is to remove information that
in not visible to the human eye, while leaving most of what is visible [3]. Depending on the
application, we may chose a smaller file size but with clear visual artifacts and distortions,
and other times we want a compressed a image that looks almost identical to its original.
Both are possible using lossy compression.

The first step of the encoding process is partitioning. The HEVC encoder divides the
frame into slices that can be encoded in parallel, this is usually done once for the whole
sequence. Then each slice goes through quadtree partionining. The slice is divided into

4

1.2 Encoding Fundamentals

64 × 64 coding tree blocks (CTBs) [4], which are then recursively split into four equally
sized subsections (see fig. 1.3). Both options – splitting and not splitting – are performed,
the area encoded and the results are then compared to decided whether to continue splitting
or to stop. For every split, this procedure is repeated for each of its four subsections, and
each block can be split over and over again until minimum block size of 8×8 is reached [5].
Areas with sparse movement are easier to compress and will generally not be divided as
much, forming larger continuous sheets in the quadtree structure [4].

1.2.1 Prediction
To radically cut down on the amount of information that needs to be stored, we usually try
to generate a prediction of the image, which we then subtract from our frame and then we
work with this residual instead. The prediction needs to be done in such a way that the
decoder can reliably reverse the process and recreate the image. This means that only data
that has already been encoded can be used for further predictions, because this is what will
be available to the decoder at the corresponding point in the decoding process.

Although the encoder has easy access to the whole sequence, it limits its predictions to
what it previously encoded to allow the content to be decoded. Of course, if the decoder
cannot decode what has been encoded then the bitstream is worthless.

Intra Prediction
One prediction technique focuses on the internal relations between blocks in a image and
is called intra prediction. Textures in a non-random image tend to look like each other [2]
– if you zoom in enough on any structure in an image, many close-by pixels hold the same
or similar color values – so the assumption is that a decent prediction can be generated by
approximating blocks by their closest neighbors. The intra prediction concept is shared
between still image and video compression.

Most of the information in the residual of an intra predicted frame will be contours of
shapes in the picture [6], as those are hard to predict using this method.

Inter Prediction
A more powerful prediction technique for video content uses differences between frames
and is called inter prediction. The basic assumption here is that objects within an image
will appear inmultiple frames but will move around. If an object from a previous frame can
be identified and followed then this information can be used to make accurate predictions,
see fig. 1.4.

Identifying an object from one frame to another means that a search has to be per-
formed. This is a computationally complex process. While it is not impossible to search
the whole frame for a best match, for any higher resolution video it is often unrealistic to
do so and generally the search is confined to some nearby region of the previously known
position [2]. Using a mean squared error (MSE) calculation [3], the closest match is iden-
tified, and a motion vector (MV) is stored in the bitstream to signal the displacement from
one frame to the next. By storing MVs instead of pixel data, we avoid duplicating data

5

1. Introduction

Figure 1.4: Inter prediction

from previous frames and can once again cut down the information content of the result-
ing file [3]. Calculating motion vectors is the most expensive part of encoding, especially
because of the wealth of options offered by HEVC [5].

For both prediction techniques we won’t generally achieve a perfect match, and the
residual will contain our prediction error. However, our expectation is not generally to
reduce the residual to nothing, only to make it as small as we possibly can. Using the
residual data together with our prediction information we could still generate a perfect
reconstruction of the encoded sequence. It is not until a later step that we start introducing
distortion in the frame.

As opposed to intra-prediction, contours of stationary objects will mostly disappear
from the inter prediction, and what is left are areas with hard-to-predict movement [6].
Accurate MVs give better prediction, but come at a certain signaling cost. MVs usually
have an accuracy ranging from one pixel to a quarter pixel, so the vertical and horizontal
displacements are correct up to one fourth’s of a pixel’s size [2, 3]. See fig. 1.5 for motion
vectors superimposed on a frame.

Rate-Distortion Optimization (RDO)

It is up to the encoder to chose whether to encode each section of a frame using intra
or inter prediction [2]. This is decided dynamically using techniques like rate-distortion
optimization (RDO) [7], shown in eq. (1.1). D stands for distortion, R stands for bit rate
and λ is a weight parameter that can be arbitrarily assigned to steer the encoding in a certain
direction. We encode each option and chose the one with the lowest J , that is, the choice
with the lowest distortion to relative the rate.

J = D ∗ λ + R (1.1)

6

1.2 Encoding Fundamentals

©
Im

ag
e

by
Bl

en
de

rF
ou

nd
at

io
n

/C
C

BY
3.

0

Figure 1.5: Motion vectors superimposed on the frame

1.2.2 Frequency Transformation and Quantization

After partitioning and prediction, each block is frequency transformed using discrete co-
sine transform (DCT) [8], and then quantized. There exist a number of similar versions of
DCT, but in image and video compression we generally use DCT-II, shown in eq. (1.2) [3].

Xk =

N−1∑
n=0

xn cos
[
π

N

(
n +

1
2

)
k
]

k = 0, . . . ,N − 1. (1.2)

Quantization means rounding the coefficients to some preset levels, decreasing the in-
formation content and allowing us to store the video at a decreased size. See fig. 1.6. We
specify a quantization parameter (QP) to set the coarseness of the quantization, where a
lower QP means less rounding. The quantization process introduces an irreversible distor-
tion to the frame so that the original values cannot be recovered [2].

By its nature, a frequency transform divides the coefficient by their frequency con-
tent, low-frequency components are in the top-left corner and higher-frequency toward
the bottom-right. The low-frequency components correspond to contours in the image
and high-frequency components generally correspond to details. We utilize the fact that
lower-frequency components are more visible to the human eye and thus use a higher QP
for the higher-frequency components, effectively low-pass filtering the matrix [8]. Adjust-
ing QP values allows us to specify exactly much degradation we are willing to accept in
order to save bit rate – file size is traded for visual accuracy.

7

https://en.wikipedia.org/wiki/File:IPB_images_sequence.png

1. Introduction

t

f(t)

Figure 1.6: Quantization thresholds

0.6 0.8 0.9 10

0.36 0.48 0.54 0.60

0.516 0.528 0.534 0.540.48

Figure 1.7: Arithmetic coding

1.2.3 Arithmetic Coding

The reason why quantization actually makes our files smaller is because we later encode
sequences in a way so that shorter and more frequent numbers take up less space. In the
pixel domain, using 8 bits, each value take up the same amount of bits, so 0 for example
is represented as 00000000, which is wasteful.

Arithmetic coding is a lossless compression method where a string of symbols is en-
coded as a fraction in the interval I = [0, 1). By using the probabilities of each symbol
and recursively subdividing I , we eventually get a sub-interval uniquely representing our
string (see fig. 1.7). By encoding the length of our original sequence and by then calculat-
ing a binary fractional expansion residing completely within the interval, we can uniquely
reverse the process to decode our message. HEVC performs arithmetic coding using an
algorithm called context-adaptive binary arithmetic coding (CABAC) [4], that was first
introduced in H.264.

8

1.3 HEVC-Specific Algorithms

©
Im

ag
e

by
Br

os
ta

t
C

C
BY

-S
A

3.
0

Figure 1.8: Different frame types in a sequence

1.2.4 GOPs and Temporal Layers
Encoded frames are divided into categories based on how they interact with other frames.
Intra coded frames are called I-frames and they appear at the start of a sequence and at
certain set points to allow the video to be decodable without having to always start the
decoding from the very beginning. Most frames are predicted from other frames and are
called P or B-frames. A P-frames uses one other frame for its prediction and a B-frame
use two, usually one before and one after itself. See fig. 1.8.

An encoder divides the input video into groups of pictures (GOPs) when encoding.
A GOP is treated as a unit by the encoder and can be usually be decoded independently
from the rest of the video. This allows the viewer to skip ahead to any given time in the
video without having to decode everything prior to it. While larger GOPs generally give
better encoding performance [9], GOP sizes are generally chosen so that every second or
half-second of video content is independently decodable.

Inter-coded video is generally not encoded in the frame order that the material was cap-
tured in. We distinguish between output order and the decoding order [2]. The GOP struc-
ture specifies a coding order which is then repeated cyclically throughout the sequence [2].

The GOP structure also divides frames into temporal layers [10]. Intra coded frames
form temporal layer 0 because they depend on no other pictures. Those that reference
layer 0 pictures form layer 1 and pictures that depend on layers 0 and 1 are temporal layer
2, and so on. A popular GOP structure, Randomaccess, has 4 temporal layers. The QP
values are usually increased slightly for the higher temporal layers. The rationale is that
these generally contain less data, so compressing them slightly more won’t have much of
an effect on the sequences as a whole.

1.3 HEVC-Specific Algorithms
1.3.1 RDOQ
Rate-distortion optimized quantization (RDOQ) is a method for improving coding effi-
ciency by manipulating transform coefficients after quantization. Out of the available
quantization levels, we try different values and perform RDO to decide the best value
to re-assign each coefficient. Testing all possible combinations of quantization steps and

9

https://en.wikipedia.org/wiki/File:IPB_images_sequence.png
https://en.wikipedia.org/wiki/File:IPB_images_sequence.png

1. Introduction

coefficients in for example a 16 × 16 matrix would very computationally heavy so instead
we go through the matrix one coefficient at a time from the bottom-right and backwards,
setting each on the all possible levels or just a subset of its closest neighbor values.

1.3.2 Sign-Bit Hiding
Sign-bit hiding (SBH) is a lossy technique for decreasing bit rate. To avoid transmitting the
sign for the top-left element in a block of transform coefficients, it is instead inferred from
the parity of the sum of all coefficients. Because transform coefficients are represented in
binary form, and all even binary numbers numbers end with 0 and all odd ones end in 1,
only the last bit of each coefficient needs to be taken into account.

Assuming that coefficients are equally likely to be even as odd, this parity is going
yield the incorrect result half the time. To counter this, the SBH algorithm performs RDO
over the transform block to find the value that would have the least impact on the resultant
image if changed up or down by one, and then performs this change. That is, in order to
save one bit on every transform block, a small error in introduced in half of the encoded
blocks. The result is typically well worth it. Small losses in quality are traded for larger
decreases in bit rate.

1.4 Adaptive Streaming
Streamed video-on-demand content is usually delivered using adaptive bit rate (ABR) [11].
Depending on device capabilities and bandwidth, different users will request different-
quality content. A user that starts out watching a video when bandwidth usage is low will
generally be sent high-quality video. If the available bandwidth then decreases – maybe
by more users entering the network – the streaming service needs to dynamically lower
quality to alleviate the network. ABR means that the transmitted quality is adapted to the
receiver’s needs.

Video cannot be downscaled in encoded form. Thus, to create a lower-resolution en-
coding of a video, it has to be decoded, downscaled and then re-encoded. This process is
known as transcoding. The encoding step takes a lot of time, so to be able to do adaptive
streaming, the service generally creates all encoding beforehand and stores them until they
need to be transmitted.

We present here three models for adaptive streaming: simulcasting, just-in-time (JIT)
transcoding and scalable video coding (SVC), and discuss their respective weaknesses. In
the next chapter we will introduce guided transcoding (GT) as way to get around some of
the inherent problems of the current streaming models.

1.4.1 Simulcasting
The straightforward way create adaptive video content is that whenever a new video is
ingested in the adaptation node, we scale it to each desired size and encode (see fig. 1.9).
The original video is then thrown away.

This model is known as upfront transcoding or simulcasting [11]. A streaming service
offering 1080p, 720p, 540p and 360p versions of all of its content will have one encoding

10

1.4 Adaptive Streaming

encoding

down-
scaling

encoding
original video

down-
scaling

encoding

HQ bitstream

encoding storage

.

.

.

LQ bitstream

LQ bitstream

Figure 1.9: Simulcasting

for each resolution stored away and ready for transmission. This takes up a lot of space [5],
and encodings are generated without prior knowledge of customer demand.

1.4.2 Just-in-Time Transcoding
The problem with simulcasting is that we may end up storing many files that are seldom or
never actually requested [11]. A more attractive idea might then be to encode the original
only at the highest resolution, and later transcode it to the lower resolutions on-demand
(see fig. 1.10). The generated lower-resolution encodings may be kept as long as demand
is high and then thrown away. This model is known as JIT transcoding.

The general problem with JIT transcoding is that encoding takes a lot of time to per-
form. Even with specialized hardware, the process of encoding thousands of frames is
generally too slow for the idea to work in practice [11, 5]. Unless encodings can be gener-
ated within minutes, JIT transcoding is not appropriate for video streaming. For example,
the idea or ordering a movie at 540p and having to wait a day for the content to be available
would likely scare away most costumers in a world where proper on-demand streaming al-
ready exists.

Another problem with JIT transcoding is that the lower-resolution content will be gen-
erated from an already-degraded data source. In simulcasting, each encoding is generated
directly from the original, but now the highest-resolution encoding acts as an original for
the transcodings. This introduces generation loss; coding artifacts and high-resolution
noise that are amplified by successive transcoding, and lowers the video quality [12], as
well as unnecessarily increasing its size. This problem is shared with our pruning approach
to GT (see section 2.1).

11

1. Introduction

decoding

encoding

encoding

down-
scaling

encoding

down-
scaling

storage JIT transcoding

.

.

.

original video

initial encoding

HQ bitstream

LQ transcoded

LQ transcoded

Figure 1.10: Just-in-time transcoding

1.4.3 Scalable Video Coding

Scalable video coding (SVC) uses a layered model to encode different-quality represen-
tations of the same material. Starting with a base layer, which is a regular bitstream, one
or several enhancement layers are encoded with reference to the base. Enhancement lay-
ers can only be decoded after first decoding the base layer. Often, the different layers
represent varying resolutions, with the base layer holding the lowest resolution and each
enhancement layer representing a higher resolution.

Decoding a higher-resolution SVC layer requires access to the base layer together with
every intermediate enhancement layer. Decoding an enhancement layer means the previ-
ous layer is decoded, upscaled to the size of the enhancement layer and used for prediction.
The process in repeated for every subsequent layer until the target resolution is reached.
The term SVC stems from the H.264 standard and is often known as SHVC (Scalable high
efficiency video coding) in H.265, but we will use the terms interchangeably and refer to
both as SVC.

The major problem with SVC is that the dependent structure causes a size overhead
when encoding the enhancement layers. While storage space can be saved on the adapta-
tion node compared to simulcasting, any higher-resolution videos transmitted to the cus-
tomer will typically take up more space in SVC than in a regular encoding [5]. SVC gener-
ally performs better at the lower resolutions – for example, adding a new lowest-resolution
encoding to the scheme moves every enhancement layer further away from the base and
actually lowers coding efficiency. As such, the whole idea of SVC is in many ways out of
step with the modern usage were the demand is on HD, Ultra HD, and beyond.

12

1.5 My Contributions

1.5 My Contributions
The idea of guided transcoding is not a novel one. [5] explores pruning as an idea and com-
pares it to simulcasting, JIT transcoding and SVC for a single lower-quality representation.
No mention, however, is made of any partial techniques.

We expanded these experiments to a large scale with our simulation environment,
where we test a wide array of downscaled sizes and QP values, as well as using a work-
around to be able to simulate the effects of SBH. Deflation as an idea is presented for the
first time in this thesis report.

Partial pruning and deflation were presented to me on the conceptual level by my Eric-
sson supervisors. I then implemented the bit manipulations in low-level C and also wrote
thousands of lines of Python to run simulations and to automatically export the results to
Excel sheets.

13

1. Introduction

14

Chapter 2
Guided Transcoding

Guided transcoding (GT) aims to get around some of the problems presented in the earlier
models of adaptive streaming (see section 1.4). Instead of working with full encodings of
the low-quality (LQ) representations, we generate side-information (SI) which is cheaper
to store, and then use our highest-resolution video together with the SI to quickly regener-
ate the sequences when needed.

"Quick" is this case means that the computational complexity of the regeneration is
comparable to that of regular decoding, several orders of magnitude faster than encoding.
Because the process is fast – it can be done in real-time under certain conditions – we can
keep our lower-resolution videos stored only as side-information, and regenerate the full
sequence on-demand when requested, thus achieving what is generally not possible in the
JIT transcoding scheme.

So GT achieves the virtues of both upfront and JIT transcoding; we save space by
allowing us not to store full encodings of every resolution, but the process is fast so we can
generate content on short notice. Guided transcoding can also be seen as a reversal of SVC
in that we save the high-quality (HQ) video and use that to regenerate LQ representations,
instead of the other way around with a base layer and enhancement layers.

2.1 Pruning
Our first model for generating SI is referred to as pruning and was first described in [5].
Pruning a bitstream means passing it through a modified decoder that removes transform
coefficients and replaces them with sparse dummy matrices that are cheaper to encode.
What we are left with is the mode information; the frame partitionings and prediction
modes chosen for each block, together with motion vectors for every inter coded block.

See fig. 2.1 for a pruning scenario with two lower resolutions. We generate LQ en-
codings just like in a simulcast case, prune them and then store the pruned bitstreams to
save space. The blocks on the left of the dashed line represent the steps that are performed

15

2. Guided Transcoding

coefficient
removal

encoding

down-
scaling

decoding

guided
encoding

encoding

down-
scaling

original video

down-
scaling

coefficient
removal

encoding guided
encoding

down-
scaling

initial encoding pruning storage regeneration

.

.

.

.

.

.

.

.

.

HQ bitstream

LQ transcoded

LQ transcoded

decoding

Side-info

Side-info

Regenerated
bitstream

Regenerated
bitstream

HQ bitstream

Figure 2.1: Guided transcoding in the pruning scenario

without time constraints. At a later stage, we use the mode information to recreate the
transform coefficients and give a perfect reconstruction of our pruned video. The verti-
cal dots represent repetition. We show two LQ representations, but the idea can easily be
expanded two an arbitrary amount of representations.

To achieve this, we replicate the process that was used to create the LQ video in the
first place. The HQ bitstream is decoded and downscaled and its pixel data is encoded.
Because we have all partitionings and mode decisions stored in the SI, the process is now
much less complex. Even without the SI, we could encode the downscaled HQ video and
get our LQ bitstream back. Encoding the same video twice leads the encoder to make all
the same mode decisions to create the same bitstream. What that SI allows us to do is to
create the LQ encoding without having to calculate all the encoder decisions. This is why
it is so much faster, the SI guides the encoding process, thus giving the method its name.

2.1.1 Generating Side-Information
Because we won’t have access to the original video when regenerating sequences – it is
generally discarded after being used to create the HQ bitstream, and takes far too much
space to store long term – we treat our HQ bitstream as an "original" and transcode it to
generate LQ representations.

That is, we decode theHQ bitstream, downscale it to each desired LQ resolution and re-
encode. Downscaling is performed by passing a decoded video to a downscaler program.
This decreases the number of total pixels in the image, lowering its quality and file size
while still preserving the overall "look" of each frame. To achieve this, groups of pixels
are mapped to single values. Downscaling by a factor of 2 means that each 2 × 2 block
is replaced by a single pixel. The downscaler looks at a number of adjacent values in
the input and calculates a weighted average that it assigns to the pixel value in the output
video. Each of the three components in a color image are downscaled separately and the
subsampling ratio (see section 1.1.2) is always preserved.

We pass the LQ representation to the pruner and then store the SI instead of the full

16

2.1 Pruning

Figure 2.2: A decoded frame from a pruned bitstream

encoding. The pruned bitstream is still decodable, but because all transform coefficients
have been removed – most of them set to 0 – the video will look far from normal. The
screen shows contours of objects, with what looks like very heavy-motion blur, and colors
distorted toward pink and purple (see fig. 2.2).

Because we transcode an already degraded bitstream to generate the LQ representation
– the HQ representation is a lossy encoding of the original – we introduce generation loss.
This requires us encode the LQbitstreams at a higher bit rate thanwewould in the simulcast
scenario, to achieve the same picture quality.

2.1.2 Regenerating a Pruned Sequence
As mentioned, regenerating a pruned bitstream shares many similarities with regular en-
coding. The main differences is that we now have two input files instead of one.

The higher-resolution video must be in decoding order, meaning that the frames are
output in the order in which they were encoded, not in the order they are meant to be
displayed. Non-sequential GOP structures cause the decoder to buffer certain images, use
them for predictions, and then output them later when it is their turn to be displayed. We
suspend this buffering using a specialized decoder to allow the HQ video to sync up with
the SI, which is in encoded form, and thus naturally in decoding order.

Regenerating the pruned video means encoding the pixel data from the HQ represen-
tation using the mode information from the SI to steer the process. Both the pixels and the
mode info are the same as were used generate our LQ bitstream in the first place, so this
process will yield a perfect reconstruction of the sequence.

2.1.3 Partial Pruning
Even with the SI to guide the transcoding process and speed up the process, depending
on the hardware that the guided transcoding is running on, it may still be too complex to
perform in real-time. This is why we introduced the concept of partial pruning. Instead
of removing all transform coefficients from a sequence, we prune only certain frames and

17

2. Guided Transcoding

Figure 2.3: A decoded frame from a partially pruned bitstream

thus save complexity in the reconstruction.
Our partial pruning scheme is based on temporal layers, and we designate different

pruning levels based onwhich layers are excluded from the pruning. Partial pruning level 1
means that the highest temporal layer is excluded, level 2 excludes the top two layers, and so
on. The higher temporal layers consist of P-frames and B-frames (see section 1.2.4). They
reference other frames for their predictions, and will generally contain fewer transform
coefficients. Thus, our expectation is that partial pruning level 1 or 2 will have a minimal
effect of bit rate while still saving a significant amount of complexity in the reconstruction.
Then the effectiveness tapers off as we increase the pruning level.

A partially pruned frame at level 3 can be seen in fig. 2.3. It still has the characteristic
look of pruning, but certain pixel values are now retained to hint at the appearance of the
original frame.

2.2 Deflation
A second guided transcoding idea is introduced in this thesis and we call it deflation. In
this scenario we encode our LQ representations directly from the original video, so there
is no transcoding loss like for pruning. See fig. 2.4.

2.2.1 Generating Side-Information
To deflate a video, we use two inputs. The mode information from the LQ bitstream to-
gether with the pixel data from the HQ video are used to generate predictions and calculate
a residual. This residual is frequency transformed and quantized (see section 1.2.2) and
then subtracted from the coefficients in the LQ bitstream. Because the HQ and LQ videos
emanate from the same original, this difference is expected to be small and therefore cheap
to encode.

In fact, some transform block in the deflated bitstream are likely to be all-zeros, and
HEVC does not allow that. So we identify all matrices of the form shown in eq. (2.1) and
increase the k coefficient by one to create a compliant bitstream.

18

2.2 Deflation

encoding

down-
scaling

encoding
original video

down-
scaling

encoding

HQ bitstream

LQ bitstream

initial encoding storage

.

.

.

decoding

deflation

down-
scaling

deflation

down-
scaling

deflation

.

.

.

decoding

inflation

down-
scaling

inflation

down-
scaling

inflation

.

.

.LQ bitstream

Side-info

Side-info

Regenerated
LQ bitstream

Regenerated
LQ bitstream

HQ bitstream

Figure 2.4: Guided transcoding in the deflation scenario

This scheme maps the highest possible value – SHRT_MAX because we are storing
transform coefficients in variables of type short – and the one just below it to the same
position, potentially introducing a small distortion. However, most values will actually
residue around 0, especially this lowest-frequency component, and this distortion has never
appeared once in any of our simulations.

k 0 · · · 0
0 0 · · · 0
...
0 0 · · · 0

 , 0 ≤ k < SHRT_MAX (2.1)

2.2.2 Regenerating a Deflated Sequence
Reversing the deflation is called inflation and replicates many of the steps of the deflation
process. We reverse the last step from the deflation by looking for matrices of the form
eq. (2.1), but with k ≥ 1, and subtract one.

Because the mode information from the LQ is untouched by the deflation, we can once
again downscale the HQ video and generate a residual. After frequency transformation
and quantization we re-add the transform coefficients to the deflated bitstream and thus
restore our LQ video. Just like in the pruning scenario, the SI guides the encoding of the
pixels from the HQ video, so the process is much faster than a full encoding.

19

2. Guided Transcoding

20

Chapter 3
Evaluation

3.1 The Guided Transcoding Chain
Our test environment for running GT simulations has many components. A full simulation
chain entails several encodings at multiple QP values, decoding and downscaling each
encoding to a number of different sizes, re-encoding, generating SI and reconstructing
the sequences. Additionally, we want to measure bit rate and peak signal-to-noise ratio
(PSNR) at several points in the simulation, and be able to access all the data in a structured
manner to try to make sense of it and to compare different simulations.

Wewrote a test environment in Python that allows us to easily specify sets of QP values
and downscaled sizes, together withGT schemes; pruning, partial pruning or deflation, and
options like SBH and RDOQ.

3.1.1 Encoding the Original
The pruning and deflation scenarios differ in the way side-information is generated but
many parts of the chain works the same way, using most of the same programs. We first
describe the GT approach common to both methods and then elaborate on the details of
each case.

The first step is always to encode the original test sequences. Our suite uses five HEVC
sequences that belong to the Joint Video Team (JVT) common test conditions, class B:
Kimono, ParkScene, Cactus, BasketballDrive and BQTerrace. Still frames can be seen in
fig. 3.1. They represent a wide variety of possible use-cases for video encoding: varying
degrees of movement, static camera and panningmovements, and frame rates varying from
24 to 60 fps. All sequences have a bit depth of 8 bits and 1920×1080 resolution [2]. Each
clip is ten seconds long, giving frame count between 240 and 600 which JVT considers
sufficient to get a qualified assessment of video quality, while still keeping the required
encoding complexity sufficiently low [2].

21

3. Evaluation

Figure 3.1: Still frames from our HEVC standard sequences

Some of our sequences have a copyright frame as the last one, giving a total of 601
frames for a 60 fps video. This frame frame is not expected to used in simulations, and we
exclude it from all of our encodings and references, and it should therefor have no effect
on our results.

All the videos we work with are stored in progressive scan, meaning simply that each
individual frame contains information about all of its own pixels, as opposed to interlaced
scan where a frame is split over two successive frames, each one holding half. We will
follow the convention regarding scan modes and refer our resolutions as 1080p, 720p, etc.,
thus omitting the frame width.

For each original video we create four encoding with QP values 22, 26, 30 and 34,
and refer to these as QPbase. All encoding and later re-encoding are performed using the
HEVC Test Model (HM) encoder with a configuration file specifying HEVC Main profile
and the randomaccess GOP structure [2]. Randomaccess has a GOP size of 8 and coding
order 0-8-4-2-1-3-6-5-7, after which it skips to frame 16, repeats the same pattern, and
then continues like that for the whole sequence [2].

All of the outputs from the initial encoding step are referred to as HQ bitstreams. Gen-
erating these is by far the most expensive part of any simulation in terms of computational
complexity, taking around 15 hours on our cluster environment (see section 3.2), so we
make sure to store them and always try to re-use bitstreams for any simulation where all
the applicable test parameters are the same.

3.1.2 Re-Encoding and Pruning
For the pruning scenario, the next step is to decode the HQ bitstreams and downscale from
1080p to 720p, 540p and 360p representations which we refer to as the LQ resolutions.
Our downscaler only supports downscaling to 1/2 or 2/3 size, so to generate a 360p video
from 1080p we always have to get there via an intermediate 720p step.

We re-encode with the same QP value and with QP + 2. That is, for an HQ bitstream
generated with QP = 22 we create re-encodings with QP values 22 and 24, for HQ bit-
streams generated with QP = 26 we use 26 and 28, and so on. This gives us a wide array
of test cases to accurately quantify the effect on QP value on video quality, bit rate and
reconstruction time.

After re-encoding, we prune the LQ bitsteams to generate SI. We either do partial or
full pruning, the difference at this stage is just an input parameter. In an real real-world
application we would then store the SI instead of the LQ bitsteam, saving a certain amount

22

3.2 Cluster Simulations

of storage space. Of course, for the sake of the simulation, we keep both. We sometimes
refer to the SI and the bitstreams as uplink data.

We also downscale the original sequences to the LQ resolutions for use as reference
data when calculating PSNR, and then encode them to act as LQ bitstreams in the deflation
scenario. For this we use all applicable QP values; 22, 24, 26, 28, 30, 32, 34 and 36, which
we refer to as QPextended .

3.1.3 Regenerating Sequences
The HQ bitstreams together with the SI is used to reconstruct videos. For each test case,
we reconstruct the video to make sure everything works as expected, then measure bit rate
and PSNR.

3.2 Cluster Simulations
For any simulation of five tests sequences, four QP values, three LQ resolutions and two
additional QP values, we get a total of 5 × 4 × 3 × 2 = 120 test cases.

Each combination is submitted to a cluster system as a self-contained job. The cluster
allows for faster calculations than running locally, and allows hundreds of jobs to run in
parallel without affecting performance. The cluster is shared among many users and a has
its own scheduler. One job will for example correspond to BasketballDrive, QP 22, 540p
and QP 24, and will then only be concerned with the creation of the specific files needed
for that test case.

A separate meta-script is responsible for iterating over simulation parameters and start-
ing each of the 120 jobs that make up one simulation. Jobs will then work in parallel,
sharing many of the same files, and together generate every combination of files needed
to evaluate a full simulation. This script also creates a test_data file to keep track of the
locations of all data files holding bit rate and PSNR information.

To allow jobs to work in parallel and read and write from the same directory structure
without destroying data, we implemented a locking system. Because cluster jobs cannot
directly communicate with each other we could not utilize traditional threading. So we
represented locks as empty files named as the target file plus the extra file extension ".lock",
it is then up to each script to respect the lock. All the jobs share the same storage area,
but also have private tmp areas where files are created. Whenever a job wants to create a
file, it attempts to lock it in the storage area. If the lock creation fails because the lock file
already exists then we assume that some other job is busy creating that file, and we enter
a sleep loop that regularly checks the existence of the lock and only exists when the lock
has been removed, at which point our desired file must exist in the storage area.

The execution works as follows; if two jobs both have parameters BasketballDrive and
QP 22, but one has LQ resolution 720p and the other 540p, then both will want to create
an HQ bitstream of BasketballDrive with QP 22. Assuming that this file does not already
exist from a previous simulation – if it does then both scripts move on the their next step
– both jobs will try to acquire the lock but only one will succeed. The job that grabs the
lock starts creating the bitstream in its tmp area while the other jobs sleeps. After the file
has been created, the job moves the file over to the public storage area and then removes

23

3. Evaluation

the lock. This way, no in-progress or incomplete files will ever exist in the storage area,
and furthermore we won’t have to worry about race conditions in the code. If the file is
not locked – and it exists in the storage area – it is guaranteed to be complete.

Especially early on in a simulation chain, many jobs will share the same files. Only
the LQ encoding is actually unique to a specific job. For example, out of 120 jobs, evenly
divided groups of 24 jobs each share the exact same HQ bitstream file.

Every file in the simulation chain follows the same pattern of creation; the job checks
for the existence of the file in the storage area and whenever it find it there, it swiftly
moves on to the next step. If all files are already created, the jobs runs through the whole
chain without actually creating any files and then exits cleanly. This structure allows for
maximum file reuse whenever we want to test new simulation parameters. If we run a
simulation where a parameter that only affects the latter part our chain has been changed,
the jobs will find many of its files already present and won’t have to spend any to recreate
them. In many simulations we thus can avoid the encoding the HQ bitstreams, for example,
cutting down the total simulation time by many hours.

Figure 3.2 shows an excerpt from the directory structure of one our or simulations.
Notice how the folder names contain all the test parameters so that each file can be uniquely
addressed. Bin files are bitstreams and yuv is code for YCbCr so these are decoded files.
Through clever naming of files and folders, each job will always know which files already
exist and which ones it needs to create. We also store test data in the same directory
structure. We extract bit rate and PSNR into txt files during execution, and using the
information written to test_data when starting the simulation we can later navigate the
directory structure to locate all data files.

3.3 Simulation Data

3.3.1 Measuring Bit Rate
Bit rate is an absolute measure of file size per time unit of video content. It is often
presented in kilobits per second (kbit/s). We use the size of each output file to calculate
an average across the whole sequence. Because file sizes in most operating systems are
presented in bytes, we get the number of bits as in eq. (3.1). To calculate the bit rate (in
kbit/s) we then use eq. (3.2).

bits = file size · 8 (3.1)

bit rate =
bits · framerate
frames · 1000

(3.2)

3.3.2 Measuring Video Quality
The common way to measure video quality objectively is to use PSNR [2]. For two se-
quences emanating from the same source both with the same resolution n × m, referred
to as I and K , usually the original and some encoded version of it, we take the difference

24

3.3 Simulation Data

Cactus_1920x1080_50
sbh0_rdoq0

qp22
hq_bit_1920x1080_50.bin
hq_bit_1920x1080_50_dec.yuv
hq_bitstream_data.txt
540p

ds_960x540_50.yuv
qp22

downscaled_original_data.txt
ds_org_960x540_50.bin
ds_org_960x540_50_dec.yuv
deflation

def_960x540_50.bin
def_960x540_50_dec.yuv
deflation_data.txt
inf_960x540_50.bin
inf_960x540_50_dec.yuv
inflation_data.txt

pruning
reenc_960x540_50.bin
reenc_960x540_50_dec.yuv
full_pruning

reconstruction_time.txt
pruned_960x540_50.bin
pruned_data.txt
pruned_960x540_50_dec.yuv
recon_960x540_50.bin
recon_960x540_50_dec.yuv
transcoding_data.txt

partial_pruning_lvl1
...

partial_pruning_lvl2
...

partial_pruning_lvl3
...

Figure 3.2: A small excerpt of the storage tree

25

3. Evaluation

per pixel and calculate the sum across the whole frame to get the MSE. This is shown in
eq. (3.3).

MSE =
1

m n

m−1∑
i=0

n−1∑
j=0

[I(i, j) − K(i, j)]2 (3.3)

The PSNR per frame is then calculated as in eq. (3.4), where MAXI is the maximum
value of the intensity function; 28 − 1 = 255 for an 8 bit image. To get get the PSNR for
the whole sequence we take the average over all frames. PSNR is calculated separately for
the luma and two chroma components. We save the data for all three, but we are generally
only interested in the luma PSNR.

PSNR = 10 · log10

(
MAX2

I

MSE

)
(3.4)

The more similar two sequences are – the less distorted the encoded version is – the
higher the PSNR value will be. PSNR as a number carries no significance in itself, but
a higher PSNR is always better, so the relative difference between two PSNR values is
meaningful. We always measure the PSNR against the original sequence, which means
that each HQ bitstream is decoded and compared, and the LQ encodings are compared to
downscaled versions of the original.

3.3.3 Gains
We refer to bit rate savings as gains and calculate the GT gain using eq. (3.5) which rep-
resents the disk space we can save for all ABR resolutions by storing the SI instead of the
LQ resolutions.

Here RHQ, RLQ and RSI represent the bit rates for the HQ, LQ and SI bitstreams re-
spectively. For the pruning scenario, RLQ always refers to an interpolated bit rate, see
section 3.3.4.

GT gain =
(RHQ + RLQ) − (RHQ + RSI)

RHQ + RLQ
=

RLQ − RSI

RHQ + RLQ
(3.5)

The max gain represents the theoretical upper limit of any guided transcoding appli-
cation where the SI is decreased to nothing, and is calculated using eq. (3.6). The ratio
between the GT gain and the theoretical maximum gives a good indication of how effective
the method is.

Max gain =
RLQ

RHQ + RLQ
(3.6)

We also measure rate reductions showing us how much bit rate we can save per se-
quence by storing the SI instead of the LQ bitstream, calculated using eq. (3.7).

Rate reduction =
RLQ − RSI

RLQ
(3.7)

26

3.4 Results

3.3.4 Costs
Using QPbase, we calculate a third degree polynomial to interpolate the bit rate required
for the LQ re-encodings, in the pruning case, in order to achieve the same PSNR after
transcoding as the simulcast case has [13]. We refer to the increase in bit rate caused
by transcoding as cost and it is defined in eq. (3.8), where RLQtranscoded is the bitrate of the
transcoded bitstream and RLQ is the bit rate of the directly encoded bitstream.

Cost =
RLQtranscoded − RLQ

RLQ
(3.8)

RLQ is interpolated to match the PSNR of the transcoded bitstream. We calculate in-
terpolation coefficients using the bit rates from the simulcast reference data together with
the PSNR values for the different LQ representations amd then plug the pruned bit rates in
to get an interpolation. In the data in tables presented below, the Average bitrates sections
contain our interpolated bit rates. In the deflation scenario the cost is always 0.

3.4 Results
3.4.1 Excel Sheets
One full simulation means running the chain of 120 test cases for a given set of test param-
eters; pruning, partial pruning or deflation, together with options like SBH and RDOQ.

To compare different simulations wewrote a big Python script to extract all the test data
into an Excel sheet using the openpyxl library. This allows us to automatically calculate
bit rate reductions, GT gains and losses introduced by re-encoding data. We average all
the data to get values per sequence and size.

3.4.2 Pruning
We simulated full and partial pruning levels 1-3 and measured reconstruction time, which
can be seen in tables 3.1 to 3.4.

To measure regeneration time, three operations need to be performed; decoding the
HQ bitstream, downscaling it, and regenerating transform coefficients. We used an Intel
Core i7 3.3 GHz processor that we forced to run on a single execution thread. To get
accurate timing data, these three steps have to be continually re-done and the intermediate
files thrown away between iterations. For the GT scheme to work realistically, the three
steps should to be done is real-time or at least close to this, so we want to regenerate frames
at a higher fps than that of the video.

Our chain cannot fully handle RDOQ and SBH. In both the pruning and deflation
scenarios, at least one program malfunctions or gives worse results with either option
turned on. However, both method generally give better results, so we would like to include
them in our simulations. For the pruning case it is only the regeneration causing problems
with SBH, so utilizing the fact that the reconstruction is a perfect process – this is asserted
programmatically every time a pruned file is reconstructed without SBH – we can use the

27

3. Evaluation

bit rates and PSNR data calculated for the LQ bitstreams instead. This way, we can present
data for a SBH simulation that we were not actually able to run, see tables 3.5 to 3.8.

Naturally, these have no timemeasurements. RDOQ is always turned off in the pruning
simulations.

3.4.3 Deflation
The deflation simulations are shown in tables 3.9 and 3.10. We did not have time to im-
plement RDOQ in the deflator so having it turned on for the HQ encoding introduces a
discrepancy between the two videos, lowering the effectiveness of the scheme. In this sce-
nario neither the deflator or inflator work with SBH. Thus it is turned off, and we cannot
use the work-around from the pruning case. Given all of this, the only fair comparisons
between the two methods are given for SBH and RDOQ turned off.

We have no timing data from the deflation scenario because the algorithm was never
optimized for efficiency. While our inverse pruner heavily utilized parallelization, the
inflator was built for correctness first, efficiency second. However, simple simulations
confirm that the complexity is somewhere in the range of inverse pruning, much closer to
decoding than actual encoding.

28

3.4 Results

Table 3.1: Full pruning (SBH off, RDOQ off)

Average bitrates

QPbase QPbase + 2 Totals
1080p 720p 540p 360p 720p 540p 360p GT gain Max gain

Kimono 2419 1043 760 475 835 593 362 33.9% 62.7%
ParkScene 3552 1341 888 472 1053 678 354 26.9% 57.7%
Cactus 8283 2799 1933 1118 2242 1522 868 28.3% 58.9%
BasketballDrive 8058 2852 2031 1207 2300 1605 938 26.7% 60.0%
BQTerrace 13605 2585 1718 889 1949 1295 664 25.2% 48.6%
Averages 7183 2124 1466 832 1676 1139 637 28.2% 57.6%

Rate reductions

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 55.7% 54.0% 52.6% 55.2% 52.7% 50.2% 53.4%
ParkScene 46.0% 47.5% 50.6% 45.3% 46.0% 47.7% 47.2%
Cactus 48.4% 49.4% 52.3% 47.2% 47.4% 49.1% 48.9%
BasketballDrive 44.9% 45.5% 48.1% 43.8% 43.6% 44.9% 45.1%
BQTerrace 52.7% 53.6% 56.1% 52.2% 52.3% 53.8% 53.5%
Averages 49.5% 50.0% 51.9% 48.8% 48.4% 49.1% 49.6%

Average costs

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 17.5% 10.1% 4.5% 11.4% 6.7% 2.9% 8.8%
ParkScene 15.6% 8.5% 4.0% 10.1% 5.4% 2.5% 7.7%
Cactus 14.8% 8.0% 3.6% 9.4% 5.1% 2.3% 7.2%
BasketballDrive 16.3% 9.2% 4.4% 10.3% 5.9% 2.7% 8.1%
BQTerrace 17.2% 9.1% 3.9% 11.3% 5.9% 2.6% 8.3%
Averages 16.3% 9.0% 4.1% 10.5% 5.8% 2.6% 8.0%

Average reconstruction speed (frames per second)

720p 540p 360p Totals
QP QP+2 QP QP+2 QP QP+2

qp 22/24 12.5 13.0 15.0 15.4 14.7 15.0 14.3
qp 26/28 16.7 17.0 20.1 20.6 19.2 19.4 18.8
qp 30/32 19.8 19.9 23.9 24.3 22.2 22.2 22.1
qp 34/36 21.7 22.3 26.7 26.8 24.2 24.2 24.3
Averages 17.7 18.1 21.4 21.8 20.1 20.2 19.9

29

3. Evaluation

Table 3.2: Partial pruning lvl 1 (SBH off, RDOQ off)

Average bitrates

QPbase QPbase + 2 Totals
1080p 720p 540p 360p 720p 540p 360p GT gain Max gain

Kimono 2419 1043 760 475 835 593 362 32.3% 62.7%
ParkScene 3552 1341 888 472 1053 678 354 26.3% 57.7%
Cactus 8283 2799 1933 1118 2242 1522 868 26.9% 58.9%
BasketballDrive 8058 2852 2031 1207 2300 1605 938 24.5% 60.0%
BQTerrace 13605 2585 1718 889 1949 1295 664 25.0% 48.6%
Averages 7183 2124 1466 832 1676 1139 637 27.0% 57.6%

Rate reductions

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 52.1% 51.4% 50.9% 52.8% 51.0% 49.2% 51.2%
ParkScene 44.7% 46.4% 49.6% 44.5% 45.2% 47.0% 46.2%
Cactus 45.3% 46.6% 49.6% 44.9% 45.3% 47.2% 46.5%
BasketballDrive 39.8% 41.4% 44.7% 40.4% 40.9% 42.7% 41.6%
BQTerrace 51.9% 52.7% 55.3% 51.8% 51.8% 53.4% 52.8%
Averages 46.8% 47.7% 50.0% 46.9% 46.8% 47.9% 47.7%

Average costs

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 17.5% 10.1% 4.5% 11.4% 6.7% 2.9% 8.8%
ParkScene 15.6% 8.5% 4.0% 10.1% 5.4% 2.5% 7.7%
Cactus 14.8% 8.0% 3.6% 9.4% 5.1% 2.3% 7.2%
BasketballDrive 16.3% 9.2% 4.4% 10.3% 5.9% 2.7% 8.1%
BQTerrace 17.2% 9.1% 3.9% 11.3% 5.9% 2.6% 8.3%
Averages 16.3% 9.0% 4.1% 10.5% 5.8% 2.6% 8.0%

Average reconstruction speed (frames per second)

720p 540p 360p Totals
QP QP+2 QP QP+2 QP QP+2

qp 22/24 19.0 19.8 22.8 22.8 23.5 23.1 21.8
qp 26/28 26.3 27.3 32.3 32.1 32.0 31.5 30.3
qp 30/32 32.4 33.7 39.1 39.2 38.4 38.3 36.9
qp 34/36 37.6 38.6 45.0 45.7 43.5 43.6 42.3
Averages 28.8 29.9 34.8 35.0 34.3 34.1 32.8

30

3.4 Results

Table 3.3: Partial pruning lvl 2 (SBH off, RDOQ off)

Average bitrates

QPbase QPbase + 2 Totals
1080p 720p 540p 360p 720p 540p 360p GT gain Max gain

Kimono 2419 1043 760 475 835 593 362 26.9% 62.7%
ParkScene 3552 1341 888 472 1053 678 354 24.2% 57.7%
Cactus 8283 2799 1933 1118 2242 1522 868 23.3% 58.9%
BasketballDrive 8058 2852 2031 1207 2300 1605 938 18.6% 60.0%
BQTerrace 13605 2585 1718 889 1949 1295 664 23.8% 48.6%
Averages 7183 2124 1466 832 1676 1139 637 23.4% 57.6%

Rate reductions

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 41.2% 42.6% 43.9% 43.9% 44.0% 43.8% 43.2%
ParkScene 40.1% 42.5% 45.9% 41.1% 42.4% 44.5% 42.7%
Cactus 38.2% 40.1% 43.3% 39.1% 40.0% 42.1% 40.4%
BasketballDrive 27.9% 31.1% 35.2% 30.5% 32.2% 35.0% 32.0%
BQTerrace 48.0% 49.1% 51.9% 49.5% 49.5% 51.3% 49.9%
Averages 39.1% 41.1% 44.0% 40.8% 41.6% 43.3% 41.7%

Average costs

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 17.5% 10.1% 4.5% 11.4% 6.7% 2.9% 8.8%
ParkScene 15.6% 8.5% 4.0% 10.1% 5.4% 2.5% 7.7%
Cactus 14.8% 8.0% 3.6% 9.4% 5.1% 2.3% 7.2%
BasketballDrive 16.3% 9.2% 4.4% 10.3% 5.9% 2.7% 8.1%
BQTerrace 17.2% 9.1% 3.9% 11.3% 5.9% 2.6% 8.3%
Averages 16.3% 9.0% 4.1% 10.5% 5.8% 2.6% 8.0%

Average reconstruction speed (frames per second)

720p 540p 360p Totals
QP QP+2 QP QP+2 QP QP+2

qp 22/24 30.4 31.5 35.9 36.7 37.4 37.8 35.0
qp 26/28 41.3 41.9 49.2 50.1 50.5 51.3 47.4
qp 30/32 48.8 52.3 60.3 62.2 61.5 61.6 57.8
qp 34/36 59.1 61.8 72.1 72.2 71.6 71.7 68.1
Averages 44.9 46.9 54.4 55.3 55.2 55.6 52.1

31

3. Evaluation

Table 3.4: Partial pruning lvl 3 (SBH off, RDOQ off)

Average bitrates

QPbase QPbase + 2 Totals
1080p 720p 540p 360p 720p 540p 360p GT gain Max gain

Kimono 2419 1043 760 475 835 593 362 20.8% 62.7%
ParkScene 3552 1341 888 472 1053 678 354 21.4% 57.7%
Cactus 8283 2799 1933 1118 2242 1522 868 19.2% 58.9%
BasketballDrive 8058 2852 2031 1207 2300 1605 938 12.6% 60.0%
BQTerrace 13605 2585 1718 889 1949 1295 664 22.2% 48.6%
Averages 7183 2124 1466 832 1676 1139 637 19.3% 57.6%

Rate reductions

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 29.4% 32.7% 35.6% 33.8% 35.4% 36.8% 34.0%
ParkScene 34.4% 37.4% 41.0% 36.7% 38.4% 40.7% 38.1%
Cactus 30.0% 32.8% 36.2% 32.3% 33.8% 36.1% 33.5%
BasketballDrive 16.5% 21.0% 25.4% 20.4% 23.2% 26.3% 22.1%
BQTerrace 43.2% 44.8% 48.0% 46.3% 46.5% 48.7% 46.3%
Averages 30.7% 33.7% 37.2% 33.9% 35.5% 37.7% 34.8%

Average costs

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 17.5% 10.1% 4.5% 11.4% 6.7% 2.9% 8.8%
ParkScene 15.6% 8.5% 4.0% 10.1% 5.4% 2.5% 7.7%
Cactus 14.8% 8.0% 3.6% 9.4% 5.1% 2.3% 7.2%
BasketballDrive 16.3% 9.2% 4.4% 10.3% 5.9% 2.7% 8.1%
BQTerrace 17.2% 9.1% 3.9% 11.3% 5.9% 2.6% 8.3%
Averages 16.3% 9.0% 4.1% 10.5% 5.8% 2.6% 8.0%

Average reconstruction speed (frames per second)

720p 540p 360p Totals
QP QP+2 QP QP+2 QP QP+2

qp 22/24 49.4 50.3 57.9 58.4 61.0 62.0 56.5
qp 26/28 63.4 65.0 75.6 76.4 78.9 79.2 73.1
qp 30/32 76.9 78.9 92.4 93.6 94.3 96.1 88.7
qp 34/36 90.9 94.3 108.9 111.7 111.0 112.3 104.9
Averages 70.2 72.1 83.7 85.0 86.3 87.4 80.8

32

3.4 Results

Table 3.5: Full pruning (SBH on, RDOQ off)

Average bitrates

QPbase QPbase + 2 Totals
1080p 720p 540p 360p 720p 540p 360p GT gain Max gain

Kimono 2409 1058 769 477 846 599 363 35.5% 63.0%
ParkScene 3530 1353 893 472 1061 682 354 28.1% 58.0%
Cactus 8275 2823 1944 1119 2259 1527 868 29.4% 59.2%
BasketballDrive 8078 2886 2048 1212 2323 1615 941 27.8% 60.2%
BQTerrace 13791 2626 1728 887 1971 1297 661 25.8% 48.6%
Averages 7217 2149 1476 834 1692 1144 638 29.3% 57.8%

Rate reductions

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 58.2% 56.4% 55.0% 57.4% 55.1% 52.5% 55.8%
ParkScene 48.1% 49.1% 51.7% 47.4% 47.5% 48.8% 48.8%
Cactus 50.4% 51.1% 53.4% 49.1% 49.0% 50.4% 50.6%
BasketballDrive 46.8% 47.2% 49.4% 45.7% 45.3% 46.2% 46.8%
BQTerrace 54.0% 54.7% 56.8% 53.6% 53.2% 54.3% 54.4%
Averages 51.5% 51.7% 53.2% 50.6% 50.0% 50.4% 51.3%

Average costs

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 17.0% 9.7% 4.4% 11.0% 6.3% 2.6% 8.5%
ParkScene 15.3% 8.2% 3.8% 9.7% 5.1% 2.4% 7.4%
Cactus 14.3% 7.6% 3.5% 9.0% 4.8% 2.1% 6.9%
BasketballDrive 15.8% 8.8% 4.1% 9.9% 5.5% 2.5% 7.8%
BQTerrace 16.9% 8.8% 3.7% 10.8% 5.7% 2.4% 8.1%
Averages 15.9% 8.6% 3.9% 10.1% 5.5% 2.4% 7.7%

33

3. Evaluation

Table 3.6: Partial pruning lvl 1 (SBH on, RDOQ off)

Average bitrates

QPbase QPbase + 2 Totals
1080p 720p 540p 360p 720p 540p 360p GT gain Max gain

Kimono 2409 1058 769 477 846 599 363 33.9% 63.0%
ParkScene 3530 1353 893 472 1061 682 354 27.5% 58.0%
Cactus 8275 2823 1944 1119 2259 1527 868 27.9% 59.2%
BasketballDrive 8078 2886 2048 1212 2323 1615 941 25.6% 60.2%
BQTerrace 13791 2626 1728 887 1971 1297 661 25.5% 48.6%
Averages 7217 2149 1476 834 1692 1144 638 28.1% 57.8%

Rate reductions

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 54.5% 53.7% 53.1% 54.9% 53.3% 51.4% 53.5%
ParkScene 46.7% 47.9% 50.6% 46.5% 46.8% 48.1% 47.8%
Cactus 47.3% 48.2% 50.6% 46.7% 46.9% 48.3% 48.0%
BasketballDrive 41.7% 43.0% 45.9% 42.2% 42.4% 44.0% 43.2%
BQTerrace 53.2% 53.7% 55.9% 53.1% 52.7% 54.0% 53.8%
Averages 48.7% 49.3% 51.2% 48.7% 48.4% 49.2% 49.2%

Average costs

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 17.0% 9.7% 4.4% 11.0% 6.3% 2.6% 8.5%
ParkScene 15.3% 8.2% 3.8% 9.7% 5.1% 2.4% 7.4%
Cactus 14.3% 7.6% 3.5% 9.0% 4.8% 2.1% 6.9%
BasketballDrive 15.8% 8.8% 4.1% 9.9% 5.5% 2.5% 7.8%
BQTerrace 16.9% 8.8% 3.7% 10.8% 5.7% 2.4% 8.1%
Averages 15.9% 8.6% 3.9% 10.1% 5.5% 2.4% 7.7%

34

3.4 Results

Table 3.7: Partial pruning lvl 2 (SBH on, RDOQ off)

Average bitrates

QPbase QPbase + 2 Totals
1080p 720p 540p 360p 720p 540p 360p GT gain Max gain

Kimono 2409 1058 769 477 846 599 363 28.3% 63.0%
ParkScene 3530 1353 893 472 1061 682 354 25.2% 58.0%
Cactus 8275 2823 1944 1119 2259 1527 868 24.3% 59.2%
BasketballDrive 8078 2886 2048 1212 2323 1615 941 19.4% 60.2%
BQTerrace 13791 2626 1728 887 1971 1297 661 24.3% 48.6%
Averages 7217 2149 1476 834 1692 1144 638 24.3% 57.8%

Rate reductions

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 43.2% 44.6% 45.8% 45.7% 45.9% 45.7% 45.1%
ParkScene 42.0% 43.9% 46.9% 43.0% 43.8% 45.4% 44.2%
Cactus 39.9% 41.5% 44.2% 40.8% 41.3% 43.1% 41.8%
BasketballDrive 29.4% 32.4% 36.1% 31.9% 33.5% 35.9% 33.2%
BQTerrace 49.2% 50.0% 52.5% 50.8% 50.4% 51.8% 50.8%
Averages 40.7% 42.5% 45.1% 42.4% 43.0% 44.4% 43.0%

Average costs

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 17.0% 9.7% 4.4% 11.0% 6.3% 2.6% 8.5%
ParkScene 15.3% 8.2% 3.8% 9.7% 5.1% 2.4% 7.4%
Cactus 14.3% 7.6% 3.5% 9.0% 4.8% 2.1% 6.9%
BasketballDrive 15.8% 8.8% 4.1% 9.9% 5.5% 2.5% 7.8%
BQTerrace 16.9% 8.8% 3.7% 10.8% 5.7% 2.4% 8.1%
Averages 15.9% 8.6% 3.9% 10.1% 5.5% 2.4% 7.7%

35

3. Evaluation

Table 3.8: Partial pruning lvl 3 (SBH on, RDOQ off)

Average bitrates

QPbase QPbase + 2 Totals
1080p 720p 540p 360p 720p 540p 360p GT gain Max gain

Kimono 2409 1058 769 477 846 599 363 21.9% 63.0%
ParkScene 3530 1353 893 472 1061 682 354 22.3% 58.0%
Cactus 8275 2823 1944 1119 2259 1527 868 20.0% 59.2%
BasketballDrive 8078 2886 2048 1212 2323 1615 941 13.3% 60.2%
BQTerrace 13791 2626 1728 887 1971 1297 661 22.7% 48.6%
Averages 7217 2149 1476 834 1692 1144 638 20.0% 57.8%

Rate reductions

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 31.0% 34.3% 37.1% 35.2% 37.0% 38.5% 35.5%
ParkScene 36.0% 38.7% 41.8% 38.4% 39.7% 41.6% 39.4%
Cactus 31.4% 34.0% 36.9% 33.7% 34.9% 37.0% 34.7%
BasketballDrive 17.7% 21.9% 26.1% 21.6% 24.2% 27.1% 23.1%
BQTerrace 44.2% 45.6% 48.5% 47.5% 47.3% 49.2% 47.1%
Averages 32.1% 34.9% 38.1% 35.3% 36.6% 38.7% 35.9%

Average costs

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 17.0% 9.7% 4.4% 11.0% 6.3% 2.6% 8.5%
ParkScene 15.3% 8.2% 3.8% 9.7% 5.1% 2.4% 7.4%
Cactus 14.3% 7.6% 3.5% 9.0% 4.8% 2.1% 6.9%
BasketballDrive 15.8% 8.8% 4.1% 9.9% 5.5% 2.5% 7.8%
BQTerrace 16.9% 8.8% 3.7% 10.8% 5.7% 2.4% 8.1%
Averages 15.9% 8.6% 3.9% 10.1% 5.5% 2.4% 7.7%

36

3.4 Results

Table 3.9: Deflation (SBH off, RDOQ off)

Average bitrates

QPbase QPbase + 2 Totals
1080p 720p 540p 360p 720p 540p 360p GT gain Max gain

Kimono 2419 1407 927 536 1045 690 397 25.3% 67.5%
ParkScene 3552 1761 1056 518 1288 771 380 21.4% 62.4%
Cactus 8283 3557 2240 1212 2662 1694 920 22.2% 62.8%
BasketballDrive 8058 3647 2370 1315 2738 1791 997 20.8% 63.8%
BQTerrace 13605 3395 2000 955 2342 1439 699 20.7% 52.7%
Averages 7183 2753 1719 907 2015 1277 679 22.1% 61.8%

Rate reductions

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 34.9% 38.5% 40.1% 36.7% 39.2% 39.6% 38.2%
ParkScene 31.5% 35.8% 40.8% 32.5% 35.8% 39.6% 36.0%
Cactus 32.6% 37.1% 41.8% 33.5% 36.9% 40.5% 37.1%
BasketballDrive 30.1% 34.1% 38.3% 30.9% 33.8% 36.8% 34.0%
BQTerrace 36.7% 41.0% 46.0% 38.7% 41.6% 45.4% 41.6%
Averages 33.2% 37.3% 41.4% 34.5% 37.5% 40.4% 37.4%

Average costs

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
ParkScene 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Cactus 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BasketballDrive 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BQTerrace 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Averages 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

37

3. Evaluation

Table 3.10: Deflation (SBH off, RDOQ on)

Average bitrates

QPbase QPbase + 2 Totals
1080p 720p 540p 360p 720p 540p 360p GT gain Max gain

Kimono 2412 1423 940 545 1055 699 402 22.3% 67.8%
ParkScene 3630 1804 1082 533 1316 789 390 19.1% 62.4%
Cactus 8454 3571 2248 1224 2660 1696 927 19.0% 62.8%
BasketballDrive 8025 3603 2346 1314 2693 1768 993 16.5% 64.0%
BQTerrace 15280 3524 2038 969 2411 1463 709 18.1% 51.6%
Averages 7560 2785 1731 917 2027 1283 684 19.0% 61.7%

Rate reductions

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 32.3% 34.0% 33.8% 32.5% 33.2% 32.4% 33.0%
ParkScene 29.3% 31.7% 34.5% 29.3% 30.9% 32.7% 31.4%
Cactus 29.5% 31.9% 34.2% 29.2% 30.7% 32.3% 31.3%
BasketballDrive 25.0% 27.4% 29.4% 24.6% 25.9% 27.2% 26.6%
BQTerrace 33.8% 36.1% 38.7% 34.9% 36.1% 37.9% 36.3%
Averages 30.0% 32.2% 34.1% 30.1% 31.4% 32.5% 31.7%

Average costs

QPbase QPbase + 2 Totals
720p 540p 360p 720p 540p 360p

Kimono 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
ParkScene 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Cactus 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BasketballDrive 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
BQTerrace 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Averages 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

38

Chapter 4
Conclusions

Guided transcoding is an excellent method for saving bit rates on the transmitting side in
any ABR application. We trade a small amount of computational complexity for gains
around 20–30% which is actually quite astonishing. We ran our simulations using H.265,
but there nothing about either pruning or deflation that says it cannot be used in H.264,
or any other standard like VP8 or VP9. As long as there is a division between mode
information and transform coefficients then GT works.

Pruning has higher rate reductions than deflation, close to 30% although but at the cost
of some degradation for transcoding that needs to be handled by increasing the bit rate.

We investigated partial pruning as method for bringing the complexity down further.
In our simulations, partial pruning level 2 seems to have a very good balance between
bit rate gains and decrease in computational complexity. The scheme could be deployed
dynamically, so that we use partial pruning on the higher resolutions where complexity
is more critical, but prune fully the smaller resolutions were regeneration is already less
complex. Finding a sweet spot where gains are high enough, but computational complexity
is still decreased is up to each provider to decide based on their available hardware and
how much they need strict real-time regeneration. If strict real-time regeneration is not
necessary then full pruning is still probably the best option.

For the time measurements, the double downscaling for 360p (see section 3.1.2) takes
extra time, and most likely explains why regenerating a 360p video takes longer than 540p,
although it contains fewer coefficients are should actually be faster. In a real scenario we
would use a downscaler that perform this is a single step.

Deflation has a gains just above 20%, but with no quality loss. This is a very attractive
quality because there is no need to tinker with the bit rate to find out how much to increase
it in order to keep the quality at the same level as for simulcasting. You just encode the
sequences and deflate, and when the video is inflated it will be same as it was in the simul-
cast case. As for the complexity of the deflation scenario, we suspect that regeneration
will be slower than for pruning because more steps are involved. At the very least they
should be of the same complexity.

39

4. Conclusions

We ran our simulations on seven principal resolutions and qualities. 1080p encoded at
QP, and 720p, 540p and 360p encoded at QP and QP+2. A realisitic scenario could offer a
lot more versions than that and this would make guided transcoding even more effective.

40

Bibliography

[1] Iain Richardson. Introduction to Video Coding.

[2] Mathias Wien. High Efficiency Video Coding. Springer, 2015.

[3] Markus Flierl. Image and Video Processing, KTH EQ2330. Lecture slides, 2015.

[4] Iain Richardson. HEVC: An Introduction to High Efficiency Video Coding.

[5] Glenn Van Wallendael, Jan De Cock, and Rik Van de Walle. Fast Transcoding For
Video Delivery by Means of a Control Stream. In 19th IEEE International Confer-
ence on Image Processing (ICIP 2012). Ghent University – IBBT, ELIS Department
- Multimedia Lab, 2012.

[6] Iain Richardson. HEVC Walkthrough, Jun 2013.

[7] Gary J. Sullivan and Thomas Wiegand. Rate-distortion optimization for video com-
pression. IEEE Signal Processing Magazine, Nov 1998.

[8] Timothy Sauer. Numerical Analysis. Pearson, 2nd edition, 2012.

[9] Johan Bartelmess. Video Compression – Evaluation of Picture Coding Structures in
HEVC for Improved Compression Efficiency, 2016.

[10] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. Hierarchical b pictures. In
JVT-P014, Poznan, Poland, Jul 2005.

[11] Thomas Rusert, Kenneth Andersson, Ruoyang Yu, and Harald Nordgren. Guided
Just-in-Time Transcoding for Cloud-Based Video Platforms. Submitted to ICIP
2016, Jan 2016.

[12] Anthony Vetro, Charilaos Christopoulos, and Huifang Sun. Video Transcoding Ar-
chitechtures and Techniques: An Overview. IEEE Signal Processing Magazine,
March 2003.

[13] Gisle Bjøntegaard. Calculation of average psnr differences between rd curves. In
ITU-T SG 16 WP 3, doc. VCEG-M33, Austin, TX, USA, Apr 2001.

41

Genom att slänga bort viss information från en komprimerad video och sedan återskapa
sekvensen i realtid kan vi minska behovet av lagringsutrymme för adaptiv videostreaming
med 20–30%. Detta med helt bibehållen bildkvalité eller endast små försämringar.

Adaptiv streaming
Streaming är ett populärt sätt att skicka video över in-
ternet där en sekvens delas upp i korta segment som
skickas kontinuerligt till användaren. Dessa segment
kan skickas med varierande kvalité, och en modell där
vi automatiskt känner av nätverkets belastning och dy-
namiskt anpassar kvalitén kallas för adaptiv streaming.
Detta är ett system som används av SVT Play, TV4 Play
och YouTube.

HD- eller UltraHD-video måste komprimeras för att
kunna skickas över ett nätverk – den tar helt enkelt för
stor plats annars. Video som kodas med den senaste
komprimeringsstandarden, HEVC/H.265, blir upp
emot 700 gånger mindre med minimala försämringar
av bildkvalitén. Ett segment på tio sekunder som tar 1,5
GB att skicka i rå form kan då komprimeras till strax
över 2 MB.

För att kunna erbjuda tittaren en videosekvens – en film
eller ett TV-program – i varierande kvalité, skapar man
olika kodningar av materialet. Generellt har vi inte möj-
lighet att förändra kvalitén på en sekvens i efterhand –
omkodning av även en kort HD-video tar timmar att
genomföra – så för att adaptiv streaming ska kunna
fungera i praktiken genereras alla versioner på förhand
och sparas undan. Men detta kräver stort lagringsut-
rymme.

Guided transcoding
Guided transcoding (”guidad omkodning”) erbjuder ett
sätt att minska behovet av lagringsutrymme genom att
slänga bort viss information och sedan återskapa den vid
behov i ett senare skede.
 Vi gör detta för varje sekvens av lägre kvalité, men
behåller högsta kvalitén som den är. En stympad lågkva-
lité-video tillsammans med videon av högsta kvalitén
kan sedan användas för att exakt återskapa sekvensen.
Denna process är mycket snabb i jämförelse med vanlig
omkodning, så vi kan med kort varsel generera video-
kodningar av varierande kvalité.
 Vi har undersökt två metoder för plocka bort och
återskapa videoinformation: pruning och deflation. Den
första ger små försämringar i bildkvalitén och sparar
närmare 30% lagringsutrymme. Den senare har ingen
påverkan på bildkvalitén men sparar bara drygt 20% i
utrymme.

EXAMENSARBETE Guided Transcoding for Next-Generation Video Coding (HEVC)

STUDENT Harald Nordgren

HANDLEDARE Kenneth Andersson (Ericsson), Ruoyang Yu (Ericsson), Michael Doggett (LTH)

EXAMINATOR Jörn Janneck

Framtidens adaptiva videostreaming
POPULÄRVETENSKAPLIG SAMMANFATTNING Harald Nordgren

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2016-03-18

	Abstract
	Acknowledgements
	Acronyms
	Introduction
	Image and Video Fundamentals
	Digitally Representing Images and Video
	RGB, YCbCr and Chroma Subsampling
	Binary Numbers

	Encoding Fundamentals
	Prediction
	Frequency Transformation and Quantization
	Arithmetic Coding
	GOPs and Temporal Layers

	HEVC-Specific Algorithms
	RDOQ
	Sign-Bit Hiding

	Adaptive Streaming
	Simulcasting
	Just-in-Time Transcoding
	Scalable Video Coding

	My Contributions

	Guided Transcoding
	Pruning
	Generating Side-Information
	Regenerating a Pruned Sequence
	Partial Pruning

	Deflation
	Generating Side-Information
	Regenerating a Deflated Sequence

	Evaluation
	The Guided Transcoding Chain
	Encoding the Original
	Re-Encoding and Pruning
	Regenerating Sequences

	Cluster Simulations
	Simulation Data
	Measuring Bit Rate
	Measuring Video Quality
	Gains
	Costs

	Results
	Excel Sheets
	Pruning
	Deflation

	Conclusions
	Bibliography

