110 research outputs found

    On Secure Workflow Decentralisation on the Internet

    Get PDF
    Decentralised workflow management systems are a new research area, where most work to-date has focused on the system's overall architecture. As little attention has been given to the security aspects in such systems, we follow a security driven approach, and consider, from the perspective of available security building blocks, how security can be implemented and what new opportunities are presented when empowering the decentralised environment with modern distributed security protocols. Our research is motivated by a more general question of how to combine the positive enablers that email exchange enjoys, with the general benefits of workflow systems, and more specifically with the benefits that can be introduced in a decentralised environment. This aims to equip email users with a set of tools to manage the semantics of a message exchange, contents, participants and their roles in the exchange in an environment that provides inherent assurances of security and privacy. This work is based on a survey of contemporary distributed security protocols, and considers how these protocols could be used in implementing a distributed workflow management system with decentralised control . We review a set of these protocols, focusing on the required message sequences in reviewing the protocols, and discuss how these security protocols provide the foundations for implementing core control-flow, data, and resource patterns in a distributed workflow environment

    A programming system for process coordination in virtual organisations

    Get PDF
    PhD thesisDistributed business applications are increasingly being constructed by composing them from services provided by various online businesses. Typically, this leads to trading partners coming together to form virtual organizations (VOs). Each member of a VO maintains their autonomy, except with respect to their agreed goals. The structure of the Virtual Organisation may contain one dominant organisation who dictates the method of achieving the goals or the members may be considered peers of equal importance. The goals of VOs can be defined by the shared global business processes they contain. To be able to execute these business processes, VOs require a flexible enactment model as there may be no single ‘owner’ of the business process and therefore no natural place to enact the business processes. One solution is centralised enactment using a trusted third party, but in some cases this may not be acceptable (for instance because of security reasons). This thesis will present a programming system that allows centralised as well as distributed enactment where each organisation enacts part of the business process. To achieve distributed enactment we must address the problem of specifying the business process in a manner that is amenable to distribution. The first contribution of this thesis is the presentation of the Task Model, a set of languages and notations for describing workflows that can be enacted in a centralised or decentralised manner. The business processes that we specify will coordinate the services that each organisation owns. The second contribution of this thesis is the presentation of a method of describing the observable behaviour of these services. The language we present, SSDL, provides a flexible and extensible way of describing the messaging behaviour of Web Services. We present a method for checking that a set of services described in SSDL are compatible with each other and also that a workflow interacts with a service in the desired manner. The final contribution of this thesis is the presentation of an abstract architecture and prototype implementation of a decentralised workflow engine. The prototype is able to enact workflows described in the Task Model notation in either a centralised or decentralised scenario

    A grid and cloud-based framework for high throughput bioinformatics

    Get PDF
    Recent advances in genome sequencing technologies have unleashed a flood of new data. As a result, the computational analysis of bioinformatics data sets has been rapidly moving from a labbased desktop computer environment to exhaustive analyses performed by large dedicated computing resources. Traditionally, large computational problems have been performed on dedicated clusters of high performance machines that are typically local to, and owned by, a particular institution. The current trend in Grid computing has seen institutions pooling their computational resources in order to offload excess computational work to remote locations during busy periods. In the last year or so, commercial Cloud computing initiatives have matured enough to offer a viable remote source of reliable computational power. Collections of idle desktop computers have also been used as a source of computational power in the form of ‘volunteer Grids’. The field of bioinformatics is highly dynamic, with new or updated versions of software tools and databases continually being developed. Several different tools and datasets must often be combined into a coherent, automated workflow or pipeline. While existing solutions are available for constructing workflows, there is a clear need for long-lived analyses consisting of many interconnected steps to be able to migrate among Grid and cloud computational resources dynamically. This project involved research into the principles underlying the design and architecture of flexible, high-throughput bioinformatics processes. Following extensive research into requirements gathering, a novel Grid-based platform, Microbase, has been implemented that is based on service-oriented architectures and peer-to-peer data transfer technology. This platform has been shown to be amenable to utilising a wide range of hardware from commodity desktop computers, to high-performance cloud infrastructure. The system has been shown to drastically reduce the bandwidth requirements of bioinformatics data distribution, and therefore reduces both the financial and computational costs associated with cloud computing. The system is inherently modular in nature, comprising a service based notification system, a data storage system scheduler and a job manager. In keeping with e-Science principles, each module can operate in physical isolation from each other, distributed within an intranet or Internet. Moreover, since each module is loosely coupled via Web services, modules have the potential to be used in combination with external service oriented components or in isolation as part of another system. In order to demonstrate the utility of such an open source system to the bioinformatics community, a pipeline of inter-connected bioinformatics applications was developed using the Microbase system to form a high throughput application for the comparative and visual analysis of microbial genomes. This application, Automated Genome Analyser (AGA) has been developed to operate without user interaction. AGA exposes its results via Web-services which can be used by further analytical stages within Microbase, by external computational resources via a Web service interface or which can be queried by users via an interactive genome browser. In addition to providing the necessary infrastructure for scalable Grid applications, a modular development framework has been provided, which simplifies the process of writing Grid applications. Microbase has been adopted by a number of projects ranging from comparative genomics to synthetic biology simulations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Engineering Self-Adaptive Collective Processes for Cyber-Physical Ecosystems

    Get PDF
    The pervasiveness of computing and networking is creating significant opportunities for building valuable socio-technical systems. However, the scale, density, heterogeneity, interdependence, and QoS constraints of many target systems pose severe operational and engineering challenges. Beyond individual smart devices, cyber-physical collectives can provide services or solve complex problems by leveraging a “system effect” while coordinating and adapting to context or environment change. Understanding and building systems exhibiting collective intelligence and autonomic capabilities represent a prominent research goal, partly covered, e.g., by the field of collective adaptive systems. Therefore, drawing inspiration from and building on the long-time research activity on coordination, multi-agent systems, autonomic/self-* systems, spatial computing, and especially on the recent aggregate computing paradigm, this thesis investigates concepts, methods, and tools for the engineering of possibly large-scale, heterogeneous ensembles of situated components that should be able to operate, adapt and self-organise in a decentralised fashion. The primary contribution of this thesis consists of four main parts. First, we define and implement an aggregate programming language (ScaFi), internal to the mainstream Scala programming language, for describing collective adaptive behaviour, based on field calculi. Second, we conceive of a “dynamic collective computation” abstraction, also called aggregate process, formalised by an extension to the field calculus, and implemented in ScaFi. Third, we characterise and provide a proof-of-concept implementation of a middleware for aggregate computing that enables the development of aggregate systems according to multiple architectural styles. Fourth, we apply and evaluate aggregate computing techniques to edge computing scenarios, and characterise a design pattern, called Self-organising Coordination Regions (SCR), that supports adjustable, decentralised decision-making and activity in dynamic environments.Con lo sviluppo di informatica e intelligenza artificiale, la diffusione pervasiva di device computazionali e la crescente interconnessione tra elementi fisici e digitali, emergono innumerevoli opportunitĂ  per la costruzione di sistemi socio-tecnici di nuova generazione. Tuttavia, l'ingegneria di tali sistemi presenta notevoli sfide, data la loro complessità—si pensi ai livelli, scale, eterogeneitĂ , e interdipendenze coinvolti. Oltre a dispositivi smart individuali, collettivi cyber-fisici possono fornire servizi o risolvere problemi complessi con un “effetto sistema” che emerge dalla coordinazione e l'adattamento di componenti fra loro, l'ambiente e il contesto. Comprendere e costruire sistemi in grado di esibire intelligenza collettiva e capacitĂ  autonomiche Ăš un importante problema di ricerca studiato, ad esempio, nel campo dei sistemi collettivi adattativi. PerciĂČ, traendo ispirazione e partendo dall'attivitĂ  di ricerca su coordinazione, sistemi multiagente e self-*, modelli di computazione spazio-temporali e, specialmente, sul recente paradigma di programmazione aggregata, questa tesi tratta concetti, metodi, e strumenti per l'ingegneria di ensemble di elementi situati eterogenei che devono essere in grado di lavorare, adattarsi, e auto-organizzarsi in modo decentralizzato. Il contributo di questa tesi consiste in quattro parti principali. In primo luogo, viene definito e implementato un linguaggio di programmazione aggregata (ScaFi), interno al linguaggio Scala, per descrivere comportamenti collettivi e adattativi secondo l'approccio dei campi computazionali. In secondo luogo, si propone e caratterizza l'astrazione di processo aggregato per rappresentare computazioni collettive dinamiche concorrenti, formalizzata come estensione al field calculus e implementata in ScaFi. Inoltre, si analizza e implementa un prototipo di middleware per sistemi aggregati, in grado di supportare piĂč stili architetturali. Infine, si applicano e valutano tecniche di programmazione aggregata in scenari di edge computing, e si propone un pattern, Self-Organising Coordination Regions, per supportare, in modo decentralizzato, attivitĂ  decisionali e di regolazione in ambienti dinamici

    A Chemistry-Inspired Workflow Management System for a Decentralized Composite Service Execution

    Get PDF
    With the recent widespread adoption of service-oriented architecture, the dynamic composition of such services is now a crucial issue in the area of distributed computing. The coordination and execution of composite Web services are today typically conducted by heavyweight centralized workflow engines, leading to an increasing probability of processing and communication bottleneck and failures. In addition, centralization induces higher deployment costs, such as the computing infrastructure to support the workflow engine, which is not affordable for a large number of small businesses and end-users. Last but not least, central workflow engines leads to diverse inadequate consequences dealing with privacy or energy consumption. In a world where platforms are more and more dynamic and elastic as promised by cloud computing, decentralized and dynamic interaction schemes are required. Addressing the characteristics of such platforms, nature-inspired analogies recently regained attention to provide autonomous service coordination on top of dynamic large scale platforms. In this report, we propose a decentralized approach for the execution of composite Web services based on an unconventional programming paradigm that relies on the chemical metaphor. It provides a high-level execution model that allows executing composite services in a fully decentralized manner. Composed of services communicating through a persistent shared space containing control and data flows between services, our architecture allows to distribute the composition among nodes without the need for any centralized coordination. A proof of concept is given, through the deployment of a software prototype implementing these concepts, showing the viability of an autonomic vision of service composition.Suite Ă  l'adoption grandissante des architectures orientĂ©es service, la composition dynamique de services est devenu un problĂšme important de la construction de plates-formes de calcul distribuĂ©. La coordination et l'exĂ©cutiuon de Web Service composites sont aujourd'hui typiquement conduits par des moteurs de "workflows" (graphes de composition de services, formant un "service composite") centralisĂ©s, entrainant diffĂ©rents problĂšmes, et notamment une probabilitĂ© grandissante d'apparition d'Ă©checs ou de goulots d'Ă©tranglement. Dans un monde oĂč les plate-formes sont de plus en plus dynamiques (ou "Ă©lastiques", comme envisagĂ© par les "clouds", de nouveaux mĂ©canismes de coordination dynamiques sont requis. Dans ce contexte, des mĂ©taphores naturelles ont gagnĂ© une attention particuliĂšre rĂ©cemment, car elles fournissent des abstractions pour la coordination autonome d'entitĂ©s (commes les services.) Dans ce rapport, une approche dĂ©centralisĂ©e pour l'exĂ©cution de Web Services composites fondĂ©e sur la mĂ©taphore chimique, qui fournit un modĂšle d'exĂ©cution haut-niveau pour l'exĂ©cution dĂ©centralisĂ©e, est prĂ©sentĂ©e. Dans cette architecture, les services communiquent Ă  travers un espace virtuellement partagĂ© persistant contenant l'information sur les flux de contrĂŽle et de donnĂ©es, permettant une coordination dĂ©centralisĂ©e des services. Un prototype logiciel a Ă©tĂ© dĂ©veloppĂ© et expĂ©rimentĂ©. Les rĂ©sultats de ces expĂ©riences sont prĂ©sentĂ©s Ă  la fin de ce rapport

    IT supported business process negotiation, reconciliation and execution for cross-organisational e-business collaboration

    Get PDF
    In modern enterprises, workflow technology is commonly used for business process automation. Established business processes represent successful business practice and become a crucial part of corporate assets. In the Internet era, electronic business is chosen by more and more organisations as a preferred way of conducting business practice. In response to the increasing demands for cross-organisational business automation, especially those raised by the B2B electronic commerce community, the concept of collaboration between automated business processes, i.e. workflow collaboration, is emerging. Otherwise, automation would be confined within individual organisations and cross-organisational collaboration would still have to be carried out manually. However, much of the previous research work overlooks the acquisition of the compatible workflows at build time and simply assumes that compatibility is achieved through face-toface negotiation followed by a design from scratch approach that creates collaborative workflows based on the agreement resulted from the negotiation. The resource-intensive and error-prone approach can hardly keep up with the pace of today’s marketplace with increasing transaction volume and complexity. This thesis identifies the requirements for cross-organisational workflow collaboration (COWCO) through an integrated approach, proposes a comprehensive supporting framework, explains the key enabling techniques of the framework, and implements and evaluates them in the form of a prototype system – COWCO-Guru. With the support of such a framework, cross-organisational workflow collaboration can be managed and conducted with reduced human effort, which will further facilitate cross-organisational e-business, especially B2B e-commerce practices

    Investigations into the model driven design of distribution patterns for web service compositions

    Get PDF
    Increasingly, distributed systems are being used to provide enterprise level solutions with high scalability and fault tolerance These solutins are often built using Web servces that are composed to perform useful business functions Acceptance of these composed systems is often constrained by a number of non-functional properties of the system such as availability, scalability and performance There are a number of drstribution patterns that each exhibit different non-functional charactmstics These patterns are re-occuring distribution schemes that express how a system is to be assembled and subsequently deployed. Traditional approaches to development of Web service compositions exhibit a number of Issues Firstly, Web service composition development is often ad-hoc and requires considerable low level coding effort for realisatlon Such systems often exhibit fixed architectures, making maintenance difficult and error prone Additionally, a number of the non-funchonal reqwements cannot be easily assessed by exammng low level code. In this thesis we explicitly model the compositional aspects of Web service compositions usmg UML Activity diagrams Ths approach uses a modehng and transformation framework, based on Model Dnven Software Development (MDSD), going from high level models to an executable system The framework is guided by a methodological framework whose primary artifact is a distribution pattern model, chosen from the supplied catalog. Our modelling and transfomation framework improves the development process of Web service compositions, with respect to a number of criteria, when compared to the traditional handcrafted approach Specifically, we negate the coding effort traditionally associated with Web service composition development Maintenance overheads of the solution are also slgnificantly reduced, while improved mutability 1s achieved through a flexible architecture when compared with existing tools We also improve the product output from the development process by exposing the non-functional runtime properties of Web service compositlons using distribution patterns

    Cross organisational compatible workflows generation and execution

    Get PDF
    With the development of internet and electronics, the demand for electronic and online commerce has increased. This has, in turn, increased the demand for business process automation. Workflow has established itself as the technology used for business process automation. Since business organisations have to work in coordination with many other business organisations in order to succeed in business, the workflows of business organisations are expected to collaborate with those of other business organisations. Collaborating organisations can only proceed in business if they have compatible workflows. Therefore, there is a need for cross organisational workflow collaboration. The dynamism and complexity of online and electronic business and high demand from the market leave the workflows prone to frequent changes. If a workflow changes, it has to be re-engineered as well as reconciled with the workflows of the collaborating organisations. To avoid the continuous re-engineering and reconciliation of workflows, and to reuse the existing units of work done, the focus has recently shifted from modeling workflows to automatic workflow generation. Workflows must proceed to runtime execution, otherwise, the effort invested in the build time workflow modeling is wasted. Therefore, workflow management and collaboration systems must support workflow enactment and runtime workflow collaboration. Although substantial research has been done in build-time workflow collaboration, automatic workflow generation, workflow enactment and runtime workflow collaboration, the integration of these highly inter-dependent aspects of workflow has not been considered in the literature. The research work presented in this thesis investigates the integration of these different aspects. The main focus of the research presented in this thesis is the creation of a framework that is able to generate multiple sets of compatible workflows for multiple collaborating organisations, from their OWLS process definitions and high level goals. The proposed framework also supports runtime enactment and runtime collaboration of the generated workflows
    • 

    corecore