
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



 

 

 
Cross Organisational Compatible Workflows 

Generation and Execution  

 

 

 

 

By 

 

 

 

 

Mohammad Saleem 

 

 

 

 

 

A Doctoral Thesis 

 

 

 

 

 

Submitted in partial fulfilment of the requirements for the award of Doctor 

of Philosophy of Loughborough University  

 

 

 

 

March, 2012 

 

 

 

 

© by Mohammad Saleem 2012 

 



   i 
 

Abstract 

With the development of internet and electronics, the demand for electronic and online 

commerce has increased. This has, in turn, increased the demand for business process 

automation. Workflow has established itself as the technology used for business process 

automation. Since business organisations have to work in coordination with many other 

business organisations in order to succeed in business, the workflows of business 

organisations are expected to collaborate with those of other business organisations. 

Collaborating organisations can only proceed in business if they have compatible 

workflows. Therefore, there is a need for cross organisational workflow collaboration. 

The dynamism and complexity of online and electronic business and high demand from 

the market leave the workflows prone to frequent changes. If a workflow changes, it has 

to be re-engineered as well as reconciled with the workflows of the collaborating 

organisations. To avoid the continuous re-engineering and reconciliation of workflows, 

and to reuse the existing units of work done, the focus has recently shifted from 

modeling workflows to automatic workflow generation.  

Workflows must proceed to runtime execution, otherwise, the effort invested in the 

build time workflow modeling is wasted. Therefore, workflow management and 

collaboration systems must support workflow enactment and runtime workflow 

collaboration. 

Although substantial research has been done in build-time workflow collaboration, 

automatic workflow generation, workflow enactment and runtime workflow 

collaboration, the integration of these highly inter-dependent aspects of workflow has 

not been considered in the literature. The research work presented in this thesis 

investigates the integration of these different aspects. The main focus of the research 

presented in this thesis is the creation of a framework that is able to generate multiple 

sets of compatible workflows for multiple collaborating organisations, from their 

OWLS process definitions and high level goals. The proposed framework also supports 

runtime enactment and runtime collaboration of the generated workflows. 

 



   ii 
 

 

 

 

 

 

 

To my parents and family 

for their love, support and sacrifices 

 

 

 

 

 

 

 



   iii 
 

Acknowledgements 

I am highly thankful to my supervisors Professor Paul Chung, Dr. Shaheen Fatima and 

Dr. Wei Dai for their guidance, support and encouragement throughout my PhD. I will 

always remain grateful to them for their continuous help in reviewing my writings and 

research to make it better and more valuable. 

I would like to say special thanks to Loughborough University Innovative 

Manufacturing and Construction Research Centre (IMCRC), and Engineering and 

Physical Sciences Research Council (EPSRC), through which the project was funded. 

I am indebted to my family for their un-ending love and support. I would also like to 

thank my friends Aamir Ehsan, Asmatullah, Fayaz Ahmad Khan, Irfan Khattak, Jawad 

Khattak, Muhammad Athar, Muhammad Shafi, Noor Khan, Riaz Muhammad, Sajjad 

Wali Khan and Zaresh Khan for their encouragement. I would like to say special thanks 

to the administration staff of Loughborough University for their help and support. 

 

 

 

 

 

 

 

 

 

 

 



   iv 
 

Table of Contents 

Abstract ............................................................................................................................. i 

Acknowledgements ....................................................................................................... iii 

Table of Contents ........................................................................................................... iv 

List of Figures ................................................................................................................. ix 

List of Tables ................................................................................................................... x 

Chapter 1: Overview ...................................................................................................... 1 

1.1 Introduction ............................................................................................................. 1 

1.2 Research Motivation ............................................................................................... 2 

1.3 Aim and Objectives ................................................................................................. 4 

1.4 Contributions ........................................................................................................... 4 

1.5 Thesis Structure ....................................................................................................... 6 

Chapter 2: Workflow ...................................................................................................... 8 

2.1 Introduction ............................................................................................................. 8 

2.2 Business Process Automation ................................................................................. 9 

2.3 Workflow .............................................................................................................. 10 

2.4 Workflow Management Systems .......................................................................... 13 

2.5 Automatic Workflow Generation .......................................................................... 15 

2.6 Existing Approaches and Systems for Workflow Generation .............................. 17 

2.7 Conclusion............................................................................................................. 21 

Chapter 3: Workflow Collaboration ........................................................................... 23 

3.1 Introduction ........................................................................................................... 23 

3.2 Cross Organisational Business Process/Workflow Collaboration ........................ 23 

3.3 Workflow Collaboration Example ........................................................................ 24 

3.4 Workflow Compatibility ....................................................................................... 27 

3.5 Existing Work on Workflow Collaboration Approaches/Systems ....................... 30 



   v 
 

3.5.1 Existing Work on Build time Workflow Collaboration............................................ 30 

3.5.2 Existing Work on Runtime Workflow Collaboration ............................................... 33 

3.6 Conclusion............................................................................................................. 35 

Chapter 4: Planning Technologies .............................................................................. 37 

4.1 Introduction ........................................................................................................... 37 

4.2 Planning Paradigms ............................................................................................... 37 

4.2.1 State-Space based Planning .................................................................................... 37 

4.2.2 Graph Based Planning ............................................................................................ 39 

4.2.3 Partial Order Refinement Planning ........................................................................ 40 

4.2.4 Planning as Satisfiability ......................................................................................... 41 

4.2.4 .1 Planning as Propositional Satisfiability .................................................. 41 

4.2.4.2 Planning as Description Logic Satisfiability ........................................... 42 

4.2.4.3 Planning as Petri net Reachability ........................................................... 42 

4.2.5 Planning as Logic Programming ............................................................................ 42 

4.2.6. Planning with Control Knowledge ......................................................................... 43 

4.2.6.1 Hierarchical Task Network Planning ....................................................... 43 

4.2.6.2 High Level Program Execution ............................................................... 44 

4.2.6.3 Planning as Model Checking ................................................................... 44 

4.2.7 Temporal Planning .................................................................................................. 45 

4.3 Relevance of Planners for Web Service Composition .......................................... 46 

4.4 Structure of SHOP2 Planning Problem ................................................................. 51 

4.5 Conclusion............................................................................................................. 53 

Chapter 5: Cross Organisational Compatible Workflows Generation and 

Execution: An Integrated Approach ........................................................................... 54 

5.1 Introduction ........................................................................................................... 54 

5.2 Assumptions .......................................................................................................... 55 

5.2.1 Naming Convention ................................................................................................. 55 



   vi 
 

5.2.2 Multi-Lateral Collaboration .................................................................................... 56 

5.2.3 Readiness for participation ..................................................................................... 56 

5.2.4 OWLS Processes ...................................................................................................... 56 

5.2.5 Planning .................................................................................................................. 56 

5.3 Requirements ......................................................................................................... 57 

5.3.1 Loose Coupling ........................................................................................................ 57 

5.3.2 Reusability ............................................................................................................... 57 

5.3.3 Cohesion .................................................................................................................. 57 

5.3.4 Interoperability ........................................................................................................ 58 

5.3.5 Modularity ............................................................................................................... 58 

5.4 Cross Organisational Compatible Workflows Generation and Execution 

Approach ..................................................................................................................... 58 

5.4.1 Automatic Workflow Generation ............................................................................. 59 

5.4.2 Build-time Workflow Collaboration ........................................................................ 59 

5.4.3 Workflow Enactment ............................................................................................... 60 

5.4.4 Runtime Workflow Collaboration............................................................................ 60 

5.5 Cross Organisational Control Flow and Data Flow .............................................. 60 

5.6 Conclusion............................................................................................................. 61 

Chapter 6: A Framework for Cross Organisational Compatible Workflows 

Generation and Execution............................................................................................ 63 

6.1 Introduction ........................................................................................................... 63 

6.2 Adapting SHOP2 for Workflow Generation Problem .......................................... 63 

6.3 Architecture ........................................................................................................... 65 

6.4 Functionality ......................................................................................................... 67 

6.4.1 Reading OWLS Process Descriptions ..................................................................... 69 

6.4.2. Translating OWLS Process Definitions to SHOP2 Domain Descriptions ............. 71 

6.4.3 Inserting SHOP2 Methods in the Domain ............................................................... 77 

6.4.4 Creating a Joint Domain ......................................................................................... 81 



   vii 
 

6.4.5 Planning for All Possible Sets of Compatible Plans ............................................... 83 

6.4.6 Runtime Execution and Collaboration .................................................................... 84 

6.5 Implementation ..................................................................................................... 85 

6.6 Discussion ............................................................................................................. 86 

6.7 Conclusion............................................................................................................. 87 

Chapter 7: Results and Evaluation ............................................................................. 89 

7.1 Introduction ........................................................................................................... 89 

7.2 Vendor/Customer Business Collaboration Scenario ............................................. 89 

7.2.1 OWLS Processes ...................................................................................................... 89 

7.2.2 Results...................................................................................................................... 95 

7.3 Retailer/Wholesaler/Manufacturer/Supplier Business Collaboration Scenario .. 104 

7.3.1 OWLS Processes .................................................................................................... 104 

7.3.2 Results.................................................................................................................... 116 

7.4 Evaluation ........................................................................................................... 120 

7.5 Conclusion........................................................................................................... 123 

Chapter 8: Conclusion and Future Work................................................................. 125 

8.1 Introduction ......................................................................................................... 125 

8.2 Thesis Summary and Conclusions ...................................................................... 125 

8.3 Contributions ....................................................................................................... 127 

8.4 Future Work ........................................................................................................ 128 

References .................................................................................................................... 131 

Appendices ................................................................................................................... 144 

Appendix A: List of Abbreviations ........................................................................... 144 

Appendix B: WfMS Products .................................................................................... 146 

Appendix C: IssueInspCert (OWLS) ........................................................................ 148 

Appendix D: IssueInspCert (WSDL) ........................................................................ 150 

Appendix E: IssueInspCert (Java) ............................................................................ 152 



   viii 
 

Appendix F: All Sets of Compatible Workflows for Vendor/Customer Business 

Collaboration Example ............................................................................................... 153 

Appendix G: All Sets of Compatible Workflows for 

Retailer/Wholesaler/Manufacturer/Supplier Business Collaboration Example ... 161 

Appendix H: List of Published Papers ...................................................................... 170 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   ix 
 

List of Figures 

Figure 2.1 Activity based workflow of a vendor (taken from [24]) ............................... 11 

Figure 2.2. An entity based workflow for passing a legislative bill (taken from [22]) .. 12 

Figure 2.3. Key Features of WfMS (adapted from [26]) ................................................ 14 

 

Figure 3.1 Workflow of Collaborating Vendor and Customer (adapted from [24]) ...... 26 

Figure 3.2 Interface Processes for Vendor and Customer .............................................. 27 

Figure 3.3 Enactable compatibility might cause unnecessary delay (taken from [4]) .... 28 

 

Figure 6.1 Extended SHOP2 Algorithm for Workflow Generation ............................... 65 

Figure 6.2 Architecture of the Developed Framework ................................................... 66 

Figure 6.3 Flow Diagram of the Functionality of the Developed Framework ............... 68 

Figure 6.4 Collection of OWLS Processes of Customer ................................................ 69 

Figure 6.5 GUI of the Prototype ..................................................................................... 70 

Figure 6.6 Level of Activities and Alternative Composition Paths for Customer .......... 80 

 

Figure 7.1 A Set of Compatible Workflows for Vendor and Customer ......................... 96 

Figure 7.2 Another Set of Compatible Workflows for Vendor and Customer ............... 97 

Figure 7.3 Interface Processes for Vendor/Customer Workflows in Figure 7.1 ............. 98 

Figure 7.4 An Alternative Length Set of Compatible Workflows for Vendor and 

Customer ....................................................................................................................... 100 

Figure 7.5 Another Alternative Length Set of Compatible Workflows for Vendor and 

Customer ....................................................................................................................... 101 



   x 
 

Figure 7.6 An Alternative Length Set of Compatible Workflows for Vendor and 

Customer (No Concurrency in Customer’s OWLS Processes) .................................... 102 

Figure 7.7 Another Alternative Length Set of Compatible Workflows for Vendor and 

Customer (No Concurrency in Customer’s OWLS Processes) .................................... 103 

Figure 7.8 A Set of Compatible Workflows for Retailer, Wholesaler, Manufacturer and 

Supplier ......................................................................................................................... 117 

Figure 7.9 Another Set of Compatible Workflows for Retailer, Wholesaler, 

Manufacturer and Supplier ........................................................................................... 118 

Figure 7.10 Interface Processes for the Retailer/Wholesaler/Manufacturer/Supplier 

Workflows given in Figure 7.8 ..................................................................................... 119 

 

List of Tables 

Table 4.1 Web services composition requirements vs. domain independent planners 

(adapted from [61]) ......................................................................................................... 47 

Table 4.2 Web services composition problem requirements vs. domain dependent 

planners (adapted from [61]) .......................................................................................... 48 

 

Table 7.1 Vendor’s OWLS Processes ............................................................................. 89 

Table 7.2 Customer’s OWLS Processes ......................................................................... 92 

Table 7.3 Changes to Customer’s OWLS Processes to Remove Concurrency ............ 104 

Table 7.4 Retailer’s OWLS Processes .......................................................................... 104 

Table 7.5 Wholesaler’s OWLS Processes .................................................................... 106 

Table 7.6 Manufacturer’s OWLS Processes ................................................................ 110 

Table 7.7 Supplier’s OWLS Processes ......................................................................... 113 

 



Chapter 1: Overview 

   1 
 

Chapter 1: Overview 

1.1 Introduction 

Business process is the key element of work practice and a crucial part of corporate 

asset. A Business process can be defined as “a set of one or more linked procedures or 

activities which collectively realize a business objective or policy goal, normally within 

the context of an organisational structure defining functional roles and relationships” 

[1]. In this age of electronics and internet, an increasing number of organisations are 

shifting to electronic commerce. The business processes of organisations must be 

automated to do business electronically. Hence business process automation is in 

demand more than ever. Workflow is the technology used to model automated business 

processes.  

When two organisations do business together, the need for business process 

collaboration across multiple organisations arises.  Such collaboration is referred as 

cross organisational collaboration. Since workflow technology is commonly used for 

business process automation hence there is a need for cross organisational workflow 

collaboration. As workflows must proceed into execution stage, the collaboration must 

be done at build time as well as runtime.  

This thesis aims at introducing a framework for cross organisational workflow 

collaboration. The key difference between the proposed framework and existing 

systems is that it looks at cross organisational workflow collaboration in a very 

different context. Instead of reconciling existing workflows with each other, it 

automatically generates compatible workflows for the collaborating organisations from 

the OWLS process definitions and high level goals of the collaborating organisations, 

where OWLS is a language to describe web services [2]. So, it does not require the 

organisations to model their workflows beforehand and enables them to avoid the time 

consuming process of negotiations to reconcile existing incompatible workflows. The 

build time cross organisational workflow collaboration is done automatically at the time 

of workflow generation.  



Chapter 1: Overview 

   2 
 

The proposed framework will also support runtime workflow collaboration among the 

generated workflows. The suggested framework will perform cross organisational 

workflow collaboration in a more time-effective and resource-effective way. The thesis 

also reports the prototype implementation for the framework. 

This chapter gives an overview of the thesis. Section 1.2 gives the motivation for 

carrying out the research reported in this thesis. Section 1.3 sets the aims and 

objectives. Section 1.4 highlights the contributions and Section 1.5 presents the 

structure of the thesis. 

1.2 Research Motivation 

With the development of electronics and internet, more organisations are moving to 

electronic business to save time and resources. In the real world, organisations have to 

interact with other organisations to do business. For any two organisations to proceed in 

business, they should have compatible business processes [3]. Since workflow 

technology is used for representing automated business processes, this means any two 

organisations cannot proceed in business if they don’t have compatible workflows [4]. 

Compatible means that there should be an agreed sequence of activities exchanging 

collaborative messages and information [4]. Incompatible workflows should be 

reconciled before proceeding with business. Considerable amount of effort is needed to 

ensure that workflows are compatible in the first place [5, 6]. 

Most of the existing work on workflow collaboration focuses on reconciling existing 

incompatible workflows. This is the bottom-up approach for collaboration since 

collaborative process is extracted from the existing local workflows [7]. A considerable 

amount of time and resources are required to reconcile incompatible workflows, 

especially if an organisation has to collaborate with many other organisations for 

business. 

In an alternative top-down approach, organisations meet, discuss and design 

collaborative process and then implement it locally [7]. This is even more time 

consuming, especially if the organisations have many business partners to collaborate 

with. Every time an organisation has to collaborate with another organisation, both 

organisations will have to invest a lot of time and resources in the negotiations to come 



Chapter 1: Overview 

   3 
 

up with designing compatible workflows. In case of any changes to the workflow of an 

organisation, negotiations should be done all over again with all the collaborating 

organisations, and workflows should be remodelled. 

Although the automatic workflow collaboration based on bottom-up approach helps in 

terms of time and resources, the interacting organisations still have to get involved by 

giving feedback about the adjustment moves suggested by the automatic collaboration 

systems. In case of any change to the workflow of an organisation, not only the 

concerned organisation has to remodel its workflow but the workflows of the 

interacting organisations also need to be reconciled and adapted. This is a highly time 

consuming process because the dynamic and complex nature of businesses and high 

market demand leave business processes prone to changes on a very frequent basis. 

To target the above issues we look at another paradigm in the literature known as 

automatic workflow generation.  Automatic workflow generation is an AI planning 

problem in which a workflow is considered synonymous with a plan [8, 9]. If every 

activity in a workflow is treated as a web service, a workflow represents a plan of web 

services to achieve the desired goal state from a given initial state. So the workflow 

generation problem can be treated as a web services composition problem [9]. In web 

services composition problem a planner reasons about a pool of available services and a 

required service that can bring about the desirable effect is added in the plan; executing 

the plan results in the goal state [8]. Since each service is modelled as an OWLS 

process, the plan of web services essentially is a workflow of OWLS processes. 

Executing the workflow achieves the desired goals. 

In literature, there has been extensive work on automatic workflow generation [10-17]. 

The general issue with the existing work is that it targets the automatic generation of 

workflows for a single organisation, and according to the author’s best knowledge, no 

work has been done on the generation of compatible workflows for multiple 

collaborating organisations. In the literature, cross organisational collaboration and 

automatic generation have been treated mostly as separate aspects of workflow and 

there is very limited work done on the integration of these two related paradigms. 

Similarly the build time workflow collaboration and runtime workflow collaboration 

have been handled mostly by separate systems and very few systems support both build 



Chapter 1: Overview 

   4 
 

time and runtime workflow collaboration. This is the research gap in the literature that 

this thesis aims to target. 

1.3 Aim and Objectives 

The aim of the research is “to develop a framework that will create multiple sets of 

compatible workflows for multiple collaborating organisations, from the OWLS process 

definitions and high level goals of the collaborating organisations. The system will also 

provide support for runtime execution and collaboration of the generated compatible 

workflows”. To achieve the overall aim, the following objectives are addressed: 

 To review AI planning paradigms and select the most suitable planner for 

automatic generation of compatible workflows. 

 To introduce an integration approach that integrates automatic workflow 

generation, build-time cross organisational workflow collaboration, workflow 

enactment and runtime cross organisational workflow collaboration. 

 To create a framework that can automatically generate compatible workflows 

for the collaborating organisations from the loaded OWLS process definitions. 

The workflows must be able to achieve the specified high level goals from the 

specified initial states. 

 To create a proof-of-concept prototype which allows potential partners to load 

their OWLS process definitions and specify their initial states and final goals. 

 To create a runtime execution mechanism that is able to enact and collaborate 

the generated workflows at runtime. 

 To demonstrate the functionality, scalability and viability of the proposed 

framework with the help of different multi-organisational business collaboration 

examples. 

1.4 Contributions 

Following are the main contributions of the thesis. 



Chapter 1: Overview 

   5 
 

 The thesis proposes an integration approach that is based on the integration of 

automatic workflow generation, build-time cross organisational workflow 

collaboration, workflow enactment and runtime cross organisational workflow 

collaboration. The integration approach applies AI planning to the integration of 

workflow generation and workflow collaboration. 

 The thesis presents a framework which creates compatible workflows for 

multiple collaborating organisations, from the OWLS process definitions and 

high level goals of the interacting organisations. It is the only framework so far 

that targets the creation of compatible workflows for multiple collaborating 

organisations, without involving any reconciliation among the collaborating 

workflows or any negotiations among the collaborating organisations. 

 The proposed framework handles both build-time and runtime workflow 

collaboration for arbitrary number of organisations. This is a powerful capability 

that is not common in literature. 

 The thesis presents a run-time execution mechanism for the compatible 

workflows automatically generated for the collaborating organisations. The 

runtime execution mechanism makes sure that the transfer of data and 

information among the in-house and cross organisational activities takes place 

smoothly. 

 A novel technique to increase the efficiency of workflow generation process is 

put forward. The system reasons about the usability of each atomic process in 

the workflow generation process. The OWLS processes that do not make part of 

the workflow generation process are not translated to SHOP2 format and they 

are simply discarded. It makes the translation process easier and time efficient. 

It can also increase the efficiency of the planning process in certain cases, since 

the planning engine only has to do planning based on the processes that are 

strictly used in the workflow generation. 

 The proposed framework uses SHOP2 for planning. SHOP2 relies on a good 

domain model for planning. The OWLS process definitions of the collaborating 

organisations must be translated into SHOP2 format. Therefore, we develop a 



Chapter 1: Overview 

   6 
 

novel algorithm for translating OWLS processes into SHOP2 domain. The 

translation algorithm makes it possible to create a SHOP2 domain which enables 

the planner to identify alternate composition paths and hence create multiple 

valid workflows. The translation algorithm makes it possible to compose atomic 

processes of the collaborating organisations into compatible workflows, in the 

correct order. 

 SHOP2 needs a good formal domain description for planning. The efficiency 

and success of the planning process is highly dependent on the domain used for 

planning. The SHOP2 domain for workflow generation problem is in the form 

of web services descriptions and OWLS process definitions translated into 

SHOP2 format. Due to the very complex and diverse nature of web services, it 

is not always possible to create a clear and efficient formal domain for SHOP2. 

Such complex and inefficient domains can force SHOP2 into infinite loops. 

SHOP2 has been extended to enable it to counter such issues and make it more 

suitable for the workflow generation problem. 

 A novel algorithm has been proposed to merge the domains of the collaborating 

organisations into a single joint domain. The joint domain can be considered as 

the domain of a single parent organisation, containing collaborating sub-

organisations. Multiple joint plans can be created based on the joint domain. An 

algorithm to divide the joint plans into sub-plans is also proposed. Each sub-plan 

is basically a workflow for a single collaborating organisation. 

1.5 Thesis Structure 

The rest of this thesis is structured into the following chapters: 

Chapter 2 explains key concepts and terms such as business process, workflow, 

workflow management systems, control flow, data flow and automatic workflow 

generation. Recent workflow generation frameworks are also reviewed in Chapter 2. 

Chapter 3 reviews work done on business collaboration, workflow collaboration and 

workflow compatibility, and reviews different build time and runtime workflow 

collaboration frameworks and approaches. 



Chapter 1: Overview 

   7 
 

Chapter 4 considers workflow generation as an AI planning problem, discusses several 

of the established planning paradigms, and reviews representative planners that fall into 

those planning paradigms against the requirements of web services composition. 

Chapter 5 presents the proposed integration approach that integrates automatic 

workflow generation, build-time cross organisational workflow collaboration, workflow 

enactment and runtime cross organisational workflow collaboration. Requirements of 

the integration approach are highlighted. 

Chapter 6 presents the framework for cross organisational compatible workflows 

generation and execution, which is based on the integration approach. It explains the 

methodology, design architecture and functionality of the framework. Algorithms 

involved in the framework, and the technical and implementation details of the 

prototype developed for the framework are also explained in Chapter 6. 

Chapter 7 reports and evaluates the results based on various multi-organisational 

business collaboration examples.  The chapter also discusses the scalability, complexity 

and viability of the framework. 

Chapter 8 concludes the thesis. The chapter gives the summary and main conclusions of 

the thesis, summarises the novelties and contributions of the thesis and outlines the 

future work. 

 

 

 

 

 

 

 



Chapter 2: Workflow  

   8 
 

Chapter 2: Workflow 

2.1 Introduction 

Business processes are at the core of productivity for organisations. It refers to a set of 

connected and ordered activities to achieve a business goal within the context of an 

organisational structure [1]. For an organisation to do online business with other 

organisations, its business processes need to be automated, so that the organisations can 

automatically exchange products and services more efficiently and flexibly. The 

information and communication technology enabled automation of the business 

processes create automated business processes. Automated business processes are 

business processes, modelled and executed with the help of information and 

communication technologies.  With the development of the internet, there has been an 

increase in electronic and online commerce. Hence the demand for business process 

automation has increased. Workflow is the technology used for business process 

automation and it has proved to be a mature and beneficial technology [18]. It has been 

widely adopted by business organisations across the globe. 

The organisations that comprise an online business may be heterogeneous in nature, i.e., 

they may have their own set of constraints, requirements, standards and goals. Also, 

online businesses may be dynamic, since the organisations and their business processes 

may evolve continuously. This heterogeneous and dynamic nature of the online 

business leaves the organisational workflows prone to frequent changes. This increases 

the demand for automatic workflow generation, so as to save the effort invested in 

modelling and adapting workflows. Being prone to frequent changes, business 

organisations also require reusability of already developed processes, resources and 

software components. To automatically generate workflows and incorporate reusability 

in workflows, the idea of web services and web services composition comes into 

context. Web services are self-contained units of application logic, providing business 

functionality over the internet [19]. They can be discovered, connected to and executed 

over the internet. They can also be automatically composed in a proper order to support 

a workflow [9]. This chapter reasons that automatic workflow generation and web 

services composition are the same problem, if each activity in the workflow is 



Chapter 2: Workflow  

   9 
 

represented by a web service. Due to this similarity, the research presented in the thesis 

uses the idea of web services composition for the automatic generation of workflows 

for multiple organisations. In the generated workflows, each activity is a web service.  

This chapter discusses business process automation, workflow, issues with traditional 

ways of modelling workflows and some new developments related to workflow. 

Section 2.2 highlights business process automation, Section 2.3 explains workflow, 

Section 2.4 describes workflow management systems, Section 2.5 gives description for 

automatic workflow generation and its similarity to web services composition, Section 

2.6 reviews selected approaches and systems for automatic workflow generation and 

Section 2.7 concludes this chapter. 

2.2 Business Process Automation 

Business process automation refers to technology enabled analysis, documentation, 

optimisation, modelling and enactment of activities and services to achieve certain 

functions. Business process automation reduces human intervention, increases cost 

saving, enhances the accuracy of the information passed to the business processes and 

among the business activities, and ensures the reuse of value added tasks. It saves time 

by programing the repeated routine tasks and makes it easy to track the progress status 

by automatically creating charts and graphs. It minimizes human error by removing the 

repeated data entry requirements and automatically making accurate calculations. It 

ensures the reuse of existing software components and shortens the billing and 

production cycles.  

Workflow is a technology used for business process automation. The workflow is a 

product of evolution through different stages of business processes automation [20]. 

Initially, humans carried out all processes, manipulating physical objects. These are 

characterised as material processes [21], since everything in these processes is rooted in 

the physical world i.e. storing, moving, measuring, assembling etc. With the 

development of information technology, the workplace started getting automated by 

computer programs. Thus information processes  came into existence in which certain 

tasks were fully or partially automated by computer systems to automate the creation, 

processing and management of information [21].  Later, business processes were 

introduced to increase the efficiency of the business by capturing it in terms of market 



Chapter 2: Workflow  

   10 
 

centred descriptions, implemented as material processes or information processes. Once 

the organisations were able to capture their businesses in terms of business processes, 

the need for their automation and adaptation arose. Workflow is a concept closely 

related to automating and reengineering business processes. In the next section, we 

discuss workflow.  

2.3 Workflow 

According to Workflow Management Coalition (WfMC)’s definition, a workflow
1
 is 

“the automation of a business process, in whole or part, during which documents, 

information or tasks are passed from one participant to another for action, according to 

a set of procedural rules” [1]. A workflow has the following two main stages [1]: 

 A build time stage, which refers to the stage where workflow descriptions of the 

business process are defined and changed. This can be automatic or manual. 

 A runtime stage where instances of the business process are created and 

managed. This is the operational stage. 

A workflow can be activity based or entity based [22]. An activity-based workflow is 

based on a set of activities that someone or something has to do [22].  Activity is one of 

the basic building blocks in mainstream process definition languages like WSFL, XPDL 

and BPML [23]. An activity is defined as “a description of a piece of work that forms 

one logical step within a process. An activity may be a manual activity, which does not 

support computer automation, or a workflow (automated) activity. A workflow activity 

requires human and/or machine resource(s) to support process execution; where 

human resource is required an activity is allocated to a workflow participant.” [1].  

Figure 2.1 shows an example of an activity based workflow of a manufacturer who 

exports his goods to overseas market. Vendor is an overseas exporter. The Vendor waits 

for advance payment from a customer, and starts the manufacturing process after 

getting advance payment. After manufacturing goods the vendor issues a commercial 

                                                           

1
 Although, by definition, workflow has a more technical orientation and business process is more 

business oriented, the terms workflow, workflow process and business process are used interchangeably 

in this thesis. 



Chapter 2: Workflow  

   11 
 

invoice represented as Invoice, carries out factory inspection as an in-house procedure 

and produces an inspection certificate represented as InspCert and sends it to the 

customer. It waits for the customer’s request for making shipment arrangement and 

after getting the request it makes shipment and insurance arrangement. When the 

shipment and insurance arrangement is done, the vendor sends the generated insurance 

certificate and commercial invoice to the customer. This is just a hypothetical workflow 

to explain the idea of activity workflow. Every logical step in the workflow is an 

activity e.g. Goods Manufacture or Factory Inspection. The links between the activities 

shown by the solid lines represent the sequential order between the activities. The 

dotted lines represent the data dependencies between the activities.  

 

Figure 2.1 Activity based workflow of a vendor (taken from [24]) 

While activity based workflow is based on events (activities) and deals with the 

transition and data transfer among the events; the entity-based workflow is centred on a 

single entity, for instance a document which has an associated state and a set of possible 

transitions to new states, provided certain conditions are met [22]. In an activity based 

workflow, all the activities are explicit while in entity based workflow the activities are 

implicit to the states and based on role/permission mapping. In a given state, authorized 

actors can do certain actions on the entity. An actor is a user or a group of users in an 

organisation.  Once an actor is satisfied, he can choose one of the available transitions 

to a new state.  

Figure 2.2 shows an example of an entity based workflow of passing a legislative bill. 

In the private state only the creator of the bill can view it, in the public state the bill is 

presented to the public for voting, in the voting state the legislators can vote and in the 



Chapter 2: Workflow  

   12 
 

final review state the executive can review the bill. The bill is either vetoed or ratified 

by the executive. If the bill is rejected by public or legislative assembly, a new bill has 

to be created. 

 

Figure 2.2. An entity based workflow for passing a legislative bill (taken from [22]) 

The proposed research uses activity based workflow model because it is the most 

widely used model adopted by most commercial and open source products like IBM’s 

WebSphere MQ Workflow and Enhydra’s Shark [24]. Entity based workflow has only 

been discussed for completion purposes and will not be considered further in the thesis. 

A workflow
2
 definition is a series of activities linked by control flow, on which data 

flow rests. Control flow is specified as the transitions between the activities [25]. To 

have correct control dependencies between activities in workflows, both the sequential 

order and data dependencies should be considered.  At run time, the workflow engine 

instantiates and triggers activities following sequence specified in control flow.  Data 

flow is maintained by the Workflow management system (WfMS) in the form of 

transferring workflow relevant data between activities. The data is accessible to 

                                                           

2
 The thesis uses workflow to refer to activity based workflow in the rest of the thesis. 



Chapter 2: Workflow  

   13 
 

applications and exchangeable between the WfMS and applications. In figure 2.1 the 

vendor should receive advance payment before manufacturing goods, so Advance 

Payment[r] must be performed before Goods Manufacture. This control dependency is 

specified in the workflow as a sequential order. Similarly Insurance Arrangement has a 

data dependency on Issuing Invoice since it needs Invoice as input. Therefore, the 

activity Issuing Invoice must be performed before Insurance Arrangement. Similarly in 

Figure 2.2, the legislative body cannot vote for the bill, until it has been passed by the 

public. And the passed bill should be passed from the Public state to the Voting state in 

order to vote over the bill. So there is a control and data dependency between Public 

and Voting states. 

WfMS is needed to define, create and manage activity based workflows [1]. It enables 

us to take full advantage from the workflow technology. The following section 

discusses WfMS; gives the functional areas in which a WfMS provides support and 

presents its key features. 

2.4 Workflow Management Systems 

A workflow management system is “a system that defines, creates and manages the 

execution of workflows through the use of software, running on one or more workflow 

engines, which is able to interpret the process definition, interact with workflow 

participants and, where required, invoke the use of IT tools and applications” [1]. A 

WfMS provides support in the following three functional areas [26]. 

 At build time to define and model the workflow process and its constituent 

activities. 

 At run time to support the modelled workflows in an operational environment 

and take care of the data and control flow. 

 At run time to interact with user or external IT applications.  

The key features of WfMS are summarised in the Figure 2.3. 

A WfMS can be classified as production WfMS, administrative WfMS, collaborative 

WfMS or adhoc WfMS [27]. A production WfMS is used for automating complex and 

repetitive activities. They are mainly used for processing large number of similar tasks 



Chapter 2: Workflow  

   14 
 

to improve productivity. An administrative WfMS is used to automate administrative 

tasks where flexibility and human interaction are more important than productivity. A 

collaborative WfMS is used for the automation of business-critical processes where 

teams of different size communicate either directly or over the internet. Frequent 

changes occur to the business process in collaborative teams. Collaborative teams are 

collaborating and contributing teams of different sizes, communicating with each other 

either directly or over the internet. The ability to handle change requests and 

communicate effectively, are the success factors for a collaborative WfMS.  An Adhoc 

WfMS is used for automating business processes that are based on unstructured 

information. Such processes should be created quickly and modified on the fly to adapt 

to new situations. An adhoc WfMS supports business processes for the routine work 

and its major success factors are flexibility and adaptability. Most widely used WfMS 

products are given in Appendix B. 

 

Figure 2.3. Key Features of WfMS (adapted from [26]) 



Chapter 2: Workflow  

   15 
 

Workflow Management systems make the definition, creation and execution of 

workflows efficient and easy, and thus it helps in saving time and resources. But with 

the introduction of web services, there has been a higher demand for reusability. Also, 

due to the very heterogeneous and dynamic nature of business on internet, the chances 

of changes to the workflows of business organisations are very high. Therefore, the 

organisation will have to remodel and adapt their workflows very frequently. Workflow 

modelling and workflow adaptability is a highly time and resource consuming task. An 

organisation whose workflow is changed will have to model new activities, fix the 

control and data dependencies in the workflow and make sure that the workflow 

remains acceptable to the collaborating organisations as well. Therefore, in recent 

research, the focus has shifted from statically modelling workflows to automatic 

workflow generation. Automatic workflow generation enhances reusability by using 

web services. It enables the business organisations to save the time and resources spent 

on modelling and adapting workflows by generating workflows automatically from the 

process definitions of the organisations. The next section discusses automatic workflow 

generation in detail. 

2.5 Automatic Workflow Generation 

Automatic workflow generation refers to the creation of workflows from high level 

goals and OWLS process definitions of organisations. Automatic workflow generation 

is an AI planning problem [8]. AI Planning is a problem solving technique where an 

agent identifies a solution from an abstract set of possible plans, based on its knowledge 

about available actions and their results [28]. An agent is a computer system that can 

work without direct human intervention, interact with other agents, perceive 

environment and take initiative [29]. 

Web services composition enables the automatic generation of workflows.   Since AI 

planning identifies an execution plan that reaches the goal state from initial state, given 

goal and initial states; web services can be orderly organized in a workflow to support 

the execution plan. If each web service is treated as an activity of the workflow, the 

generated plan can be treated as a workflow and the web service composition problem 

can be treated as automatic workflow generation problem [9].  



Chapter 2: Workflow  

   16 
 

In web service composition, the planning system requires formal domain ontology for 

planning. Domain ontology refers to the formal representation of the environment 

where the planning takes place, the operators that operate in the environment and all 

states that can change in response to an operator’s action [8]. It models a specific 

domain and represents the meaning of terms as they apply to that domain.  A web 

service composition environment is primarily a collection of web services, so the 

ontology is in the form of web services descriptions.   

OWLS is a language for describing web services [2]. It is used to describe the 

functionality, access point and execution mechanism of web services. In OWLS, each 

service is modelled as a process [13]. A process can be atomic, simple or composite. 

Atomic process represents a single-step directly executable web service; simple process 

is an abstraction of an atomic process or a composite process; composite process 

represents a compound web service which can be decomposed into atomic web 

services. OWLS is a set of ontologies and OWL-S process ontology describes web 

services composition based on ‘action’ or ‘process’ metaphor. It describes simple tasks 

as simple actions or simple processes and complex tasks as composite actions or 

composite processes. This similar way of modelling makes it possible to translate 

OWL-S web services descriptions to AI planning domains [13]. 

Both web services composition
3
 and automatic workflow generation are AI planning 

problems [8, 9]. If S is the set of all possible states in the world, So⊂S is the set of initial 

states, G⊂S is the set of goal states, A is the set of actions the planning system can 

perform and Γ ⊆ S × A × S is the translation relation defining the preconditions and 

post-conditions of the actions; AI planning can be described as a five-tuple problem〈S, 

So, G, A, Γ〉[30]. In terms of web services, So is the set of initial states and G is the set 

of goal states specified by the web services composition requestor, A is the set of all 

available services and Γ is the set of all changes brought about by the operations of all 

services [30]. This means that for a set of available services, initial states, goal states 

and set of preconditions and effects of the available services; AI planning can be 

                                                           

3
 In this thesis automatic workflow generation and web services composition are used interchangeably, 

assuming that every activity in the workflow is a web service (modelled by an OWLS process). 



Chapter 2: Workflow  

   17 
 

applied to web services composition problem [8, 9, 13, 31, 32]. A theorem has been 

presented and proved in [13, 31, 32] to formally state the web services composition as 

an AI planning problem. If TRANSLATE-PROCESS-MODEL(K) represents the 

method to translate a set K of OWLS processes into SHOP2 domain D, the theorem is 

as follows [13, 31, 32]. 

“Let K = {K1,K2, . . . ,Km} be a collection of OWL-S process models, C be a 

possibly composite process defined in K, S0 be the set of initial states, and P = 

(p1, p2, . . . , pn) be a sequence of atomic processes defined in K. Let D = 

TRANSLATE-PROCESS-MODEL(K). Then P is a composition for C with 

respect to K in S0 iff P is a plan for planning problem (S0, MC, D) where MC is 

the SHOP translation for process C.”  

In this thesis, both web service composition and automatic workflow generation refer to 

arranging web services modelled by OWLS processes in the correct order to create a 

workflow of web services to achieve a desired goal. Given a high level description of a 

goal, a planner will reason about all available services in terms of their capabilities; a 

required service that can achieve the desirable state will be identified and added into a 

workflow; executing the workflow will result in the state specified by the goal [8].  

2.6 Existing Approaches and Systems for Workflow Generation  

The following text gives a review of some of the automatic workflow generation 

approaches and systems. 

In 2003, Sirin et al. [14]created a semi-automatic web services composition system. 

Their system enables users to select from a list of web services at each step of 

composition. The user starts the composition process. He/she selects one of the services 

registered to the system and the system then checks for web services that can satisfy 

inputs of the selected service. The system presents the web services that can satisfy the 

inputs of the selected web service to the user and the user selects one of them to add in 

the plan. The system then checks again for web services that satisfy inputs of the most 

recently added web service. The process continues until the composition completes. 

The system filters the web services based on the constraints specified by the user on the 



Chapter 2: Workflow  

   18 
 

attributes of the web services. This system is not a fully automatic system and the user 

has to get involved at every step. 

In 2004, Sirin et al. [13] extended their semi-automatic web service composition system 

to a fully automatic system. They implemented an OWLS-SHOP2 translator to translate 

collections of OWLS process definitions into SHOP2 domain. They provided a sound 

and complete algorithm for the translation. The translation mechanism translates atomic 

processes into operators and complex processes into methods. The SHOP2 planner then 

uses the created domain to produce a valid plan according to the constraints entered by 

the user and imposed by the relevant web services. The user can accept or reject a plan 

and user can also re-plan with a new set of constraints. The generated SHOP2 plan is 

converted to OWLS format by SHOP2toOWL plan converter, and executed by the 

Execution System.  

The system presented in [13] has been used as a foundation for the research presented 

in this thesis. Although this system is able to automatically generate workflows from 

the process definitions of an organisation, it aims to plan for a single organisation only 

and does not aim to support collaboration among multiple interacting organisations. 

This means the system cannot generate compatible workflows for multiple 

organisations collaborating together. In a multi-organisational collaboration scenario, 

the system will create workflows for each organisation individually and then the 

collaborating organisation will have to reconcile the workflows among themselves, 

which requires time and resources. 

Transplan [17] is another web services composition system which creates plans from 

OWLS process definitions to achieve high level goals given by users. Transplan uses 

SHOP2 for planning. Transplan uses the translation algorithm presented by Sirin et al. 

[13] to translate OWLS process definitions to SHOP2 domain descriptions. Transplan 

can create all possible plans in most of the cases. Transplan adds the preconditions of 

each operator into the respective delete list of the operator, which is not always true in 

the real world domains. Transplan also does not support collaboration between multiple 

organisations. Transplan is not a complete system and it can fail to create a plan in 

certain scenarios, even though creating a valid plan is possible. One possible scenario is 

when a plan has two or more branches. If trying the first branch does not lead to a valid 



Chapter 2: Workflow  

   19 
 

solution, Transplan does not try the second branch even though it might lead to a valid 

solution. 

Wang et al. [33] also presented a system for inter-organisational workflow coordination 

and dynamic workflow composition. They extended dynamic flexibility to the 

workflow runtime execution stage. Initially dynamic flexibility was only targeted at the 

design stage.  They used intelligent agents for dynamically composing workflows and 

negotiating web services over the net. Intelligent agents are autonomous problem 

solving entities that take the state of their environment as input and act on the 

environment to fulfil certain role [34]. They used intelligent agents to discover, execute 

and monitor web services. Wang et al. used workflow ontology for representing tasks 

and their relationships. They used an ontology reasoning tool to do the coordination 

planning, maintain the ontologies and do the decomposition from upper level abstract 

ontologies into the lower level service ontologies. They targeted inter organisational 

coordination from the perspective of a single organisation which deals in a 

heterogeneous environment with adhoc external processes. Wang et al. did not take the 

creation of compatible workflows for multiple organisations into account. The 

complexity and scalability of the system is not fully known. Also, human operations are 

needed in complex scenarios and incomplete workflows. 

Casati et al. [12]  presented a platform named EFlow to specify, enact and manage 

composite services. A graph represents the order of tasks in the composite process. The 

creation of the graph is static, but it can be modified dynamically. The graph is made up 

of service, event and decision nodes. Service nodes represent atomic or composite 

processes, decision nodes represent execution flow and event nodes represent sending 

and receiving several types of events. The dependency between the nodes is represented 

by arcs in the graph. Each time a service is activated, a search recipe in the service node 

is executed. The search recipe returns a reference to the specific service, which it binds 

to. This is done because in the dynamic internet environment the availability of services 

may change any time. Casati et al. [35] developed a composite service definition 

language (CSDL) to further enhance the service composition platform by introducing 

various dynamic and adaptive features. The language has a unique capability of 

differentiating between invocation of a service and operation with in a service. Service 

nodes in CSDL specify the aspects of business logic specific to the services i.e. the 



Chapter 2: Workflow  

   20 
 

search recipe and service invocation. Method nodes represent methods to be invoked on 

services, their input data, output data and the way the output should be handled. Thus 

every node only holds its relevant logic and does not have access to the business logic 

that is irrelevant to it. 

 SWORD [16] is a developer toolkit which uses a rule based plan generation for 

building composite web services, and Entity-Relation (ER) model to specify the web 

services. Model is a world that represents entities and their relationships. Entities are 

modelled by Horn rules which specify that the post-conditions are achieved if the pre-

conditions are true. The service-requester specifies the initial and final states for the 

composite service, and the rule-based expert system creates a plan that achieves the 

final states given the initial conditions are true. Ponnekanti and Fox [16] argue that to 

produce “certain” results a precondition should uniquely determine a post-condition. 

This means that the post-conditions should be functionally dependent on the pre-

conditions to avoid uncertain results. This might be the case with the vast majority of 

web services composition systems [30]. 

McIlraith et al. [10, 11] used a modified version of ConGolog for web services 

composition. ConGolog is a variant of Golog Language, having the ability to support 

concurrency. Golog is a language built on the top of situation calculus providing extra 

logical constructs. In this approach, an atomic service is considered as a primitive 

action which changes the state of the world or knowledge of the agent. A composite 

service is considered as a complex action which is composition of primitive actions. An 

agent reasons about web services to discover, execute, compose and inter-operate web 

services. The users can introduce their own constraints and sequence choices. The 

agents use procedural programming language concepts combined with concepts 

designed for web services, to represent composition of web services. 

The common problem with all the above systems is that all the above reviewed systems 

target the automatic generation of workflows for single organisations only. Their 

ultimate aim is to make the generation and execution of workflows time efficient and 

resource efficient in the context of a single organisation. They do not target the 

generation of compatible and interoperable workflows for multiple collaborating 

organisations. The only framework so far which targets the generation of compatible 

workflows for multiple collaborating organisations is presented by Saleem et al. [36]. 



Chapter 2: Workflow  

   21 
 

They presented a framework that uses intelligent agents to create compatible workflows 

for multiple interacting organisations. The presented framework uses SHOP2 for 

planning. The framework translates the OWLS process definitions of each interacting 

organisation into SHOP2 domain description using the translation algorithm presented 

by Sirin et al. [13]. An instance of intelligent agent is created for every organisation, 

which works on behalf of the respective organisation. Each agent has its own instance 

of SHOP2. Intelligent agents collaborate with each other, before adding new steps in 

the workflows of the interacting organisations. Any step that makes the workflow 

incompatible with the workflows of interacting organisations is discarded by the agents, 

and a new step is tried. An algorithm for checking the compatibility of the interacting 

workflows is also presented. The problem with this framework is that it does not 

present any proof-of-concept prototype, nor is there any results and evaluation 

available. Only architecture of the framework has been presented. It is not known 

whether this is a feasible and practical approach, since the coordination among agents 

before adding every step will lead to very intensive communication among the 

intelligent agents. 

2.7 Conclusion 

In real business environment, with ever increasing demand for business process 

automation, business process of one organisation is likely to interact with business 

processes of other organisations. Therefore, there is a need for automatic cross 

organisational business process collaboration; otherwise, business process automation 

will be confined within the boundaries of individual organisations.  Since workflow 

technology is used for business process automation hence there is a need for cross 

organisational workflow collaboration. Based on the need for cross organisational 

workflow collaboration, Chapter 3 focuses on cross organisational workflow 

collaboration and reviews ways for bringing about collaboration among interacting 

workflows. 

The existing automatic workflow generation systems automatically generate workflows 

for single organisations only and do not cover the generation of compatible workflows 

for multiple organisations. This dilutes the benefit of automatic workflow generation, 

since after automatic generation of workflows; the collaborating organisations have to 



Chapter 2: Workflow  

   22 
 

make sure that their workflows are compatible with each other. Hence, there is a need 

for an automatic system, which can enable the generation of compatible workflows for 

multiple collaborating organisations. This thesis proposes such a system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Workflow Collaboration 

   23 
 

Chapter 3: Workflow Collaboration 

3.1 Introduction 

Business organisations interact with other organisations in order to achieve their goals. 

With the increase in demand for business process automation, organisations are faced 

with a new kind of business collaboration. The automated business processes of 

organisations need to collaborate with one another to achieve their goals. For any two 

organisations to proceed in business, their workflows should be acceptable to each other 

[3]. If the workflows are not acceptable to each other then they need to be reconciled at 

build time so that at runtime the workflows can collaborate with each other to ensure 

that the exchange of information and files between the workflows occur smoothly, and 

the execution of the workflows go hand in hand to completion. The build time and 

runtime collaboration between the workflows of multiples organisations is called cross 

organisational workflow collaboration. Cross organisational workflow collaboration is 

an active research area and a lot of work has been done in this field recently.  

Section 3.2 discusses cross organisational business collaboration and workflow 

collaboration, Section 3.3 presents a detailed example of business collaboration, Section 

3.4 outlines different definitions and concepts related to workflow compatibility, 

Section 3.5 reviews existing work on build time and runtime workflow collaboration 

and Section 3.6 concludes the chapter. 

3.2 Cross Organisational Business Process/Workflow Collaboration 

Business collaboration refers to multiple enterprises working together to achieve a 

business goal [37]. Such a goal can be a short term opportunistic goal or a long run 

strategic goal. A common collaboration scenario in the business world is the 

vendor/customer interactions with an opportunistic goal in pursuit of cashing in on a 

deal [38]. Since business practices are carried out in the form of workflows hence there 

is a great potential for cross organisational workflow collaboration.  

Collaboration has to be carried out in two stages, i.e. build time and runtime. At build 

time business processes of business partners are checked for compatibility. In cases 



Chapter 3: Workflow Collaboration 

   24 
 

where there are conflicts they are negotiated and reconciled [39]. Manual collaboration 

can be very time consuming. In addition, an organisation could be collaborating with 

many different organisations and negotiating workflow compatibility with many 

different can be very challenging.  Therefore automatic support services are needed for 

collaboration.  

For any two business partners to proceed in conducting B2B e-commerce transactions, 

their workflows involved in the transactions must be compatible with each other at the 

business level [3] i.e. they have a commonly agreed sequence of exchanging 

collaborative messages and information. Collaborative messages can be a business 

object like a purchase order or a service invocation request. The point where exchange 

of collaborative messages and information takes place between two interacting 

workflows is called interface activity [4, 40]. The set of all interface activities in a 

workflow is called interface process. Section 3.4 defines workflow compatibility and 

discusses its relevant concepts in further detail.  

Collaborative systems are physically distributed and logically decentralised [41]. At 

runtime the task is to deliver all locally created messages correctly to business partners. 

Individual processes should be enacted as if they are running in an organisation’s own 

environment and hence current workflow technology should be used as much as 

possible. Technical collaboration details need to be transparent to the WfMS’s 

enactment service. So the runtime requirement is to establish a collaboration service by 

providing a proper communication channel to fulfil the message exchange task while 

taking into account loosely coupled collaborative structure, operational autonomy and 

minimum efforts for adoption alongside current WfMS’s [39].  

The next section presents a detailed example of workflow collaboration.  

 3.3 Workflow Collaboration Example 

A common form of workflow collaboration is the Vendor/Customer scenario. Figure 

3.1 shows the workflows of a vendor and a customer collaborating with each other, and 

also models their interface activities. Figure 3.2 shows the extracted interface processes 

of the vendor and customer. This example has been taken from [24] with slight 

modifications. 



Chapter 3: Workflow Collaboration 

   25 
 

The vendor in this example is an overseas exporter. The vendor waits for the advance 

payment from a customer, checks the received payment and then starts the 

manufacturing process. After manufacturing the goods the vendor issues a commercial 

invoice represented as Inv, carries out factory inspection as an in-house procedure and 

produces an inspection certificate and sends it to the customer. The inspection 

certificate is represented as InspCert. It waits for the customer’s request for making 

shipment arrangement. After getting the request it sends the commercial invoice to the 

customer and makes shipment and insurance arrangement. When the arrangement is 

done the vendor sends the insurance certificate and bill of lading to the customer, and 

applies for a certificate of origin to the local authority. The bill of lading is represented 

by BL. The vendor then sends the certificate of origin to the customer. The vendor waits 

for the payment for the invoice and the process completes after handling the payment.  

The customer is an overseas importer. Customer sends advance payment to the vendor 

and waits for the inspection certificate which is a proof of quality of the goods. It 

reviews the inspection certificate and if satisfied then it produces and sends shipment 

arrangement request to the vendor. The request is represented by SA. After receiving the 

commercial invoice, bill of lading and insurance certificate, the customer takes delivery 

of the goods, carries out a presale inspection and waits for the certificate of origin. The 

customer needs the commercial invoice and bill of lading to get goods from the 

shipping company. Certificate of origin is required to get an import permit from the 

local authority. After receiving the certificate of origin the customer approves payment 

and sends full payment for the invoice to the customer. 

In Figure 3.1 and 3.2, the interface activities of the vendor are labelled as a_r, b_s, c_r, 

d_s, e_s, f_s, g_s and h_r. The interface activities of the customer are labelled as a_s, 

b_r, c_s,  d_r,e_r, f_r, g_r and h_s. An activity name followed by “_s” or “_r” means it 

is a sending or receiving activity respectively in the collaboration process. These are the 

points where exchange of collaboration message, information and files takes place 

between the vendor and customer. 



Chapter 3: Workflow Collaboration 

   26 
 

 

Figure 3.1 Workflow of Collaborating Vendor and Customer (adapted from [24]) 



Chapter 3: Workflow Collaboration 

   27 
 

 

Figure 3.2 Interface Processes for Vendor and Customer 

3.4 Workflow Compatibility 

Any two workflows are compatible if they have a commonly agreed sequence of 

exchanging collaborative messages and information [3]. There can be various criteria 

for compatibility. Some of them are strict while others are relaxed. [4] defines two 

forms of compatibility. 

Definition 1 Absolute Compatibility: Two collaborative workflows are absolutely 

compatible if: 

 Interaction points are modelled as interface activities,  

 All interface activities for the two workflows are paired,  

 Message delivery takes place through a communication channel, 

 The sequence of interface activities of both workflows is exactly the same. 

This is a very strict criterion and there is a huge cost attached to achieve this. A less 

strict criterion is enactable compatibility [4]. 

Definition 2 Enact-able Compatibility: Two collaborative workflows are enactable 

compatible if:  



Chapter 3: Workflow Collaboration 

   28 
 

 The first 3 conditions of absolute compatibility are met, and  

 The sequence that interface activities occur in both workflows does not cause a 

deadlock in message exchange.  

As enactable compatibility is too relaxed, so its effectiveness is not always guaranteed. 

For example, consider the interface processes A and B as shown in Figure 3.3. Although 

both processes are enactable compatible, A.g_r has to wait for the message g until 

activity B.g_s is completed. The wait could be considerable which might not be 

acceptable to A. 

 

Figure 3.3 Enactable compatibility might cause unnecessary delay (taken from [4])  

[42] defines another type of compatibility. 

Definition 3 Business Collaborative Compatibility: Two collaborative workflows are of 

business collaborative compatible if:  

 The first 3 conditions of Absolute Compatibility are met and,  

 The workflows have at least one common path, i.e. one common sequence of 

corresponding interface activities.   

Business collaborative compatibility leads to a more efficient collaboration as compared 

to enactable compatibility, since enactable compatibility allows collaboration whenever 



Chapter 3: Workflow Collaboration 

   29 
 

there is no deadlock in the sequence of interface activities, while business collaborative 

compatibility allows collaboration only when there is an agreed and similar sequence of 

interface activities after traversing all possible sequences. The common trace guarantees 

that successful collaboration can take place as corresponding activities on a common 

trace will always be reached by both interface processes in a timely manner, and hence 

no collaborative message will be left unattended. 

Any incompatibilities between the workflows of two interacting business organisations 

have to be reconciled before collaboration can take place [39]. Reconciliation can be 

done in two ways [7].  In the top-down approach, people meet and discuss and design 

collaborative process and then implement it locally. This is a very time consuming 

process especially when the organisation has many business partners, as manual 

negotiations have to be carried out with all business partners. The negotiations with all 

business partners have to be repeated after any changes to the workflow of the 

organisation. In the bottom-up approach, collaborative processes are extracted from 

partner organisations and are compared to identify incompatibilities and are adjusted to 

make them compatible. Negotiation is a way to remove conflicts between workflows. In 

the collaboration context conflicts are the differences in the interface processes of two 

organisations that make them incompatible. Conflicts result from dissimilarities and 

dissimilarities can be structural or behavioural [4]. Structural dissimilarity is the 

difference between two digraph representations of interface processes. Behavioural 

dissimilarity is the difference captured after traversing every possible flow trace [4]. 

The process of negotiation involves [43-47].  

 Two partners with their respective interests come together with the intention of 

reaching some agreement.  

 They identify their conflicts (if any) through communication.  

 Partners try to reconcile the conflicts by using a range of strategies such as 

concession making, contending, problem solving, inaction, withdrawal [48] or 

exploration of mutual gains [49]. 

 If reconciliation is successful, an agreement is reached. Agreement could either 

be in favour of one partner or it can be a win-win situation. 



Chapter 3: Workflow Collaboration 

   30 
 

In the negotiation process, two core principles should be observed [50]:  

 Negotiation is a voluntary activity. Any party can break out at any time. 

 A win-win situation is a successful outcome where both partners are satisfied.   

A lot of work has been done on collaborating workflows of interacting organisations, 

both at build time and runtime stages. The next section reviews selected build time and 

runtime collaboration systems and approaches; their benefits and shortcomings are 

discussed and research issues which current collaboration systems fail to address are 

identified.  

3.5 Existing Work on Workflow Collaboration Approaches/Systems 

Workflow collaboration should be tackled both at build time and runtime. Existing 

work on build time and runtime workflow collaboration is reviewed in this section. 

3.5.1 Existing Work on Build time Workflow Collaboration 

Most of the work on cross organisational workflow collaboration in the literature deals 

with build time collaboration. At build time the workflows of collaborating 

organisations are checked for compatibility. If they are incompatible then they are 

reconciled accordingly. The earlier research focuses on finding a common sequence of 

activities in existing workflows [51]. This is normally done through manually 

discussing the business processes and reaching an agreement [5, 52]. The more recent 

research has targeted reconciling existing incompatible workflows [39, 53].  The 

reconciliation, if successful, leads to compatible workflows.  

RosettaNet is a consortium of major electronic companies. RosettaNet provided the 

Partner Interface Processes (PIPs) standard which defines a broad set of supply chain 

processes and data elements [54]. PIPs also defines common interface tasks for supply 

chain collaboration; each organisation is allowed to plug in their internal processes 

within the interface processes.  Compared to a single concrete workflow modelling 

approach, the abstract partner interface process approach makes the workflows of the 

collaborating organisations less dependent on each other [24]. In the concrete workflow 

modelling approach the workflows of all collaborating organisations and the 



Chapter 3: Workflow Collaboration 

   31 
 

coordination process between them is treated as a single workflow spanning across 

organisational boundaries [24].  

Schulz and Orlowska [5] proposed a three tier cross organisational workflow model i.e. 

coalition workflow, workflow view and private workflow. Coalition workflows are 

constructed on the basis of agreement reached among the business partners. Coalition 

workflows contain abstract services. Partners form workflow views by choosing tasks 

from the coalition workflows which they want to implement privately. Based on the 

coalition workflow, relationships between the chosen tasks are obtained. Workflow 

views contain abstract processes, known to the interacting organisations, outsourcing 

their implementation to private workflows. Routing activities like splits and joins are 

added to the workflow views. Private workflows are known to its owning organisations 

only. The workflow views and private workflows are connected through state 

dependencies. New private workflow could be developed or existing private workflows 

can be reused. This model requires interacting partners to meet and reach agreement 

before the workflow collaboration can be implemented. This is a highly time 

consuming process especially when an organisation has to do business with many 

partners. This model focuses on structural and control flow aspects of workflow, and 

does not deal with runtime data dependencies.  

Aalst [52] came up with an approach that uses Message Sequence Charts to capture the 

communication structure in cross organisational workflows. Message Sequence Charts 

is a graphical language that can be used for the visualisation of communication between 

systems and processes.  Aalst used workflow nets (WF-nets) for modelling workflows. 

WF-net [55] is a kind of Petri net in which tasks are modelled by transitions, and  arcs 

are used to model dependencies. Aalst applied a three step Public-to-Private approach 

to inter-organisational workflows. In the first step, the partner organisations agree on a 

common public workflow; in the second step, the common public workflow is divided 

over the interacting organisations; and in the third step, the organisations create their 

private workflows autonomously. To ensure that the overall inter-organisational 

workflow is correct, a notion of inheritance is used. Each private workflow should be a 

subclass of the public workflow. Aalst developed an analysis tool named Woflan to 

verify the correctness of the workflow definitions. 



Chapter 3: Workflow Collaboration 

   32 
 

Krukkert [51] proposed a solution in the openXchange project. Two activity diagrams 

are taken as input and compared to find out all common execution sequences. If any 

common sequence is found then a common activity diagram is constructed for 

collaboration. The enactment stage is not considered. The approach assumes all 

activities to be atomic and represent activity diagrams as state transition systems [56]. 

This is done to eliminate the parallel structures in activity diagrams [24]. For the 

solution to work there must be a common activity sequence in the workflows or activity 

diagrams of the participating organisations. If a common sequence is not found then 

collaboration cannot proceed. To target this problem, a mechanism to reconcile the 

conflicts in the activity sequence is needed. 

Byde et al. [53] developed a negotiation framework which claims to conduct automatic 

negotiation over business to business (B2B) processes. A unified process is created 

from the processes of the collaborating organisations; the unified process is compared 

to individual processes to detect any differences and the cost required to remove those 

differences. The framework suggests adjustments to each party to remove 

incompatibilities. Although Byde et al. claim that the system can negotiate and 

reconcile incompatible workflows, on a closer look it is actually an extension of an 

approach presented by Aalst [52, 57] that can only reconcile differences in activity 

content [24]. The issue with the approaches put forward by Aalst and Byde et al. is that 

both these approaches only target differences caused by different activity content. Any 

difference regarding activity sequence is considered irreconcilable. Also, the techniques 

used to find the differences between the workflows have not been described. 

Chen and Chung [39] presented an approach  for reconciling existing workflows to 

bring about compatibility and support runtime execution. A software collaboration 

agent extracts the interface processes from two workflows that are intending to work 

together and gives an offer to a candidate provider which evaluates the offer and creates 

a counteroffer. The partner then either accepts or rejects the offer. The process of offer 

generation, counter-offer generation, acceptance and rejection goes on iteratively till 

negotiation is terminated or reconciliation is achieved. If compatibility is attained then 

the partners move on to enacting their workflows.  This framework provides computer 

support for the reconciliation process and saves time and resources for the 



Chapter 3: Workflow Collaboration 

   33 
 

organisations. However, the organisations are still involved in accepting or rejecting the 

offers and counteroffers during the reconciliation process.  

3.5.2 Existing Work on Runtime Workflow Collaboration 

Since workflows need to be executed, only build time collaboration is not enough. 

There needs to be runtime collaboration so that the transfer of files and information 

happens smoothly and the sequential, parallel or branching navigation of cross 

organisational activities are properly followed.   

One way to achieve this is to treat business partners as workflow participants and 

expand the standalone centralised enactment service across the organisational 

boundaries, as discussed in [24]. In this situation business partners will need to share 

private data, common process definition and a centralised workflow engine. This 

approach couples the business partners very closely and it is also a very expensive and 

rigid approach. Sub-flow invocation mechanism is another alternative in which a 

chained process is started and all the nested sub-flows in the hierarchical workflow are 

completed [24]. This approach suits hierarchical workflows and requires workflow 

management systems and process definition language to have sub-flow invocation 

mechanism. This is a technically feasible approach but it is not practically viable. 

Chen and Hsu [58] proposed a system to collaborate cross organisational process 

execution which is called  Collaborative Process Manager (CPM). All interacting 

partners have a copy of the cross organisational workflow which is distributed to them 

at runtime. Each organisation is responsible for executing its own activities in the 

workflow through its local workflow engine. The organisations recognise their 

activities on the basis of role matching. Each organisation informs the interacting 

organisations about its progress, so that they can be prepared for the subsequent 

activities. The communication between partners is done through message passing with 

the relevant data. CPM targets distributed runtime environment and has a single global 

view of the workflow so collaboration management is quite straightforward [24]. The 

problem with this approach is that it assumes all interacting organisations run 

compatible workflow engines, which is not always the case in the real business world. 

This approach also needs common workflow specification languages to be extended to 

include collaborative process definition.  



Chapter 3: Workflow Collaboration 

   34 
 

Chen and Chung [59] developed a bottom-up cross organisational workflow enactment 

approach. The approach is WfMS independent and the enactment is done via 

progressive linking enabled by run-time agents. To ensure that the control flow, data 

flow and communication aspects of cross organisational workflows are addressed 

properly, the concept of interaction point is introduced. Each interaction point is 

modelled as interface activity and agents make sure that outgoing data and incoming 

data are delivered to the corresponding activities accordingly. A form filling approach 

is used to ensure this. The corresponding agents complete a form with activity ID, 

interaction identifier and other relevant data and attach any required documents to the 

form, after an interface activity is executed. The form represents the progress of 

interoperation and can be used for historical record. It is assumed that the cross 

organisational workflows to be enacted are already compatible as compatibility issue 

would have been dealt with using the method described in [39].  

Biegus and Branki [60] proposed an agent based framework named InDiA for 

interoperability between heterogeneous workflows. They used an extended process 

definition language to define a coordination dialogue. The centrally defined dialogue is 

then sent to all interacting organisations. In the dialogue, messages are arranged in the 

form of request-response pair. A message is either a termination message called final, 

which terminates the dialogue, e.g. acceptance or rejection messages; or a non-final 

message which requires a response, e.g. enquiry, request for amendment etc. Whenever 

there is an interaction point in the workflow execution, the coordination dialogue is 

referenced. For a sending activity, the activity requests the dialogue agent to deliver the 

message. A dialogue agent checks whether the message follows the dialogue flow and, 

if so, delivers the message. For a receipt activity, the dialogue agent checks the message 

flow and receives the message.  The problem with InDiA is that it only allows one 

organisation to send a message at a time. This means if Organisation 1 sends a message, 

Organisation 2 must receive the message before it can send any message. Also, partial 

results cannot be communicated between the workflows.  

The system presented by Wang et al. [33] for inter-organisational workflow 

coordination and dynamic workflow composition enables inter-organisational workflow 

enactment. They have extended the workflow compositional ability from build time to 

runtime. This means that in case of unexpected results, dynamic composition can be 



Chapter 3: Workflow Collaboration 

   35 
 

done at runtime to create an alternative workflow. The system is based on the 

integration of software agents, web services, and workflow ontology. At build time, 

agents work on the behalf of web services to build flexible interaction patterns while at 

runtime the web services solve the interoperability problems in the real world 

environment. The enactment and communication infrastructure is provided by web 

services and the coordination aspects are dealt with by the agents. The coordination 

agents manage, plan and coordinate the workflow while users and resource agents are 

used to perform tasks. Technically the discovery, deployment and communication 

aspects are provided by UDDI, WSDL and SOAP. BPEL4WS provides specifications 

for composition and enactment. The issue with the system presented by Wang et al. is 

that it is only able to enact the workflow of a single organisation which spans across 

multi-organisational boundaries. It can deal with the enactment of a workflow in a 

heterogeneous environment having adhoc external processes, but is not able to enact the 

workflows of two independent organisations collaborating with each other. 

The common issue with the discussed runtime systems is that none of the discussed 

systems is able to enact the compatible workflows of more than two independent 

collaborating organisations, while also taking advantage of the reusable and 

interoperable aspects of web services. 

3.6 Conclusion 

This chapter discussed key concepts related to cross organisational business 

collaboration with workflow management systems and reviewed current work. Some 

work has been done on creating compatible workflows using the top-down approach 

where the organisations first meet and negotiate the collaboration and then implement it 

locally. This is a very time consuming approach. 

The bottom-up approach tries to find common sequences in existing workflows. The 

problem is that if no common sequence is found then collaboration cannot proceed. 

Systems that support the process of reconciling existing workflows have been 

suggested. Although this approach saves time and resources, the collaborating 

organisations still have to get involved with the reconciliation process by analysing, 



Chapter 3: Workflow Collaboration 

   36 
 

accepting and rejecting adjustment offers suggested by the systems to bring about 

reconciliation. 

Workflow collaboration also needs to be dealt with at runtime so that the transfer of 

data and information takes place correctly and smoothly. Most of the existing work 

done on runtime collaboration uses message passing. 

The issues with existing workflow collaboration systems are: 

 Most collaboration systems require the users to get involved in the reconciliation 

process. 

 The automatic systems that identify common paths are very limited. 

 The systems cannot reconcile the workflows of more than two organisations at 

the same time. 

 Very few systems target both build time and runtime collaboration. 

To address these issues, Chapter 5 proposes a novel approach for automatic cross 

organisational compatible workflows generation, based on the idea of AI planning.  

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Planning Technologies 

   37 
 

Chapter 4: Planning Technologies 

4.1 Introduction 

As web services composition is an AI planning problem [9], its accuracy and efficiency 

depends on the planner used for planning. This chapter discusses major AI planning 

paradigms and reviews the suitability of different planning paradigms and their 

representative planners for the web services composition problem.  

Section 4.2 reviews different planning paradigms and their representative planners. 

Section 4.3 reasons about the suitability of these planners for the web services 

composition problem and defends the selection of SHOP2 as the most suitable planner 

for the proposed framework. Section 4.4 discusses the structure of the SHOP2 planning 

problem and Section 4.5 concludes the chapter. 

4.2 Planning Paradigms 

AI planning is a vast field and extensive research has been done to apply AI planning to 

web service composition [30, 61, 62]. The following sections discuss state-space based 

planning, graph based planning, partial order refinement planning, planning as 

satisfiability, planning as logic programming, planning with control knowledge and 

temporal planning. Representative planners from each planning paradigm are also 

discussed. 

4.2.1 State-Space based Planning 

State based planning aims to solve a problem by searching useful instantiations for 

operators in a state space, that result in the desired state [61]. A state space consists of 

finite set of states S, finite set of actions A, a transition function f describing how actions 

map one state to another, and a cost function c(a; s) > 0 which gives the measurement 

of cost associated with performing an action a in a state s [63]. A state model is a state 

space extended with initial goal s0 and set of desired goals SG [64]. 

State based planning can be forward state search (also called progression), or backward 

state search (also called regression). A progression planner, as the name suggests, starts 



Chapter 4: Planning Technologies 

   38 
 

at the initial state and searches for action instances that bring it closer to the goal, while 

a regression planner starts at the goal state and searches for action instances that bring it 

closer to the initial state. 

A solution of a state model is a sequence of actions a0, a1,…,an that results in a state 

trajectory s0, s1 = f(s0),…,sn+1 = f(an, sn) such that each ai is applicable in si  and sn+1 is a 

goal state, i.e., ai ∈ A(si) and sn+1 ∈  G [64]. 

The heuristic search planner (HSP) [65] is a state space based forward planner which 

uses Additive Heuristics hadd to guide a hill climbing search  from the initial state to 

goal state. At each step, the child node with minimal hadd value is selected and the 

process continues until the goal is reached. In successive work, Bonet and Geffner 

developed the HSP2 planner [66], which also employs hadd but uses best-first search 

[67]  instead of hill climbing search. Nodes are weighed by an evaluation function f(n) 

= g(n) + W * h(n), where g(n) is the accumulated cost, h(n) is the estimated cost of the 

goal, and W is a constant. Higher values of W mean faster plan search and lower plan 

quality [68].   

Another planner with heuristics is the fast forward (FF) planner [69]. It relies on 

forward search in state space, guided by heuristics that estimate goal distances using a 

relaxed problem, in which negative effects of actions are ignored. The number of 

actions in the solution to the relaxed problem is a goal distance estimate. The FF 

planner evaluates all successor states to find the state with a better heuristic value than 

the current state. This is basically breadth-first search to find a state with strictly better 

evaluation than the current state. This new local search strategy is called enforced hill 

climbing. The FF planner also uses the information from the planning graph to identify 

at each state those actions that have useful effects and prefers them over superfluous 

operators [69]. The concept is also called helpful actions. 

Metric-FF which is an advanced version of FF was presented in [70, 71]. It supports 

numerical state variables which can be used in numerical constraints in preconditions 

(e.g. count > 40) and in arithmetic operations in effects (e.g. cash- = 5). 



Chapter 4: Planning Technologies 

   39 
 

4.2.2 Graph Based Planning 

Blum and Furst [72] introduced a graph planning framework which formalizes the 

construction, annotation and analysis of planning graphs. In a planning graph, a plan is 

a flow in the network flow sense. A planning graph is a directed levelled graph with a 

layer of proposition nodes followed by layer of action nodes and so forth. Each layer is 

associated with a time step.  

Blum and Furst [72] introduced a planner named GRAPHLAN based on planning 

graphs. GRAPHLAN operates in two steps. In the first step it expands the graph until a 

level is reached where all propositions are present with no mutex relation between any 

pair. Two actions are mutex if they have inconsistent effect, competing needs or 

inference. Inconsistent effects occur when one action negates the effect of another 

action, inference occurs when one of the effects of an action negates precondition of 

another action, and competing needs occur when a precondition of one action is 

mutually exclusive with a precondition of another action. This phase is called graph 

expansion. The second step is the solution extraction phase and GRAPHLAN searches 

for potential plans in this phase. GRAPHLAN uses backward search algorithm for this 

purpose.  GRAPHLAN is only restricted to STRIPS operators and has no support for 

conditional and universal operators. If too much irrelevant information is contained in 

the specification of the planning task, performance can decrease drastically [73]. 

Koehler et al. [74] presented the interference progression planner (IPP) to handle 

conditional and universal operators. It is an extension of GRAHLAN planner. 

Removing Irrelevant Operators and Initial Facts from Planning Problems (RIFO) 

strategy [74] has been added to IPP planner to address GRPAHLAN problem of 

performance issues for planning tasks with irrelevant information. The authors show 

that the computational overhead for this additional functionality is negligible. STAN 

[75] is another planner based on GRAPHLAN, improving GRAPHLAN in time and 

resource efficiency. It uses bit vectors for internally representing preconditions and 

effects which is very efficient and allows for resource efficient representation of 

planning graphs. It carries out mutex checks between actions and facts using bit 

manipulation operations which, again, are very efficient. 



Chapter 4: Planning Technologies 

   40 
 

Sensory Graphplan SGP [76] is an extension to Graphplan that supports conditional 

effects, uncertain effects and uncertainty in initial situation [77]. It extends a separate 

planning graph for each possible world, keeps track of mutual exclusion across the 

worlds and searches backwards for a plan that works in all possible worlds. 

4.2.3 Partial Order Refinement Planning 

In partial order refinement planning, the nodes in the search space are formulated to be 

partial plans and not states, and the arcs are plan refinements. The planners based on 

partial order refinement planning are called Partial Ordered Planners (POP). POP 

planners are also called Partial Order Causal Planners (POCL). POCL planners produce 

partially ordered plans. In the plans produced, not all actions are in fixed order and a 

plan may have various linearisations. 

Chapman [78] presented the TWEAK system in 1987 based on partial ordered planning 

which could handle conjunctive and disjunctive preconditions and conjunctive effects, 

and he proved his system to be sound and complete. SNLP [79] is a more advanced 

planner and it uses the notion of threat and safety conditions.  UCPOP [80] supports 

actions that have conditional effects, universally quantified preconditions and effects, 

and universally quantified goals. Generally speaking POCL planners have been 

outperformed by planning graph and heuristic state space planners [61]. 

Nguyen and Kambhampati [81] introduced RePOP, which is a POP implementation 

using planning graph to compute an estimation of the cost of achieving a set of sub-

goals. RePOP has the ability to detect failing plans before they get selected for 

refinement. REPOP outperforms state based planners and also retains the flexibility of 

POP frameworks [82].  

The versatile heuristic partial order planner (VHPOP), presented in [83, 84] is a more 

recent advanced planner which use A* algorithm to search through the state space. The 

A* algorithm uses an evaluation function f(n) = g(n) + h(n), where g(n) is the cost of 

getting to n from the start node and h(n) is the estimated cost of reaching the goal node 

from n. The cost of a plan is equal to number of actions in that plan. VHPOP uses hadd 

heuristics and uses relaxed planning graph to extract data for hadd. VHPOP is able to 



Chapter 4: Planning Technologies 

   41 
 

handle durative actions by attaching time related (temporal) annotations to open 

conditions. In durative actions, time duration plays a key role.  

4.2.4 Planning as Satisfiability 

In this approach the planning problem is expressed as a reasoning problem for which 

problem solving algorithms exist. 

4.2.4 .1 Planning as Propositional Satisfiability 

Kautz and Selman [85] presented planning through satisfiability checking in which a 

planning problem is formulated as a set of axioms. Axioms are logical statements that 

are assumed to be true. The axioms have a property that any model of the axioms 

corresponds to a valid plan. This is achieved by crafting axioms that would remove 

actions that would result in anomalous models. Axioms are needed to ensure that 

actions whose preconditions are not fulfilled are ruled out. Axioms do not have 

quantifications or terms. All predicates take time step as a trailing argument. For 

example for the block world problem [86], to achieve on(B,A) from an initial situation 

on(A,B) ∧ on(B, Table), the planning problem can be expressed as [61]: 

on(A, B, 1) ∧ on(B, Table, 1) ∧ clear(A, 1) ∧ on(B, A, 3) 

Further, the preconditions of the move operator can be formalized as: 

∀x, y, z, i.move(x, y, z, i) כ (clear(x, i) ∧ clear(z, i) ∧ on(x, y, i))  

SATPLAN [85] and BLACKBOX [87] are planners based on this approach. 

BLACKBOX combines features from SATPLAN and GRAPHLAN.  

LGP system [88] and LGP-td [89] are also based on satisfiability checking but use a 

best-first search algorithm and planning graph for search heuristics. 

SAT based planners perform very competitively [90]. Since SAT based planners model 

states explicitly by attaching a time step to the end of all axioms and predicates, it is 

very easy to formulate requirements on states and thus expressing complex goals [91, 

92]. 



Chapter 4: Planning Technologies 

   42 
 

4.2.4.2 Planning as Description Logic Satisfiability 

Berardi et al. [93] targeted the planning task as logical satisfiability problem using 

description logic. They defined a community of web services, characterized by a 

common set of actions and a set of web services specified in terms of the common set 

of actions. A web service in the community may execute some of its operations and 

may delegate the rest of its operations to another service in the community. The 

interaction protocols that are offered by the services are expressed as execution trees. 

An execution tree is a tree of states in which each node represents a possible state and 

each arc represents an action. The web services composition problem is to find an 

execution tree which is composed of actions of web services in the community, and 

matches a desired execution tree. 

4.2.4.3 Planning as Petri net Reachability 

Narayanan and McIlraith [15] suggested that a web service planning task could be 

carried out by creating a Petri net [94] based on atomic web services. A Petri net can be 

defined as a directed, connected, and bipartite graph in which each node represents 

either a place or a transition [95], where a bipartite graph is a graph having two disjoint 

sets of vertices. The Petri net represents all possible combinations of atomic operations. 

The desired goal is specified as a state of the Petri net [15]. They argued that 

satisfiability checking can be used to determine whether or not the goal state is 

reachable. 

4.2.5 Planning as Logic Programming 

Planning as Logic programming is an approach to encode action laws of planning 

domain as a logical representation, amendable to formal reasoning methods [61].  

A Logic program is composed of a set of Horn clauses of the form A B1,……,Bn.  A 

Horn clause is a disjunction of literals with at the most one positive literal, i.e. A ˅ B1 

˅… ˅Bn.  

A given goal G is achievable in the planning domain if and only if a related goal G* is 

true in some stable model of the logic program. Di-mopoulos et al. [96] suggest that if 



Chapter 4: Planning Technologies 

   43 
 

logic programs are properly encoded, performance of this approach can keep up with 

general purpose planning algorithms like GRAPHPLAN and SATPLAN.  

In context of Web services, the SWORD toolkit [16] is based on this approach and it 

uses Prolog to reason about information providing services and extract plans directly 

from execution trace of Prolog interpreter. 

4.2.6. Planning with Control Knowledge 

This section reviews planning techniques that incorporate and exploit task dependent 

control knowledge to achieve good performance. 

4.2.6.1 Hierarchical Task Network Planning 

Hierarchical Task Network (HTN) planning [97-99] provides a powerful strategy to 

deal with large and complex real world problems. HTN planning assumes certain 

operators only if its preconditions hold before its execution. Operators represent 

primitive tasks. In addition to operators representing primitive tasks, HTN planning also 

support methods to decompose complex tasks into subtasks.  

According to [99], there are three types of tasks in HTN Planning: 

 Goal task which is desired final state, 

 Primitive tasks, 

 Compound tasks that can be decomposed in several subtasks. 

Ordered Task Decomposition is a very popular variant of HTN planning and it enables 

the agent to plan the tasks in the same order in which they will be executed. This 

reduces the planning complexity to a great extent. Simple Hierarchical Ordered Planner 

(SHOP) [100] is a planner based on ordered task decomposition, which accepts goals as 

tasks lists and not as declarative goals. Tasks in tasks list can either be primitive or 

compound tasks. The desired task is decomposed in subtasks and the subtasks are 

further decomposed until the resulting set of tasks only contains primitive tasks so that 

these primitive tasks can be executed directly by calling atomic tasks. The planning is 

successful if the decomposition of desired task into primitive subtasks is done without 



Chapter 4: Planning Technologies 

   44 
 

violating certain constraints. Testing is done in each round of decomposition to see if 

there is any violation of the given conditions. 

Wu et al. [31] used SHOP2 [101] for web services composition. SHOP2 is an ordered 

task decomposition planner. Wu et al. presented a transformation method from OWLS 

to hierarchical task network [31, 32]. Since OWLS processes and HTN tasks both 

specify actions to get certain task done, the transformation is natural. SHOP2 can deal 

with large and complex problem domains. 

4.2.6.2 High Level Program Execution 

In high level program execution the task is to find a sequence of actions which would 

constitute a legal execution of a given high level program. To search out applicable 

actions, reasoning is done regarding preconditions and effects. Golog [102] is a logic 

based high level programming language, focused on specification and execution of 

complex actions in dynamic domains. Golog is based on situation calculus.  

ConGolog [103] is an extension of Golog. It supports concurrent processes by 

interleaving atomic actions in its component processes; and supports interrupts and 

actions out of control of the interpreter. Mcllraith and Son [10, 11] extended ConGolog 

with ability to include user constraints, sense actions as external calls and more flexible 

variants of Golog sequence construct. Narayanan and McIlraith [15] transformed 

OWLS processes to situation calculus and Golog, so that OWLS processes can describe 

atomic and complex actions offered by Web services. The web services composition 

problem is to find an execution of the Golog program that satisfies the properties 

defined in the goal. 

4.2.6.3 Planning as Model Checking 

Planning as (by) model checking (PBM) [104, 105] approach formulates planning 

problem as semantic model checking problem.  It is a formal verification technique to 

check whether a property holds in a certain system that is formalized as a finite state 

model.  

A solution in PBM can be weak, strong or strong cyclic. A weak solution does not 

guarantee to achieve the goal, a strong solution guarantees to achieve the goal and a 

strong cyclic solution guarantees the goal assuming the loop will terminate finally 



Chapter 4: Planning Technologies 

   45 
 

[105]. Algorithms that will always terminate and that will achieve weak [104], strong 

[106] or strong cyclic [107] solutions have been suggested. 

MIPS [108] is a planner using planning as model checking approach and it is based on 

Binary Decision Diagrams (BDD). MIPS reduces the state description length by 

identifying implicit domain knowledge, e.g. state invariants. 

Proplan [109] and BDDPlan [110] are also based on PBM approach however lack a 

MIPS-like pre-compilation phase and both of these are outperformed by MIPS. MIPS, 

Proplan and BDDPLan are designed for deterministic domains. Deterministic domains 

are domains where the result is completely determined by the inputs. 

Model Based Planner (MBP) [111] and Universal Multi-agent Obdd-based Planner 

(UMOP) [112] are designed for nondeterministic domains and have the capability to 

handle uncertainty. In non-deterministic domains, the result is not completely 

determined by the inputs and an action can lead to several possible states. 

4.2.7 Temporal Planning 

Temporal planning refers to the ability of planners to deal with time related (temporal) 

aspects of planning domains and problems. Most mature planning paradigms have been 

extended to support temporal aspects of planning. Examples of such temporal aspects 

are [61]: 

 Durative actions: A durative action refers to an action in which duration of the 

action is important e.g. a truck being loaded must not move for the duration of 

the loading action. Classical planning approaches formalize actions to be non-

temporal, but in real world, duration of actions is often important. This makes 

exact time and time efficiency of an action interesting to the planner. 

 Validity intervals of propositions: Classical planners assume that a proposition 

does not change automatically with time, and changes only if it is changed 

explicitly by an agent using an operator. But in real world, many ground atomic 

formulas (atoms) are dependent on time, e.g. a sale offer might be valid for three 

days. Such ground atoms are called fluents. 



Chapter 4: Planning Technologies 

   46 
 

 Concurrent actions: Classical planning usually assumes that only one action is 

executed at a time but in real world it may be necessary that two or more actions 

are executed at the same time. Also actions that are independent can be executed 

in parallel. 

Bacchus and Kabanza [113] presented specifications for temporally extended goals, 

which made it possible to express a set of acceptable sequence of states along with the 

final desired state to achieve. TLPlan [114, 115] is a planner that supports goals 

specified in an extended version of the Metric Interval Temporal Logic (MITL) [116]. 

Thus TLPlan addresses temporally extended goals and it is based on a forward-chaining 

planning algorithm. TLPlan treats each state as a database and checks it against a 

formula that is inverse of the desired goal. It prunes each state that satisfies the inverse 

formula. Temporally extended goal formula can also be extended to the notion of 

domain control knowledge, which guides the planner about the desired and undesired 

properties of the states it is going to identify. 

TALPlanner [117] is an extension of TLPlan. It is also based on a forward search 

planning engine. It uses TAL language to specify the planning goals and domain control 

knowledge. TAL is narrative-based linear metric time logic and it is especially good for 

reasoning about actions in incompletely specified dynamic environments. TALPlanner 

takes a TAL goal formula as input and outputs a solution to the goal formula. 

4.3 Relevance of Planners for Web Service Composition 

Generally speaking, the core requirements of planners to deal with web service 

composition problem are as follows [61]: 

 The domain complexity should support universally quantified effects, explicit 

mark-up of sensing actions and nondeterministic service results. The planner 

must be efficient enough to perform well in complex web domains 

 Support for complex goals i.e. “hints” to guide the planner about the sequence of 

actions. 



Chapter 4: Planning Technologies 

   47 
 

 The ability to deal with incomplete information calls for support of sensing 

actions, for example to query a database to get a list of certain companies; 

sensing actions help the planner acquire data it needs. 

 Support for nondeterministic behaviour is also needed. A web service might fail 

or might output invalid or wrong data. 

 There needs to be support for parallel activities since workflows can have 

parallel activities and independent activities can also be executed in parallel. 

A review of the planners on the basis of the above requirements is given below. 

Table 4.1 Web services composition requirements vs. domain independent planners 

(adapted from [61])  

Planner  Domain 

Complexity 

Extended 

Goals 

Sensing Non-

determin

istic 

Actions 

FF (state based) PDDL 2.1 level 1 No No No 

FF-Metric (state 

based) 

PDDL 2.1 level 1, 

level 2 

No No No 

HSP 2.0 (state 

based) 

PDDL/ADL with- 

out complex pre- 

cond./goals 

No No No 

IPP (GRAPHLAN 

based) 

PDDL/ADL No No No 

SGP (Graphplan 

based) 

PDDL/ADL, 

without 

complex negations 

in 

precond./goals 

No Support sensing 

actions that 

determine the 

truth value of 

formulas 

Produces 

con- 

tingent 

plans 

STAN4 (Graph- 

plan, state 

The 

STRIPS + Equality 

No No No 



Chapter 4: Planning Technologies 

   48 
 

based) subset of PDDL 

VHPOP (POP 

based) 

PDDL 2.1 level 1 

and 3 

No No No 

BLACKBOX 

(SAT, Graphplan 

based) 

PDDL/STRIPS 

with 

Restrictions 

No No No 

LGP (SAT based) PDDL 2.1 levels 

1,2,3 

No No No 

Table 4.1 (adapted from [61]) contrasts a collection of representative domain 

independent (neoclassical) planner implementations against the collection of core 

requirements for web service composition problem.  

The table can be summarized as: 

 All neoclassical planners support domain complexity i.e. a significant subset of 

ADL. 

 Except SGP which supports incomplete initial state and sensing operations, none 

of the neoclassical planners support the requirements discussed above. 

To use neoclassical planners for web services composition problem, a proper 

architecture that decomposes the planning problem into a set of sub problems that 

match the planner capabilities is needed [61]. Haigh [118] presented an Execution 

Monitoring & Re-planning Architecture, in which a controller decomposes the problem 

into a sequence of simpler problems. The splitting up of a problem into a sequence of 

smaller planning problems makes the planning for sensing actions possible for classical 

planners [119]. 

Table 4.2 Web services composition problem requirements vs. domain dependent 

planners (adapted from [61]) 

Planner Domain 

Complexity 

Extended 

Goals 

Sensing Non-

deterministic 

Actions 

SHOP2 (HTN PDDL/ADL yes, as HTN HTN HTN Methods 



Chapter 4: Planning Technologies 

   49 
 

based) with 

metrics and time 

Methods methods 

may contain 

explicit 

sensing 

actions 

can be designed 

to deal with 

nondet. actions 

ConGolog 

(High 

level 

prog.exec.) 

Sit.Calc. yes, as Golog 

program exe- 

cutions, incl. 

userdef. con- 

straints 

Golog 

program 

may contain 

sensing ac- 

tions/subgo

als 

Golog programs 

can be designed 

to deal with 

non- 

det. actions 

MIPS 

(Planning 

as 

Mod.Check.) 

PDDL/STRIPS 

+ 

negative precon- 

ditions and univ. 

conditional 

effects 

supports 

Computation 

Tree Logic 

(CTL) 

No No 

MBP 

(Planning 

as 

Mod.Check.) 

PDDL2.1+exten

sions 

temporally ex- 

tended goals as 

supported by 

NuPDDL 

Yes Yes, can create 

strong(cyclic) or 

weak plans 

TLPlan (Tem- 

poral) 

ADL + metrics temporally ex- 

tended goals as 

supported by 

MITL 

No No 

TALPlanner 

(Temporal) 

PDDL 2.1 (or 

TAL) 

TAL narratives Yes No  

 

Table 4.2 (adapted from [61] with modifications) contrasts a collection of representative 

domain dependent planner implementations against the collection of core requirements 

for web service composition problem. It is evident that there is a much broader support 

for the given requirements.  



Chapter 4: Planning Technologies 

   50 
 

The summary of the table is: 

 All representative domain dependent planners support domain complexity and 

extended goals. 

 SHOP2, MBP and ConGolog support sensing actions and non-deterministic 

actions. 

It is obvious that domain knowledge is the key to solving web services composition 

problem. In web services composition, the domain knowledge is in the form of web 

services descriptions. Therefore, it becomes necessary to translate the web services 

descriptions to domain control information. Wu et al. presented a technique for 

transforming web processes descriptions from OWL-S to HTN methods for SHOP2, 

which is based on ordered task decomposition [31, 32]. In SHOP2, sensing actions are 

passed to the planner as part of the task list and the planning agent does not decide on 

its own for the need of sensing actions but acts as directed in the task list. This is a 

practical and useful approach [61]. 

ConGolog is an alternative approach, supporting most of the discussed requirements. 

Narayanan and McIlraith [15] transformed OWL-S processes to situation calculus and 

Golog. So a web service can be translated from OWL-S into domain control knowledge 

in ConGolog. The main advantage of ConGolog for Web Service Composition problem 

is that it supports parallel activities and therefore it can create parallel workflows. 

Generally speaking, SHOP2 is believed to be more efficient than ConGolog [13, 31, 

32].  

MBP is also able to plan in non-deterministic domains and support sensing actions, but 

it is outperformed by SHOP2 in efficiency [120].  

SHOP2 will be used for planning in the proposed research. The reasons for selecting 

SHOP2 are as follows: 

 SHOP2 supports complex domains, extended goals, sensing actions and non-

deterministic actions. 

 There has been active research in applying SHOP2 to web service composition 

problem [31, 32, 121]. 



Chapter 4: Planning Technologies 

   51 
 

 SHOP2 and OWLS have a similar mechanism for representing atomic tasks and 

decomposing composite tasks into atomic tasks.  

 SHOP2 was one of the top four planners in the planning competition 1999 [31], 

based on efficiency. 

 There is a java implementation of SHOP2 freely available for use. 

4.4 Structure of SHOP2 Planning Problem 

A SHOP2 planning problem generally has the following structure [61]: 

 Description of the possible actions in formal language (domain theory). 

 Description of the initial state of the world. 

 Description of the desired goal. 

Domain theory, initial state and desired goal must be formalised for planning. To 

perform a planning task it is necessary to have a full domain description. The domain is 

a collection of operators and methods. A SHOP2 operator can be formally defined as an 

expression of the form O = (h(v
→

) Pre Del Add) [13], Where  

Pre =  the list of preconditions of O 

Add = the list of positive effects of O 

Del = collection of all negative effects of O 

h is a primitive task with a list v
→

 of inputs. 

An atomic process IssueInv that takes goods as the precondition and creates Invoice as 

the output can be represented as a SHOP2 operator as follows: 

(:operator (!IssueInv) 

      ((goods)) 

      () 

      ((Invoice)) 

) 



Chapter 4: Planning Technologies 

   52 
 

The operator IssueInv can be executed when its precondition goods holds. IssueInv 

produces Invoice as the post-condition after the execution. The operator IssueInv has no 

negative post-conditions and so the delete list is empty. An atomic processes is 

represented as an operator, its inputs and preconditions are represented as preconditions 

of the operator and its outputs and effects are represented as post-conditions of the 

operator.   

A method can be formally defined as M = (h(v
→

) Pre1 T1 Pre2 T2 …) [13], Where  

Prei is a precondition expression 

Ti is a set of subtasks. 

A sample composite method that defines a composite process for a hypothetical vendor 

having atomic processes create_goods and dispatch_goods can be given as: 

(:method (CompositeProcess) 

 (goods) 

  (!dispatch_goods) 

 (payment) 

  (!create_goods)  

) 

 The method CompositeProcess states that if the precondition goods holds then the 

planner must execute the operator dispatch_goods, and if the precondition payment 

holds then the planner must execute the operator create_goods. So goods is Pre1 and 

dispatch_goods is T1 from the formal definition. Similarly, payment is Pre2 and 

create_goods is T2. The CompositeProcess method gives a mechanism for decomposing 

the composite process of the hypothetical vendor organisation into atomic tasks.  

The SHOP planning problem can be defined as [13], “A planning problem for SHOP2 

is a triple (S,T, D), where S is initial state, T is a task list, and D is a domain 

description. By taking (S, T, D) as input, SHOP2 will return a plan P = (p1p2...pn), that 

is, a sequence of instantiated operators that will achieve T from S in D.” 



Chapter 4: Planning Technologies 

   53 
 

4.5 Conclusion 

This chapter provides a discussion of AI planning technologies. Major planning 

paradigms and their representative planners are discussed, and the relevance of these 

planners to web services composition problem is explained. 

The domain for web services composition can be very complex, since it can have a 

large number of web services from very diverse sources. Therefore, an efficient planner 

is needed to plan for the complex domains in a reasonable time. Similarly web services 

can fail or return a wrong result, so there is a need to create alternate plans so that 

alternative plans can be executed in the case of failure. Extended goals are also 

important, because they can provide hints to the planner on how to proceed with 

planning. 

Existing domain independent (neoclassical) planners do not support most of the 

requirements of web services composition. Since automatic workflow generation is 

based on web services composition, domain independent planners are not well suited 

for automatic workflow generation. On the other hand, domain dependent planners are 

well suited for automatic workflow generation. Among the reviewed planners, SHOP2 

and ConGolog are the most suitable planners for automatic workflow generation 

problem. The proposed framework uses SHOP2 for planning. SHOP2 has been selected 

due to its efficient planning, similar representation of tasks as OWLS, support for web 

service composition requirements and its free availability as Java source. 

 

 

 

 

 

 

 

 

 



Chapter 5: Cross Organisational Compatible Workflows Generation and Execution: An Integrated 

Approach 

   54 
 

Chapter 5: Cross Organisational Compatible 

Workflows Generation and Execution: An 

Integrated Approach 

5.1 Introduction 

With the increase in demand for automatic workflow generation and automatic 

workflow collaboration, active research has been done in both these fields. Systems to 

automatically generate workflows have been reported [10-16, 33, 35, 36]. Other 

systems have been presented to deal with automatic workflow collaboration among 

interacting organisations at build time to ensure compatibility among collaborating 

workflows [5, 39, 51-53]. Work has also been done on runtime collaboration among 

compatible workflows so that the interacting workflows can be executed together and 

the exchange of data and information can be carried out, not only among the activities 

within the organisations, but also among the interacting activities that are on the 

boundaries of the collaborating organisations [33, 58-60]. To ensure the execution of 

collaborating workflows of multiple organisations, the runtime collaboration also has to 

ensure that the sequences of activities within the organisation and on the boundaries of 

the interacting organisations are followed. 

Previous research generally deals with either automatic workflow generation or 

workflow collaboration, but not the integration of both. Similarly, most of the workflow 

collaboration systems support workflow collaboration either at build-time or runtime. 

To exploit the maximum benefits of business process automation, workflows should be 

automatically generated at build time and executed at runtime, in coordination with the 

workflows of the collaborating organisations. If automatic workflow generation, build 

time workflow collaboration, workflow enactment and runtime workflow collaboration 

are targeted as independent aspects of workflows, the overall benefits of business 

process automation are not achieved. A system that is able to generate workflow 

automatically for a single organisation but leaves the organisation to reconcile the 

workflow with the interacting organisations in case of incompatibilities provides limited 



Chapter 5: Cross Organisational Compatible Workflows Generation and Execution: An Integrated 

Approach 

   55 
 

benefits. The basic objective behind automatic workflow generation is to avoid 

continuous remodelling and adaptation when changes are required. Similarly there are 

limited benefits in a workflow collaboration system that supports the reconciliation 

process but requires the users to model their workflows initially and be involved in the 

reconciliation process by making decisions about every adjustment in the workflow. 

The integration of these aspects can take the workflow modelling and workflow 

collaboration from semi-automation to a full automation, which is the basis for saving 

time and resources. 

Therefore, there is a need for a framework that will enable the complete automation of 

workflow modelling, workflow collaboration and workflow enactment process. This 

thesis reports the development of such a framework. The proposed framework is based 

on an integration approach. The integration approach combines automatic workflow 

generation, build time workflow collaboration, runtime enactment and runtime 

workflow collaboration to exploit the benefits of each one of these components. This 

chapter discusses this integration approach in detail. 

Section 5.2 highlights the assumptions made for the integration approach, Section 5.3 

outlines the requirements for workflow collaboration, Section 5.4 explains the 

integration based cross organisational compatible workflows generation and execution 

approach, Section 5.5 discusses cross organisational control flow and data flow and 

Section 5.6 concludes the chapter. 

5.2 Assumptions 

To define a starting point and clear context for the integration approach, the following 

assumptions have been made. 

5.2.1 Naming Convention 

The planning is done on the basis of preconditions and effects of operators generated by 

translating OWLS processes into the SHOP2 domain. This means that the interacting 

organisations in general will follow a similar naming convention for the inputs, outputs 

and processes names of the interface activities so that compatible workflows could be 

generated and collaboration could be carried out at runtime among the sending and 



Chapter 5: Cross Organisational Compatible Workflows Generation and Execution: An Integrated 

Approach 

   56 
 

receiving processes. A standard name/description map or an ontology can be 

maintained to serve as a guide in this regard. OWLS processes are required to use 

unique names for unique inputs, preconditions, outputs and post conditions. 

5.2.2 Multi-Lateral Collaboration 

To ensure maximum usability of the proposed approach and framework, it is assumed 

that arbitrary number of organisations can collaborate with each other. This assumption 

is in line with the real world business environment in which more than two 

organisations can collaborate simultaneously, e.g. in a Vendor/Customer/Supplier 

scenario three organisations need to collaborate together. 

5.2.3 Readiness for participation 

The collaboration among the organisations is based on the interface activities. The 

organisations must have access to sending and receiving web services in order for the 

data to be delivered across cross organisational boundaries. Also, in some cases the 

organisation should be involved in making decision on the data being sent and received 

in order to enable the flow of execution of the generated workflows. 

5.2.4 OWLS Processes 

Any atomic, simple or composite OWLS processes can be passed to the proposed 

framework. Composite processes are assumed to have a complete decomposition into 

atomic processes. Such composite processes are executable. The effects and outputs of 

the atomic and composite processes are assumed to be unconditional. It is assumed that 

all atomic services in the workflows will execute without failure and generate their 

expected outputs and effects. 

5.2.5 Planning 

In the planning process, it is assumed that the world is not changed by any other agent 

and the initial state contains all the necessary information of the domain for the 

planning to be done. 



Chapter 5: Cross Organisational Compatible Workflows Generation and Execution: An Integrated 

Approach 

   57 
 

5.3 Requirements 

In order to bridge the gap in the integration of workflow generation, build time 

workflow collaboration, workflow enactment and runtime workflow collaboration, a 

number of requirements have been identified. 

5.3.1 Loose Coupling 

Business collaboration takes place in a distributed environment. The collaborating 

organisations are independent business entities having autonomous business processes. 

The organisations should be able to change their workflows without affecting the 

workflows of the partner organisations. The collaborating organisations should have 

just sufficient knowledge about the workflows of the collaborating organisations and 

should not depend on the computational or representational details of each other’s 

workflow. Web services architecture is a loosely coupled architecture and it limits the 

effects of the changes in the collaborating workflows and simplifies design [122]. 

5.3.2 Reusability 

Since frequent changes may occur to the workflows due to the continuous evolution 

process in online business, demand for reusing existing software components and 

services has increased. Web services architecture provides a mechanism for reusing 

existing units of work done. As web services are self-contained units of application 

logic [19], which can be can be discovered, connected to and executed over the internet, 

they enhance reusability in business processes. Organisations can outsource the 

implementation of an activity to a service already developed by another organisation as 

long as the service can provide the desired functionality. The service provider could 

provide the services for free or charge a fee for it. 

5.3.3 Cohesion 

Cohesion is the degree of functional relatedness in the operations of a service [122]. In 

workflows, the services and service operations should be closely related and should 

contribute towards the execution of one problem and related tasks. Logically, the 

services should all belong to the same general category. Cohesion increases the clarity 



Chapter 5: Cross Organisational Compatible Workflows Generation and Execution: An Integrated 

Approach 

   58 
 

of business processes, decreases coupling, increases the potential for reusability and 

simplifies further improvements.  

5.3.4 Interoperability 

In business collaboration process, the interacting organisations are distributed and 

independent business entities. They may use diverse platforms, databases and 

applications. Despite the diversity, cross-platform interoperability among the 

collaborating business organisations should be supported. Web services can provide 

such interoperability. Web services use standard light-weight XML based messaging 

protocols and WSDL access descriptions to allow interoperability among diverse 

organisations. 

5.3.5 Modularity 

Workflows can be created from diverse and independent sources. Therefore, automatic 

generation and collaboration systems must support modularity. They must produce 

situation specific instantiated workflows by integrating web services from diverse 

organisations. The SHOP2 methods and OWLS composite processes support 

modularity. The SHOP2 planner can plan about web services from diverse sources and 

order the necessary ones into a workflow which will achieve the desired goals when 

executed. 

5.4 Cross Organisational Compatible Workflows Generation and 

Execution Approach 

Cross organisational compatible workflows generation and execution approach 

integrates automatic workflow generation, build time workflow collaboration, runtime 

workflow collaboration and workflow enactment. This approach enables the 

development of a framework that can create compatible workflow for multiple 

collaborating organisations and support the enactment of the generated workflows.  

 At build time, workflow collaboration is done at the time of automatic generation of 

workflows for multiple collaborating organisations. At runtime, collaboration is carried 



Chapter 5: Cross Organisational Compatible Workflows Generation and Execution: An Integrated 

Approach 

   59 
 

out among the collaborating organisations by enacting the generated compatible 

workflows. 

5.4.1 Automatic Workflow Generation 

Workflows are generated at build time by using AI planning. The SHOP2 planner is 

used for planning. It reasons about a pool of available web services and the web 

services that are able to provide desired actions are added to the workflow until the 

workflow is able to achieve the overall goals, or all possible choices are tried and no 

valid workflow is possible. The planning is done by mapping the inputs, preconditions, 

outputs and effects of the services as preconditions and post-conditions of atomic 

operators, to order the services that need to be executed to form the workflow to 

achieve the desired goals. Execution of the workflow achieves the desired result.  

SHOP2 needs a domain for planning. A domain is the formal description of the 

environment in which the planning takes place. For automatic workflow generation 

problem in this project, the domain is a collection of OWLS process definitions which 

are grounded in actual web services. Since SHOP2 requires the domain to be in HTN 

format, the OWLS process definitions are translated into HTN format. An algorithm has 

been developed to translate OWLS processes into SHOP2 format. SHOP2 plans for the 

domain of HTN formalised process definitions to create workflows of atomic processes 

which have their grounding in actual web services and can be executed directly. 

5.4.2 Build-time Workflow Collaboration 

Workflow collaboration at build time is not carried out in the usual business process 

reconciliation way. Rather, the approach incorporates the collaboration stage into the 

workflow generation stage. The interacting organisations operations are dealt with 

together, i.e. the domain descriptions of all interacting organisations are renamed and 

grouped together into a single joint domain together with the set of goals. All possible 

workflows which can achieve the joint goals are generated. After workflow generation, 

the activities within each joint workflow are then separated into a set of compatible 

workflows for the different organisations involved. The fact that planning is done to 

generate joint workflows that are able to achieve the combined goals of all interacting 

organisations ensures that each workflow can be separated into a set of compatible 



Chapter 5: Cross Organisational Compatible Workflows Generation and Execution: An Integrated 

Approach 

   60 
 

workflows for the organisations. If an activity creates an incompatibility deadlock then 

it will not get added in the joint plan in the first place. 

5.4.3 Workflow Enactment 

After automatic generation of compatible workflows, runtime support is provided for 

workflow enactment. Since the generated workflows are, in essence, the workflow of 

atomic OWLS processes having their grounding in actual WSDL web services, the 

OWLS enactment mechanism can be used to directly enact the atomic OWLS 

processes. The OWLS enactment mechanism can enact the OWLS atomic process by 

executing the web services in which the atomic process is grounded. The output 

generated by a service will be used as the input of another corresponding service and 

thus the workflow execution can continue till the end. 

5.4.4 Runtime Workflow Collaboration 

Since the integration approach has to deal with workflow enactment of multiple 

organisations, collaboration is also required at runtime. The collaboration among cross 

organisational activities is enabled by using sending and receiving activities, also 

known as interface processes [4]. Whenever a sending activity is encountered, the data, 

information or documents to be sent are uploaded to a central server. Whenever a 

receiving activity is encountered the uploaded data, information or documents are 

downloaded from the server and processed. The uploading and downloading technique 

is used because: 

1. if an organisation has to send a document to many different partners, it does not 

have to do it many times. It can upload it to the central server and all partners 

can download it accordingly,  

2. it also decouples the collaborating organisations from each other completely at 

runtime, which is a desired quality [52, 57]. 

5.5 Cross Organisational Control Flow and Data Flow 

Workflows are based on control flow and data flow. Control flow refers to the 

transitional links between the activities in the workflow [25]. Data flow is the flow of 



Chapter 5: Cross Organisational Compatible Workflows Generation and Execution: An Integrated 

Approach 

   61 
 

information from one activity to another but may not follow the control flow. The data 

flow rests on top of control flow [24]. Since the generated workflows are essentially 

workflows of atomic processes, the control flow is automatically modelled on the basis 

of the inputs, preconditions, outputs and effects of the atomic processes. After the 

activities have been ordered in a workflow, an atomic process can only be executed 

only if the atomic processes that come before it get executed and generate the outputs 

that goes in as inputs for atomic process(es) downstream. A record of generated outputs 

is kept in a hashmap at runtime, so that they can be used as inputs to the corresponding 

activities. The sequential order is followed in the similar way for both in-house and 

external processes.  

The cross organisational data flow is not so straightforward. To enable the correct 

handling of cross organisational data flow, the concept of sending and receiving 

activities has been adopted from [4] to ensure the exchange of information between 

cross organisational activities. Sending activity is a point of interaction where 

information is sent to the collaborating partners. A receiving activity is a point of 

interaction where information is received from collaborating partners. For this project, 

the naming convention for a sending activity is represented by following the activity 

name with the characters “_s” e.g. an activity that sends insurance certificate to a 

customer can be represented as InsuCert_s. The name of a receiving activity is 

represented by following its name with the characters “_r” e.g. an activity that receives 

advance payment can be represented as AdvPay_r. Sending activity uploads the 

information, data, document and/or messages to a central server while receiving 

activities download the respective information, data, document and/or messages from 

the server for analysis and decision.  

5.6 Conclusion 

This chapter has identified that the separation of workflow generation, build time 

workflow collaboration, runtime enactment and runtime workflow collaboration limits 

the overall benefits. Since these aspects are highly related functionally, their integration 

combines and strengthens the individual benefits of each one of these aspects.  



Chapter 5: Cross Organisational Compatible Workflows Generation and Execution: An Integrated 

Approach 

   62 
 

On the other hand, the workflow collaboration systems must support low coupling, 

cohesion, interoperability, reusability and modularity. Web services architecture has the 

potential to support these requirements through its standard XML interface and light 

weight messaging protocols.  

To exploit the benefits of automatic workflow generation, build time workflow 

collaboration, workflow enactment and runtime workflow collaboration, an approach 

based on the integration of these four related aspects is presented. To deal with the 

requirements of the workflow collaboration, web services composition is used for 

automatically generating compatible workflows for multiple organisations. 

To show the advantages of the integration approach over the stand alone approaches, a 

framework is proposed to automatically generate compatible workflows for multiple 

collaborating organisations. Chapter 6 discusses the architecture, implementation and 

technical details of the proposed framework. 

 

 

 

 

 

 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   63 
 

Chapter 6: A Framework for Cross 

Organisational Compatible Workflows 

Generation and Execution 

6.1 Introduction 

As identified in Chapter 5, there is a strong interdependence among automatic 

generation, build time collaboration, runtime enactment and runtime collaboration 

aspects of workflow. Their integration strengthens and combines the individual benefits 

of each one of these aspects of workflow. To target the research gap in literature 

regarding their integration, an integrated approach for cross organisational compatible 

workflow generation and execution has been presented in Chapter 5. The thesis 

proposes a novel framework to exploit the advantages of the integrated approach. The 

framework enables the generation of compatible workflows for multiple collaborating 

organisations, from their process definitions. The framework also supports the 

enactment of the generated workflows and provides runtime collaboration among the 

enacted workflows. This chapter presents the framework in detail. 

Section 6.2 presents the modifications made to SHOP2 planner in order to make it 

suitable for a multi-organisational web services domain, Section 6.3 gives the design 

and architecture, and Section 6.4 presents the detailed functionality of the cross 

organisational compatible workflow generation and execution framework, Section 6.5 

explains the implementation and technical details and Section 6.6 concludes the 

chapter. 

6.2 Adapting SHOP2 for Workflow Generation Problem 

The collection of OWLS processes of the collaborating organisations are represented in 

the form of a SHOP2 method, which represents the inputs and preconditions of the 

OWLS processes (represented as preconditions in SHOP2) and services (tasks) in an if-

then-else format. SHOP2 adds the task lists in the workflow on the basis of their 

preconditions. SHOP2 adds the task list whose precondition is true in the current state 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   64 
 

of the world into the workflow (plan) and keeps on checking with the updated state of 

world. 

Inputs and preconditions of the OWLS processes are represented as preconditions of 

SHOP2 operators. The preconditions, especially the preconditions representing data 

inputs, will remain true in the entire lifecycle of planning until explicitly made false by 

an operator.   If the atomic processes do not explicitly make their inputs false, SHOP2 

will keep repeatedly adding the first task list whose preconditions are true in the 

workflow. This will create an infinite loop. We cannot assume the processes to always 

explicitly make their inputs false, since more than one process could be dependent on 

the same input. This means another task list could be added in the plan on the basis of 

the input or its combination with other inputs.  

Similarly, if a precondition in the if-then-else method is true for which the task list is to 

decompose a method, the method will keep repeatedly getting decomposed into 

primitive tasks and the loop will continue infinitely. In both cases of the infinite loop, 

SHOP2 will never reach the solution. To remove this issue, the proposed framework 

uses an extension of SHOP2 which does not add a task repeatedly in the plan. Similarly 

it does not decompose a method repeatedly into tasks. 

The extended SHOP2 algorithm is shown in Figure 6.1. The algorithm is an extension 

to the SHOP2 algorithm presented in [13]. The main SHOP2 algorithm has been 

extended to avoid repeatedly adding the same tasks in the workflow (plan) and 

decomposing the same method repeatedly. 

If ‘s’ is the current state of the world, ‘T’ is the task list and ‘D’ is the domain 

 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   65 
 

 

Figure 6.1 Extended SHOP2 Algorithm for Workflow Generation  

6.3 Architecture 

Figure 6.2 shows the general architecture of the developed cross organisational 

compatible workflows generation and execution framework. Although there can be 

more than two collaborating organisations, for clarity the figure only depicts two. 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   66 
 

 

Figure 6.2 Architecture of the Developed Framework  

As shown in the figure, the interacting organisations pass their OWL-S process 

definitions and high level goals to Collaboration and Workflow Generation Manager 

(CWGM). CWGM removes all those processes from the process definitions that are not 

used in workflow generation. CWGM passes the remaining process definitions to 

OWLStoSHOP2 translator, which translates them into SHOP2 domain descriptions.  

OWLStoSHOP2 translator also translates high level goals into a SHOP2 problem. 

Preplanning analysis of the domain and problem is done so that operators, inputs, 

preconditions, outputs and effects of collaborating organisations can be tracked. 

CWGM identifies operators in the domain that can enable the creation of multiple 

plans. Based on identified operators, methods are inserted into the domain description 

to ensure the creation of multiple plans. The inserted methods are used by SHOP2 to 

identify alternate composition paths, and hence to create multiple plans. 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   67 
 

CWGM collapses SHOP2 domain descriptions of all interacting organisations into a 

single joint SHOP2 domain. SHOP2 problems of all interacting organisations are 

collapsed into a single joint SHOP2 problem. The joint SHOP2 problem and the joint 

SHOP2 domain are passed to SHOP2 planner which creates all possible joint plans. A 

joint plan is a plan for all collaborating organisations which achieves their combined 

goals from their combined initial states. Each joint plan is subdivided to create a set of 

collaborating plans, one plan for each organisation, compatible with each other.  

The set of compatible plans with the least number of activities is highlighted to the 

interacting organisations for execution. The interacting organisations select the 

highlighted set of compatible interacting plans or any other set of compatible interacting 

plans for execution, according to their preferences. The selected set of compatible 

SHOP2 plans is transferred to SHOP2toOWLS translator to translate the SHOP2 plans 

into OWLS workflows. The selected set of compatible plans represents a set of 

compatible workflows of OWLS processes at this stage. OWLS workflows are further 

passed to Runtime Enactment Manager which executes actual WSDL services modelled 

by the activities (OWLS processes) in OWLS workflows and makes sure that the 

transfer of information and data among the collaborating organisations takes place 

smoothly. 

6.4 Functionality 

Figure 6.3 shows the flow of functionality of the developed framework. The developed 

framework takes OWLS process definitions of the collaborating organisations as input, 

reads the process definitions, translates them into HTN format, merges the domains 

together, creates multiple sets of compatible workflows and executes the selected set of 

compatible workflows. The following sub-sections discuss the detailed functionality of 

each step in the flow diagram, and present the algorithms involved in each step. 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   68 
 

 

Figure 6.3 Flow Diagram of the Functionality of the Developed Framework 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   69 
 

6.4.1 Reading OWLS Process Descriptions 

A prototype system has been implemented to demonstrate the functionality of the 

framework shown in Figure 6.2. Collaborating organisations can load their OWLS 

process definitions to CWGM using an interactive GUI of the prototype. The collection 

of OWLS process definitions are loaded in the form of an OWL file that imports the 

atomic, simple and composite processes of the organisation. The OWLS process 

definitions can also be loaded in the form of a single composite process. Figure 6.4 

shows the collection of OWLS processes of a hypothetical customer organisation. As 

shown in the figure, the OWL file imports all OWLS processes of the customer. The 

imported processes are loaded to the system. The OWLS processes can model a local 

web service or a web service out of the boundaries of the organisation. 

 

Figure 6.4 Collection of OWLS Processes of Customer 

OWLSReader module of the CWGM reads the owls process definitions included in the 

OWL file. The module is based on OWLS API [123].  OWLS API is a Java API for 

programmatic access to read, execute and write OWLS service descriptions.  The initial 

states and goal states of the collaborating organisations can be selected from the GUI. 

All processes are loaded from the OWLS process definitions and prefixed with 

organisation number for keeping track of the operators and workflows in the 

collaboration process. For example an atomic process PaymentCheck of the first 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   70 
 

organisation that loads its processes will be prefixed with Org1 and will become 

Org1PaymentCheck. Figure 6.5 shows the GUI of the implemented prototype. As 

shown in the figure; processes, inputs, preconditions, outputs and effects are loaded to 

the system from OWLS process definitions; and initial states and goal states can be 

selected at GUI. 

 

Figure 6.5 GUI of the Prototype 

After reading OWLS process definitions of collaborating organisations, the loaded 

processes are checked for their usability in the workflow generation process. The 

processes that are not used in the workflow generation are deleted from the list of 

loaded processes. This makes the translations of OWLS processes into SHOP2 domain 

time efficient, since only the processes used in planning for workflow generation are 

translated. This also makes the planning process quicker, since the SHOP2 planner only 

plans about processes strictly used in the planning process. The algorithm Remove-

Unused-Processes(Q) which takes a list Q of OWLS atomic processes definitions as 

input and returns a modified list of OWLS atomic process definitions is given below. A 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   71 
 

process that has no other process from the same organisation or collaborating 

organisations dependent over it and none of its outputs or effects belong to the set of 

goal states is deleted from the list of the loaded processes. The algorithm is called 

recursively every time a process is removed, until there is no unused process or the list 

is empty. The recursive call makes sure that there is no unused process in the modified 

list. 

Remove-Unused-Processes(Q) 

Let Q be a collection of OWL-S atomic processes definitions 

If Q is empty 

Return Q  

Else 

For each atomic process definition Qo in Q 

If Qo does not have a process definition from Q dependent over it 

and none of its outputs or effects belong to the set of goal states 

Remove Qo from Q 

Let Q' be Q after removing Qo 

Return Remove-Unused-Processes(Q') 

  End For each 

End If 

End Remove-Unused-Processes 

6.4.2. Translating OWLS Process Definitions to SHOP2 Domain Descriptions 

The OWLStoSHOP2 translator module translates OWLS process definitions into 

SHOP2 domain descriptions. The OWLStoSHOP2 translator also translates initial states 

and high level goals selected from the GUI into a SHOP2 problem. The similar 

mechanism of representing tasks and decomposition of complex tasks into primitive 

tasks in OWLS process ontology and HTN planning makes the translation 

straightforward [13, 31, 32]. A translation algorithm has been implemented to translate 

OWLS processes into SHOP2 format. 

The developed translation algorithm to translate OWLS atomic processes into SHOP2 

operators is an extension of a sound and complete translation algorithm put forward by 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   72 
 

Sirin et al. [13]. Unlike the algorithm proposed in  [13], the developed algorithm 

represents both  inputs and preconditions of OWLS processes as SHOP2 preconditions. 

Thus, the inputs of OWLS processes are also used in planning. 

The developed algorithm to translate composite and simple OWLS processes into 

SHOP2 format follows a very different approach as compared to the translation 

mechanism proposed in [13]. Sirin et al. [13] translated simple processes and 

composite processes directly into SHOP2 methods, while the developed algorithm 

decomposes the composite processes until they only contain atomic processes. Then, 

the atomic processes are all grouped together and translated into a single SHOP2 

method.  

In the developed algorithm, atomic processes are translated into SHOP2 operators. 

Simple processes and composite processes are decomposed until they contain only 

atomic processes which are subsequently translated into SHOP2 operators. The 

translated atomic processes are then grouped together in the form of an if-then-else 

method. The if-then-else method acts as the top-level composite process of the 

respective organisations. The purpose of planning is to create an execution path for this 

automatically generated top level composite process. 

The implemented algorithm Translate-Atomic-Process(Q) to translate OWLS atomic 

processes into SHOP2 operators, is described below. It takes a definition Q of an atomic 

process A as input and outputs a SHOP2 operator O. 

Translate-Atomic-Process(Q) 

Let Q be the definition of an atomic process A and O be a SHOP2 operator 

Pre = collection of all preconditions and inputs of A in Q 

Add = the list of positive effects and outputs of A in Q 

Del = collection of all negative effects of A in Q 

Return O = (A(v
→

) Pre Del Add) 

End Translate-Atomic-Process 

Translate-Atomic-Process(Q) translates an atomic process into a SHOP2 operator. It 

translates the 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   73 
 

1) preconditions and inputs of the atomic process into the preconditions of the 

SHOP2 operator, 

2) positive effects and outputs of the atomic process into positive post-conditions 

of the SHOP2 operator, and  

3) negative effects and outputs of the atomic process into negative post-conditions 

of the SHOP2 operator. 

The algorithm Translate-Composite-Process(Q) translates an OWLS composite process 

into a set of SHOP2 operators. It takes a definition Q of a composite process C as input 

and outputs a set L of SHOP2 operators. The algorithm is as follows. 

Translate-Composite-Process(Q) 

Let Q be the definition of a composite process C and O be a set of SHOP2 

operators 

(b1, . . . , bn) is the list of atomic and composite processes in C as defined in Q 

for i = 1, . . . , n 

  If bi is an atomic process and qi is the definition of bi 

O0 = Translate-Atomic-Process(qi) 

Add O0 into L 

Else If bi is a composite process and qi is the definition of bi 

O = Translate-Composite-Process(qi) 

Add O into L 

Else If bi is a simple process and qi is the definition of bi 

O = Translate-Simple-Process(qi) 

Add O into L 

  End If 

 End for 

return L 

End Translate-Composite-Process 

Translate-Composite-Process(Q) translates a composite process into a set of SHOP2 

operators. It calls Translate-Atomic-Process(qi), if its component process is an atomic 

process, to translate the component atomic process into a SHOP2 operator. If its 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   74 
 

component process is a composite or simple process, its recursively calls Translate-

Composite-Process(qi) or Translate-Simple-Process(qi)  to translate it into a set of 

SHOP2 operators. 

The algorithm Translate-Simple-Process(Q) to translate OWLS simple processes into a 

set of SHOP2 operators is described below. It takes the definition Q of a simple process 

as input and outputs set L of SHOP2 operators. The algorithm is as follows. 

Translate-Simple-Process(Q) 

Let Q be the definition of a simple process S and L be an initially empty set of 

SHOP2 operators 

(b1, . . . , bn) is the list of atomic and composite processes collapsing in S as 

defined in Q 

for i = 1, . . . , n 

  If bi is an atomic process and qi is the definition of bi 

O0 = Translate-Atomic-Process(qi) 

Add O0 into L 

If bi is a composite process and qi is the definition of bi 

O = Translate-Composite-Process(qi) 

Add O into L  

End If 

 End for 

return L 

End Translate-Simple-Process 

Translate-Simple-Process(Q) translates a simple process into a set of SHOP2 operators. 

It checks each of its constituent processes and 

1. calls Translate-Atomic-Process(qi) for each atomic process to translate it into a 

SHOP2 operator, and  

2. calls Translate-Composite-Process(qi) for each composite process to translate it 

into a set of SHOP2 operators. 

The basic focus of the developed framework is to compose the atomic processes of the 

collaborating organisations into compatible workflows of OWLS services, capable of 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   75 
 

achieving the desired goal states from the initial states, as defined by the collaborating 

organisations. Unlike [13, 31, 32], the developed framework is not focussed on finding 

an execution path for already defined composite processes. We believe that forming an 

execution path for an already built composite process limits the strength of workflow 

generation by limiting the automation in our scenario. Therefore, the composite 

processes are decomposed to atomic processes and then the atomic processes are used 

to create a single SHOP2 if-then-else method to guide the composition process. The 

user is encouraged to pass atomic OWLS process descriptions to the system.  

The algorithm Create-BP (O, G) to create a recursive if-then-else SHOP2 method BP 

from the translated SHOP2 operators is as follows.  We call the generated method BP, 

as it is a method to be added to the SHOP2 domain to represent the top-level business 

process of the respective organisation. Create-BP (O, G) takes a set O of SHOP2 

operators and a set G of goals states as input and returns a SHOP2 if-then-else method 

BP. 

Create-BP (O, G) 

Let O={O1,O2…Om} be the set of SHOP2 operators 

G = conjunct of all goal states as specified by the organisation 

Nil = empty task list 

for i = 1, . . . , m 

Prei = (conjunct of preconditions of Oi) 

 End for 

Return M = (BP() G Nil Pre1 O1 BP Pre2 O2 BP … Prem Om BP) 

End Create-BP 

Create-BP(O, G) creates a recursive SHOP2 method, which groups the operators in an 

if-then-else format. An operator is executed when its preconditions hold. If all goal 

states in G are achieved, Nil is called to quit the method. As obvious in the expression 

M = (BP() G Nil Pre1 O1 BP Pre2 O2 BP … Prem Om BP), the BP after every Prei Oi 

makes this a recursive expression which will be called recursively until the goals states 

are achieved or the planners fails to find any valid plans.  

The collection of OWLS processes passed to CWGM is treated as a top-level business 

process of the respective organisation and hence translated into a SHOP2 domain which 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   76 
 

is used to find the execution plan for the top-level business process. The implemented 

algorithm Translate-OWLS-SHOP2(P) to translate a collection of OWLS processes into 

SHOP2 domain is as follows. It takes a collection P of OWLS processes and a set G of 

goals states as input, and creates a SHOP2 domain D as output.  

Translate-OWLS-SHOP2 (P, G) 

Let P be a collection of OWL-S processes, K be the set of definitions of OWLS 

processes in P, G be the conjunct of all goal states as specified by the 

organisation, L be a set of SHOP2 operators and D be a SHOP2 domain 

Procedure: 

D = Ø 

For each atomic process definition Q in K 

O0 = Translate-Atomic-Process(Q) 

add O0 into L 

 End For each 

For each simple process definition Q in K 

O = Translate-Simple-Process(Q) 

add O into L 

 End For each 

For each composite process definition Q in K 

O = Translate-Composite-Process(Q) 

Add O into L 

 End For each 

M = Create-BP (L,G) 

Add L to D 

Add M to D 

Return D 

End Translate-OWLS-SHOP2 

The Translate-OWLS-SHOP2(P,G) works as follows. 

1. It translates each of the constituent processes of P into SHOP2 operators by 

calling the relevant algorithms, 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   77 
 

2. then it creates an if-then-else method M from the set L of SHOP2 operators and 

set G of goals states. L represents the set of all operators created by translating 

OWLS atomic processes, and set G represents the conjunct of all goal states as 

specified by the respective organisation. 

3. then it adds the SHOP2 operators and SHOP2 method to the domain and returns 

the domain. 

The algorithm Create-SHOP2-Problem(K) to generate a SHOP2 problem from the high 

level goals and initial state of the world as selected by the user is given as follows. 

Create-SHOP2-Problem(K,s,G) 

Let K be a collection of OWL-S processes, D be a SHOP2 domain created by 

translating K, s be the conjunct of initial states specified by the respective 

organisation and G is the conjunct of goal states specified by the respective 

organisation. 

D = TRANSLATE-OWLS-SHOP2 (K,G) 

return (s,T,D) 

End Create-SHOP2-Problem 

Where T is a task list containing book keeping operators and methods that keeps track 

of G and calls BP to do the actual planning. BP is the if-then-else method generated by 

the algorithm Create-BP (O, G) to represent the top level business process of the 

respective organisation. 

6.4.3 Inserting SHOP2 Methods in the Domain 

If two processes are fully or partially dependent on the same inputs or preconditions, 

they can be executed in parallel provided the inputs/preconditions of the processes 

represented as preconditions in SHOP2 hold in the current state of the world. Since 

SHOP2 does not support concurrency, therefore, such situation can create alternative 

composition paths. These alternative composition paths can lead to the generation of 

multiple sets of compatible workflows. The generation of multiple sets of compatible 

workflows enables the users to select from all possible available options, based on their 

constraints and preferences. It enables the users to select an alternative set of 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   78 
 

compatible workflows for execution if the execution of the selected set fails. To ensure 

that the alternative composition paths are created as separate plans, SHOP2 methods are 

introduced into the domain. The implemented algorithm Insert-SHOP2-Methods(K) for 

introducing SHOP2 methods into the domain is as follows. It takes a set K of atomic 

processes which can be executed in parallel and a SHOP2 domain D as input, adds 

SHOP2 methods to the domain D and returns the modified domain. 

Insert-SHOP2-Methods(K, D) 

Let Q=(Q1,…Qx) be the definitions of a set of loaded atomic processes 

K=(K1,…,Kx) that can be executed in parallel and D be the SHOP2 domain for 

the respective organisation. 

T= (T1,….Ty) is the set of all possible and valid ordered task lists of component 

processes of K 

for i = 1, . . . , y 

  Prei = conjunct of preconditions of the first task in Ti 

Mi = (K(v
→

) Prei Ti)  

 End for 

M = {M1,…,My} 

add M to D  

return D 

End Insert-SHOP2-Methods 

The outcome of this algorithm is a modified domain in which a SHOP2 method is 

inserted for every possible alternate composition path. Each method represents a valid 

and ordered sequence of tasks. The precondition for each method is the conjunct of 

preconditions of the first task in the respective ordered task lists. The set of all possible 

and valid ordered task lists of component processes of B is generated through an 

algorithm based on assigning levels to the activities based on their inputs. The Identify-

Alternate-Paths(Q) algorithm creates all possible alternate composition paths from the 

list of atomic process definitions passed to it as input . 

Identify-Alternate-Paths(Q) 

Let Q be a collection of OWL-S atomic processes definitions 

For each atomic process definition Qo in Q 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   79 
 

 If (Qo is dependent only on initial states) 

  Assign level 0 to Qo  

Else 

Assign a level to Qo = level of highest level process on which Qo  

is dependent + 1 

  End If 

End For each 

For each two or more atomic processes having the same level 

identify P = processes that can make part of alternate composition paths 

create L = create all possible and valid composition orders 

 End For each 

Return L 

End Identify-Alternate-Paths  

The algorithm works as follows. 

1. Activities dependent on initial conditions are assigned level ‘0’. The level 

assigned to an activity is one more than the highest level activity on which it is 

dependent.  

2. If two or more activities have the same levels, there can be alternative 

composition paths. All operators that can make part of the alternate composition 

paths are identified. 

3. The identified operators are arranged to create a set of all possible and valid 

ordered task lists. This process is repeated every time there are two or more 

operators with the same level. 

Figure 6.6 shows levels of the activities and alternative paths for the customer 

organisation discussed in Section 3.3. The collaboration example shown in Section 3.3 

has further been used as a test case in Section 7.2 to automatically generate compatible 

workflows. 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   80 
 

 

Figure 6.6 Level of Activities and Alternative Composition Paths for Customer 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   81 
 

As shown in the figure, Inv_r and BL_r have the same level so alternate composition 

paths are possible. Inv_r, BL_r, Customs Declaration and InsuCert_r make part of 

alternate composition paths. Inv_r, BL_r, Customs Declaration and InsuCert_r 

activities can be arranged in four possible and valid orders. The parallel branches 

between SA_s and Take Delivery can be replaced by any of these sequential 

compositions of activities. 

6.4.4 Creating a Joint Domain 

The domain descriptions for all interacting organisations are collapsed in a single joint 

domain. This way all interacting organisations are considered part of a single 

organisational structure having cross organisational boundaries. The SHOP2 BP 

methods representing the top level business processes of each interacting organisation 

in an if-then-else format are joined together to create a single joint SHOP2 JBP method. 

The generated SHOP2 method represents the high level business process of the single 

organisational structure having cross organisational boundaries. The novel algorithm 

Create-Joint-SHOP2-Domain (D) to create a joint SHOP2 domain is given below. It 

takes a set D of SHOP2 domains of all collaborating organisations and produces a joint 

SHOP2 domain JD.  

Create- Joint-SHOP2-Domain (D) 

Let {Org1,Org2,...,Orgm} be the set of all collaborating organisations, D = { D1, 

D2,…, Dm }is the set of domains of {Org1,Org2,...,Orgm} respectively and JD  is 

a SHOP2 domain. Let O be an empty set of operators, M be an empty set of 

methods and G be an empty set of goal states. 

JD = Ø 

for i = 1, . . . , m 

  let Oi = set of operators in Di 

   add Oi into O 

  let Mi = set of methods in Di 

   add Mi into M 

  let Gi = conjunct goals of the Orgi 

   add Gi into G 

 End for 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   82 
 

Add O to JD 

Add M to JD 

JBP = Create-JBP(G, JD) 

Add JBP into JD 

return JD 

End Create- Joint-SHOP2-Domain 

Create-Joint-SHOP2-Domain(D) combines the operators and methods of the 

collaborating domains and merges them into the joint domain. It then merges the BP 

methods of all collaborating organisations into a single joint BP (JBP) method which 

acts as a joint high level business process of the single organisation created by 

combining all collaborating organisations. The developed novel algorithm CREATE-

JBP(G, JD) to create the JBP method is as follows. JBP(G, JD) takes a joint domain JD 

and a set G of goal states to achieve as input and creates a SHOP2 method JBP which 

acts as the top level business process of the joint organisation. 

Create-JBP(G, JD) 

Let G = conjunct of goals states of all collaborating organisations and JD be the 

SHOP2 joint domain. 

O = {O1,O2,…Om} be the set of operators in JD 

Preo = {Preo1,Preo2,…Preom} be the set of conjuncts of preconditions of  

{O1,O2,…Om} respectively 

M = {M1,M2,…Mn}be the set of methods in JD 

{Prem1,Prem2,…Premn} be the set of conjuncts of preconditions of  

{M1,M2,…Mn} respectively 

Nil = empty task list 

Return JBP = (JBP() G Nil Preo1 O1 JBP Preo2 O2 JBP…Preom Om JBP Prem1 M1 

JBP Prem2 M2 JBP… Premn Mn JBP) 

End Create-JBP 

Create-JBP(G, JD) creates a recursive SHOP2 method JBP, which groups the operators 

and methods of all collaborating organisations in an if-then-else format. An operator is 

executed or a method is decomposed when its preconditions hold. If all goal states in G 

are achieved, Nil is called to quit the method. In the expression JBP = (JBP() G Nil 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   83 
 

Preo1 O1 JBP Preo2 O2 JBP…Preom Om JBP Prem1 M1 JBP Prem2 M2 JBP… Premn Mn 

JBP), calling JBP after every Preoi Oi and every Premi Mi makes it a recursive 

expression and JBP will be called by the planner recursively until valid plans are found 

or the SHOP2 returns a failure.  

The implemented algorithm Create-Joint-SHOP2-Problem(P,D,s,G) for generating a 

joint SHOP2 problem by combining the SHOP2 problems of the collaborating 

organisations is as follows. It takes a set P of SHOP2 problems, set D of SHOP2 

domains, set s of initial states and set G of goals states of the collaborating 

organisations as inputs and returns a joint SHOP2 problem. 

Create-Joint-SHOP2-Problem (P,D,s,G) 

Let P={P1,P2,...,Pm} be the set of SHOP2 problems of the collaborating 

organisations, D = { D1, D2,…, Dm }is the set of domains of the collaborating 

organisations, JD  is the joint SHOP2 domain, s = conjunct of initial states of all 

collaborating organisations and G = conjunct of goals states of all collaborating 

organisations. 

JD = Create-Joint-SHOP2-Domain(D) 

return (s, T, JD). 

End Create-Joint-SHOP2-Problem 

Where T is the task list containing book keeping operators and methods that keeps track 

of G and calls JBP in JD to do the actual planning to achieve G. JBP is the method 

generated by collapsing BP methods of all interacting organisations into a single joint 

method. SHOP2 takes (s, T, JD) as input to start the planning process to achieve T from 

s in JD. 

 6.4.5 Planning for All Possible Sets of Compatible Plans 

The modified SHOP2 planner takes the joint SHOP2 problem (s, T, JD) as input and 

creates P = (P1 P2…Pn) as a set of multiple valid plans. Every plan Pi in P is a sequence 

of instantiated operators (O1,O2,…,Om) that will achieve T from s in JD. All plans in P 

are joint plans. The joint plans are divided into sub-plans, one for each organisation, 

compatible with each other. The division is based on the prefix attached to each 

operator after reading the OWLS process definitions. Operators with the same prefix 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   84 
 

are added into the plan for the organisation represented by the “Org + Organisation 

Number”. The control dependencies and data dependencies are kept the same as in joint 

plans. The set of compatible plans with least number of operators is highlighted to the 

users for execution. Assuming each operator takes the same time, this would be the 

least cost heuristic. The users can select the highlighted set or any other set of 

compatible plans for execution.  

The compatibility of the set of compatible plans generated by the division of a joint 

plan is intuitive. In the joint plan, the compatible plans for all collaborating 

organisations are arranged together in a particular order which ensures the achievement 

of the goal states of all collaborating organisations. This means there is an agreed 

sequence of activities that can ensure the achievement of the goals of every 

collaborating organisation, which is the definition of compatibility [3].  

 6.4.6 Runtime Execution and Collaboration 

The developed framework provides runtime support for the generated sets of 

compatible workflows. The selected set of compatible plans is passed to the 

SHOP2toOWLS translator which converts it into enactable workflows of OWLS atomic 

processes. At runtime, the control and data dependency among the activities in the set 

of compatible workflows is followed as specified in the joint workflow that was sub-

divided to create the selected set of compatible workflows. Since each activity in the 

selected set of compatible workflows is basically an OWLS atomic process which is a 

model of an actual WSDL service, the activity can be enacted directly using the 

enactment mechanism of the OWLS API. The enactment of an atomic process is a call 

to the corresponding web accessible program with its inputs instantiated. The runtime 

enactment manager keeps track of generated outputs in the form of a name-value pair in 

a hashmap, so that the generated outputs can be passed as inputs to the corresponding 

processes. 

Since workflows of more than one organisations are enacted together, they should be 

collaborated in order to ensure a smooth transfer of data and information among the 

cross organisational activities. Exchange of information is carried out between 

collaborating organisations through interface activities i.e. sending and receiving 

activities. Every sending activity uploads the sending information to a central server 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   85 
 

that has been set up to coordinate the collaboration process. Each collaborating 

organisation is provided with the access permissions and details of the central server. 

The uploaded information can be downloaded by the relevant collaborating organisation 

whenever a receiving activity is encountered in that organisation. The control flow and 

data flow of cross organisational activities as specified in the joint workflow is followed 

to ensure that the execution of collaborating workflows can go on hand in hand to 

completion. 

6.5 Implementation 

A proof-of-concept prototype has been implemented for the proposed framework. 

Collaborating organisations load their OWLS process definitions to the GUI of the 

prototype. The GUI was developed using Swing and AWT classes of Java. OWLS 

process definitions can be created manually or automatically using OWLS editor of 

Protégé. WSDL2OWL-S tool can also be used for automatic generation of OWLS 

processes from WSDL descriptions. We use a modified form of WSDL2OWL-S tool to 

develop OWLS processes for the example scenarios. WSDL descriptions of the web 

services are automatically generated from the Java code of the services with the help of 

Apache Axis2. 

The OWLSReader is a Java module based on OWLS API which is a Java based API for 

programmatic access to read, execute and write OWLS service descriptions. 

OWLSReader is a Java program which is capable of reading OWLS processes and 

loading the processes in form of Java objects to CWGM. The loaded OWLS processes 

are translated into HTN format using OWLStoSHOP2 Translator. OWLStoSHOP2 

Translator is a Java module for translating the loaded OWLS processes into HTN 

format.  

CWGM is the most fundamental module in the system. It manages the entire lifecycle 

of the workflow generation, workflow execution and workflow collaboration process. 

CWGM is developed using Java. The Planning is done using a modified version of 

JSHOP2 planner. JSHOP2 is the Java implementation of SHOP2 planner. 

SHOP2toOWLS Translator is a Java program to transform the SHOP2 plans into 

workflows of OWLS processes which can be enacted directly. The Runtime Execution 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   86 
 

Manager is a Java module to enact the OWLS processes in the generated workflows. 

The enactment is based on the execution mechanism of the OWLS API. A process is 

enacted by calling the corresponding web accessible program which the process 

models, with its inputs instantiated. The runtime collaboration is also done by Runtime 

Execution Manager. We use Jsch API to upload and download files over Secure File 

Transfer Protocol (SFTP). Jsch is the Java implementation of SSH2. 

6.6 Discussion 

The framework presented in the thesis is closely related to the system proposed by Sirin 

et al. [13].  Both the systems 

1. perceive automatic workflow generation as an AI planning problem, and exploit 

web services composition for automatic workflow generation based on the 

similarity between the two, 

2. use SHOP2 planner for automatic workflow generation, and 

3. translate OWLS process descriptions into SHOP2 methods to create domain 

control knowledge. 

The work presented in this thesis extends the application of AI planning to workflow 

generation as well as workflow collaboration. Below are some of the major extensions 

and improvements the developed framework has made to the approach taken by Sirin et 

al. [13] for workflow generation.  

1. Their system considers automatic workflow generation for a single organisation 

only. They do not focus on workflow collaboration among business 

organisations. The implemented framework integrates automatic workflow 

generation with cross organisational workflow collaboration and is capable of 

generating multiple sets of compatible workflows for multiple collaborating 

organisations. Similarly, collaboration is also supported at runtime. Their system 

lacks this functionality.  

2. They limit a service to either have outputs or effects. In real world a service can 

have effects and outputs at the same time. The framework presented in this 

thesis does not have this limitation.  



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   87 
 

3. Similarly, their system executes information providing services (services with 

only outputs) at planning time to produce the required information. The 

developed framework does not execute web services at planning time. This is 

because a service can have both effects and outputs and executing a web service 

at planning time can have real effects on the world e.g. charging the credit card 

for a certain amount of money. 

4. They look at web service composition as finding an execution path for already 

defined composite processes, which limits the automation of workflow 

generation by involving users to define composite processes. The developed 

framework presented in this thesis looks at web service composition as 

automatically generating a composite process from the atomic processes and 

then specialising it to create an execution path for the composite process. The 

OWLS to SHOP2 translation mechanism of both systems are hugely different 

due to this reason. They translate the composite processes directly into SHOP2 

methods. The developed framework decomposes the composite processes until 

they only contain atomic processes, translate the atomic processes into SHOP2 

operators and then group the operators as an if-then-else method. 

5. The system presented by Sirin et al. creates a single plan, based on the 

constraints of the user. If the user rejects the plan then the system re-plans for 

another plan. The developed framework creates all possible set of workflows. 

This enables the users to select from the generated set of workflows on the basis 

of their preferences. Also, the developed framework inserts methods in the 

domain to enable the planner to identify alternative composition paths whenever 

there are operators that can be executed concurrently. The framework reported 

by Sirin et al. lacks this functionality. 

6.7 Conclusion 

A framework based on the integration of automatic workflow generation, build time 

workflow collaboration, workflow enactment and runtime workflow collaboration is 

presented in this chapter. The basic aim of the presented framework is to create 

compatible and enactable workflows for multiple collaborating organisations, from their 

OWLS process definitions and high level goals. The focus is to compose atomic 



Chapter 6: A Framework for Cross Organisational Compatible Workflows Generation and Execution 

   88 
 

processes into composite processes rather than forming an execution path for composite 

processes, which we believe limits the true strength of workflow generation by limiting 

automation.  

The developed framework is the only framework so far which automatically generates 

compatible workflows for multiple collaborating organisations. The presented 

framework builds upon the system presented by Sirin et al. [13] and extends its 

functionality in several ways. The next chapter uses two example scenarios of multi-

organisational business collaboration to demonstrate the functionality and benefits of 

the implemented framework. 

 

 

 

 

 

 

 

 

 



Chapter 7: Results and Evaluation 

   89 
 

Chapter 7: Results and Evaluation 

7.1 Introduction 

This chapter presents the results and evaluation of the developed framework presented 

in Chapter 6. Two example scenarios of multiple business organisation collaboration 

are used. The details of the OWLS processes of the collaborating organisations are 

given and the sets of compatible workflows generated on the basis of their OWLS 

processes and initial states to achieve their desired goal states are presented. The 

chapter also explains the execution of the generated workflows. The scalability, 

efficiency and viability of the presented framework are also discussed. 

7.2 Vendor/Customer Business Collaboration Scenario 

To illustrate the functionality of the presented framework, the collaboration scenario 

discussed in Section 3.3 is used. Vendor and Customer represent the vendor and 

customer organisations as explained in the example given in Section 3.3.The following 

sub-sections present the details of their OWLS processes and the compatible workflows 

generated. 

7.2.1 OWLS Processes 

The OWLS process descriptions for Vendor and Customer relevant to the scenario are 

given in Table 7.1 and 7.2 respectively. The Vendor and Customer can have any 

number of OWLS processes and the presented framework will filter out any that are not 

relevant to a given application scenario. The OWLS processes simulate the actual 

activities of the collaborating organisations. Each activity is represented as an OWLS 

process which is grounded in an actual WSDL service. Appendices C and D give the 

OWLS and WSDL descriptions and Appendix E gives the Java code for a sample 

OWLS process IssueInspCert which simulates the creation of an inspection certificate. 

Table 7.1 Vendor’s OWLS Processes 

S. No Process Details 

1 Name: AdvPay_r (Receive advance payment) 



Chapter 7: Results and Evaluation 

   90 
 

Inputs/ Preconditions: s_Payment (Advance payment sent by Customer) 

Outputs/ Effects: r_Payment (Advance payment received from     

                                                Customer) 

Description: This process receives advance payment from the Customer. 

2 Name: PaymentCheck (Check payment) 

Inputs/ Preconditions: r_Payment (Advance payment received from      

                                                        Customer) 

Outputs/ Effects: ok_PC (Payment Check OK) 

Description: This process checks the advance payment received from the  

                     Customer. 

3 Name: GoodsManufacture (Manufacture Goods) 

Inputs/ Preconditions: ok_PC (Payment check OK) 

Outputs/ Effects: goods (Manufactured goods) 

Description: This process manufactures goods. 

4 Name: IssueInv (Issue commercial invoice) 

Inputs/ Preconditions: goods (Manufactured Goods) 

Outputs/ Effects: Invoice (Commercial Invoice) 

Description: This process issues a commercial invoice. 

5 Name: FactoryInspection (Inspect manufactured goods) 

Inputs/ Preconditions: Invoice (Commercial Invoice) 

Outputs/ Effects: ok_Insp (Factory Inspection OK) 

Description: This process inspects the manufactured goods. 

6 Name: IssueInspCert (Issue inspection certificate) 

Inputs/ Preconditions: ok_Insp (Factory Inspection OK) 

Outputs/ Effects: InspCert (Inspection certificate) 

Description: This process issues an inspection certificate. 

7 Name: InspCert_s (Send inspection certificate) 

Inputs/ Preconditions: InspCert (Inspection certificate) 

Outputs/ Effects: s_InspCert (Inspection certificate sent) 

Description: This process sends the inspection certificate to the Customer. 

8 Name: SA_r ( Receive shipment arrangement notification) 

Inputs/ Preconditions: s_SA (Shipment arrangement notification sent by   



Chapter 7: Results and Evaluation 

   91 
 

                                               Customer) 

                                     s_InspCert (Inspection certificate sent) 

Outputs/ Effects: r_SA (Shipment arrangement notification received  

                                      from Customer) 

Description: This process receives the shipment arrangement notification. 

9 Name: Inv_s (Send commercial invoice) 

Inputs/ Preconditions: r_SA (Shipment arrangement notification received) 

                                    Invoice (Commercial Invoice) 

Outputs/ Effects: s_Inv (Commercial invoice sent) 

Description: This process sends the commercial invoice to the Customer. 

10 Name: ShippingArrangement (Arrange Shipment) 

Inputs/ Preconditions: r_SA ( Shipment arrangement notification received  

                                                from Customer) 

                                    Invoice (Commercial Invoice) 

Outputs/ Effects: BL (Bill of lading) 

Description: This process arranges shipment of goods. 

11 Name: InsuranceArrangement (Arrange insurance) 

Inputs/ Preconditions: s_BL (Bill of lading sent) 

                                    Invoice (Commercial Invoice) 

Outputs/ Effects: InsuCert (Insurance certificate) 

Description: This process arranges the insurance of the goods. 

12 Name: InsuCert_s (Send insurance certificate) 

Inputs/ Preconditions: InsuCert (Insurance certificate) 

Outputs/ Effects: s_InsuCert (Insurance certificate sent) 

Description: This process sends the insurance certificate to the Customer. 

13 Name: BL_s (Send bill of lading) 

Inputs/ Preconditions: BL (Bill of lading) 

Outputs/ Effects: s_BL (Bill of lading sent) 

Description: This process sends the bill of lading to the customer. 

14 Name: CertOriginApp (Apply for certificate of origin) 

Inputs/ Preconditions: s_Inv (Commercial invoice sent)  

                                    s_InsuCert (Insurance certificate sent) 



Chapter 7: Results and Evaluation 

   92 
 

                                    Invoice (Commercial Invoice) 

Outputs/ Effects: OrigCert (Certificate of origin) 

Description: This process applies for certificate of origin. 

15 Name: CertOrigin_s (Send certificate of origin) 

Inputs/ Preconditions: OrigCert (Certificate of origin) 

Outputs/ Effects: s_OrigCert (Certificate of origin sent) 

Description: This process sends the certificate of origin to the Customer. 

16 Name: InvPay_r (Receive payment for invoice) 

Inputs/ Preconditions: s_OrigCert (Certificate of origin sent) 

                                    s_InvPay (Payment for the invoice sent by Customer) 

Outputs/ Effects: r_InvPay (Payment for the invoice received from  

                                             Customer) 

Description: This process receives the payment for the invoice from the   

                     Customer. 

17 Name: PaymentHandling (Handle payment) 

Inputs/ Preconditions: r_InvPay (Payment for the invoice received from  

                                                    Customer) 

Outputs/ Effects: ok_PH (Payment handling OK) 

Description: This process handles payment. 

Table 7.2 Customer’s OWLS Processes  

S. No Process Details 

1 Name: AdvPay_s (Send advance payment) 

Inputs/ Preconditions: Payment (Advance payment) 

Outputs/ Effects: s_Payment (Advance payment sent) 

Description: This process sends advance payment to the Vendor. 

2 Name: InspCert_r (Receive inspection certificate) 

Inputs/ Preconditions: s_Payment (Advance payment sent) 

                                    s_InspCert (Inspection certificate sent by Vendor) 

Outputs/ Effects: r_InspCert (Inspection certificate received from Vendor) 

Description: This process receives the inspection certificate from the  

                     Vendor. 



Chapter 7: Results and Evaluation 

   93 
 

3 Name: CheckInspCert (Check inspection certificate) 

Inputs/ Preconditions: r_InspCert (Inspection certificate received from       

                                                       Vendor) 

Outputs/ Effects: ok_InspCert (Inspection certificate OK) 

Description: This process checks the inspection certificate received from the   

                     Vendor. 

4 Name: IssueSA (Issue shipment arrangement notification) 

Inputs/ Preconditions: ok_InspCert (Inspection certificate OK) 

Outputs/ Effects: SA (Shipment arrangement notification) 

Description: This process issues the shipment arrangement notification. 

5 Name: SA_s (Send shipment arrangement notification) 

Inputs/ Preconditions: SA (Shipment arrangement notification) 

Outputs/ Effects: s_SA (Shipment arrangement notification sent) 

Description: This process sends the shipment arrangement notification to  

                     the Vendor. 

6 Name: BL_r (Receive bill of lading) 

Inputs/ Preconditions: s_SA ( Shipment arrangement notification sent) 

                                    s_BL (Bill of lading sent by the Vendor) 

Outputs/ Effects: r_BL ( Received bill of lading from Vendor) 

Description: This process receives the bill of lading from the Vendor. 

7 Name: Inv_r (Receive commercial invoice) 

Inputs/ Preconditions: s_SA (Shipment arrangement notification sent) 

                                    s_Inv (Commercial invoice sent by Vendor) 

Outputs/ Effects: r_Inv (Commercial invoice received from Vendor) 

Description: This process receives the commercial invoice from the Vendor. 

8 Name: CustomsDeclaration ( Declare goods to customs) 

Inputs/ Preconditions: r_Inv (Commercial invoice received from Vendor) 

Outputs/ Effects: CD ( Customs declaration report) 

Description: This process declares the delivered goods to customs. 

9 Name: InsuCert_r (Receive insurance certificate) 

Inputs/ Preconditions: CD (Customs declaration report) 

                                    s_InsuCert (Insurance certificate sent by Vendor) 



Chapter 7: Results and Evaluation 

   94 
 

Outputs/ Effects: r_InsuCert (Insurance certificate received from Vendor) 

Description: This process receives the Insurance certificate from the         

                     Vendor. 

10 Name: TakeDelivery (Take Delivery) 

Inputs/ Preconditions: r_InsuCert (Insurance certificate received from     

                                                      Vendor) 

                                    r_Inv (Payment for invoice received from Vendor) 

                                    r_BL ( Bill of lading received from Vendor) 

Outputs/ Effects: Delivery (Goods Delivered) 

Description: This process takes delivery of the goods. 

11 Name: PresaleInspection (Presale inspection of goods) 

Inputs/ Preconditions: Delivery (Goods delivered) 

Outputs/ Effects: ok_PI (Presale inspection OK) 

Description: This process inspects the goods after the delivery is taken. 

12 Name: CertOrigin_r (Receive the certificate of origin) 

Inputs/ Preconditions: ok_PI (Presale inspection OK) 

                                    s_OrigCert (Certificate of origin sent by Vendor) 

Outputs/ Effects: r_ OrigCert (Certificate of origin received from Vendor) 

Description: This process receives the certificate of origin from the Vendor. 

13 Name: ApprovePayment (Approve Payment) 

Inputs/ Preconditions: r_ OrigCert (Certificate of origin received from    

                                                         Vendor) 

                                    r_Inv (Commercial invoice received from Vendor) 

Outputs/ Effects: InvPay (Payment for invoice) 

Description: This process approves payment to the Vendor. 

14 Name: InvPay_s (Send payment for invoice) 

Inputs/ Preconditions: InvPay (Payment for the invoice ) 

Outputs/ Effects: s_InvPay (Payment for the invoice sent) 

Description: This process sends payment for the invoice to the Vendor. 



Chapter 7: Results and Evaluation 

   95 
 

7.2.2 Results 

Based on the OWLS processes given in Table 7.1 and Table 7.2 the system generates 

20 sets of compatible workflows. The generation of the 20 sets of compatible 

workflows is due to the identification of different composition paths when the planner 

encounters activities that can be executed in parallel. The system takes 6816 

milliseconds to generate the 20 sets of compatible workflows. 

Figures 7.1 and 7.2 show two different sets of compatible workflows for Vendor and 

Customer Collaboration. The remaining sets are given in Appendix F. The graphical 

representation of the workflows is used to make them more understandable. The solid 

lines show control dependencies while the dotted lines show data dependencies. Figures 

7.1 and 7.2 show that the data dependencies are the same in both set of plans but the 

control dependencies are different. In the Vendor’s workflow in Figure 7.1, 

ShippingArrangement has a control dependency on SA_r, and Inv_s has control 

dependency on InsuCert_s. In the Vendor’s workflow in Figure 7.2, Inv_s has a control 

dependency on SA_r and ShippingArrangement has control dependency on Inv_s. 

Similarly, in the Customer’s workflow in Figure 7.1, Bl_r has a control dependency on 

SA_s and Inv_r has a control dependency on BL_r. In the Customer’s workflow in 

Figure 7.2, Inv_r has a control dependency on SA_s and BL_r has control dependency 

on CustomsDeclaration. Both sets of workflows are valid and compatible. 

The compatibility of the workflows can be verified by considering their respective 

interface processes. Figure 7.3 shows the interface process for the workflows in Figure 

7.1. The corresponding interface activities have been labelled with the same alphabet to 

make them clearer to follow. It can be observed that for every receiving activity there is 

a corresponding sending activity. Notice that Inv_r has to wait for InsuCert_s to 

complete before Inv_s to complete, so there is a delay of one activity. But there is no 

deadlock so the interface processes of both workflows are compatible.   

In the workflows presented in figure 7.1 and 7.2, the initial state is payment, which 

means that the customer has to make an advance payment to start the collaboration 

process. The final goal for Vendor is ok_PH, which means that payment should be 

successfully handled. The final goal for Customer is s_InvPay, which means that the 

payment for the invoice is sent to the Vendor at the end of its business process. 



Chapter 7: Results and Evaluation 

   96 
 

 

Figure 7.1 A Set of Compatible Workflows for Vendor and Customer  



Chapter 7: Results and Evaluation 

   97 
 

 

Figure 7.2 Another Set of Compatible Workflows for Vendor and Customer 



Chapter 7: Results and Evaluation 

   98 
 

 

Figure 7.3 Interface Processes for Vendor/Customer Workflows in Figure 7.1  

After workflow generation, the user selects one from the sets of compatible workflows 

for execution. The sequential order of the activities specified by the control 

dependencies must be followed at runtime, e.g. AdvPay_r must be executed before 

PaymentCheck. Similarly, the data dependencies must also be followed at runtime. For 

example, Shipping Arrangement activity must be executed after IssueInv in both sets of 

compatible workflows, since Shipping Arrangement needs commercial invoice 

(Invoice) which is generated by IssueInv. 

For cross organisational activities, the sending activities upload the data to a central 

server which is downloaded by the receiving services. For example, in Figure 7.1, 

InspCert_s is a sending service which uploads inspection certificate to a central server 

and InspCert_r is a receiving activity which downloads the inspection certificate. The 

complete execution of the compatible workflows achieves the desired goals. 

The developed framework generates workflows that only consist of necessary OWLS 

processes to achieve the goals states from initial states. To illustrate this, a scenario 

where the collaborating organisations select goods and SA as the initial states and 

s_OrigCert and r_OrigCert as the goals states is presented. This means that in the 

initial state of the world the goods are already manufactured by the Vendor and 

shipment arrangement notice is already issued by the Customer. The desired goal is to 

achieve a world state in which the Vendor sends the certificate of origin to the 

Customer and the Customer receives the certificate of origin form the Vendor. In this 

scenario several of the OWLS processes in Table 7.1 and 7.2 become irrelevant to the 

workflow generation process as they are not required in the workflows to achieve the 

goal states from the initial states. The framework discards the irrelevant processes from 



Chapter 7: Results and Evaluation 

   99 
 

the set of loaded processes to make sure that they are not translated to SHOP2 format or 

used in the planning. This approach saves time. 

The system takes 5794 milliseconds to generate the 20 sets of compatible workflows. 

Figure 7.4 and 7.5 show two of the 20 sets of compatible workflows generated. It is 

obvious that the workflows only consist of OWLS processes necessary to achieve the 

goal states from the initial states.  In both figures the data dependencies are the same 

while the sequential control dependencies are different. In the Vendor’s workflow in 

Figure 7.4, ShippingArrangement has a control dependency on SA_r and Inv_s has 

control dependency on BL_s. In the Vendor’s workflow in Figure 7.5, Inv_s has a 

control dependency on SA_r and ShippingArrangement has control dependency on 

Inv_s. Similarly, in the Customer’s workflow in Figure 7.4, CustomsDeclaration has a 

control dependency on Inv_r and Bl_r has a control dependency on 

CustomsDeclaration. In the Customer’s workflow in Figure 7.5, CustomsDeclaration 

has a control dependency on BL_r and BL_r has control dependency on Inv_r. At 

runtime, the users are asked to provide the values for the initial inputs and the OWLS 

processes in the generated workflows are executed to achieve the desired goals. 

Although the length of the generated workflows is different to the scenario shown in 

Figure 7.1 and 7.2, but the number of generated sets of compatible workflows is similar 

i.e. twenty sets of compatible workflows are generated. This is because the OWLS 

processes that can be executed concurrently are the same in the new scenario as well. 

The concurrent OWLS processes are ordered in alternative composition orders to 

generate multiple sets of compatible workflows. This is done by the methods insertion 

algorithm explained in Section 6.4.3. As shown for the Customer in Figure 6.6, Inv_r, 

BL_r, Customs Declaration and InsuCert_r occur in parallel branches of the workflow 

and can be arranged in four possible and valid orders. Similarly, in the Vendor’s OWLS 

process given in Table 7.1, Inv_s, ShippingArrangement, BL_s, InsuranceArrangement 

and InsuCert_s occur in parallel branches of the workflow and can be arranged in five 

alternate orders. This means that twenty possible joint plans can be generated from the 

OWLS processes of both collaborating organisations and hence twenty possible sets of 

compatible workflows can be generated. If the concurrency is removed from the 

Customer’s OWLS processes in Table 7.2 by making the changes shown in Table 7.3, 

then only five sets of compatible workflows can be generated. This is because BL_r 



Chapter 7: Results and Evaluation 

   100 
 

must now occur before Inv_r in the Customer’s workflow and so there is only one 

possible sequential order of processes for the Customer and five possible orders of 

processes for the Vendor. Figure 7.6 and Figure 7.7 show two of the five sets of 

compatible workflows.  

 

Figure 7.4 An Alternative Length Set of Compatible Workflows for Vendor and 

Customer 



Chapter 7: Results and Evaluation 

   101 
 

 

Figure 7.5 Another Alternative Length Set of Compatible Workflows for Vendor and 

Customer 



Chapter 7: Results and Evaluation 

   102 
 

 

Figure 7.6 An Alternative Length Set of Compatible Workflows for Vendor and 

Customer (No Concurrency in Customer’s OWLS Processes) 



Chapter 7: Results and Evaluation 

   103 
 

   

 

Figure 7.7 Another Alternative Length Set of Compatible Workflows for Vendor and 

Customer (No Concurrency in Customer’s OWLS Processes) 



Chapter 7: Results and Evaluation 

   104 
 

Table 7.3 Changes to Customer’s OWLS Processes to Remove Concurrency 

S. No Process Details 

1 
Name: Inv_r (Receive commercial invoice) 

Inputs/ Preconditions: r_BL (Bill of lading received from Vendor) 

                                    s_Inv (Commercial invoice sent by Vendor) 

Outputs/ Effects: r_Inv (Commercial invoice received from Vendor) 

As obvious in the Figure 7.6 and 7.7, the workflow for the Customer is the same in both 

figures while the workflow for the Vendor is different in both the figures. In the 

Vendor’s workflow in Figure 7.6, InsuranceArrangement must be executed before 

Inv_s. In the Vendor’s workflow in Figure 7.7, Inv_s must be executed before 

InsuranceArrangement. In all five sets of compatible workflows generated, the 

Customer’s workflow will be the same, while the Vendor’s workflow will be different. 

7.3 Retailer/Wholesaler/Manufacturer/Supplier Business 

Collaboration Scenario 

To illustrate the generality of the framework to handle multiple organisations, a 

scenario involving four organisations is used, namely retailer, wholesaler, manufacturer 

and supplier. It is a common business collaboration scenario in the real world and 

therefore we have used it as an example to test the prototype. The retailer, 

manufacturer, wholesaler and supplier are represented by Retailer, Manufacturer, 

Wholesaler and Supplier respectively. The details and descriptions of OWLS processes 

of each of the organisations are given in the next section. 

7.3.1 OWLS Processes 

The OWLS processes for Retailer, Wholesaler, Manufacturer and Supplier are given in 

Table 7.4, 7.5, 7.6, and 7.7 respectively. Only the processes relevant to this 

collaboration scenario are given.  

Table 7.4 Retailer’s OWLS Processes 

S.No OWLS Process Details 

1 Name: QuotationInqPrep (Quotation inquiry preparation) 



Chapter 7: Results and Evaluation 

   105 
 

Inputs/ Preconditions: goods_req (Goods required ) 

Outputs/ Effects: RInq (Retailer’s inquiry for quotation) 

Description: This process creates a quotation inquiry. 

2 Name: QuotationInq_s (Send quotation inquiry) 

Inputs/ Preconditions: RInq (Retailer’s inquiry for quotation) 

Outputs/ Effects: s_RInq (Retailer’s inquiry for quotation sent) 

Description: This process sends a quotation inquiry to the Wholesaler. 

3 Name: Quotation_r (Receive quotation) 

Inputs/ Preconditions: s_RInq (Retailer’s inquiry for quotation sent) 

                                    s_WQuotation (Quotation sent by the Wholesaler) 

Outputs/ Effects: r_WQuotation (Quotation received from the Wholesaler) 

Description: This process receives the quotation sent by the Wholesaler. 

4 Name: QuotationEvaluation (Evaluate the quotation) 

Inputs/ Preconditions: r_WQuotation (Quotation received from the Wholesaler) 

Outputs/ Effects: EvalReport (Evaluation report) 

Description: This process evaluates the quotation received from the  

                     Wholesaler. 

5 Name: CreatePO (Create a purchase order) 

Inputs/ Preconditions: EvalReport (Evaluation report) 

Outputs/ Effects: RPO (Retailer’s purchase order) 

Description: This process creates a purchase order. 

6 Name: PO_s (Send the purchase order) 

Inputs/ Preconditions: RPO (Retailer’s purchase order) 

Outputs/ Effects: s_RPO (Retailer’s purchase order sent) 

Description: This process sends the purchase order to the Wholesaler. 

7 Name: POAcpt_r (Accept the purchase order approval/acceptance) 

Inputs/ Preconditions: s_RPO (Retailer’s purchase order sent) 

                                    s_POA (Purchase order approval sent by Wholesaler) 

Outputs/ Effects: r_POA (Received purchase order approval from the 

                                          Wholesaler) 

Description: This process receives the purchase order approval from the  

                     Wholesaler. 



Chapter 7: Results and Evaluation 

   106 
 

8 Name: ComInv_r (Receive commercial invoice) 

Inputs/ Preconditions: s_WInv (Commercial invoice sent by the Wholesaler ) 

                                    r_POA (Received purchase order approval from the   

                                                  Wholesaler) 

Outputs/ Effects: r_WInv (Received commercial invoice from the Wholesaler) 

Description: This process receives the commercial invoice from the  

                     Wholesaler. 

9 Name: TakeDelivery (Take Delivery) 

Inputs/ Preconditions: r_WInv (Received commercial invoice from the   

                                                  Wholesaler) 

Outputs/ Effects: WDelivery (Goods delivered by the Wholesaler) 

Description: This process takes delivery of goods shipped by the Wholesaler. 

10 Name: ApprovePayment (Approve payment) 

Inputs/ Preconditions: WDelivery (Goods delivered by the Wholesaler) 

Outputs/ Effects: RInvPay (Retailer’s payment for invoice) 

Description: This process approves payment to the Wholesaler. 

11 Name: InvPayment_s (Send payment for invoice) 

Inputs/ Preconditions: RInvPay (Retailer’s payment for invoice) 

Outputs/ Effects: s_RInvPay (Retailer’s payment for the invoice sent) 

Description: This process sends the Retailer’s payment for the invoice to the  

                     Wholesaler. 

Table 7.5 Wholesaler’s OWLS Processes  

S.No OWLS Process Details 

1 Name: QuotationInq_r (Receive quotation inquiry) 

Inputs/ Preconditions: s_RInq (Quotation inquiry sent by the Retailer ) 

Outputs/ Effects: r_RInq (Quotation inquiry received from the Retailer) 

Description: This process receives the Retailer’s inquiry for quotation. 

2 Name: QuotationPreparation(Prepare quotation) 

Inputs/ Preconditions: r_RInq (Quotation inquiry received from the Retailer) 

Outputs/ Effects: WQuotation (Wholesaler’s quotation) 

Description: This process prepares a quotation. 



Chapter 7: Results and Evaluation 

   107 
 

3 Name: Quotation_s (Send Quotation) 

Inputs/ Preconditions: WQuotation (Wholesaler’s quotation) 

Outputs/ Effects: s_WQuotation (Wholesaler’s quotation sent) 

Description: This process sends the Wholesaler’s quotation to the Retailer. 

4 Name: PO_r (Receive purchase order) 

Inputs/ Preconditions: s_WQuotation (Wholesaler’s quotation sent) 

                                    s_RPO (Purchase order sent by the Retailer) 

Outputs/ Effects: r_RPO (Purchase order received from the Retailer) 

Description: This process receives the purchase order sent by the Retailer. 

5 Name: POApproval (Purchase order approval) 

Inputs/ Preconditions: r_RPO (Purchase order received from the Retailer) 

Outputs/ Effects: POA (Purchase order approval) 

Description: This process approves the purchase order received from the  

                     Retailer. 

6 Name: POAcpt_s (Send the purchase order approval/acceptance) 

Inputs/ Preconditions: POA (Purchase order approval) 

Outputs/ Effects: s_POA (Purchase order approval sent) 

Description: This process sends the purchase order approval/acceptance to the  

                     Retailer. 

7 Name: CreateInquiry (Create quotation inquiry) 

Inputs/ Preconditions: s_POA (Purchase order approval sent) 

Outputs/ Effects: WInq (Wholesaler’s quotation inquiry) 

Description: This process creates a quotation inquiry to send to the  

                     Manufacturer. 

8 Name: QuotationInquiry_s (Send the quotation inquiry) 

Inputs/ Preconditions: WInq (Wholesaler’s quotation inquiry ) 

Outputs/ Effects: s_WInq (Wholesaler’s quotation inquiry sent) 

Description: This process sends the quotation inquiry to the Manufacturer. 

9 Name: Quotation_r (Receive quotation) 

Inputs/ Preconditions: s_WInq (Wholesaler’s quotation inquiry sent) 

                                    s_MQuotation (Quotation sent by the Manufacturer) 

Outputs/ Effects: r_MQuotation (Quotation received from the Manufacturer) 



Chapter 7: Results and Evaluation 

   108 
 

Description: This process receives the quotation sent by the Manufacturer. 

10 Name: ApproveQuotation (Approve quotation) 

Inputs/ Preconditions: r_MQuotation (Quotation received from the  

                                                             Manufacturer) 

Outputs/ Effects: QuotApp (Quotation approval) 

Description: This process approves the quotation received from the  

                     Manufacturer. 

11 Name: QuotationApproval_s (Send quotation approval) 

Inputs/ Preconditions: QuotApp (Quotation approval) 

Outputs/ Effects: s_ QuotApp (Quotation approval  sent) 

Description: This process sends the quotation approval to the Manufacturer. 

12 Name: Invoice_r (Receive commercial invoice) 

Inputs/ Preconditions: s_QuotApp (Quotation approval  sent) 

                                    s_MInv (Commercial invoice sent by the Manufacturer) 

Outputs/ Effects: r_MInv (Commercial invoice received from the                                    

                                          Manufacturer) 

Description: This process receives the commercial invoice from the  

                     Manufacturer. 

13 Name: InsuCert_r (Receive insurance certificate) 

Inputs/ Preconditions: r_MInv (Commercial invoice received from the  

                                                  Manufacturer) 

                                    s_InsuCert (Insurance certificate sent by the  

                                                       Manufacturer) 

Outputs/ Effects: r_InsuCert (Insurance certificate received from the   

                                               Manufacturer) 

Description: This process receives the insurance certificate from the   

                     Manufacturer. 

14 Name: CustomsDeclaration (Customs Declaration) 

Inputs/ Preconditions: r_InsuCert (Insurance certificate received from the  

                                                       Manufacturer) 

Outputs/ Effects: CDR (Customs declaration report) 

Description: This process declares the delivered goods to the customs. 



Chapter 7: Results and Evaluation 

   109 
 

15 Name: TakeDelivery (Take delivery) 

Inputs/ Preconditions: r_MInv (Commercial invoice received from the  

                                                  Manufacturer) 

                                    CDR(Customs declaration report) 

Outputs/ Effects: MDelivery (Delivery taken from the Manufacturer) 

Description: This process takes delivery of goods sent by the Manufacturer. 

16 Name: PaymentApproval (Approve Payment) 

Inputs/ Preconditions: MDelivery (Delivery taken from the Manufacturer) 

Outputs/ Effects: WInvPay (Payment for invoice) 

Description: This process approves payment to the Manufacturer. 

17 Name: InvoicePayment_s (Send payment for invoice) 

Inputs/ Preconditions: WInvPay (Payment for invoice) 

Outputs/ Effects: s_ WInvPay (payment for the invoice sent) 

Description: This process sends the payment for the invoice to the  

                     Manufacturer. 

18 Name: IssueComInv (Issue commercial invoice) 

Inputs/ Preconditions: s_ WInvPay (payment for the invoice sent) 

Outputs/ Effects:  WInv (Wholesaler’s commercial invoice) 

Description: This process issues the Wholesaler’s commercial invoice. 

19 Name: ComInv_s (Send commercial invoice) 

Inputs/ Preconditions: WInv (Wholesaler’s commercial invoice) 

Outputs/ Effects: s_ WInv (Wholesaler’s commercial invoice sent) 

Description: This process sends the Wholesaler’s commercial invoice to the  

                     Retailer. 

20 Name: ShipGoods (Ship goods) 

Inputs/ Preconditions: s_ WInv (Wholesaler’s commercial invoice sent) 

Outputs/ Effects: WSR (Wholesaler’s shipment report) 

Description: This process ships the goods to the Retailer. 

21 Name: InvPayment_r (Receive payment for invoice) 

Inputs/ Preconditions: WSR (Wholesaler’s shipment report) 

                                    s_RInvPay (Payment for the invoice sent by the  

                                                        Retailer) 



Chapter 7: Results and Evaluation 

   110 
 

Outputs/ Effects: r_RInvPay (Payment for the invoice received from the   

                                               Retailer) 

Description: This process receives the payment for the invoice from the  

                     Retailer. 

Table 7.6 Manufacturer’s OWLS Processes 

S.No OWLS Process Details 

1 Name: QuotationInquiry_r (Receive quotation inquiry) 

Inputs/ Preconditions: s_WInq (Quotation Inquiry sent by the Wholesaler ) 

Outputs/ Effects: r_WInq (The Wholesaler’s quotation inquiry received) 

Description: This process receives the quotation inquiry from the Wholesaler. 

2 Name: PrepareQuotation (Prepare Quotation) 

Inputs/ Preconditions: r_WInq (Quotation Inquiry received from the  

                                                  Wholesaler) 

Outputs/ Effects: MQuotation (Manufacturer’s quotation) 

Description: This process creates the Manufacturer’s quotation. 

3 Name: Quotation_s (Send the Manufacturer’s quotation) 

Inputs/ Preconditions: MQuotation (Manufacturer’s quotation) 

Outputs/ Effects: s_MQuotation (Manufacturer’s quotation sent) 

Description: This process sends the Manufacturer’s quotation to the  

                     Wholesaler. 

4 Name: QuotationApproval_r (Receive quotation approval) 

Inputs/ Preconditions: s_MQuotation (Manufacturer’s quotation sent) 

                                    s_QuotApp (Quotation approval sent by the  

                                                         Wholesaler) 

Outputs/ Effects: r_QuotApp (Quotation approval received from the 

                                                 Wholesaler) 

Description: This process receives the quotation approval from the  

                     Wholesaler. 

5 Name: PrepareInquiry (Prepare quotation inquiry) 

Inputs/ Preconditions: r_QuotApp (Quotation approval received from the  

                                                        Wholesaler) 



Chapter 7: Results and Evaluation 

   111 
 

Outputs/ Effects: MInq (Manufacturer’s quotation inquiry) 

Description: This process creates a quotation inquiry. 

6 Name: QuotationInquiry_s (Send the quotation inquiry) 

Inputs/ Preconditions: MInq (Manufacturer’s quotation inquiry) 

Outputs/ Effects: s_MInq (Manufacturer’s quotation inquiry sent) 

Description: This process sends the Manufacturer’s quotation inquiry to the  

                     Supplier. 

7 Name: ReceiveQuotation_r  (Receive quotation) 

Inputs/ Preconditions: s_MInq (Manufacturer’s quotation inquiry sent) 

                                    s_SQuotation (Supplier’s quotation sent) 

Outputs/ Effects: r_SQuotation (Supplier’s quotation received) 

Description: This process receives the quotation from the Supplier. 

8 Name: QuotationApp (Approve quotation) 

Inputs/ Preconditions: r_SQuotation (Supplier’s quotation received) 

Outputs/ Effects: QApp (Quotation approval) 

Description: This process approves the quotation received from the Supplier. 

9 Name: QuotationApp _s (Send quotation approval) 

Inputs/ Preconditions: QApp (Quotation approval) 

Outputs/ Effects: s_QApp (Quotation approval sent) 

Description: This process sends the quotation approval to the Supplier. 

10 Name: CommercialInvoice_r  (Receive commercial invoice) 

Inputs/ Preconditions: s_SInvoice (Supplier’s commercial invoice sent) 

                                    s_QApp (Quotation approval sent) 

Outputs/ Effects: r_SInvoice (Supplier’s commercial invoice received) 

Description: This process receives commercial invoice sent by the Supplier. 

11 Name: InsuranceCertificate_r  (Receive Insurance Certificate) 

Inputs/ Preconditions: r_SInvoice (Commercial invoice received from the  

                                                       Supplier ) 

                                    s_InsuranceCert (Insurance certificate sent by the  

                                                               Supplier) 

Outputs/ Effects: r_InsuranceCert (Insurance certificate received from 

                                                       the Supplier) 



Chapter 7: Results and Evaluation 

   112 
 

Description: This process receives the insurance certificate sent by the  

                     Supplier. 

12 Name: DeclareToCustoms (Declare goods to customs) 

Inputs/ Preconditions: r_SInvoice (Commercial invoice received from the  

                                                       Supplier) 

                                    r_InsuranceCert (Insurance certificate received from             

                                                               the Supplier) 

Outputs/ Effects: DeclarationReport (Goods declaration report) 

Description: This process declares goods to customs. 

13 Name: TakeRawDelivery (Take delivery of raw material) 

Inputs/ Preconditions: r_SInvoice (Commercial invoice received from the  

                                                       Supplier) 

                                    DeclarationReport (Goods declaration report) 

Outputs/ Effects: SDelivery (Delivery taken from the Supplier) 

Description: This process takes delivery of raw material shipped by the  

                     Supplier. 

14 Name: ApprovePaymentInvoice (Approves  payment for the invoice) 

Inputs/ Preconditions: SDelivery (Delivery taken from the Supplier) 

Outputs/ Effects: MInvPay (Manufacturer’s payment for the invoice) 

Description: This process approves payment for the invoice to the supplier. 

15 Name: PaymentInvoice_s (Send payment for invoice) 

Inputs/ Preconditions: MInvPay (Manufacturer’s payment for invoice) 

Outputs/ Effects: s_ MInvPay (Manufacturer’s payment for invoice sent) 

Description: This process sends the payment for the invoice to the Supplier. 

16 Name: GoodsManufacturing (Manufacture goods) 

Inputs/ Preconditions: s_MInvPay (Manufacturer’s payment for the invoice  

                                                        sent) 

Outputs/ Effects: Goods (Manufactured goods) 

Description: This process manufactures goods. 

17 Name: CreateInvoice (Create commercial invoice) 

Inputs/ Preconditions: Goods (Manufactured goods) 

Outputs/ Effects: MInv (Manufacturer’s commercial invoice) 



Chapter 7: Results and Evaluation 

   113 
 

Description: This process creates the Manufacturer’s commercial invoice. 

18 Name: Invoice_s (Send commercial invoice) 

Inputs/ Preconditions: MInv (Manufacturer’s commercial invoice) 

Outputs/ Effects: s_ MInv (Manufacturer’s commercial invoice sent) 

Description: This process sends the Manufacturer’s commercial invoice to the  

                     Wholesaler. 

19 Name: ArrangeShipment (Arrange shipment of goods) 

Inputs/ Preconditions: s_ MInv (Commercial invoice sent) 

Outputs/ Effects: MSR (Manufacturer’s shipment report) 

Description: This process arranges shipment of goods to the Wholesaler. 

20 Name: ArrangeInsurance (Arrange insurance of goods) 

Inputs/ Preconditions: MSR (Manufacturer’s shipment report) 

Outputs/ Effects: InsuCert (Insurance certificate) 

Description: This process arranges insurance of the shipped goods. 

21 Name: InsuCert_s (Send Insurance certificate) 

Inputs/ Preconditions: InsuCert (Insurance certificate) 

Outputs/ Effects: s_ InsuCert (Insurance certificate sent) 

Description: This process sends the insurance certificate to the Wholesaler. 

22 Name: InvoicePayment_r  (Receive payment for invoice) 

Inputs/ Preconditions: s_InsuCert (Insurance certificate sent) 

                                    s_WInvPay (Payment for the invoice sent by the  

                                                       Wholesaler) 

Outputs/ Effects: r_WInvPay (Payment for the invoice received from the   

                                               Wholesaler) 

Description: This process receives the payment for the invoice from the  

                     Wholesaler. 

Table 7.7 Supplier’s OWLS Processes 

S.No OWLS Process Details 

1 Name: QuotationInquiry_r (Receive quotation inquiry) 

Inputs/ Preconditions: s_MInq ( Quotation inquiry sent by the Manufacturer ) 

Outputs/ Effects: r_MInq (Quotation inquiry received from the Manufacturer) 



Chapter 7: Results and Evaluation 

   114 
 

Description: This process receives the quotation inquiry from the  

                     Manufacturer. 

2 Name: QuotationPrep (Prepare quotation) 

Inputs/ Preconditions: r_MInq (Quotation inquiry received from the  

                                                  Manufacturer) 

Outputs/ Effects: SQuotation (Supplier’s quotation) 

Description: This process creates a Supplier’s quotation. 

3 Name: SendQuotation_s (Send the Supplier’s quotation) 

Inputs/ Preconditions: SQuotation (Supplier’s quotation) 

Outputs/ Effects: s_SQuotation (Supplier’s quotation sent) 

Description: This process sends the Supplier’s quotation to the Manufacturer. 

4 Name: QuotationApp_r (Receive quotation approval) 

Inputs/ Preconditions: s_SQuotation (Supplier’s quotation sent) 

                                    s_QApp (Quotation approval sent by the Manufacturer) 

Outputs/ Effects: r_QApp (Quotation approval received from the               

                                           Manufacturer) 

Description: This process receives the quotation approval from the  

                     Manufacturer. 

5 Name: IssueInv (Issue commercial invoice) 

Inputs/ Preconditions: r_QApp (Quotation approval received from the  

                                                   Manufacturer) 

Outputs/ Effects: SInvoice (Supplier’s commercial invoice) 

Description: This process issues a commercial invoice. 

6 Name: CommercialInvoice_s (Send the commercial invoice) 

Inputs/ Preconditions: SInvoice (Supplier’s commercial invoice) 

Outputs/ Effects: s_ SInvoice (Supplier’s commercial invoice sent) 

Description: This process sends the Supplier’s commercial invoice to the  

                     Manufacturer. 

7 Name: AssembleGoods (Assemble raw material components) 

Inputs/ Preconditions: s_ SInvoice (Supplier’s commercial invoice sent) 

Outputs/ Effects: RawComps (Raw material components assembled) 

Description: This process assembles different components of raw material. 



Chapter 7: Results and Evaluation 

   115 
 

8 Name: InsureRaw (Insure the raw material) 

Inputs/ Preconditions: s_ SInvoice (Supplier’s commercial invoice sent) 

Outputs/ Effects: InsuranceCert (Insurance certificate) 

Description: This process insures the raw material. 

9 Name: InsuranceCertificate_s (Send insurance certificate) 

Inputs/ Preconditions: InsuranceCert (Insurance certificate) 

Outputs/ Effects: s_ InsuranceCert (Insurance certificate sent) 

Description: This process sends the insurance certificate to the Manufacturer. 

10 Name: ShipRaw (Ship raw material) 

Inputs/ Preconditions: RawComps (Assembled raw material components) 

Outputs/ Effects: SSR (Supplier’s shipment report) 

Description: This process ships the raw material to the Manufacturer. 

11 Name: Documentation (Do the necessary documentation) 

Inputs/ Preconditions: SSR (Supplier’s shipment report) 

Outputs/ Effects: Doc (Necessary book keeping documentation done) 

Description: This process does the necessary book keeping documentation  

                     after the shipment and insurance has been done. 

12 Name: UpdateRecords (Update records) 

Inputs/ Preconditions: SInvoice (Supplier’s commercial invoice) 

                                    Doc (Documentation done) 

                                    s_InsuranceCert (Insurance certificate sent) 

Outputs/ Effects: RecUpd (Records updated) 

Description: This process updates the database records after the necessary  

                     documentation has been done. 

13 Name: PaymentInvoice_r (Receive payment for invoice) 

Inputs/ Preconditions: s_MInvPay (Payment for the invoice sent by the  

                                                        Manufacturer) 

                                    RecUpd (Records updated) 

Outputs/ Effects: r_MInvPay (Manufacturer’s payment for the invoice             

                                                Received ) 

Description: This process receives the payment for the invoice sent by the  

                     Manufacturer. 



Chapter 7: Results and Evaluation 

   116 
 

7.3.2 Results 

The OWLS process definitions as given in Table 7.4, 7.5, 7.6 and Table 7.7 were 

passed to the system and it generated 10 sets of compatible workflows for the four 

organisations. Figure 7.8 and Figure 7.9 show two of the sets. The remaining sets are 

given in Appendix G. The workflows generated are accurate and compatible. The 

system takes 9832 milliseconds to generate the 10 sets of compatible workflows. 

Control dependencies are represented by solid lines and data dependencies are 

represented by dotted lines. The data dependencies in both sets of compatible 

workflows are the same and the control dependencies are different. In the Supplier’s 

workflow in Figure 7.8, InsureRaw has a control dependency on AssembleGoods and 

ShipRaw has control dependency on InsuraceCertificate_s. In the Supplier’s workflow 

in Figure 7.9, InsureRaw has control dependency on Documentation, and ShipRaw has 

a control dependency on AssembleGoods.  

The workflow generation process starts when goodsreq holds, which means that the 

Retailer needs goods. The final goals for the Retailer, Wholesaler, Manufacturer and 

Supplier are s_RInvPay, r_RInvPay, r_WInvPay and r_MInvPay respectively. The goals 

mean that the Retailer sends a payment for the invoice to Wholesaler, Wholesaler 

receives a payment for the invoice from the Retailer, Manufacturer receives a payment 

for the invoice from the Wholesaler and the Supplier receives a payment for the invoice 

from the Manufacturer. 

Figure 7.10 shows the interface process for the workflows in Figure 7.8. The 

corresponding interface activities have been labelled with the same alphabets. It can be 

observed that for every receiving activity there is a corresponding sending activity. 

Since there is no deadlock in the interface activities, the workflows are compatible. 

Compatibility can be checked in the same way for all the other sets of generated 

workflows. 

 



Chapter 7: Results and Evaluation 

   117 
 

 

Figure 7.8 A Set of Compatible Workflows for Retailer, Wholesaler, Manufacturer and 

Supplier 



Chapter 7: Results and Evaluation 

   118 
 

 

Figure 7.9 Another Set of Compatible Workflows for Retailer, Wholesaler, 

Manufacturer and Supplier 



Chapter 7: Results and Evaluation 

   119 
 

 

Figure 7.10 Interface Processes for the Retailer/Wholesaler/Manufacturer/Supplier 

Workflows given in Figure 7.8 



Chapter 7: Results and Evaluation 

   120 
 

At runtime, the set of compatible workflows with the least number of OWLS processes 

will be highlighted to the users for execution. In this particular scenario all the 

workflows are of the same length and so the first plan generated is highlighted to the 

users for execution. The users will enter the quantity of goodsreq to create a quotation 

inquiry. The QuotationInqPrep activity dependent on goodsreq will be executed to start 

the execution of the workflows. The in-house and cross organisational control and data 

dependencies will be followed, to make sure that all collaborating workflows in the 

selected set are enacted to the end. The execution of the compatible workflows to the 

end achieves the desired goals. 

7.4 Evaluation 

The reported collaboration examples illustrate that the prototype creates multiple sets of 

correct compatible workflows for the collaborating organisations. The workflows are 

generated by composing OWLS processes of the collaborating organisations into 

alternative composition orders, while retaining the compatibility between the 

workflows. The developed framework, therefore, assumes that the collaborating 

organisations either have local OWLS process definitions or have links to remote 

OWLS processes definitions. The framework focuses on the compositional capabilities 

of OWLS processes and automatic discovery of OWLS processes from the web is not 

targeted in this framework.   

SHOP2 scales well to complex domains, so it is easy for the developed framework to 

generate workflows in complex domains. Since SHOP2 is a very efficient system, the 

planning time is highly efficient as shown in Section 7.2.2 and 7.3.2. The OWLS 

processes that are not relevant to the workflow generation process are discarded, to 

enhance the efficiency of the planning process. 

The implemented framework can handle collaboration at build time and runtime among 

arbitrary number of organisations. This is one of the most powerful qualities of the 

proposed system. Most of the existing collaboration systems handle either build time or 

runtime collaboration. Very few collaboration systems handle both for more than two 

organisations.  



Chapter 7: Results and Evaluation 

   121 
 

Since the workflow generation is based on web services composition, the implemented 

framework supports interoperability. Web services from highly diverse sources can be 

composed in a workflow, and invoked to achieve a desired goal. The standard light-

weight XML based messaging protocols and WSDL access descriptions of the web 

services architecture make it possible for the implemented framework to support 

interoperability across diverse platforms, applications and databases. 

The implemented framework encourages cohesiveness and modularity. Since, the 

implemented framework plans to create workflows to achieve the goals of multiple 

collaborating organisations, the workflows of the collaborating organisations are highly 

related. The SHOP2 and OWLS decomposition mechanism of complex tasks into 

atomic tasks makes the framework highly modular. It can compose highly diverse web 

services into workflows to achieve situation-specific goals. 

The implemented framework encourages reusability of existing resources. Existing 

units of functionalities represented in the form of web services are modelled using 

OWLS processes and composed in workflows to achieve situation-specific desired 

goals. If the web services provider allows, a web service can be composed in the 

workflows of multiple requesting organisations and can be executed multiple times. So 

the already developed functionalities do not need to be redeveloped and can be reused 

to save time and resources. 

The developed framework makes the workflow collaboration processes highly 

automated. The collaborating organisations do not have to bother to model or adapt 

their workflows. They also do not have to reconcile their workflows with the workflows 

of collaborating organisations. Similarly, if changes occur to the workflows, the 

organisations simply have to add in the new functionality in the form of OWLS 

processes or change the existing OWLS processes and their respective web services 

without having to worry about their impact over the collaborating workflows. This 

loosely coupled nature of the developed framework is enabled by the use of web 

services architecture. 

The developed framework also has certain limitations. The process definitions passed to 

the system and workflows generated are in the OWLS format. This limits execution of 

the generated workflows to the systems that can execute OWLS workflows. OWLS 



Chapter 7: Results and Evaluation 

   122 
 

workflows execution systems are not common. The translation of OWLS workflows 

into Business Process Model and Notation (BPMN) language would make the 

workflows executable for most major WfMSs [124]. Moving from OWLS to BPMN 

will also enable the system to take BPMN definitions of activities as input. This will 

enable a much higher number of organisations to use the developed framework, since 

BPMN is one of the most widely used languages used for workflow modelling.  

Since SHOP2 does not support the generation of parallel plans, the developed 

framework does not generate parallel workflows. In parallel workflows two or more 

activities can occur concurrently. The developed framework generates multiple 

sequential workflows, when it encounters activities that can be executed in parallel. 

This will force an activity to wait till the preceding activity is executed, although they 

could be executed in parallel. This is a limitation that should be addressed in the future 

since in the real world workflows often have activities that can be executed in parallel. 

The developed framework also does not support iterative workflows, which may be 

important in some applications. OWLS repeat-while and repeat-until composite 

processes can be used to support iterative workflows. The translation of OWLS repeat-

while and repeat-until composite processes directly into recursive SHOP2 methods can 

be used to support iterative workflows.  

The developed framework composes atomic OWLS processes into compatible 

workflows for collaborating organisations. The composite processes are decomposed 

till they only contain atomic processes, and the atomic processes are then grouped as an 

if-then-else method. Although the primary aim of the framework is to compose the 

atomic processes of the collaborating organisations into compatible workflows, the 

translation of composite processes directly into SHOP2 methods will enable the users to 

give hints to the planner about how to proceed with the composition process, which 

may be important in some scenarios. 

The implemented framework uses input, output, precondition and post-condition 

variables of OWLS processes for workflow generation. The support for additional 

process variables will enable the framework to support advanced processes. 

If the required preconditions do not hold in a certain state of the world then the 

workflow generation fails. In such cases it is advisable to inform the collaborating 



Chapter 7: Results and Evaluation 

   123 
 

organisations about the reasons of failure and suggest possible solutions. Right now, the 

implemented framework lacks this functionality.  

Each receiving OWLS process of the collaborating organisations is expected to know 

the outputs of the corresponding sending OWLS process. Similarly, OWLS processes 

within the organisations are expected to use unique names for unique inputs, 

preconditions, outputs and post conditions. This might not be possible in some cases. 

The matching mechanism should be extended to make it more flexible. The use of 

OWL reasoners to do the matching can be helpful in this regard.  

The implemented framework merges the domains of the collaborating organisations 

into a single domain to create joint workflows. An alternative approach is to use a 

separate instance of SHOP2 planner for each organisation, and use intelligent agents to 

collaborate at the time of workflow generation to ensure that the compatibility is intact. 

If the addition of an activity in the workflow makes it incompatible with the workflows 

of the collaborating organisations then the step must be backtracked. The querying and 

backtracking mechanism presented by Au et al. [125] can be followed for this purpose. 

7.5 Conclusion 

This chapter presented two business collaboration scenarios and used them to illustrate 

the automatic generation and execution of workflows. It is shown that the developed 

framework is able to generate compatible workflows that achieve the high level goals of 

multiple collaborating organisations. 

The first example is a very popular business collaboration scenario. Based on the 

OWLS process definitions of the hypothetical Vendor and Customer, 20 alternate 

composition paths were identified. The identification of multiple composition paths led 

to the generation of 20 sets of composite workflows. It was shown that the generated 

workflows only contained OWLS processes necessary to achieve the goal states from 

the initial states.   

The second example is based on the business collaboration among a hypothetical 

Retailer, Wholesaler, Manufacturer and Supplier. Based on the OWLS process 

definitions of the hypothetical Retailer, Wholesaler, Manufacturer and Supplier, 10 sets 



Chapter 7: Results and Evaluation 

   124 
 

of composite workflows were generated. The developed framework also supports the 

runtime execution and runtime collaboration of the generated workflows. 

It is identified that the developed framework supports modularity, inter-operability, 

cohesion and re-usability. Since the framework is based on an extended version of 

SHOP2 which is a very efficient planning system, the planning time is highly efficient. 

The proposed framework lacks support for parallel and iterative workflows which 

requires attention in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8: Conclusion and Future Work 

   125 
 

Chapter 8: Conclusion and Future Work 

8.1 Introduction 

The main objectives of this thesis have been as follows: 

1. to propose a framework for automatically generating compatible workflows for 

multiple collaborating organisations from the OWLS process definitions and high level 

goals of the collaborating organisations, and  

2. to provide runtime enactment and collaboration support for the generated workflows.  

To achieve these aims, the thesis identified the requirements for workflow generation 

and collaboration, and exploited web services architecture and AI planning to fulfil the 

requirements. 

This chapter provides a discussion of the main conclusions of this research and a 

summary of the main contributions of this thesis.  Section 8.2 gives the summary and 

conclusions of the thesis, Section 8.3 summarises the main contributions of the thesis 

and Section 8.4 gives the directions for future work. 

8.2 Thesis Summary and Conclusions 

Chapter 2 and 3 discussed workflow, automatic workflow generation and workflow 

collaboration in detail. Due to the increase in electronic commerce, the demand for 

business process automation has increased. Workflow technology is used for business 

process automation. Since an increasing number of organisations are moving to 

automated business processes, the demand for automatic workflow collaboration with 

other workflows has also increased. Although research has been done on automatic 

workflow collaboration, the collaboration systems are not fully automated and they 

involve users in making decisions at every step of the collaboration. 

To reuse the existing components of work done and avoid the continuous reengineering 

of workflows, the focus in the research on workflow has recently shifted to automatic 

workflow generation. Existing automatic workflow generation frameworks are able to 

generate workflows automatically for a single organisation only. The generation of a 



Chapter 8: Conclusion and Future Work 

   126 
 

workflow for a single organisation still leaves the organisation to reconcile its workflow 

with the business partners and adapt accordingly. Hence, a gap in the literature about 

the integration of automatic workflow generation and workflow collaboration both at 

build-time and runtime stages was identified. 

Workflow generation was identified as an AI planning problem [9].The efficiency and 

accuracy of the workflow generation depends on the planner and the formal domain 

used for planning. Chapter 4 reviewed the major planning paradigms and their 

representative planners. It was identified that domain knowledge is the key to 

successful planning for workflow generation. SHOP2 was selected as the most suitable 

planner for the workflow generation problem.  

The thesis presented a novel algorithm to translate OWLS web services descriptions 

into SHOP2 domain descriptions. The translation algorithm enables SHOP2 to identify 

alternate composition paths to generate multiple workflows. Since the web services 

domain is a complex domain, sometimes the domain generated can be inefficient and 

unclear and can force SHOP2 into infinite loops. SHOP2 was extended to make it more 

suitable for the automatic workflow generation problem by enabling it to avoid going 

into infinite loops. 

An integrated approach based on the integration of automatic workflow generation, 

build time workflow collaboration, runtime enactment and runtime workflow 

collaboration was presented in Chapter 5. The approach applies AI planning to 

workflow generation and workflow collaboration.  

A framework based on the integration approach was also presented in Chapter 6. The 

developed framework was able to generate compatible workflows for multiple 

collaborating organisations. It supports the runtime execution and collaboration of the 

generated workflows. It also supports the basic requirements of the workflow 

generation and workflow collaboration problem i.e. reusability, cohesion, modularity, 

efficiency, domain complexity, interoperability and loose coupling. 

The developed framework was tested for two multi-organisation business collaboration 

examples in Chapter 7. It was demonstrated that the framework could handle more than 

two collaborating organisations. The planning time was efficient, since the framework 

filters out the irrelevant OWLS processes as shown in Section 7.2.2 and uses an 



Chapter 8: Conclusion and Future Work 

   127 
 

extended form of SHOP2, a very efficient planner [31]. The workflows generated were 

found to be compatible and accurate since their execution achieved the desired goals.  

The developed framework has certain limitations as well. It does not create parallel 

workflows due to lack of support for concurrency by SHOP2, but it is capable of 

identifying alternate composition paths and creating multiple sequential workflows for 

each parallel workflow. It expects the collaborating organisations to follow the same 

naming conventions for the inputs and outputs of the interface activities, which might 

not always be possible. Similarly, if it fails to produce valid workflows, the 

collaboration organisations are not given any feedback about the reasons of failure and 

possible solutions. In future, we aim to look at these limitations and improve the system 

to enable it to deal with these limitations. 

8.3 Contributions 

Following are the major contributions of the thesis. 

 The thesis presented an integration approach based on the integration of 

automatic workflow generation, workflow enactment and cross organisational 

build time and run-time workflow collaboration. The proposed approach 

extended the application of AI Planning to the integration of workflow 

generation and workflow collaboration. 

 The thesis presented a framework to create compatible workflows for multiple 

collaborating organisations. It is the only framework so far that creates 

compatible workflows for multiple collaborating organisations, without 

involving any reconciliation among collaborating workflows or any negotiations 

among the collaborating organisations. 

 The developed framework handles both build-time and runtime workflow 

collaboration for arbitrary number of organisations. This is a powerful capability 

that is not common in literature. 

 The thesis presented a run-time execution mechanism for the automatically 

generated compatible workflows. The runtime execution mechanism ensures the 



Chapter 8: Conclusion and Future Work 

   128 
 

smooth transfer of data and information among the in-house and cross 

organisational activities.  

 The thesis introduced a novel technique to increase the efficiency of the 

workflow generation process. The system reasons about the usability of each 

atomic process in the workflow generation. The processes that do not make part 

of the workflow generation process are discarded. This way only the processes 

used in the workflow generation are translated into SHOP2 format and the 

planning engine only has to do planning based on the processes that are strictly 

used in the workflow generation. 

 A novel algorithm for translating OWLS processes into SHOP2 domain 

descriptions has been developed. The developed translation algorithm creates an 

efficient and accurate SHOP2 domain to enable the planner to compose the 

atomic processes of the collaborating organisations into multiple sets of 

compatible workflows. 

 Due to the very complex and diverse nature of web services, sometimes, it is not 

possible to translate the OWLS process definitions into a clear and efficient 

formal domain for SHOP2. Unclear and inefficient domains can force SHOP2 

into infinite loops. SHOP2 has been extended to enable it to deal with such 

issues and make it more suitable for the workflow generation problem. Also the 

extended SHOP2 is capable of planning in terms of control as well as data 

dependencies for workflow generation. 

 A novel algorithm has been developed to merge the domains of the 

collaborating organisations into a single joint domain. The joint domain can be 

considered as the domain of a single parent organisation, containing 

collaborating sub-organisations. Multiple joint plans can be created based on the 

joint domain. An algorithm to divide the joint plans into sub-plans is also 

implemented. Each sub-plan represents a workflow for a single collaborating 

organisation. 

8.4 Future Work 

The following are some of the directions for future work. 



Chapter 8: Conclusion and Future Work 

   129 
 

 If the developed framework fails to generate any valid workflows, it is advisable 

to inform the collaborating organisations about the reasons for failure and 

possible solutions. In future, the framework will be extended with the 

functionality to return the reasons for failure and suggestions to reach to the 

solution, in case it fails to produce any valid workflows. 

 It is required that the collaborating organisations have access to their OWLS 

atomic processes that are to be composed and enacted. In future, the 

implemented framework will be extended with the functionality to discover web 

services from web services registries found locally or remotely on the web. 

 The developed framework does not generate parallel workflows. ConGolog is a 

high-level programming language, based on situation calculus. A ConGolog 

interpreter that is able to support concurrency has been exploited for web 

services composition in [10, 11]. One of the future directions of work is to try 

the ConGolog interpreter for cross organisational workflows generation and 

exploit the parallel planning capabilities of ConGolog. SHOP2 can also be 

extended for parallel planning. 

 The developed framework plans for workflows on the basis of functional 

attributes such as preconditions, inputs, outputs and post-conditions of the 

OWLS processes. The functionality of the framework can be extended to 

include additional functional attributes in planning. Similarly, workflows could 

be highlighted to the users for execution on the basis of the weight assigned to 

the workflows on the basis of certain non-functional attributes of the web 

services in the workflows e.g. cost, service quality, security etc.   

 We also aim to investigate the use of OWL reasoners in SHOP2 planner to 

exploit the inferencing capabilities of OWL reasoners. The introduction of an 

OWL reasoner in SHOP2 will make it possible to handle very huge web 

domains. It will also ease the requirement of following the same naming 

convention for input, output, preconditions and post conditions of interface 

activities, by trying to do the matching and inferencing on the basis of OWL 

classes. 



Chapter 8: Conclusion and Future Work 

   130 
 

 We have developed a translation mechanism from OWLS to XML rules, for a 

rule based system for workflow enactment, developed by Phoenix [126]. We 

aim to improve the mechanism and work in collaboration with Phoenix on a rule 

based system for workflow generation and workflow collaboration, and compare 

it to the developed framework for accuracy and efficiency. 

 Last but not least, the translation of OWLS into BPMN will be investigated and 

a translation algorithm will be developed. BPMN is one of the most widely used 

languages for modelling workflows. This will enable a high number of 

organisations to use the developed framework. This will also enable many 

independent WfMSs to enact the workflows generated by the developed 

framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

   131 
 

References 

1. Workflow Management Coalition: Terminology & Glossary. 1999, Technical 

Report WFMC-TC-1011. 

2. OWL Services Coalition: OWL-S: Semantic markup for web services. 2003; 

Available from: http://www.ai.sri.com/daml/services/owl-s. 

3. Yang, J. and Papazoglou, M.P., Interoperation support for electronic business. 

Communications of the ACM, 2000, 43(6), p. 39–47.  

4. Chen, X. and Chung, P.W.H., Facilitating B2B E-business by IT-supported 

business process negotiation services. in Proceedings of IEEE International 

Conference on Service Operations and Logistics, and Informatics, 2008. 

5. Schulz, K.A. and Orlowska, M.E., Facilitating cross-organisational workflows 

with a workflow view approach. Data and Knowledge Engineering, 2004, 51(1), 

p. 109–147.  

6. Chiu, D.K.W., Cheung, S.C., Karlapalem, K., Li, Q., Till, S. and Kafeza, E., 

Workflow View Driven Cross-Organizational Interoperability in a Web-Services 

Environment. Information Technology and Management, 2004, 5, p. 221–250.  

7. Chen, X. and Chung, P.W.H., A simulation-based difference detection technique 

for bottom-up process reconciliation. in Proceedings of the 9th International 

Conference on Enterprise Information Systems, 2007. 

8. Chen, L. and Yang, X., Applying AI Planning to Semantic Web Services for 

Workflow Generation. in Proceedings of First International Conference on 

Semantics, Knowledge and Grid, 2005, IEEE Computer Society, Washington 

DC, USA. 

9. Dong, X. and Wild, D., An Automatic Drug Discovery Workflow Generation 

Tool Using Semantic Web Technologies. in Proceedings of the Fourth IEEE 

International Conference on eScience, 2008,  IEEE Computer Society. 

http://www.ai.sri.com/daml/services/owl-s


References 

   132 
 

10. McIlraith, S. and Son, T., Adapting Golog for composition of semantic Web 

services. in Proceedings of Eighth International Conference on Knowledge 

Representation and Reasoning (KR2002), 2002, Toulouse, France. 

11. McIlraith, S. and Son, T., Adapting golog for programming in the semantic web. 

2001. 

12. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V. and Shan, M.-C., Adaptive 

and dynamic service composition in EFlow. in Proceedings of 12th International 

Conference on Advanced Information Systems Engineering(CAiSE), 2000, 

Stockholm, Sweden: Springer Verlag. 

13. Sirin, E., Parsia, B., Wu, D., Hendler, J. and Nau, D., HTN planning for web 

service composition using SHOP2. Journal of Web Semantics, 2004, 1(4), p. 

377–396.  

14. Sirin, E., Hendler, J. and Parsia, B., Semi-automatic composition of Web 

services using semantic descriptions. in Web Services: Modeling, Architecture 

and Infrastructure workshop in conjunction with ICEIS, 2003. 

15. Narayanan, S. and McIlraith, S.A., Simulation, verification and automated 

composition of web services. in Proceedings of the 11th international conference 

on World Wide Web, 2002, Honolulu, Hawaii, USA: ACM. 

16. Ponnekanti, S. and Fox, A., SWORD: A developer toolkit for web service 

composition. in Proceedings of the 11th International WWW Conference 

(WWW2002), 2002. 

17. Transplan. Available from: http://sourceforge.net/projects/transplan/. 

18. Smith, H., A Systems Integrator's Perspective on Business Process 

Management, Workflow and EAI. 2002.  

19. Srivastava, B. and Koehler, J., Web Service Composition - Current Solutions 

and Open Problems. in ICAPS 2003 Workshop on Planning for Web Services, 

2003. 

http://sourceforge.net/projects/transplan/


References 

   133 
 

20. Georgakopoulos, D., Hornick, M. and Sheth, A., An Overview of Workflow 

Management: From Process Modeling to Workflow Automation Infrastructure. 

Distributed and Parallel Databases, 1995, 3(2), p. 119–153.  

21. Medina-Mora, R., Winograd, T. and Flores, R., ActionWorkflow as the 

Enterprise Integration Technology. in Bulletin of the Technical Committee on 

Data Engineering, IEEE Computer Society, 1993. 

22. Guillaume, F., Trying to Unify Entity-based and Activity-based Workflows. 

Available from: http://wiki.zope.org/zope3/TryingToUnifiyWorkflowConcepts. 

23. Shapiro, R., A Comparison of XPDL, BPML and BPEL4WS. 2001; Available 

from: http://www.ebpml.org/A_Comparison_of_XPDL_and_BPML_BPEL.doc. 

24. Chen, X., IT supported business process negotiation, reconciliation and 

execution for cross-organisational e-business collaboration.  Thesis at the 

Faculty of Computer Science 2008, Loughborough University. 

25. Aalst van der, W.M.P., Workflow Patterns. Distributed and Parallel Databases, 

2003, p. 5–51.  

26. Workflow Management Coalition: The Workflow Reference Model. 1995, 

Technical Report WFMC-TC-1003. 

27. Ader, M., Seven Workflow Engines Reviewed. Document World, 1997, 2(3).  

28. Russel, S. and Norvig, P., Artificial Intelligence: A Modern Approach. 1995,  

Prentice-Hall Inc. 

29. Wooldridge, M. and Jennings, N.R., Intelligent agents: theory and practice. 

Knowledge Engineering Review, 1995, 10(2), p. 115–152.  

30. Rao, J. and Su, X., A Survey of Automated Web Service Composition Methods. 

in Proceedings of First International Workshop on Semantic Web Services and 

Web Process Composition SWSWPC2004, LNCS, 2004, San Diego, USA: 

Springer. 

31. Wu, D., Sirin, E., Hendler, J., Nau, D. and Parsia, B., Automatic Web Services 

Composition Using SHOP2. in Workshop on Planning for Web Services, 2003. 

http://wiki.zope.org/zope3/TryingToUnifiyWorkflowConcepts
http://www.ebpml.org/A_Comparison_of_XPDL_and_BPML_BPEL.doc


References 

   134 
 

32. Wu, D., Parsia, B., Sirin, E., Hendler, J. and Nau, D., Automating DAML-S web 

services composition using SHOP2. in Proceedings of 2nd International 

Semantic Web Conference (ISWC2003), 2003. 

33. Wang, S.Y., Shen, W.M. and Hao, Q., An agent-based Web service workflow 

model for inter-enterprise collaboration. Expert System with Applications, 

2006, p. 787–799.  

34. Jennings, N.R., An agent-based approach for building complex software 

systems. Communications of the ACM, 2001, 44(4), p. 35-41.  

35. Casati, F., Sayal, M. and Shan, M.-C., Developing e-services for composing 

eservices. in Proceedings of 13th International Conference on Advanced 

Information Systems Engineering(CAiSE), 2001, Interlaken, Switzerland: 

Springer Verlag. 

36. Saleem, M., Chung, P.W.H., Fatima, S. and Dai, W., Intelligent Business 

Transaction Agents for Cross-Organizational Workflow Definition and 

Execution. in Intelligent Information Processing V, 2010. 

37. Orriëns, B. and Yang, J., Establishing and maintaining compatibility in service 

oriented business collaboration. in Proceedings of the 7th international 

conference on Electronic commerce, 2005, Xi'an, China: ACM. 

38. Boivie, C.A., Cross-organizational collaboration: from dating to tying the knot. 

2007  [cited 2011 18th October]; Available from: 

http://www.backbonemag.com/Magazine/CIO_View_11080701.asp. 

39. Chen, X. and Chung, P.W.H., A Framework for Cross-Organizational Workflow 

Collaboration. in 13th Cross-Strait Academic Conference On Information 

Management Development & Relevant Strategy, 2007. 

40. Chung, P.W.H. and Chen, X., Reconciling and Enacting Cross-Organisational 

Workflow for B2B E-Commerce. in BPM and Workflow Handbook Digital 

Edition v2, 2008,  p. 347–360. 

41. Tagg, R., Workflow in different styles of Virtual Enterprise. in Proceedings of 

Workshop on Information Technology for Virtual Enterprises, 2001. 

http://www.backbonemag.com/Magazine/CIO_View_11080701.asp


References 

   135 
 

42. Wombacher, A., Decentralized establishment of consistent, multi-lateral 

collaborations.  Thesis at the Faculty of Informatics, 2005, Technical University 

Darmstadt. 

43. Zartman, I.W., Negotiation as a Joint Decision-Making Process. Journal of 

Conflict Resolution, 1977, 21(4), p. 619–638.  

44. Summers, D., Longman dictionary of contemporary English. 2002,  Harlow, 

Essex, England: Pearson Education Limited. 

45. Hamner, W.C. and Yukl, G.A., The Effectiveness of Different Offer Strategies in 

Bargaining. Social-Psychological Perspectives, ed. D. Druckman, 1977,  

California Sage Publication. 

46. Gulliver, P.H., Disputes and negotiations: A cross-cultural perspective. 1979,  

Academic Press  (New York). 

47. Rosenschein, J.S. and Zlotkin, G., Rules of Encounter. 1994,  MIT Press. 

48. Pruitt, D.G. and Carnevale, P.J., Negotiation in social conflict. 1993,  

Buckingham:  Open University Press. 

49. Follett, M.P., Metcalf, H.C. and Urwick, L., Dynamic administration: The 

collected papers of Mary Parker Follett. 1942,  New York:  Harper & Brother 

Publishers. 

50. Hiltrop, J. and Udall, S., The essence of negotiation. 1995,  London and New 

York:  Prentice Hall. 

51. Krukkert, D., Matchmaking of ebXML Business Processes 2003, Technical 

Report IST-28584-OX_D2.3_v.2.0. 

52. van-der-Aalst, W.M.P. and Weske, M., The P2P Approach to 

Interorganizational Workflows. in Proceedings of the 13th International 

Conference on Advanced Information Systems Engineering, 2001,  Springer-

Verlag. 



References 

   136 
 

53. Byde, A., Piccinelli, G. and Lamersdorf, W., Automating negotiation over B2B 

processes. in Proceedings of 13th International Workshop on Database and 

Expert Systems Applications, 2002. 

54. RosettaNet Business Dictionary. 2002. 

55. van-der-Aalst, W.M.P., The Application of Petri Nets to Workflow Management. 

The Journal of Circuits, Systems and Computers, 1998, 8(1), p. 21–66.  

56. Pratt, V., Modeling concurrency with geometry. in Proceedings of the 18th 

ACM SIGPLAN-SIGACT symposium on principles of programming languages, 

1991, Orlando, Florida, United States: ACM. 

57. Van-Der-Aalst, W.M.P., Process-oriented architectures for electronic 

commerce and interorganizational workflow. Information Systems, 1999, 24(8), 

p. 639–671.  

58. Chen, Q. and Hsu, M., Inter-enterprise collaborative business process 

management. in Proceedings of 17th International Conference on Data 

Engineering, 2001. 

59. Chen, X. and Chung, P., Cross-Organisational Workflow Enactment Via 

Progressive Linking by Run-Time Agents. in International Conference on 

Industrial, Engineering & Other Applications of Applied Intelligent Systems, 

2006. 

60. Biegus, L. and Branki, C., InDiA: a framework for workflow interoperability 

support by means of multi-agent systems. Engineering Applications of Artificial 

Intelligence, 2004, 17(7), p. 825–839.  

61. Peer, J., Web Service Composition as AI Planning - a Survey. 2005, University 

of St. Gallen, Switzerland. 

62. Dustdar, S. and Schreiner, W., A survey on web services composition. 

International Journal of Web and Grid Services, 2005, 1(1), p. 1–30.  



References 

   137 
 

63. Fikes, R.E. and Nilsson, N.J., Strips: A new approach to the application of 

theorem proving to problem solving. Artificial Intelligence, 1971, 2(3-4), p. 

189–208.  

64. Bonet, B. and Geffner, H., Planning as heuristic search. Artificial Intelligence, 

2001, 129(1-2), p. 5–33.  

65. Bonet, B. and Geffner, H., HSP: Heuristic Search Planner, entry at the AIPS-98 

Planning competition. 1998, Pittsburgh. 

66. Bonet, B. and Geffner, H., Heuristic search planner 2.0. AI Magazine, 2001, 

22(3), p. 77–80.  

67. Pearl, J., Heuristics: Intelligent search strategies for computer problem solving. 

1985,  Reading (Massachusetts), USA:  Addison-Wesley Publishing Company. 

68. Korf, P., Linear-space best-first search. Artificial Intelligence, 1993, 62(1), p. 

41–78.  

69. Hoffman, J., Ff: The fast-forward planning system. The AI Magazine, 2001.  

70. Hoffmann, J., Extending FF to numerical state variables. in Proceedings of the 

15th European Conference on Artificial Intelligence (ECAI-02), 2002. 

71. Hoffmann, J., The metric-FF planning system: translating "Ignoring delete 

lists" to numeric state variables. Journal of Artificial Inteligence Research, 

2003, 20, p. 291–341.  

72. Blum, A. and Furst, M., Fast Planning Through Planning Graph Analysis. in 

Proceedings of the 14th International Joint Conference on Artificial Intelligence 

(IJCAI 95), 1995. 

73. Nebel, B., Dimopoulos, Y. and Koehler, J., Ignoring irrelevant facts and 

operators in plan generation. in Proceeding of ECP-97, 1997,  Springer Berlin / 

Heidelberg. 

74. Koehler, J., Nebel, B., Hoffmann, J. and Dimopoulos, Y., Extending planning 

graphs to an ADL subset. in Recent Advances in AI Planning, S. Steel and R. 

Alami, Editors. 1997,  Springer Berlin / Heidelberg, p. 273–285. 



References 

   138 
 

75. Long, D. and Fox, M., Effecient implementation of the plan graph in stan. 

Journal of Artificial Intelligence Research, 1999, 10, p. 87–115.  

76. Weld, D.S., Anderson, C.R. and Smith, D.E., Extending Graphplan to handle 

uncertainty and sensing actions. in Proceedings of the fifteenth national/tenth 

conference on Artificial intelligence/Innovative applications of artificial 

intelligence, 1998, Madison, Wisconsin, United States: American Association 

for Artificial Intelligence. 

77. Gazen, B.C. and Knoblock, C.A., Combining the Expressivity of UCPOP with 

the Efficiency of Graphplan. in Proceedings of the 4th European Conference on 

Planning: Recent Advances in AI Planning, 1997,  Springer-Verlag. 

78. Chapman, D., Planning for conjunctive goals. Artificial Intelligence, 1987, 

32(3), p. 333–377.  

79. McAllester, D. and Rosenblitt, D., Systematic nonlinear planning. in 

Proceedings of the ninth National conference on Artificial Intelligence, 1991, 

Anaheim, California: AAAI Press. 

80. Penberthy, S. and Weld, D., UCPOP: A Sound, Complete, Partial Order 

Planner for ADL. in KR'92. Principles of Knowledge Representation and 

Reasoning: Proceedings of the Third International Conference, B. Nebel, C. 

Rich, and W. Swartout, Editors. 1992,  p. 103–114. 

81. Nguyen, X. and Kambhampati, S., Reviving partial order planning. in 

Proceedings of the 17th international joint conference on Artificial Intelligence, 

2001, Seattle, WA, USA: Morgan Kaufmann Publishers Inc. 

82. Smith, D.E., Frank, J. and J'onsson, A.K., Bridging the gap between planning 

and scheduling. Knowledge Engineering Review, 2000, 15(1), p. 47-83.  

83. Younes, H.L.S. and Simmons, R.G., On the Role of Ground Actions in 

Refinement Planning. in Proceedings of the Sixth International Conference on 

Artificial Intelligence Planning and Scheduling Systems, 2002. 

84. Younes, H. and Simmons, R., VHPOP: Versatile heuristic partial order 

planner. Journal of Artificial Intelligence Research, 2003.  



References 

   139 
 

85. Kautz, H. and Selman, B., Planning as satisfiability. in Proceedings of the 10th 

European conference on Artificial intelligence, 1992, Vienna, Austria: John 

Wiley & Sons, Inc. 

86. Gupta, N. and Nau, D.S., On the complexity of blocks-world planning. Artificial 

Intelligence, 1992, 56(2-3), p. 223–254.  

87. Kautz, H.A. and Selman, B., Blackbox: A new approach to the application of 

theorem proving to problem solving. 1998.  

88. Gerevini, A. and Serina, I., Lpg: A planner based on local search for planning 

graphs with action costs. in AIPS, 2002. 

89. Gerevini, A., Saetti, A. and Serina, I., Planning in PDDL2.2 domains with LPG-

TD. in Proceedings of the International Planning Competition,14th International 

Conference on Automated Planning and Scheduling, 2004. 

90. Kautz, H. and Selman, B., Pushing the envelope: planning, propositional logic, 

and stochastic search. in Proceedings of the Thirteenth National Conference on 

Articial Intelligence and the Eighth Innovative Applications of Articial 

Intelligence Conference, 1996, Portland, Oregon: AAAI Press. 

91. Kautz, H. and Selman, B., The role of domain-specific knowledge in the 

planning as satisfiability framework. Artificial Intelligence Planning Systems, 

1998, p. 181–189.  

92. Huang, Y.-C., Selman, B. and Kautz, H., Control knowledge in planning: 

benefits and tradeoffs. in Proceedings of the sixteenth national conference on 

Artificial Intelligence and eleventh Innovative applications of artificial 

intelligence conference innovative applications of artificial intelligence, 1999, 

Orlando, Florida, United States: American Association for Artificial 

Intelligence. 

93. Berardi, D., Calvanese, D., De-Giacomo, G., Lenzerini, M. and Mecella, M., e-

Service Composition by Description Logics Based Reasoning. in Proceedings of 

the International Workshop on Description Logics (DL03), 2003, Rome, Italy. 



References 

   140 
 

94. Petri, C.A., Kommunikation mit Automaten.  1962, Institut für instrumentelle 

Mathematik. 

95. Hamadi, R. and Benatallah, B., A Petri net-based model for web service 

composition. in Proceedings of the 14th Australasian database conference - 

Volume 17, 2003, Adelaide, Australia: Australian Computer Society, Inc. 

96. Dimopoulos, Y., Nebel, B. and Koehler, J., Encoding planning problems in 

nonmonotonic logic programs. in Proceedings of the Fourth European 

Conference on Planning, 1997. 

97. Sacerdoti, E.D., Planning in a hierarchy of abstraction spaces. Artificial 

Intelligence, 1974, 5(2), p. 115–135.  

98. Erol, K., Hendler, J. and Nau, D.S., Semantics for HTN planning. 1994, 

Technical Report CS-TR-3239. 

99. Erol, K., Hendler, J. and Nau, D.S., UMCP: A sound and complete procedure 

for hierarchical task-network planning. Artificial Intelligence Planning 

Systems, 1994, p. 249–254.  

100. Nau, D., Cao, Y., Lotem, A. and Munoz-Avila, H., SHOP: simple hierarchical 

ordered planner. in Proceedings of the 16th international joint conference on 

Artificial Intelligence, 1999, Stockholm, Sweden: Morgan Kaufmann Publishers 

Inc. 

101. Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D. and Yaman, 

F., SHOP2: an HTN planning system. Journal of Artificial Intelligence 

Research, 2003, 20, p. 379–404.  

102. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F. and Scherl, R.B., Golog: a 

logic programming language for dynamic domains. The Journal of Logic 

Programming, 1997, 31(1-3), p. 59–83.  

103. Giacomo, D.G., Lespérance, Y. and Levesque, H.J., ConGolog, a concurrent 

programming language based on the situation calculus. Artificial Intelligence, 

2000, 121(1-2), p. 109–169.  



References 

   141 
 

104. Cimatti, A., Giunchiglia, E., Giunchiglia, F. and Traverso, P., Planning via 

model checking: A decision procedure for AR. in Proceedings of the 4th 

European Conference on Planning, 1997, Berlin / Heidelberg: Springer. 

105. Giunchiglia, F. and Traverso, P., Planning as Model Checking. in Proceedings 

of the 5th European Conference on Planning: Recent Advances in AI Planning, 

2000,  Springer Berlin / Heidelberg. 

106. Daniele, M., Traverso, P. and Vardi, M., Strong Cyclic Planning Revisited. in 

Recent Advances in AI Planning, S. Biundo and M. Fox, Editors. 2000,  

Springer Berlin / Heidelberg, p. 35–48. 

107. Cimatti, A., Roveri, M. and Traverso, P., Automatic OBDD-based generation of 

universal plans in non-deterministic domains. in Proceedings of the fifteenth 

national/tenth conference on Artificial intelligence/Innovative applications of 

artificial intelligence, 1998, Madison, Wisconsin, United States: American 

Association for Artificial Intelligence. 

108. Edelkamp, S. and Helmert, M., The implementation of Mips. 2000.  

109. Fourman, M., Propositional planning. 2000.  

110. Hölldobler, S. and Störr, H.-P., Solving the Entailment Problem in the Fluent 

Calculus Using Binary Decision Diagrams. in Proceedings of the First 

International Conference on Computational Logic, 2000,  Springer-Verlag. 

111. Bertoli, P., Cimatti, A., Pistore, M., Roveri, M. and Traverso, P., Mbp: a model 

based planner. 2001.  

112. Jensen, R.M. and Veloso, M.M., OBDD-based universal planning for 

synchronized agents in non-deterministic domains. Journal of Artificial 

Intelligence Research, 2000, 13(1), p. 189–226.  

113. Bacchus, F. and Kabanza, F., Planning for temporally extended goals. in 

Proceedings of the thirteenth national conference on Artificial intelligence, 

1996, Portland, Oregon: AAAI Press. 



References 

   142 
 

114. Bacchus, F. and Ady, M., Planning with resources and concurrency: a forward 

chaining approach. in Proceedings of the 17th international joint conference on 

Artificial intelligence, 2001, Seattle, WA, USA: Morgan Kaufmann Publishers 

Inc. 

115. Bacchus, F. and Kabanza, F., Using temporal logic to control search in a 

forward chaining planner. in Proccedings of Second International Workshop on 

Temporal Representation and Reasoning (TIME), 1995, Melbourne Beach, 

Florida. 

116. Alur, R., Feder, T. and Henzinger, T.A., The benefits of relaxing punctuality. 

Journal of the ACM, 1996, 43(1), p. 116–146.  

117. Kvarnstrom, J. and Doherty, P., TALplanner: A temporal logic based forward 

chaining planner. Annals of Mathematics and Artificial Intelligence, 2001, 

30(1-4), p. 119–169.  

118. Haigh, K.Z., Situation Dependent Learning for Interleaved Planning and Robot 

Execution. 1998.  

119. Peer, J., A PDDL based Tool for Automatic Web Service Composition. in 

Proceedings of the Second Workshop on Principles and Practice of Semantic 

Web Reasoning (PPSWR 2004) at the 20th International Conference on Logic 

Programming, 2004. 

120. Kuter, U., Planning under uncertainty: moving forward.  2006, Thesis at the 

University of Maryland at College Park, USA. 

121. Ko, R.K.L., Lee, S.G., Lee, E.W. and Jusuf, A., Dynamic Collaborative 

Business Process Formulation via Ontologised Hierarchical Task Network 

(HTN) Planning. Artificial Intelligence, 2009, 13(15).  

122. Papazoglou, M. and Yang, J., Design Methodology for Web Services and 

Business Processes. in Technologies for E-Services, A. Buchmann, L. Fiege, F. 

Casati, M.-C. Hsu, and M.-C. Shan, Editors. 2002,  Springer Berlin / 

Heidelberg, p. 175–233. 



References 

   143 
 

123. Sirin, E., OWL-S API. 2004; Available from: 

http://www.mindswap.org/2004/owl-s/api/. 

124. White, S., XPDL and BPMN. 2003. 

125. Au, T.C., Nau, D. and Subrahmanian, V.S., Utilizing Volatile External 

Information during Planning. in Proceedings of the European Conference on 

Artificial Intelligence (ECAI), 2004. 

126. Phoenix. Available from: 

http://www.staff.vu.edu.au/phoenix/phoenix/index1.htm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.mindswap.org/2004/owl-s/api/
http://www.staff.vu.edu.au/phoenix/phoenix/index1.htm


Appendices 

144 
 

Appendices 

Appendix A: List of Abbreviations 

B2B – Business to Business 

BDD – Binary Decision Diagrams 

BP – Business Process 

BPMN – Business Process Model and Notation 

CPM – Collaborative Process Manager 

CSDL – Composite Service Definition Language 

CTL – Computation Tree Logic 

CWGM – Collaboration and Workflow Generation Manager 

ER – Entity-Relation 

FF – Fast Forward 

HSP – Heuristic Search Planner 

HTN – Hierarchical Task Network 

JBP – Joint Business Process 

JD – Joint Domain 

JSHOP2 – Java Simple Hierarchical Ordered Planner 2 

MBP – Model Based Planner 

MITL – Metric Interval Temporal Logic 

PBM – Planning by Model Checking 

PDDL – Planning Domain Definition Language 



Appendices 

145 
 

PIPs – Partner Interface Processes 

POCL – Partial Order Causal Planners 

POP – Partial Ordered Planners 

RIFO – Removing Irrelevant Operators and Initial Facts from Planning Problems 

SFTP – Secure File Transfer Protocol 

SGP – Sensory Graphlan 

SHOP – Simple Hierarchical Ordered Planner 

STAN – STate ANalysis 

UMOP – Universal Multi-agent Obdd-based Planner 

VHPOP – Versatile Heuristic Partial Order Planner 

WfMC – Workflow Management Coalition 

WfMS – Workflow Management System 

WF-nets – Workflow Nets 

WSDL – Web Service Definition Language 

XPDL – XML Process Definition Language 

 

 

 

 

 

 

 

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&sqi=2&ved=0CDsQFjAA&url=http%3A%2F%2Fwww.w3.org%2FTR%2Fwsdl&ei=a-ZiT4qYL8LH0QWgtZHBCA&usg=AFQjCNG1O1p25gEzgzF9P8Kjq6JvHNoBTw&sig2=bjds_PwMZzwpTLPOCa6aBw


Appendices 

146 
 

Appendix B: WfMS Products 

Currently there are more than 150 vendors providing services in workflow and business 

process management. Following are some of the most highly reputed and widely used 

WfMS products. 

 WebSphere MQ Workflow is a workflow engine based on object oriented 

design and client server architecture. It uses Active X objects and java APIs for 

modelling activities. It uses forms and portlets to interact with users. It 

integrates business process analysis, simulation and development tool with a 

comprehensive monitoring environment. The ability of this product to create 

JSP files automatically from workflow definitions make it highly usable with the 

web technology. 

 FileNet P8 BPM Suite is the J2EE transformation of FileNet. It is basically for 

P8 platforms and it powers the distributed architecture and EAI capabilities of 

P8 platforms. A Java/COM API has been developed in this product to power 

tailored development and integration. FileNet P8 BPM Suite uses a web browser 

based adhoc capable process definition tool. It has a production capable process 

model and the capability to cooperate with the native Content Manager and Web 

Content Manager. 

 Staffware Process Suite (SPS) offers high productions and is used to automate 

processes that lie at the centre of administrative processes and production 

processes. SPS uses a form definition tool and a scripting language for 

interactive processes; it uses EAI adapters, SQL database accessibility and 

Tuxedo transactions for automatic processes. Its process monitoring tool takes 

care of both operational and management needs. 

 TIBCO Inconcert enables user to easily build workflows and modify them on 

the fly. It is based on the integration of object oriented technology and document 

management. It uses TIBCO Integration Manager Orchestration engine and 

TIBCO Rendezvous messaging for application integration. Its BPM designer 



Appendices 

147 
 

supports Inconcert process definitions and Integration manager orchestration 

definitions. 

 Enhydra Shark Workflow is the most widely known opensource WfMS. It is 

based on a WfMC’s specifications compliant Java/XML workflow engine 

framework. It adopts XML Process Definition Language (XPDL) for modelling 

workflows. It has a Java based process editor JaWE which is compliant to 

XPDL. The latest version of Enhydra Shark has a graphical administration tool 

for workflow enactment management. Icube’s Openflow, jBPM and JBoss are 

some of the other popular opensource workflow engines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendices 

148 
 

Appendix C: IssueInspCert (OWLS) 

<?xml version="1.0"?> 

<rdf:RDF 

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#" 

    xmlns:grounding="http://www.daml.org/services/owl-s/1.1/Grounding.owl#" 

    xmlns:service="http://www.daml.org/services/owl-s/1.1/Service.owl#" 

    xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#" 

    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

    xml:base="http://158.125.103.196/OWLS%20processes/Vendor/IssueInspCert.owl "> 

  

  <!-- Service description --> 

  <service:Service rdf:ID="IssueInspCertService"> 

 <service:presents rdf:resource="#IssueInspCertProfile"/> 

 <service:describedBy rdf:resource="#IssueInspCertProcessModel"/> 

 <service:supports rdf:resource="#IssueInspCertGrounding"/> 

  </service:Service> 

 

  <!-- Profile description --> 

  <profile:Profile rdf:ID="IssueInspCertProfile"> 

 <service:isPresentedBy rdf:resource="#IssueInspCertService"/> 

 <profile:serviceName xml:lang="en">Issuing Inspection Certificate</profile:serviceName> 

 <profile:textDescription xml:lang="en">This service issues inspection  certificate. 

  </profile:textDescription> 

 <profile:hasInput rdf:resource="#ok_Insp"/> 

 <profile:hasOutput rdf:resource="#InspCert"/> 

  </profile:Profile> 

 

  <!-- Process Model description --> 

  <process:ProcessModel rdf:ID="IssueInspCertProcessModel"> 

 <service:describes rdf:resource="#IssueInspCertService"/> 

 <process:hasProcess rdf:resource="#IssueInspCertProcess"/> 

  </process:ProcessModel> 

 

  <process:AtomicProcess rdf:ID="IssueInspCertProcess"> 

 <process:hasInput rdf:resource="#ok_Insp"/> 

 <process:hasOutput rdf:resource="#InspCert"/> 

  </process:AtomicProcess> 

 

  <process:Input rdf:ID="ok_Insp"> 

 <process:parameterType rdf:resource="http://www.w3.org/2001/XMLSchema#String"/> 

 <rdfs:label>Presale Inspection Successful</rdfs:label> 

  </process:Input> 

 

  <process:Output rdf:ID="InspCert"> 

 <process:parameterType rdf:resource="http://www.w3.org/2001/XMLSchema#String"/> 

 <rdfs:label>Inspection Certificate</rdfs:label> 

  </process:Output> 

 

  <!-- Grounding description --> 

  <grounding:WsdlGrounding rdf:ID="IssueInspCertGrounding"> 

 <service:supportedBy rdf:resource="#IssueInspCertService"/> 

 <grounding:hasAtomicProcessGrounding rdf:resource="#IssueInspCertProcessGrounding"/> 

  </grounding:WsdlGrounding> 

 

    <grounding:WsdlAtomicProcessGrounding rdf:ID="IssueInspCertProcessGrounding"> 

http://www.w3.org/2000/01/rdf-schema


Appendices 

149 
 

 <grounding:owlsProcess rdf:resource="#IssueInspCertProcess"/> 

 <grounding:wsdlDocument> 

 http://158.125.103.196/OWLS%20processes/Vendor/IssueInspCert.wsdl 

</grounding:wsdlDocument> 

 <grounding:wsdlOperation> 

          <grounding:wsdlOperationRef>   

<grounding:portType> 

http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert/IssueInspCertHttpSo

ap11Endpoint 

  </grounding:portType>     

<grounding:operation> 

http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert/IssueInspCert 

</grounding:operation> 

          </grounding:wsdlOperationRef> 

        </grounding:wsdlOperation> 

 <grounding:wsdlInputMessage> 

           http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert.IssueInspCertRequest 

</grounding:wsdlInputMessage> 

        <grounding:wsdlInputMessageParts rdf:parseType="Collection"> 

          <grounding:wsdlMessageMap> 

            <grounding:owlsParameter rdf:resource="#ok_Insp"/> 

            <grounding:wsdlMessagePart>ok_Insp</grounding:wsdlMessagePart> 

          </grounding:wsdlMessageMap> 

        </grounding:wsdlInputMessageParts> 

 <grounding:wsdlOutputMessage> 

http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert.IssueInspCertRespo

nse 

</grounding:wsdlOutputMessage> 

 <grounding:wsdlOutputMessageParts rdf:parseType="Collection"> 

                <grounding:wsdlMessageMap> 

                  <grounding:owlsParameter rdf:resource="#InspCert"/> 

                 <grounding:wsdlMessagePart>InspCert</grounding:wsdlMessagePart> 

               </grounding:wsdlMessageMap> 

        </grounding:wsdlOutputMessageParts> 

   </grounding:WsdlAtomicProcessGrounding> 

</rdf:RDF> 

 

 

 

 

 

 

file:///D:/PHD/Runtime%20Section/OWLS%20processes/Vendor/IssueInspCert.wsdl
http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert/IssueInspCertHttpSoap11Endpoint
http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert/IssueInspCertHttpSoap11Endpoint
http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert/IssueInspCert
http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert.IssueInspCertRequest
http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert.IssueInspCertResponse
http://158.125.103.196:8080/IssueInspCert/services/IssueInspCert.IssueInspCertResponse


Appendices 

150 
 

Appendix D: IssueInspCert (WSDL) 

<wsdl:definitions xmlns:axis2="http://vendor" xmlns:ns1=http://org.apache.axis2/xsd 

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"  

xmlns:http=http://schemas.xmlsoap.org/wsdl/http/ 

xmlns:ns0="http://vendor/xsd"  

xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" 

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 

xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" targetNamespace="http://vendor"> 

<wsdl:documentation>This service issues an inspection certificate</wsdl:documentation>  

<wsdl:types> 

 <xs:schema xmlns:ns="http://vendor/xsd" attributeFormDefault="qualified"    

   elementFormDefault="qualified"  targetNamespace="http://vendor/xsd">  

   <xs:element name="IssueInspCert"> 

    <xs:complexType> 

     <xs:sequence> 

      <xs:element name="ok_Insp" nillable="true" type="xs:string" />  

     </xs:sequence> 

    </xs:complexType> 

   </xs:element> 

   <xs:element name="IssueInspCertResponse"> 

    <xs:complexType> 

     <xs:sequence> 

       <xs:element name="InspCert" nillable="true" type=" xs:string " />  

     </xs:sequence> 

    </xs:complexType> 

   </xs:element> 

  </xs:schema> 

 </wsdl:types> 

  <wsdl:message name="IssueInspCertMessage"> 

   <wsdl:part name="part1" element="ns0:IssueInspCert" />  

  </wsdl:message> 

  <wsdl:message name="IssueInspCertResponse"> 

   <wsdl:part name="part1" element="ns0:IssueInspCertResponse" />  

  </wsdl:message> 

  <wsdl:portType name="IssueInspCertPortType"> 

    <wsdl:operation name="IssueInspCert"> 

    <wsdl:input xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"     

       message="axis2:IssueInspCertMessage" wsaw:Action="urn:IssueInspCert" />  

    <wsdl:output message="axis2:IssueInspCertResponse" />  

   </wsdl:operation> 

  </wsdl:portType> 

  <wsdl:binding name="IssueInspCertSOAP11Binding" type="axis2:IssueInspCertPortType"> 

   <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />  

  <wsdl:operation name="IssueInspCert"> 

   <soap:operation soapAction="urn:IssueInspCert" style="document" />  

    <wsdl:input> 

     <soap:body use="literal" />  

    </wsdl:input> 

    <wsdl:output> 

     <soap:body use="literal" />  

    </wsdl:output> 

  </wsdl:operation> 

 </wsdl:binding> 

 <wsdl:binding name="IssueInspCertSOAP12Binding" type="axis2:IssueInspCertPortType"> 

  <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />  

http://org.apache.axis2/xsd
http://schemas.xmlsoap.org/wsdl/http/


Appendices 

151 
 

  <wsdl:operation name="IssueInspCert"> 

   <soap12:operation soapAction="urn:IssueInspCert" style="document" />  

   <wsdl:input> 

    <soap12:body use="literal" />  

   </wsdl:input> 

   <wsdl:output> 

    <soap12:body use="literal" />  

   </wsdl:output> 

  </wsdl:operation> 

 </wsdl:binding> 

 <wsdl:binding name="IssueInspCertHttpBinding" type="axis2:IssueInspCertPortType"> 

  <http:binding verb="POST" />  

  <wsdl:operation name="IssueInspCert"> 

    <http:operation location="IssueInspCert" />  

   <wsdl:input> 

    <mime:content type="text/xml" />  

   </wsdl:input> 

   <wsdl:output> 

    <mime:content type="text/xml" />  

   </wsdl:output> 

  </wsdl:operation> 

 </wsdl:binding> 

 <wsdl:service name="IssueInspCert"> 

  <wsdl:port name="IssueInspCertSOAP11port_http" binding="axis2:IssueInspCertSOAP11Binding"> 

   <soap:address location="http://158.125.103.196:8080/Vendor/services/IssueInspCert" />  

  </wsdl:port> 

  <wsdl:port name="IssueInspCertSOAP12port_http" binding="axis2:IssueInspCertSOAP12Binding"> 

   <soap12:address location="http://158.125.103.196:8080/Vendor/services/IssueInspCert" />  

  </wsdl:port> 

  <wsdl:port name="IssueInspCertHttpport" binding="axis2:IssueInspCertHttpBinding"> 

   <http:address location="http://158.125.103.196:8080/Vendor/services/IssueInspCert" />  

  </wsdl:port> 

 </wsdl:service> 

</wsdl:definitions> 

 

 

 

 

 

 

 



Appendices 

152 
 

Appendix E: IssueInspCert (Java) 

package vendor; 

 

import java.io.BufferedReader; 

import java.io.BufferedWriter; 

import java.io.File; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.io.InputStreamReader; 

 

public class IssueInspCert { 

 public String IssueInspCert ( String ok_Insp ) throws IOException   

   { 

   

    BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); 

    String file_name = "D:\\PHD\\Runtime Section\\Certificates\\InspCert.txt"; 

    File file = new File(file_name); 

    file.createNewFile(); 

    FileWriter fstream = new FileWriter(file_name); 

    BufferedWriter out = new BufferedWriter(fstream); 

    out.write("This is a Sample Inspection Certificate created by Vendor" + “after “ +  

   ok_Insp + “signalled the successful completion of factory inspection” ); 

    out.close(); 

       System.out.println("Vendor: Issuing Inspection Certificate"); 

    return file.getPath(); 

 

   } 

} 

 

 

 

 

 

 

 

 



Appendices 

153 
 

Appendix F: All Sets of Compatible Workflows 

for Vendor/Customer Business Collaboration 

Example 

Initial States: [Payment] 

Goal States: [ok_PH, s_InvPay] 

Data Dependencies: Following are the data dependencies among the activities of the 

workflows. The data dependencies remain the same for all sets of compatible 

workflows. 

Inv_s, ShippingArrangement, InsuranceArrangement and CertOriginApp have data 

dependency on IssueInv. 

CertOrigin_s has data dependency on CertOriginApp 

BL_s has data dependency on ShippingArrangement 

InspCert_s has data dependency on IssueInspCert 

InsuCert_s has data dependency on InsuranceArrangement 

CheckInspCert has data dependency on InspCert_r 

TakeDelivery has data dependency on BL_r and Inv_r 

ApprovePayment has data dependency on CertOrigin_r and Inv_r 

Control Dependencies: The sequential order of activities represented by a comma “,” 

represents the control dependencies in the workflows. The execution starts from the 

customer workflow. The execution mechanism waits on the receiving activities until the 

respective sending activity has been executed.  

Generated Sets of Compatible Workflows 

 



Appendices 

154 
 

Vendor Workflow 1: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, Inv_s, ShippingArrangement, BL_s, 

InsuranceArrangement, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, 

PaymentHandling] 

Customer Workflow 1: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, BL_r, 

CustomsDeclaration, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, 

ApprovePayment, InvPay_s] 

Vendor Workflow 2: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, Inv_s, ShippingArrangement, BL_s, 

InsuranceArrangement, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, 

PaymentHandling] 

Customer Workflow 2: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, CustomsDeclaration, 

BL_r, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, ApprovePayment, 

InvPay_s] 

Vendor Workflow 3: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, Inv_s, BL_s, 

InsuranceArrangement, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, 

PaymentHandling] 

Customer Workflow 3: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, BL_r, 

CustomsDeclaration, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, 

ApprovePayment, InvPay_s] 



Appendices 

155 
 

Vendor Workflow 4: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, Inv_s, BL_s, 

InsuranceArrangement, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, 

PaymentHandling] 

Customer Workflow 4: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, CustomsDeclaration, 

BL_r, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, ApprovePayment, 

InvPay_s] 

Vendor Workflow 5: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, Inv_s, ShippingArrangement, BL_s, 

InsuranceArrangement, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, 

PaymentHandling] 

Customer Workflow 5: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, BL_r, Inv_r, 

CustomsDeclaration, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, 

ApprovePayment, InvPay_s] 

Vendor Workflow 6 

 [AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, Inv_s, BL_s, 

InsuranceArrangement, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, 

PaymentHandling] 

Customer Workflow 6: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, BL_r, Inv_r, 

CustomsDeclaration, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, 

ApprovePayment, InvPay_s] 



Appendices 

156 
 

Vendor Workflow 7: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, BL_s, Inv_s, 

InsuranceArrangement, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, 

PaymentHandling] 

Customer Workflow 7: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, BL_r, 

CustomsDeclaration, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, 

ApprovePayment, InvPay_s] 

Vendor Workflow 8: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, BL_s, Inv_s, 

InsuranceArrangement, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, 

PaymentHandling] 

Customer Workflow 8: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, BL_r, Inv_r, 

CustomsDeclaration, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, 

ApprovePayment, InvPay_s] 

Vendor Workflow 9: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, BL_s, Inv_s, 

InsuranceArrangement, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, 

PaymentHandling] 

Customer Workflow 9: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, CustomsDeclaration, 

BL_r, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, ApprovePayment, 

InvPay_s] 



Appendices 

157 
 

Vendor Workflow 10: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, BL_s, InsuranceArrangement, 

Inv_s, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, PaymentHandling] 

Customer Workflow 10: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, BL_r, 

CustomsDeclaration, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, 

ApprovePayment, InvPay_s] 

Vendor Workflow 11: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, BL_s, InsuranceArrangement, 

Inv_s, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, PaymentHandling] 

Customer Workflow 11: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, BL_r, Inv_r, 

CustomsDeclaration, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, 

ApprovePayment, InvPay_s] 

Vendor Workflow 12: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, BL_s, InsuranceArrangement, 

Inv_s, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, PaymentHandling] 

Customer Workflow 12: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, CustomsDeclaration, 

BL_r, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, ApprovePayment, 

InvPay_s] 

Vendor Workflow 13: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, Inv_s, ShippingArrangement, BL_s, 



Appendices 

158 
 

InsuranceArrangement, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, 

PaymentHandling] 

Customer Workflow 13: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, CustomsDeclaration, 

InsuCert_r, BL_r, TakeDelivery, PresaleInspection, CertOrigin_r, ApprovePayment, 

InvPay_s] 

Vendor Workflow 14: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, Inv_s, BL_s, 

InsuranceArrangement, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, 

PaymentHandling] 

Customer Workflow 14: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, CustomsDeclaration, 

InsuCert_r, BL_r, TakeDelivery, PresaleInspection, CertOrigin_r, ApprovePayment, 

InvPay_s] 

Vendor Workflow 15: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, BL_s, Inv_s, 

InsuranceArrangement, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, 

PaymentHandling] 

Customer Workflow 15: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, CustomsDeclaration, 

InsuCert_r, BL_r, TakeDelivery, PresaleInspection, CertOrigin_r, ApprovePayment, 

InvPay_s] 

 

 

 



Appendices 

159 
 

Vendor Workflow 16: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, BL_s, InsuranceArrangement, 

Inv_s, InsuCert_s, CertOriginApp, CertOrigin_s, InvPay_r, PaymentHandling] 

Customer  Workflow 16: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, CustomsDeclaration, 

InsuCert_r, BL_r, TakeDelivery, PresaleInspection, CertOrigin_r, ApprovePayment, 

InvPay_s] 

Vendor Workflow 17: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, BL_s, InsuranceArrangement, 

InsuCert_s, Inv_s, CertOriginApp, CertOrigin_s, InvPay_r, PaymentHandling] 

Customer Workflow 17: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, BL_r, 

CustomsDeclaration, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, 

ApprovePayment, InvPay_s] 

Vendor Workflow 18: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, BL_s, InsuranceArrangement, 

InsuCert_s, Inv_s, CertOriginApp, CertOrigin_s, InvPay_r, PaymentHandling] 

Customer Workflow 18: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, BL_r, Inv_r, 

CustomsDeclaration, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, 

ApprovePayment, InvPay_s] 

 

 



Appendices 

160 
 

Vendor Workflow 19: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, BL_s, InsuranceArrangement, 

InsuCert_s, Inv_s, CertOriginApp, CertOrigin_s, InvPay_r, PaymentHandling] 

Customer Workflow 19: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, CustomsDeclaration, 

BL_r, InsuCert_r, TakeDelivery, PresaleInspection, CertOrigin_r, ApprovePayment, 

InvPay_s] 

Vendor Workflow 20: 

[AdvPay_r, PaymentCheck, GoodsManufacture, IssueInv, FactoryInspection, 

IssueInspCert, InspCert_s, SA_r, ShippingArrangement, BL_s, InsuranceArrangement, 

InsuCert_s, Inv_s, CertOriginApp, CertOrigin_s, InvPay_r, PaymentHandling] 

Customer Workflow 20: 

[AdvPay_s, InspCert_r, CheckInspCert, IssueSA, SA_s, Inv_r, CustomsDeclaration, 

InsuCert_r, BL_r, TakeDelivery, PresaleInspection, CertOrigin_r, ApprovePayment, 

InvPay_s] 

 

 

 

 

 

 

 

 

 



Appendices 

161 
 

Appendix G: All Sets of Compatible Workflows 

for Retailer/Wholesaler/Manufacturer/Supplier 

Business Collaboration Example 

InitialStates: [goodsreq] 

GoalStates: [s_RInvPay, r_RInvPay, r_WInvPay, r_MInvPay] 

Data Dependencies: Following are the data dependencies among the activities of the 

workflows. The data dependencies remain the same for all sets of compatible 

workflows. 

SendQuotation_s has a data dependency on QuotationPrep 

UpdateRecords and CommercialInvoice_s has a data dependency on IssueInv 

Quotation_s has a data dependency on PrepareQuotation 

QuotationApp has a data dependency on ReceiveQuotation_r 

DeclaretoCustoms and TakeRawDelivery has a data dependency on 

CommercialInvoice_r 

Invoice_s has a data dependency on CreateInvoice 

InsuCert_s has a data dependency on ArrangeInsurance 

Quotation_s has a data dependency on QuotationPreparation 

ApproveQuotation has a data dependency on Quotation_r 

CustomsDeclaration has a data dependency on InsuCert_r 

TakeDelivery has a data dependency on Invoice_r 

ComInv_s has a data dependency on IssueComInv 

QuotationEvaluation has a data dependency on Quotation_r 

TakeDelivery has a data dependency on ComInv_r 



Appendices 

162 
 

Control Dependencies: The sequential order of activities represented by a comma “,” 

represents the control dependencies in the workflows. The execution starts from the 

Retailer’s workflow. The execution mechanism will wait on the receiving activities 

until the respective sending activities have been executed.  

Generated Sets of Compatible Workflows 

Retailer Workflow 1: 

[QuotationInqPrep, QuotationInq_s, Quotation_r, QuotationEvaluation, CreatePO, 

PO_s, POAcpt_r, ComInv_r, TakeDelivery, ApprovePayment, InvPayment_s] 

Wholesaler Workflow 1:  

[QuotationInq_r, QuotationPreparation, Quotation_s, PO_r, POApproval, POAcpt_s, 

CreateInquiry, QuotationInquiry_s, Quotation_r, ApproveQuotation, 

QuotationApproval_s, Invoice_r, InsuCert_r, CustomsDeclaration, TakeDelivery, 

PaymentApproval, InvoicePayment_s, IssueComInv, ComInv_s, ShipGoods, 

InvPayment_r] 

Manufacturer Workflow 1:  

[QuotationInquiry_r, PrepareQuotation, Quotation_s, QuotationApproval_r, 

PrepareInquiry, QuotationInquiry_s, ReceiveQuotation_r, QuotationApp, 

QuotationApp_s, CommercialInvoice_r, InsuranceCertificate_r, DeclaretoCustoms, 

TakeRawDelivery, ApprovePaymentInvoice, PaymentInvoice_s, GoodsManufacturing, 

CreateInvoice, Invoice_s, ArrangeShipment, ArrangeInsurance, InsuCert_s, 

InvoicePayment_r] 

Supplier Workflow 1:  

[QuotationInquiry_r, QuotationPrep, SendQuotation_s, QuotationApp_r, IssueInv, 

CommercialInvoice_s, AssembleGoods, InsureRaw, InsuranceCertificate_s, ShipRaw, 

Documentation, UpdateRecords, PaymentInvoice_r] 

Retailer Workflow 2: 

[QuotationInqPrep, QuotationInq_s, Quotation_r, QuotationEvaluation, CreatePO, 

PO_s, POAcpt_r, ComInv_r, TakeDelivery, ApprovePayment, InvPayment_s] 



Appendices 

163 
 

Wholesaler Workflow 2:  

[QuotationInq_r, QuotationPreparation, Quotation_s, PO_r, POApproval, POAcpt_s, 

CreateInquiry, QuotationInquiry_s, Quotation_r, ApproveQuotation, 

QuotationApproval_s, Invoice_r, InsuCert_r, CustomsDeclaration, TakeDelivery, 

PaymentApproval, InvoicePayment_s, IssueComInv, ComInv_s, ShipGoods, 

InvPayment_r] 

Manufacturer Workflow 2:  

[QuotationInquiry_r, PrepareQuotation, Quotation_s, QuotationApproval_r, 

PrepareInquiry, QuotationInquiry_s, ReceiveQuotation_r, QuotationApp, 

QuotationApp_s, CommercialInvoice_r, InsuranceCertificate_r, DeclaretoCustoms, 

TakeRawDelivery, ApprovePaymentInvoice, PaymentInvoice_s, GoodsManufacturing, 

CreateInvoice, Invoice_s, ArrangeShipment, ArrangeInsurance, InsuCert_s, 

InvoicePayment_r] 

Supplier Workflow 2:  

[QuotationInquiry_r, QuotationPrep, SendQuotation_s, QuotationApp_r, IssueInv, 

CommercialInvoice_s, InsureRaw, AssembleGoods, InsuranceCertificate_s, ShipRaw, 

Documentation, UpdateRecords, PaymentInvoice_r] 

Retailer Workflow 3:  

[QuotationInqPrep, QuotationInq_s, Quotation_r, QuotationEvaluation, CreatePO, 

PO_s, POAcpt_r, ComInv_r, TakeDelivery, ApprovePayment, InvPayment_s] 

Wholesaler Workflow 3:  

[QuotationInq_r, QuotationPreparation, Quotation_s, PO_r, POApproval, POAcpt_s, 

CreateInquiry, QuotationInquiry_s, Quotation_r, ApproveQuotation, 

QuotationApproval_s, Invoice_r, InsuCert_r, CustomsDeclaration, TakeDelivery, 

PaymentApproval, InvoicePayment_s, IssueComInv, ComInv_s, ShipGoods, 

InvPayment_r] 

 

 



Appendices 

164 
 

Manufacturer Workflow 3:  

[QuotationInquiry_r, PrepareQuotation, Quotation_s, QuotationApproval_r, 

PrepareInquiry, QuotationInquiry_s, ReceiveQuotation_r, QuotationApp, 

QuotationApp_s, CommercialInvoice_r, InsuranceCertificate_r, DeclaretoCustoms, 

TakeRawDelivery, ApprovePaymentInvoice, PaymentInvoice_s, GoodsManufacturing, 

CreateInvoice, Invoice_s, ArrangeShipment, ArrangeInsurance, InsuCert_s, 

InvoicePayment_r] 

Supplier Workflow 3:  

[QuotationInquiry_r, QuotationPrep, SendQuotation_s, QuotationApp_r, IssueInv, 

CommercialInvoice_s, AssembleGoods, InsureRaw, ShipRaw, InsuranceCertificate_s, 

Documentation, UpdateRecords, PaymentInvoice_r] 

Retailer Workflow 4:  

[QuotationInqPrep, QuotationInq_s, Quotation_r, QuotationEvaluation, CreatePO, 

PO_s, POAcpt_r, ComInv_r, TakeDelivery, ApprovePayment, InvPayment_s] 

Wholesaler Workflow 4:  

[QuotationInq_r, QuotationPreparation, Quotation_s, PO_r, POApproval, POAcpt_s, 

CreateInquiry, QuotationInquiry_s, Quotation_r, ApproveQuotation, 

QuotationApproval_s, Invoice_r, InsuCert_r, CustomsDeclaration, TakeDelivery, 

PaymentApproval, InvoicePayment_s, IssueComInv, ComInv_s, ShipGoods, 

InvPayment_r] 

Manufacturer Workflow 4:  

[QuotationInquiry_r, PrepareQuotation, Quotation_s, QuotationApproval_r, 

PrepareInquiry, QuotationInquiry_s, ReceiveQuotation_r, QuotationApp, 

QuotationApp_s, CommercialInvoice_r, InsuranceCertificate_r, DeclaretoCustoms, 

TakeRawDelivery, ApprovePaymentInvoice, PaymentInvoice_s, GoodsManufacturing, 

CreateInvoice, Invoice_s, ArrangeShipment, ArrangeInsurance, InsuCert_s, 

InvoicePayment_r] 

 



Appendices 

165 
 

Supplier Workflow 4:  

[QuotationInquiry_r, QuotationPrep, SendQuotation_s, QuotationApp_r, IssueInv, 

CommercialInvoice_s, AssembleGoods, ShipRaw, InsureRaw, InsuranceCertificate_s, 

Documentation, UpdateRecords, PaymentInvoice_r] 

Retailer Workflow 5:  

[QuotationInqPrep, QuotationInq_s, Quotation_r, QuotationEvaluation, CreatePO, 

PO_s, POAcpt_r, ComInv_r, TakeDelivery, ApprovePayment, InvPayment_s] 

Wholesaler Workflow 5:  

[QuotationInq_r, QuotationPreparation, Quotation_s, PO_r, POApproval, POAcpt_s, 

CreateInquiry, QuotationInquiry_s, Quotation_r, ApproveQuotation, 

QuotationApproval_s, Invoice_r, InsuCert_r, CustomsDeclaration, TakeDelivery, 

PaymentApproval, InvoicePayment_s, IssueComInv, ComInv_s, ShipGoods, 

InvPayment_r] 

Manufacturer Workflow 5:  

[QuotationInquiry_r, PrepareQuotation, Quotation_s, QuotationApproval_r, 

PrepareInquiry, QuotationInquiry_s, ReceiveQuotation_r, QuotationApp, 

QuotationApp_s, CommercialInvoice_r, InsuranceCertificate_r, DeclaretoCustoms, 

TakeRawDelivery, ApprovePaymentInvoice, PaymentInvoice_s, GoodsManufacturing, 

CreateInvoice, Invoice_s, ArrangeShipment, ArrangeInsurance, InsuCert_s, 

InvoicePayment_r] 

Supplier Workflow 5:  

[QuotationInquiry_r, QuotationPrep, SendQuotation_s, QuotationApp_r, IssueInv, 

CommercialInvoice_s, InsureRaw, AssembleGoods, ShipRaw, InsuranceCertificate_s, 

Documentation, UpdateRecords, PaymentInvoice_r] 

Retailer Workflow 6:  

[QuotationInqPrep, QuotationInq_s, Quotation_r, QuotationEvaluation, CreatePO, 

PO_s, POAcpt_r, ComInv_r, TakeDelivery, ApprovePayment, InvPayment_s] 



Appendices 

166 
 

Wholesaler Workflow 6:  

[QuotationInq_r, QuotationPreparation, Quotation_s, PO_r, POApproval, POAcpt_s, 

CreateInquiry, QuotationInquiry_s, Quotation_r, ApproveQuotation, 

QuotationApproval_s, Invoice_r, InsuCert_r, CustomsDeclaration, TakeDelivery, 

PaymentApproval, InvoicePayment_s, IssueComInv, ComInv_s, ShipGoods, 

InvPayment_r] 

Manufacturer Workflow 6:  

[QuotationInquiry_r, PrepareQuotation, Quotation_s, QuotationApproval_r, 

PrepareInquiry, QuotationInquiry_s, ReceiveQuotation_r, QuotationApp, 

QuotationApp_s, CommercialInvoice_r, InsuranceCertificate_r, DeclaretoCustoms, 

TakeRawDelivery, ApprovePaymentInvoice, PaymentInvoice_s, GoodsManufacturing, 

CreateInvoice, Invoice_s, ArrangeShipment, ArrangeInsurance, InsuCert_s, 

InvoicePayment_r] 

Supplier Workflow 6:  

[QuotationInquiry_r, QuotationPrep, SendQuotation_s, QuotationApp_r, IssueInv, 

CommercialInvoice_s, InsureRaw, InsuranceCertificate_s, AssembleGoods, ShipRaw, 

Documentation, UpdateRecords, PaymentInvoice_r] 

Retailer Workflow 7:  

[QuotationInqPrep, QuotationInq_s, Quotation_r, QuotationEvaluation, CreatePO, 

PO_s, POAcpt_r, ComInv_r, TakeDelivery, ApprovePayment, InvPayment_s] 

Wholesaler Workflow 7:  

[QuotationInq_r, QuotationPreparation, Quotation_s, PO_r, POApproval, POAcpt_s, 

CreateInquiry, QuotationInquiry_s, Quotation_r, ApproveQuotation, 

QuotationApproval_s, Invoice_r, InsuCert_r, CustomsDeclaration, TakeDelivery, 

PaymentApproval, InvoicePayment_s, IssueComInv, ComInv_s, ShipGoods, 

InvPayment_r] 

 

 



Appendices 

167 
 

Manufacturer Workflow 7:  

[QuotationInquiry_r, PrepareQuotation, Quotation_s, QuotationApproval_r, 

PrepareInquiry, QuotationInquiry_s, ReceiveQuotation_r, QuotationApp, 

QuotationApp_s, CommercialInvoice_r, InsuranceCertificate_r, DeclaretoCustoms, 

TakeRawDelivery, ApprovePaymentInvoice, PaymentInvoice_s, GoodsManufacturing, 

CreateInvoice, Invoice_s, ArrangeShipment, ArrangeInsurance, InsuCert_s, 

InvoicePayment_r] 

Supplier Workflow 7:  

[QuotationInquiry_r, QuotationPrep, SendQuotation_s, QuotationApp_r, IssueInv, 

CommercialInvoice_s, AssembleGoods, InsureRaw, ShipRaw, Documentation, 

InsuranceCertificate_s, UpdateRecords, PaymentInvoice_r] 

Retailer Workflow 8:  

[QuotationInqPrep, QuotationInq_s, Quotation_r, QuotationEvaluation, CreatePO, 

PO_s, POAcpt_r, ComInv_r, TakeDelivery, ApprovePayment, InvPayment_s] 

Wholesaler Workflow 8:  

[QuotationInq_r, QuotationPreparation, Quotation_s, PO_r, POApproval, POAcpt_s, 

CreateInquiry, QuotationInquiry_s, Quotation_r, ApproveQuotation, 

QuotationApproval_s, Invoice_r, InsuCert_r, CustomsDeclaration, TakeDelivery, 

PaymentApproval, InvoicePayment_s, IssueComInv, ComInv_s, ShipGoods, 

InvPayment_r] 

Manufacturer Workflow 8:  

[QuotationInquiry_r, PrepareQuotation, Quotation_s, QuotationApproval_r, 

PrepareInquiry, QuotationInquiry_s, ReceiveQuotation_r, QuotationApp, 

QuotationApp_s, CommercialInvoice_r, InsuranceCertificate_r, DeclaretoCustoms, 

TakeRawDelivery, ApprovePaymentInvoice, PaymentInvoice_s, GoodsManufacturing, 

CreateInvoice, Invoice_s, ArrangeShipment, ArrangeInsurance, InsuCert_s, 

InvoicePayment_r] 

 



Appendices 

168 
 

Supplier Workflow 8:  

[QuotationInquiry_r, QuotationPrep, SendQuotation_s, QuotationApp_r, IssueInv, 

CommercialInvoice_s, AssembleGoods, ShipRaw, InsureRaw, Documentation, 

InsuranceCertificate_s, UpdateRecords, PaymentInvoice_r] 

Retailer Workflow 9:  

[QuotationInqPrep, QuotationInq_s, Quotation_r, QuotationEvaluation, CreatePO, 

PO_s, POAcpt_r, ComInv_r, TakeDelivery, ApprovePayment, InvPayment_s] 

Wholesaler Workflow 9:  

[QuotationInq_r, QuotationPreparation, Quotation_s, PO_r, POApproval, POAcpt_s, 

CreateInquiry, QuotationInquiry_s, Quotation_r, ApproveQuotation, 

QuotationApproval_s, Invoice_r, InsuCert_r, CustomsDeclaration, TakeDelivery, 

PaymentApproval, InvoicePayment_s, IssueComInv, ComInv_s, ShipGoods, 

InvPayment_r] 

Manufacturer Workflow 9:  

[QuotationInquiry_r, PrepareQuotation, Quotation_s, QuotationApproval_r, 

PrepareInquiry, QuotationInquiry_s, ReceiveQuotation_r, QuotationApp, 

QuotationApp_s, CommercialInvoice_r, InsuranceCertificate_r, DeclaretoCustoms, 

TakeRawDelivery, ApprovePaymentInvoice, PaymentInvoice_s, GoodsManufacturing, 

CreateInvoice, Invoice_s, ArrangeShipment, ArrangeInsurance, InsuCert_s, 

InvoicePayment_r] 

Supplier Workflow 9:  

[QuotationInquiry_r, QuotationPrep, SendQuotation_s, QuotationApp_r, IssueInv, 

CommercialInvoice_s, AssembleGoods, ShipRaw, Documentation, InsureRaw, 

InsuranceCertificate_s, UpdateRecords, PaymentInvoice_r] 

Retailer Workflow 10:  

[QuotationInqPrep, QuotationInq_s, Quotation_r, QuotationEvaluation, CreatePO, 

PO_s, POAcpt_r, ComInv_r, TakeDelivery, ApprovePayment, InvPayment_s] 



Appendices 

169 
 

Wholesaler Workflow 10:  

[QuotationInq_r, QuotationPreparation, Quotation_s, PO_r, POApproval, POAcpt_s, 

CreateInquiry, QuotationInquiry_s, Quotation_r, ApproveQuotation, 

QuotationApproval_s, Invoice_r, InsuCert_r, CustomsDeclaration, TakeDelivery, 

PaymentApproval, InvoicePayment_s, IssueComInv, ComInv_s, ShipGoods, 

InvPayment_r] 

Manufacturer Workflow 10:  

[QuotationInquiry_r, PrepareQuotation, Quotation_s, QuotationApproval_r, 

PrepareInquiry, QuotationInquiry_s, ReceiveQuotation_r, QuotationApp, 

QuotationApp_s, CommercialInvoice_r, InsuranceCertificate_r, DeclaretoCustoms, 

TakeRawDelivery, ApprovePaymentInvoice, PaymentInvoice_s, GoodsManufacturing, 

CreateInvoice, Invoice_s, ArrangeShipment, ArrangeInsurance, InsuCert_s, 

InvoicePayment_r] 

Supplier Workflow 10:  

[QuotationInquiry_r, QuotationPrep, SendQuotation_s, QuotationApp_r, IssueInv, 

CommercialInvoice_s, InsureRaw, AssembleGoods, ShipRaw, Documentation, 

InsuranceCertificate_s, UpdateRecords, PaymentInvoice_r] 

 

 

 

 

 

 

 

 

 



Appendices 

170 
 

Appendix H: List of Published Papers 

Saleem, M., Chung, P.W.H., Fatima, S. and Dai, W., Intelligent Business Transaction 

Agents for Cross-Organizational Workflow Definition and Execution, in Proceedings of 

Intelligent Information Processing V: 6th IFIP International Conference on Intelligent 

Information, 2010, p. 245–250. 

Saleem, M., Chung, P.W.H., Fatima, S. and Dai, W., Cross Organisational Compatible 

Plans Generation Framework, in Proceedings of AI-2011 Thirty-first SGAI 

International Conference on Artificial Intelligence, Cambridge, England, 2011, p. 223–

228. 

 


