
School of Computing Science

A Grid and Cloud-based framework for high
throughput bioinformatics

Keith Flanagan

Submitted for the degree of Doctor of
Philosophy in the School of Computing

Science, Newcastle University

October 2009

Acknowledgements

I would particularly like to thank my supervisors Professor Anil Wipat and Dr Matthew Pocock for

their continuous support and advice.

I am grateful to all the support staff at the School of Computing Science for their thoughts and in-

sights. In particular, I would like to thank Jim White and Chris Ritson for providing me with a large

amount of additional temporary disk space on the computing science cluster nodes for experimenta-

tion purposes.

I would also like to thank the Microbase early-adopters, Sirintra Nakjang and Alice Illiasova, whose

assistance and feedback was invaluable in debugging and testing.

I am also grateful to the members of the writing group, whose valuable feedback provided numerous

grammatical improvements and caught many typographical errors.

Finally, I would like to thank my friends and family for supporting me throughout the PhD process.

i

Declaration

I declare that this thesis is my own work. No part of this thesis has previously been submitted for a

degree or any other qualification in this or another University.

Keith Flanagan

December 2009

ii

Abstract

Recent advances in genome sequencing technologies have unleashed a flood of new data. As a

result, the computational analysis of bioinformatics data sets has been rapidly moving from a lab-

based desktop computer environment to exhaustive analyses performed by large dedicated computing

resources.

Traditionally, large computational problems have been performed on dedicated clusters of high per-

formance machines that are typically local to, and owned by, a particular institution. The current

trend in Grid computing has seen institutions pooling their computational resources in order to of-

fload excess computational work to remote locations during busy periods. In the last year or so,

commercial Cloud computing initiatives have matured enough to offer a viable remote source of re-

liable computational power. Collections of idle desktop computers have also been used as a source

of computational power in the form of ‘volunteer Grids’.

The field of bioinformatics is highly dynamic, with new or updated versions of software tools and

databases continually being developed. Several different tools and datasets must often be combined

into a coherent, automated workflow or pipeline. While existing solutions are available for construct-

ing workflows, there is a clear need for long-lived analyses consisting of many interconnected steps

to be able to migrate among Grid and cloud computational resources dynamically.

This project involved research into the principles underlying the design and architecture of flexible,

high-throughput bioinformatics processes. Following extensive research into requirements gathering,

a novel Grid-based platform, Microbase, has been implemented that is based on service-oriented

architectures and peer-to-peer data transfer technology. This platform has been shown to be amenable

to utilising a wide range of hardware from commodity desktop computers, to high-performance cloud

infrastructure. The system has been shown to drastically reduce the bandwidth requirements of

bioinformatics data distribution, and therefore reduces both the financial and computational costs

associated with cloud computing. The system is inherently modular in nature, comprising a service

based notification system, a data storage system scheduler and a job manager. In keeping with e-

iii

Science principles, each module can operate in physical isolation from each other, distributed within

an intranet or Internet. Moreover, since each module is loosely coupled via Web services, modules

have the potential to be used in combination with external service oriented components or in isolation

as part of another system.

In order to demonstrate the utility of such an open source system to the bioinformatics community,

a pipeline of inter-connected bioinformatics applications was developed using the Microbase system

to form a high throughput application for the comparative and visual analysis of microbial genomes.

This application, Automated Genome Analyser (AGA) has been developed to operate without user

interaction. AGA exposes its results via Web-services which can be used by further analytical stages

within Microbase, by external computational resources via a Web service interface or which can be

queried by users via an interactive genome browser.

In addition to providing the necessary infrastructure for scalable Grid applications, a modular de-

velopment framework has been provided, which simplifies the process of writing Grid applications.

Microbase has been adopted by a number of projects ranging from comparative genomics to synthetic

biology simulations.

iv

Contents

1 Introduction 1

1.1 Data explosion in Bioinformatics . 1

1.2 Scalability . 2

1.3 Motivation . 5

1.4 Project aims and objectives . 7

1.5 Thesis structure . 7

2 Background 9

2.1 Distributed Systems . 10

2.1.1 Architectures . 11

2.1.1.1 Client-server architectures . 11

2.2 High-throughput computing . 17

2.2.1 Programming models and scalable parallel computing 18

2.2.2 High-throughput computing platforms . 19

2.2.2.1 Shared memory parallel computing 20

2.2.2.2 Distributed parallel computing 22

2.2.2.3 Distributed high-throughput computing 23

2.2.2.4 Distributed Computing . 24

2.2.3 Summary . 27

2.3 Data transfer protocols . 27

2.3.1 Peer to peer, global-scale file transfer protocols and file systems 28

2.3.1.1 BitTorrent . 29

2.3.2 Summary . 30

2.4 Technologies underlying Grid systems . 31

2.4.1 Web services . 31

2.4.2 Workflows and pipelines . 33

2.4.3 Notification-based orchestration . 33

2.5 Grid architectures . 35

v

2.5.1 Introduction . 35

2.5.2 High performance grids . 37

2.5.3 Commodity grids . 38

2.5.4 P2P architectures in Grid organisation and communications 39

2.5.4.1 Peer to Peer approaches to resource matching 39

2.5.4.2 Mobile agents in Grids . 41

2.5.4.3 Ensuring fairness in a P2P Grid 42

2.5.5 Cloud computing . 42

2.5.6 Data management in high-throughput systems 43

2.6 High-throughput computation in e-Science and bioinformatics 44

2.7 Summary . 47

3 Microbase 49

3.1 Introduction . 49

3.2 Motivation . 49

3.3 System-level requirements . 51

3.3.1 Environment-specific considerations . 52

3.3.2 Scalability requirements . 53

3.3.3 Data handling requirements . 54

3.3.4 Maintenance and extensibility requirements 54

3.3.5 Application support and workflow structuring 56

3.3.6 User requirements . 58

3.3.6.1 Developer requirements . 58

3.3.6.2 System administrator requirements 59

3.4 Architecture Overview . 60

3.4.1 Facilitating flexible and extensible analysis pipelines 62

3.5 Supporting technologies . 67

4 Notification system 69

4.1 Introduction . 69

4.2 Motivation . 69

4.3 Requirements . 75

4.4 Architecture . 76

4.4.1 Handling persistent messages . 76

4.4.2 Handling broadcast messages . 79

4.5 Implementation . 81

4.6 Conclusion . 83

vi

5 Resource system 85

5.1 Introduction . 85

5.2 Motivation . 86

5.2.1 Data identification and storage . 86

5.2.2 Data distribution . 86

5.2.3 File version control . 88

5.2.4 File querying . 89

5.2.5 Pipeline extensibility . 89

5.2.6 Developer usability . 90

5.3 Requirements summary . 92

5.3.1 Terminology . 93

5.4 Architecture . 93

5.4.1 Bulk data transport protocol . 94

5.4.2 Resource client API . 95

5.4.2.1 Azureus-Microbase integration 97

5.4.3 Torrent registry . 99

5.4.4 Resource archiving . 101

5.4.5 Downloading a resource . 101

5.4.6 Publishing a resource . 102

5.5 Discussion . 103

6 Responders 107

6.1 Introduction . 107

6.2 Motivation . 108

6.2.1 Bridging Microbase and domain applications 108

6.2.2 Responder pipelining, extendibility and developer convenience 110

6.3 Requirements . 110

6.3.1 Responder structure . 112

6.4 Developer support for responders in Microbase . 114

6.4.1 Responder initialisation . 116

6.4.2 Handling notification events . 118

6.4.3 Executing command line applications . 122

6.5 Maven project layout . 126

6.5.1 Responder project layout and interdependencies 128

6.5.2 Runtime role of Maven artifact information 130

6.6 Conclusions . 131

vii

7 Job management and enactment 134

7.1 Introduction . 134

7.2 Motivation . 135

7.3 Requirements . 137

7.4 Architecture . 138

7.4.1 Failure handling . 141

7.4.2 Logging . 142

7.4.3 File versioning . 143

7.4.4 Overseeing computational work . 144

7.4.4.1 Process of enacting a task . 144

7.4.5 Job enactment . 144

7.5 Compute client . 148

7.6 Job execution by compute clients . 149

7.7 Performance analysis . 151

7.7.1 Introduction . 151

7.7.2 Data collection and analysis . 154

7.7.3 Timing results . 158

7.7.4 Benchmarking methodology . 160

7.8 Results . 160

7.8.1 Performance benchmarks . 160

7.8.2 Administration toolkit . 164

7.9 Conclusions . 164

8 Automated Genome Analyser 169

8.1 Introduction . 169

8.2 Motivation . 170

8.3 Architecture . 170

8.3.1 AGA responders . 172

8.3.2 AGA Viewer . 180

8.4 Results . 180

8.4.1 System configuration . 180

8.4.1.1 BLAST-P NR responder using Amazon EC2 and Newcastle nodes 183

8.4.1.2 BLAST-P Pairwise responder using Amazon EC2 187

8.4.2 Benchmarking an entire pipeline of responders 191

8.5 Conclusions . 193

8.5.1 Responder development experience and data flow 193

8.5.2 Future work . 194

viii

9 Discussion and conclusions 195

9.1 The Microbase System . 195

9.1.1 Architecture choices . 195

9.1.2 Scalability . 197

9.1.3 Responder development framework . 198

9.1.4 Comparisons with other frameworks . 199

9.1.4.1 Programming models . 202

9.2 Use cases . 203

9.2.1 AGA . 204

9.2.2 Mucosa project . 205

9.2.3 Parallel metaSHARK . 206

9.2.4 AptaMEMS-ID . 208

9.2.5 iGem 2009 . 208

9.3 Evaluation . 209

9.3.1 System efficiency and job design considerations 209

9.3.2 Service and data security in a Microbase system 210

9.3.3 Achievements . 211

9.4 Future work . 212

A How to write a responder 216

A.1 Introduction . 216

A.2 Microbase . 217

A.2.1 Requirements . 217

A.3 Quick-start virtual machine image . 218

A.4 Responder architecture . 220

A.5 Writing a responder . 221

A.5.1 Root project directory . 222

A.5.2 Compute job sub-project . 223

A.5.2.1 BLAST . 223

A.5.2.2 Java component . 225

A.5.2.3 Implementing the Java component of a job 226

A.5.2.4 Packaging platform-native applications 230

A.5.2.5 Final job implementation directory 235

A.5.3 Event handler sub-project . 235

A.5.3.1 Implementing the event handler 237

A.5.3.2 Modifying services.xml . 241

A.6 Installation / Deployment . 242

A.7 Testing . 249

ix

Abbreviations

AGA Automated Genome Analyser

API Application Programming Interface

BLAST Basic Local Alignment Search Tool

BOINC Berkeley Open Infrastructure for Network Computing

CDS Coding Sequence

CIFS Common Internet File System

CORBA Common Object Request Broker Architecture

COTS Common Off The Shelf

DCOM Distributed Component Object Model

DHT Distributed Hash Table

DSM Distributed Shared Memory

FPGA Field Programmable Gate Array

FIFO First in, first out

FTP File Transfer Protocol

GPU Graphic Processor Unit

GSI Grid Security Infrastructure

GUI Graphical User Interface

GWT Google Web Toolkit

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

ID identifier

I/O Input/Output

IPC Inter-Process Communication

JAR Java Archive

jar Java Archive

JDBC Java Database Connectivity

JVM Java Virtual Machine

LAN Local Area Network

LSID Life Science Identifier

x

MIMD Multiple Instruction Multiple Datastream

MISD Multiple Instruction Single Datastream

MPI Message Passing Interface

MPP Massively Parallel Processing

NFS Network File System

NUMA Non-Uniform Memory Access

OGSA Open Grid Services Architecture

P2P peer-to-peer

PTP point-to-point

POJO Plain Ordinary Java Object

POP Post Office Protocol

QoS Quality of Service

RDBMS Relational Database Management System

RPC Remote Procedure Call

RMI Remote Method Invocation

SCP Secure Copy

SIMD Single Instruction Multiple Datastream

SPMD Single Program Multiple Datastream

SISD Single Instruction Single Datastream

SGE Sun Grid Engine

SMB Server Message Block

SMP Symmetric Multi-processor

SNP single nucleotide polymorphism

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SMTP Simple Mail Transfer Protocol

SQL Structured Query Language

SSE Streaming SIMD Extensions

SSH Secure Shell

SSL Secure Sockets Layer

STDOUT standard out

xi

STDERR standard error

TTL Time To Live

UID unique identifier

VM Virtual Machine

XML Extensible Markup Language

WAN Wide Area Network

war Web Application Archive

WSDL Web Services Description Language

VPN Virtual Private Network

GRAM Grid Resource Allocation and Management

RFT Reliable File Transfer

RLS Replica Location Service

URL Uniform Resource Locator

WMS Workspace Management Service

xii

Chapter 1

Introduction

1.1 Data explosion in Bioinformatics

Bioinformatics involves the application of computing science and mathematical techniques to help

understand biological data. The first protein sequence, that of the B-chain of insulin, was determined

during the 1950s by Sanger et al. [270]. This achievement was followed by Fier’s group [162]

in 1972, who were the first to determine the nucleotide sequence of a single gene. Advances in

sequencing techniques during the 1970s [267, 210, 269] permitted the complete genome sequencing

of several small sequences, such as individual genes of bacteriophages [93, 268]. Since then, the

throughput of DNA sequencing has seen rapid increases due to the refinement [11], automation [212]

and parallelisation of the process. A major achievement was the sequencing of the first genome of

a free-living organism, Haemophilus influenzae Rd, in 1995 [96]. The Sanger method has seen

several refinements resulting in greater efficiency; read lengths have approximately doubled in the

past 10 years. Large-scale industrialisation of the Sanger method has also taken place, with several

large sequencing centres now operating hundreds of sequencing machines [138]. New sequencing

methods have also been developed [207, 138, 259, 264].

Improvements in technology, coupled with large-scale deployment of sequencing hardware has seen

efficiencies of scale reduce the cost per genome sequence. Sequencing entire bacterial genomes is

now almost routine. Despite the cost reductions achieved to date, there is still a long way to go before

the long-term goal of the ‘$1000 human genome sequence’ is realised [276, 264, 311]. Nevertheless,

genome databases are being populated with hundreds of bacterial sequences at an ever-increasing

rate [32].

The GenBank [27] and EMBL [175] sequence databases were established during the early 1980s as

1

publicly available data repositories into which new DNA or protein sequences could be deposited.

Following the release of the first two complete bacterial genome sequences in 1995 [96], there has

been an explosion in the number of complete genome sequences that have been made publicly avail-

able. The major sequence database repositories, GenBank, EMBL and DDBJ [287]1, have all shown

similar continued exponential growth rates2, mirroring the rate at which genome sequencing projects

continue to produce new data [191].

As sequencing technologies were leading to an increase in the output of new sequence data, com-

puters with greater memory capacity and computational power were becoming available. With the

increased availability of genome sequences and computing power, considerable effort has been fo-

cused on developing software tools for automated sequence processing, including functional analy-

ses, feature annotation, and comparison techniques, as well as visualisation utilities. Many software

tools have been developed to aid with information storage and processing, and there is an active re-

search area in developing new tools [203, 197]. Analysis tools are varied in scope and scale, ranging

from scripts operating over flat-files running on a single lab-based PC, to large massively parallelised

annotation pipelines [97]. Bioinformatics tools perform a wide range of analysis tasks. Tools such

as GLIMMER [71], Genewise [34], InterPro [225] assist with sequence annotation tasks. Sequence

alignment algorithms such as Needleman-Wunsch [231], Smith-Waterman [280], and utilities such

as Blast [6] and MUMmer [176] allow the automated discovery of sequence similarities to be mea-

sured and single nucleotide polymorphisms (SNPs) to be identified. These tools aid the construction

of phylogenetic trees and provide evidence for evolutionary processes such as gene duplications,

deletions, mutation events and gene translations including lateral gene transfers. Other software

packages provide graphical interpretations of primary sequence data or the secondary data produced

by various analyses [98, 290, 48, 158].

1.2 Scalability

Without scalable systems and systematic approaches for the analysis of bioinformatics data, exhaus-

tive studies of bioinformatics data sets are intractable [167, 91, 277]. The problem of performing

large-scale analyses in bioinformatics stems from two root causes: scalability and complexity. Scala-

bility issues arise from the exponential growth rate of primary data sets, the number of bioinformatics

tools that need to be executed over those data sets, and the high computational and data storage costs

associated with generating and maintaining secondary data sets — often O(n2) or worse per analysis
1http://www.ddbj.nig.ac.jp
2ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt

2

http://www.ddbj.nig.ac.jp
ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt

tool, in many cases. For instance, executing exhaustive pairwise Blast [6] searches often requires

specialised software and dedicated hardware in order to complete within a reasonable timeframe,

since a single CPU would take many years to complete an exhaustive analysis [278, 288]. Many

approaches have been proposed to address scalability problems, ranging from algorithm-specific

dedicated hardware Field Programmable Gate Array (FPGA) [329, 140], to massively parallel use of

generic computing hardware [278, 288, 139].

The second problem, complexity, arises from with the logistics of assembling multiple computationally-

intensive analysis tools to run as a pipeline. As the number of tools that are required to execute in

a high-throughput, automated fashion increases, co-ordination of structured data flows between pro-

cesses becomes essential. The output of one program may need to be supplied to another as input

data [31]. Therefore, in addition to providing scalable execution and data management, software

platforms are required that are flexible enough to support and maintain sets of bioinformatics tools

organised into workflows [202].

To address these issues, numerous high-throughput annotation pipelines have been developed that are

capable of executing a range of bioinformatics applications on large, high-end dedicated computer

clusters consisting of hundreds or thousands of nodes [147, 97, 31, 313].

Bioinformatics researchers have a long tradition of sharing data with their peers via the Internet.

Initially, cross-project data sharing was achieved predominantly via static or dynamic Web sites.

These sites were primarily designed for human interaction, and therefore pose difficulties for ef-

fective automated data retrieval. Data extraction from standard web sites often requires the use of

‘screen-scraping’ techniques, and is therefore ‘fragile’, being heavily dependent on the on-screen

structure [67]. However, as the number and use of online data resources has increased, it has be-

come increasingly necessary for machines to interact with, and transfer information among, remote

resources. With the emergence of Service Oriented Architectures (SOAs) and their supporting tech-

nologies, it has now become commonplace to expose bioinformatics analysis applications or results

databases as Web services [232, 323, 275]. Web services allow machines to interact with remotely-

exposed data and analysis tools programatically, via well-defined service interfaces. Automation

toolkits such as Taverna [236] and Kepler [5] enable the construction of complex workflows that

utilise and co-ordinate multiple remotely-hosted services to achieve a particular goal. Workflow en-

actment permits data to flow from one service to another in a completely automated fashion. On

completion of the workflow, result data is returned to the biologist. Workflow automation has been

shown to save biologists a large amount time, by removing manual ‘copy and paste’ operations that

would otherwise be required to move data between sites [152].

3

Grid technologies are rapidly gaining popularity for assistance with bioinformatics data processing

[139, 65]. Although there are multiple definitions as to what constitutes ‘Grid computing’ [108],

Grid technologies typically involve large numbers of distributed heterogeneous computational re-

sources that are spread across several geographical locations. Computational Grids are a means for

researchers to obtain and share large amounts of computational power and data storage either within

their own institution, or across institutional and geographical boundaries. Some definitions of ‘Grid

technology’ focus on large-scale data storage and interoperability, while others are more concerned

with the use of dedicated, high-performance compute clusters. At the other end of the spectrum,

several Grid projects, known as ‘desktop Grids’ implement ‘cycle-stealing’ techniques to acquire a

large total amount of computational power through the use of multiple desktop-grade machines, each

with modest hardware specifications. It is recognised that there is a need for exhaustive analyses of

biological data, that the continual production of new primary data requires automatically-updating

secondary data sets, and that achieving this functionality requires something like high-throughput

Grid technology in order to be feasible [313].

A major research challenge in bioinformatics is the identification and removal of bottlenecks in the

shift towards parallelisation and high-throughput approaches to data processing [65]. Of particular

interest is the utilisation of recent developments in Grid and Cloud computing. These technologies

have enormous potential in terms of computational power, but there are numerous challenges in

leveraging this power. For example, problems may be faced in mapping computational problems

in bioinformatics to new infrastructures and models for distributed computing that are becoming

available through various Grid and Cloud computing initiatives. Such infrastructures are inherently

heterogeneous in terms of hardware, and are more likely to be accessed via the Internet requiring

applications to cope with high latencies and constrained bandwidth. Monetary charges may also be

incurred for the use of a hardware resource.

The suitability of SOAs and peer-to-peer (P2P) infrastructures were considered for providing the

co-ordination and data transfer operations that a Grid platforms require. Of particular interest is

how Grid functionality is made accessible to application developers without exposing the underlying

implementation complexities. Also of interest is how existing analysis applications were integrated

into a high-throughput distributed system. This project therefore also focuses on the maintainabil-

ity and extensibility issues of a platform that must be accessible to application developers, while

at the same time being scalable and reliable enough to manage a Grid composed of non-dedicated,

administratively-restricted, heterogeneous worker nodes. Developing applications in such an envi-

ronment has been described in the literature as being ‘extremely difficult’ [172].

4

Bioinformatics analyses are very often composed of multiple applications arranged into a workflow

or processing pipeline [236]. Constructing and operating such analysis workflows that operate within

a Grid environment is a difficult task that poses a significant challenge for application developers

[185].

In addition to the need to execute multiple analysis tools, large amounts of primary and secondary

analysis data must be managed efficiently in order to construct a consistent, integrated data set.

Amassing large repositories of sequence information raises a number of post-processing research

challenges. For example, how to process and manage large amounts of sequence and annotation

data; how to effectively integrate secondary data sets; how to expose data to third parties, and allow

them to efficiently query data repositories.

1.3 Motivation

A large organisation might have several hundred, or thousands of desktop computers. It is likely that

at least some of the time, a large proportion of these will be idle, with no active users [227, 318].

There is therefore a potentially vast amount of computing power not being utilised. Distributed

systems have the potential to be expandable to extremely large proportions. For instance, some dis-

tributed search systems with an underlying P2P implementation are able to span millions of Internet-

connected computers, utilising entirely distributed and self-maintaining data structures [37, 223].

However, if ‘desktop Grids’ are to even approach this level of scalability, several challenges must be

addressed.

Distributed computation platforms based on loose collections of desktop computers have different

properties to closely-coupled clusters of dedicated servers. These differences pose several challenges

when attempting to efficiently utilise remote computational power. Although the combined raw CPU

power of a distributed system composed of commodity hardware may equal or even exceed a dedi-

cated compute cluster, the actual throughput that can be achieved in terms of utilisation of individual

CPUs may be much lower and depends heavily on the types of jobs that are to be run. An individual

nodes’ local disk is also typically smaller and slower than server equivalents and is not necessarily

backed up regularly, leading to long-term data storage reliability problems. Network connections be-

tween loosely-coupled systems typically have much less bandwidth available than dedicated compute

clusters, resulting in slower file transfers and higher latencies. Furthermore, general purpose desktop

computers do not necessarily have domain-specific software installed, necessitating more network

transfers and software installation overheads than are required for pre-loaded nodes of a dedicated

5

compute cluster.

Another problem facing Grids composed of desktop computers are unpredictable user interruptions

— a user may reclaim the computer from the Grid at any moment. Therefore, it must be possible to

restart computational work or migrate it to another node, preferably without losing large amounts of

already completed work. Several frameworks have been developed that address several of the issues

involved with the utilisation of commodity hardware. For instance, Condor [192], SGE 3 and BOINC

[9] are all widely used in many areas of research [25, 234, 237, 277].

Computational tasks that perform large amounts of isolated CPU-intensive work and transmit only

small amounts of data across the network are ideal for use within a distributed compute cluster, since

the impact of slow or high-latency network connections are minimised. Unfortunately in bioinfor-

matics this is not always the case and data distribution is a major problem where large data sets must

be transferred to many worker nodes. For instance, although multiple Blast analyses can be run in-

dependently, the Blast databases required for each alignment may run into many tens or hundreds

of megabytes. Transferring such amounts of data to hundreds of nodes is a logistical challenge, re-

quiring infrastructure capable of large-scale file distribution. Even a small cluster of machines might

overwhelm a central server, or the network connection it relies on. Recently, a number of P2P so-

lutions have been proposed with respect to data transfer and service organisation within grid-based

systems to address these scalability issues [89, 126].

Access to worker nodes by Grid applications can be made more difficult by institutional or or admin-

istrative reasons including: file-system permissions, ownership of the machines, and standardisation

around a common Grid middle-ware infrastructure. These types of restrictions may limit the po-

tential of the kinds of applications that may be executed on worker nodes. Large organisation also

typically have a wide range of machines, running multiple operating systems and with different hard-

ware architectures and capabilities. Such heterogeneous environments introduce difficulties when

attempting to run third-party platform-specific executables, particularly when analysis tools are not

necessarily pre-installed, since platform differences must be resolved at run-time.

Many of the tools that bioinformaticians use take somewhere in the region of several minutes to

an several hours to execute on current typical desktop computer hardware with a typical data item,

such as a genome sequence. Bioinformatics tools are typically amenable to process-level paral-

lelisation by executing multiple instances over different data sets on different CPUs or different

computers. Applications will therefore typically run in isolation, requiring little or no Inter-Process

Communication (IPC). Therefore most of the data transfer requirements occur at the initialisation
3http://www.sun.com/software/sge/

6

http://www.sun.com/software/sge/

and termination phases of execution, although sporadic access to external Web services or databases

may also be required. Many existing analysis tools are ideally suited to running within a distributed

environment composed of ‘small’ machines available for short to medium periods of time. However,

it is unlikely that these applications are aware of frameworks such as Condor [192], and so will not

make use of advanced features such as job checkpointing [193].

1.4 Project aims and objectives

This project aimed to research principles underlying the design and architecture of flexible, high-

throughput bioinformatics processes and to demonstrate the application of these principles by devel-

oping a software implementation.

Objectives

To achieve these aims it was necessary to meet a number of objectives:

1. To establish the motivation and system requirements for Grid system capable of executing long

lived bioinformatics analyses in a dynamic execution environment.

2. To develop a Grid based notification system that allowed the coordination of processes within

a distributed computing environment.

3. To develop a system to efficiently manage programmatic and data resources within this envi-

ronment.

4. To develop a user-friendly mechanism for packaging legacy bioinformatics applications to be

executed on the Grid.

5. To develop a job management system to oversee job execution and completion, ensuring sys-

tem robustness and maximise computational efficiency.

6. To apply the system to the development of a resource for comparative genome analysis in order

to demonstrate its utility.

1.5 Thesis structure

This thesis is divided into the following parts:

7

• Chapter 2 provides the necessary background information and literature review of previous

work related to this thesis.

• Chapter 3 introduces the motivations, system requirements and high-level architecture of a

Grid system capable of executing long-lived bioinformatics analyses in a dynamic execution

environment of commodity hardware.

• Chapters 4, 5 and 7 describe the major core components of the Microbase system, providing

detailed descriptions how the architectures of these subsystems satisfy the high level require-

ments presented in Chapter 3. In particular, the combination of the approaches described in

these chapters form a novel infrastructure

• Chapter 6 presents a development framework and a design pattern for implementing Grid-

aware applications, or wrappers for existing applications. This chapter builds on the work

presented in earlier chapters by describing an abstract interface to the Grid system that hides

many of the complexities of a distributed computing environment. This Chapter also presents

a software ‘design pattern’ aimed at bioinformatics developers, which if followed, permits

highly scalable and flexible analysis pipelines to be constructed.

• Chapter 7 describes a distributed job enactment environment capable of executing applications

constructed using the design pattern introduced in Chapter 6. By taking advantage of service-

oriented architectures, the event system presented in Chapter 4, and the distributed file transfer

system detailed in Chapter 5, the enactment system has been shown to manage jobs globally

across a number of data centres.

• Chapter 8 describes the construction and implementation of a bioinformatics analysis pipeline

that utilises Microbase to analyse bacterial sequences. Performance results of several pipeline

enactments with different hardware configurations are presented.

• Chapter 9 presents an overall discussion and evaluation of the aims and objects. It describes

the achievements of the project, including details of projects that have used the framework

and design pattern to solve real-world bioinformaticscomputational problems. An outline of

potential future work is also provided.

8

Chapter 2

Background

The first part of this chapter discusses approaches to high performance computing and relevant

distributed systems technologies including Service Oriented Architectures (SOAs), workflow-based

systems, distributed file transfer methods and Grid computing. A summary of current bioinformat-

ics analysis pipelines is then presented, followed by an introduction to various bioinformatics data

sources and analysis tools that were used for this project.

Bioinformatics concerns analysis of biological data using computers. Developments in computing

hardware over the past few decades have effectively advanced computing power at an exponential

rate1. However, the growth of bioinformatics data sets and the development of new analysis tech-

niques show similar and in some cases even higher growth patterns [142, 27]. Bioinformatics has

therefore become reliant on distributed systems for the sharing and publication of data, and on par-

allel computation for enabling the tractable analysis of large amounts of data [41, 82].

One of the main aims of bioinformatics is to reduce the human workload involved in analysing bi-

ological data by utilising automated methods and large numbers of machines to perform the same

or equivalent types of analyses as humans. Machine-based analyses are not always as accurate as

those performed by their human counterparts. However, it is often the case that the ability to process

orders of magnitude more data at a reduced accuracy is more beneficial than smaller amounts of

highly accurate information. Bioinformatics encompasses many computing science and software en-

gineering principles. For instance, distributed computing, data management, workflows, customised

data storage and analysis algorithms, and e-Science platforms all play their part in enabling scaleable

bioinformatics applications.

1Moore’s Law: http://www.intel.com/technology/mooreslaw/, accessed September 2009.

9

http://www.intel.com/technology/mooreslaw/

2.1 Distributed Systems

The phrase ‘distributed systems’ covers a wide array of applications and architectures. Any system

involving multiple computers connected periodically or permanently to one another via a connection

(such as an Ethernet network) can be considered distributed. The study of distributed systems is con-

cerned with how the responsibility for completing a conceptual unit of work can be spread among

machines and mapped to multiple cooperating operating system processes. Distributed computing

covers a broad range of systems: file and data transfer; e-mail, Web and database client-server appli-

cations; computationally-oriented distributed systems; remote invocation of services such as Remote

Procedure Call (RPC), Secure Shell (SSH), and Web services; and Grids. This section provides an

overview of the broad range of protocols and architectures that have been developed to facilitate the

development of distributed applications.

Distributed systems have several intrinsic properties which arise from the way hardware is physically

and logically arranged, as well as from interactions among software processes. These properties

include:

• Inherently concurrent in nature: each node is an independent computer with at least one CPU

[295, p. 2].

• Inter-Process Communication (IPC) suffers from increased latency due to message protocol

processing overheads and as the physical distance data transferred over is increased [295, p.

7].

• Communication latency has implications for time-stamping events: every node maintains its

own clock; there is no inherent concept of ‘global time’ in a distributed system [295, p. 11].

• Reliability: depending upon the architecture employed by a particular distributed system im-

plementation, a distributed approach may either provide greater reliability, or reduced reliabil-

ity as the number of nodes is increased.

• Heterogeneity: distributed systems may potentially be composed of a broad range of hardware

and operating system platforms, ranging from embedded devices to super computers.

The concurrent nature of a distributed system, coupled with unpredictable communication delays

pose significant problems when coordinating multiple distributed processes. The absence of a global

clock for synchronising distributed nodes means that although a node knows its own state, it cannot

know the state of the other nodes at exactly the same time; only a partial ordering of events can be

10

achieved [179, 50]. This uncertainty has important implications which must be considered when

implementing functionality such as database transactions, process synchronisation, and deadlock

handling within distributed systems.

Distributed applications may either be more or less reliable than centralised applications, depending

on how failures are handled. A single machine or network connection failure, if handled badly, can

result in the failure of the entire system. Therefore, component failure needs to be handled effectively

when designing reliable distributed applications in order to present a seamless service to the end user

and to ease system maintenance for administrators [295, p. 4-7]. [157] defines a set of guidelines that

specify how a distributed system should respond to environmental changes, such as hardware failures

and configuration updates. It suggests that distributed applications should employ various types of

abstraction to mask the negative properties of process distribution as much as possible from end

users. For instance, ISO suggests failure transparency through the use of transactions, check-pointing

and hot fail-over replication [157]; location transparency through DNS; and migration transparency

portable programs and staging of data prior to switching servers.

2.1.1 Architectures

Nodes participating in a distributed system have a logical arrangement determined by the patterns

of connectivity between processes executing on different machines. Physical locations of nodes and

hardware interconnections between nodes may differ from the logical layout. Together, the choice

of the logical and physical arrangement of distributed nodes determine the properties of the whole

system in terms of efficiency, scalability, and resilience to component failures. Several categories of

well-known architectures are discussed later in this section.

Although the choice of logical architecture for a system is largely independent of the physical imple-

mentation, some logical architectures are better suited to certain types of physical configuration. For

instance, closely-situated nodes with high-speed connections are likely to have lower communication

latencies and higher bandwidth capabilities than geographically distant nodes communicating via the

Internet. Therefore, a distributed application requiring a set of tightly-coupled processes is likely to

perform better when deployed to a set of machines that are located in the same facility.

2.1.1.1 Client-server architectures

There are two conceptual components in a client-server architecture. A server is a software

component that can expose a range of services such as access to data, computational power or

11

brokering facilities via a network connection to one or more clients. A service may be provided

by more than one server component, operating on a distributed set of computers. A client is

a software process that consumes the provided service. Client processes need not be connected

via a permanent network link, unlike server processes that must be constantly available in order to

service requests. Clients typically run on different physical hardware to the server processes they

communicate with [63, p. 8]. In many distributed systems, client instances greatly outnumber server

instances.

Client-server architectures are highly prevalent in networked computer systems [83, pp. 3-5]. Appli-

cations range from network file-system protocols and database services operating across a Local Area

Network (LAN), to email, Web, and Web services operating across the Internet. The term ‘client-

server architecture’ covers a range of sub-architectures that consist of client and server components

in different arrangements. These include 2-tier, 3-tier, and n-tier variants.2.

Multi-tier architectures are a varient on the basic client-server approach. A software component that

plays the role of a server to client components may itself be a client to a different server

process. For instance, a common example of a 3-tier system is the relation between web browser,

web server and database components. A web server plays the role of a server when providing HTML

pages to browsers. The web server plays the role of a client if the content for the HTML pages must

be retrieved from a database.

Another variation is the ratio of computational work performed by a server-side process and the ratio

of computational work performed by the client process. Applications that utilise local resources of

the client computer, such as disk storage space or large amounts of CPU power are known as thick

clients . Post Office Protocol (POP) mail clients and some types of distributed computing clients

fit into this category [10].

Applications that perform a minimal amount of computational work on the client computer are

termed thin clients [63, p. 40]. Thin clients are useful when the bulk of the processing must

occur elsewhere for practical, security, or convenience reasons. A thin client might display the re-

sults of a remotely-running software application. Systems such as the X11 windowing system and

VNC make use of a thin layer to display the content of a remotely running application. Such systems

enable data- or CPU-intensive applications to be run remotely on a highly-specified server, but be

controlled by one or more relatively cheap client computers.

2Client/Server: Past, Present and Future, George Schussel, 1996, http://www.dciexpo.com/geos/dbsejava.htm
(accessed October 2008)

12

http://www.dciexpo.com/geos/dbsejava.htm

Peer to peer architectures

In a client-server system, servers are typically permanently connected to a network in order to be

ready for incoming requests from clients. In a peer-to-peer (P2P) environment constant availability

is often infeasible, especially in cases where the a P2P network is composed of peers using unreliable

connections, such as home computers. The emphasis in a P2P system is on ensuring that enough

peers are providing the required service all of the time, rather than ensuring high availability for any

individual peer [28].

There are several conflicting definitions [14] of what constitutes a P2P system. At one extreme,

highly structured, centralised systems which utilise the resources exposed by Internet-connected

‘peers’ have been described as P2P systems [298, p. 29] even though there is no direct commu-

nication between peers. An example of this would be the Seti@Home [154] project. At the other

extreme, unstructured and decentralised ‘server-less’ protocols such as Gnutella [104] are considered

by purists to be ‘true’ P2P systems. There are a number of intermediate levels of distribution, such

as partially centralised systems and ‘brokered’ systems where peer discovery is centralised, but data

transfers are decentralised [298, p. 29].

In a P2P system, distinction between client and server is blurred since nodes typically play the role

of both. Therefore, each service consumer node (client) may also be a provider of the same service

to other nodes. Peers in a system provide a service directly to other peers, without a need for an

intermediate dedicated server. Typically, the emphasis in a P2P system is the symmetry between

peers, and their equality in the system[298, pp. 23-24].

Another property exhibited by some P2P systems is the ability to function without a centralised

architecture. P2P systems often construct and manage their own overlay network , a logical

network that operates above the physical network layer [298, pp. 35-36]. The overlay network

determines which peers communicate with other peers, and therefore how messages are routed within

the system.

Operating in a decentralised fashion presents several challenges to the reliability of a system includ-

ing: locating existing peers in the network; guaranteeing a search or messaging operation reaches

all intended peers; placing newly-joined peers in the overlay network; and handling the removal of

peers. To overcome these issues, a P2P system operating without a rigid centralised structure must

support the self-organisation and self-maintenance of the overlay network. Maintenance operations

typically include ensuring that peers within the network are suitably well-connected so that a node

removal does not cause the formation of a separate sub-graph, but not so overly connected that the

13

bandwidth overhead of maintaining accurate peer lists overburdens nodes [260].

P2P architectures are usually more difficult to implement than client-server approaches for a vari-

ety of technical and organisational reasons including navigating firewalls and maintaining overlay

networks [298, pp. 31-36][28, pp. 10-11]. However, where it is appropriate for a system to use a

P2P architecture, advantages often include greater scalability and dynamic load balancing since net-

work bandwidth or computing power can be contributed by individual nodes. Common uses of P2P

systems include decentralised searching, messaging, and data transfer where there are many clients,

many data items or both.

Pastry [260] is a generic P2P object location system. It is a completely decentralised, self-organising

overlay network designed for use in large-scale P2P systems (hundreds of thousands of nodes). Pastry

provides the infrastructure on which distributed applications can be built.

Each node in a Pastry network is assigned a unique (numeric) identifier. Each node maintains a list

of other nodes. Messages are passed between nodes until arrival at the intended destination node.

When a particular node is asked to deliver a message to a target node, it checks its list of known

nodes to see if the destination node is one of them. If it is, the message can be delivered. If not, the

node will attempt to forward the message to a known node that is numerically closest to the target

destination. The authors say that using this approach, message routing in Pastry typically requires

O(logN) routing steps, where N is the number of network nodes.

Pastry attempts to minimise the number of network hops to deliver messages to particular nodes by

making use of network locality information. Nodes that are local to a particular network prefer to

communicate with other local nodes.

Pastry has been used as the routing layer in several P2P applications, including a distributed file

system, PAST [76], and a distributed message-passing system [49].

Gnutella Gnutella [104] is a P2P protocol supporting distributed search, retrieval and publication

of file-based resources among networked hosts. The Gnutella network provides a P2P overlay net-

work infrastructure that enables participating peers (termed ‘servants’) to discover other servants

hosting resources of interest.

On initial start-up, a peer does not have any information about the Gnutella network, other than a

small set of well-known hosts termed ‘host caches’. A host cache may be contacted in order to

obtain an initial subset of Gnutella peers. The list of ‘neighbouring’ peers is then kept up-to-date via

peer-to-peer interactions, without the need for subsequent contact with on of the central host caches.

14

A query for a file resource may arrive at a peer from one of its neighbouring peers. On receipt of

a query, the peer will first attempt to satisfy the request itself. If that is not possible, for instance if

the requested resource is not present locally, then the query will be forwarded to the remaining set

of immediate neighbours. Each neighbour will then repeat the process until either a suitable peer is

found, or all peers have been queried.

To participate in the network, a peer must run a Gnutella client (such as Limewire [198]). The client

uses the Gnutella protocol to perform distributed discovery, but also includes a HTTP client and

server. Once a remote peer of interest has been discovered, a HTTP transfer is initiated directly

between the two peers. Since the P2P portion of the Gnutella network is used for resolving peers

rather than large data transfers, it does not become overwhelmed with content traffic. The network is

therefore highly scalable.

Skype Skype3 is a global VoIP telephony network that is part client-server and part P2P. A central

server is used to store personal user details, to perform authentication, and to ensure global nickname

uniqueness. A P2P network is used to allow scalable distributed user searching, and to facilitate

communication between peers behind restrictive firewalls. The Skype network is self-organising,

where nodes can choose to be ‘standard’ nodes or ‘super’ nodes, depending on their environment.

Standard nodes may be promoted to super nodes if they have adequate CPU power and network

bandwidth. Super nodes act as hubs for standard nodes and may route traffic if two communicating

standard nodes are behind firewalls [22].

A range of different architectures can be considered to be P2P to some extent. P2P systems have

been defined as being centralised, partially centralised, and decentralised [14]. Self-organising sys-

tems such as Skype take advantage of a partially centralised architecture to facilitate communication

between less-well connected nodes. Partial centralisation can help to reduce the time required to

search for a resource, since fewer network hops are required. However, this strategy comes at the

cost of increased network and computational load for ‘hub’ nodes. Hub failures may have a negative

impact on many ‘ordinary’ nodes.

Completely decentralised architectures are not reliant on any centralised infrastructure. They are

therefore inherently scalable in terms of the number of nodes that can be supported by a system.

However, the lack of any overlay network structure requires queries to be propagated throughout the

entire network, i.e., by message flooding. Care must be taken to ensure that loops of interconnected

nodes are not formed that would result in perpetual message forwarding. One approach is to introduce

3http://www.skype.com, accessed November 2008

15

http://www.skype.com

a Time To Live (TTL) for each message sent through the system. A TTL is a maximal limit on the

distance (in terms of network hops) that a message is allowed to travel before it is dropped by a node.

However, as pointed out in [14], while this solves the flooding problem, it introduces a ‘message

horizon’ that potentially prevents a node from ever receiving a message if it is ‘too far’ from the

originating node.

Strictly speaking, no large scale P2P is truly decentralised, since the bootstrap process always re-

quires an initial set of peer addresses to be acquired from a (set of) well-known location(s). In the

context of a LAN it would be possible for nodes to discover each other in a decentralised fash-

ion through message broadcasts. However, this is not possible with Internet-scale networks. Once

running, many P2P systems are capable of self-organising and performing self-maintenance to the

overlay network, and require no centralised infrastructure.

For the purposes of this thesis, P2P is defined to be a system in which participating peers perform at

least some communication directly with each other. Therefore, we regard a P2P system as one which

may either be an entirely decentralised system, or a system which has some degree of structure in the

form of centralised servers of ‘hubs’. It does not matter whether these centralised hubs are architected

‘by design’, or whether they are a result of a dynamic reconfiguration of the overlay network.

Mobile agents

Mobile agents are programs that are designed to migrate to remote computers, either manually by

command of a system administrator or by means of an automated process. [156] defines a mobile

agent as consisting of: agent program code; a thread of execution, and associated execution stack; a

unit of data. All constituent parts accompany the agent as it moves between physical locations. The

data part is mutable, and reflects changes in the ongoing computation. Mobile programs have a wide

range of uses including: utilising the idle time of remote CPUs [117]; automated load-balancing of

server applications; and increasing the fault-tolerance of systems [141]. The ability of a software

agent to move to a machine to which it was not initially installed facilitates more efficient use of

computational resources. For instance, if a computer with hardware specifications more suited to

an agent’s computational task becomes available after initial software deployment, then the software

agent can migrate to the new environment dynamically.

In large distributed computation systems it is necessary to handle individual node failures gracefully.

One approach to achieving this behaviour with the use of mobile agents is outlined in [117]. A mobile

agent is responsible for deploying itself to the remote computer. Frequent progress checkpoints are

16

made so that if the machine fails or becomes unavailable, the computational task can be migrated

to a different computer. On migration, work can resume from the last checkpoint, minimising the

‘wasted’ work time. Dynamic installation support for domain-specific software also eases the burden

on system administrators.

In bioinformatics, mobile agents have been used for a number of purposes including data mining

[274], genomic annotation [70], tool and data integration [61]. Agent toolkits such as BioAgent

[215] have demonstrated the ability for the modular nature of agents to permit extensibility of an

application through the addition of new agents to the system.

2.2 High-throughput computing

The demand for computational power in data-intensive research has always outstripped supply. Per-

formance increases in the latest generations of computer hardware can always be consumed by run-

ning more complex analyses not possible with the previous generation of hardware, executing ap-

plications with larger data sets, or re-running existing analyses at higher resolutions. In contrast to

Amdahl’s law [8], Gustafson’s law [136] states that given a suitably large computational problem, it

should be possible to parallelise the problem to fit the number of available processors. Gustafson’s

law is a good match for exhaustive computational analyses in bioinformatics since the continual pro-

duction of new data and analysis techniques provide sufficiently large quantities of work for parallel

processing to greatly improve the rate at which analyses can be performed.

For a given generation of computer hardware, many computational problems are too large for a single

computer to manage, whether the limitation is due to inadequate CPU power, memory, or permanent

disk storage. While increases in individual component speeds have been rapid and continuous, the

scale of some computational tasks are extremely large. Even with the fastest CPUs available today,

completion could take many days, months or even years when executed on a single machine [184].

Therefore, it is necessary to consider the use of multiple compute resources with many threads of

execution operating concurrently, with each thread working on a small part of the overall problem.

A compute task that takes several months to process on a single computer could be completed in a

much shorter space of time if it could be broken into smaller, more manageable chunks and handled

by multiple computers. While it is generally much harder to write and test parallel applications, this

disadvantage is greatly outweighed by the speed-up that can be achieved by adding more processing

units. Parallel processing can be achieved either by building larger computers containing more CPUs

(multi-processing), or by utilising a set of smaller, interconnected computers (distributed processing).

17

There are typically three competing factors that influence the implementation of a parallel system:

the target hardware architecture, the software architecture, and the amenability of a particular compu-

tational problem to parallelisation. To some extent, the properties of the underlying hardware dictate

the appropriate software approach, although various abstraction techniques permit different software

paradigms to be used on regardless of the underlying hardware, sometimes at the cost of efficiency. A

computational problem may be parallelised in such a way that there is an obvious choice of hardware

architecture to execute it. Alternatively, a faster than serial, but sub-optimal parallel implementation

may be required if existing hardware must be used.

2.2.1 Programming models and scalable parallel computing

The major challenge in writing a parallel application is how a large computational task can be split

into units that can be efficiently processed by multiple processing units. It is essential that sequential

consistency is maintained [180], that is, the parallel version of a program produces the same compu-

tational result as the sequential version. In general, computational problems fit into three categories:

those that are embarrassingly parallel, operations that may be parallelised to some extent, and opera-

tions that it is not possible to parallelise without changing the result of the computation. Meanwhile,

computer operations can exploit parallelism at several levels: the use of fine-grained specialised CPU

instructions; multi-threaded programs; and multi-process distributed applications. There are several

well-known strategies that can be used to break a large task into more manageable blocks. The most

suitable task-splitting strategy to use for a particular application is influenced by the structure of the

data, the type of processing required, and the hardware available to execute the computation. Choos-

ing an unsuitable strategy usually has adverse effects on efficiency and execution time, rather than

computational correctness.

Parallel processing can be achieved by exploiting multiple instruction sequences, multiple data streams,

or a combination. Flynn’s taxonomy [99] conveniently provides four categories for classifying data

processing operations:

• Single Instruction Single Datastream (SISD): a sequential set of operations applied to a single

data stream

• Multiple Instruction Single Datastream (MISD): pipeline processing of a single data stream

• Single Instruction Multiple Datastream (SIMD): application of the same operation to multiple

data streams

18

• Multiple Instruction Multiple Datastream (MIMD): application of multiple operations (pipelines)

to multiple data streams

SIMD involves applying the same processing step to multiple instances of data. Examples of SIMD

approaches to parallelism can commonly be found in the processing instructions of CPUs intended

for multimedia operations [189], such as Streaming SIMD Extensions (SSE) instructions4, where

identical operations must be applied to large numbers of data items. In contrast, the MIMD approach

involves a cooperating set of threads working on the same problem, with each thread potentially

having its own independent instruction sequence. In the context of a hardware architectures, MIMD

tends to indicate more complexity in the threads operating over a data set than SIMD. While the

terms SIMD and MIMD are usually used to describe low-level hardware architectures or software

implementations, a cluster of computers executing different instances of the same program over dif-

ferent data sets can be thought of as a very coarse-grained SIMD architecture. A more appropriate

description for this type of system is Single Program Multiple Datastream (SPMD). SPMD implies

independent processes, rather than tightly-coupled processes executing in a lock-step fashion. In-

dividual computers running as part of an SPMD cluster may also exploit low-level machine-local

parallelism using either SIMD or MIMD techniques, or a combination of the two if each program

instance is running on a multi-CPU machine.

2.2.2 High-throughput computing platforms

Historically, designs of parallel computing hardware implementations have been highly specialised,

heavily dictating the way in which software was written. A number of architectures have been pro-

posed including vector processing and systolic arrays. In many cases, the programming languages

have been tightly-coupled to the computer hardware. In other cases, the form of parallel process-

ing used (as discussed above) is heavily influenced by the underlying hardware capabilities. For

instance, vector processors such as the Cray were ideally suited for computational tasks that are

easily vectorised and involve large amounts of data, such as computational fluid dynamics, physics

and weather forecasting. These machines were less well suited for situations involving more com-

plex CPU instructions or small amounts of data due to their architectures being highly optimised for

vector processing.

Processors in modern High Performance Computing (HPC) hardware are typically commodity, scalar

or super-scalar processors. While these processors are best suited for MIMD-type operations, they
4http://www.intel.com/technology/architecture-silicon/sse4-instructions/index.htm, accessed

November 2008

19

http://www.intel.com/technology/architecture-silicon/sse4-instructions/index.htm

also implement SIMD-style instructions that can be used for vector processing. The attention of

modern HPC architectures is focused more towards general purpose parallelisation of higher level

thread or application-level parallelism, rather than instruction-level SIMD operations.

• Shared memory: a single computer with multiple CPUs sharing a common memory unit.

• Non-Uniform Memory Access (NUMA) shared memory: a single computer with multiple

CPUs. Each CPU has its own block of memory.

• Distributed shared memory: multiple network-connected sequential or parallel computers,

each with their own memories. The combined memories may be presented to the program-

mer as a single, large virtual unit of memory.

• Distributed, non-shared memory distributed processing: multiple network-connected sequen-

tial or parallel computers operate either cooperatively or individually. Messages may be passed

between cooperating machines, but each computer maintains its own individual address space.

A number of factors dictate the suitability of a parallel processing architecture for a given computa-

tional problem. These include: the frequency at which threads need to communicate, the frequency

at which threads need to synchronise with each other, and the amount of data that needs to be trans-

ferred between threads.

2.2.2.1 Shared memory parallel computing

The term ‘shared memory’ refers both to a software development paradigm, and a set of hardware

architectures. Typically, ‘shared memory’ refers to the programming model of multiple threads shar-

ing the same memory address space for communication purposes. Although some hardware architec-

tures are ‘true’ shared memory implementations, where several CPUs share the same physical units

of memory, large modern systems actually implement a virtual shared memory in order to facilitate

a convenient programming model.

Shared memory parallel processing involves running multiple cooperating, concurrent, threads of

execution, often in a low-latency environment such as a single, large computer with multiple CPUs

or a cluster of computers with fast interconnects such as gigabit Ethernet or Infiniband [17, 137, 160].

The various threads typically work on different parts of the same in-memory problem in a tightly-

coupled fashion. Communication and data transfer between threads is facilitated by accessing a pool

of memory shared between the available CPUs, while flow control and synchronisation is facilitated

20

by standard concurrent programming constructs such as semaphores, monitors, barriers and critical

sections [145, 242]. Parallel processing techniques are suitable for many types of computational

problems involving large-scale numerical analyses such as matrix calculations [321, p. 301-303],

solving linear equations [321, p. 313], parallel genetic algorithms [170] and large scale data mining

[336].

Multi-core CPUs and Symmetric Multi-processor (SMP) hardware are modern examples of shared

memory parallel machines. Dual and quad-core CPUs in particular are now commodity items avail-

able to desktop users.

Domain-specific hardware is another class of device that utilises a shared memory architecture. Spe-

cialised hardware devices are designed to perform a particular, specific task very quickly. These

devices are typically SIMD hardware implementations of a domain-specific application or algorithm

although some may be suited to more general purpose computation. For instance in bioinformatics,

the Smith-Waterman [280] and Basic Local Alignment Search Tool (BLAST) [6] algorithms have

complete or partial Field Programmable Gate Array (FPGA) implementations [329, 330, 186, 140].

Although these devices are only capable of running specific algorithms, the increase in performance

is substantial — sometimes one or even two orders of magnitude over a typical desktop CPU. While

achieving much higher speeds, Harris et al. [140] claim that their FPGA implementation still man-

ages to be 99% as sensitive as the standard software implementation.

A more recent development currently being investigated is the use of Graphic Processor Unit (GPU)s

to speed up SIMD-type operations. The latest graphics processors are becoming increasingly pro-

grammable. Graphics processors contain multiple processing pipelines that are able to process

streaming floating point data extremely efficiently. Computationally intensive domain-specific al-

gorithms from many fields of research have been adapted to execute on GPUs including bioinformat-

ics [196, 178], particle simulations [331] and cryptography [334]. GPU have also been used more

generically as mathematics co-processors [120, 39]. Some implementations have been shown to be

considerably faster than equivalent implementations using general-purpose CPUs. As graphics cards

become more powerful and the amount of on-board memory becomes greater, they become more

attractive as co-processor units for suitable tasks. One of the factors limiting their uptake has been

the vendor and even card-specific programming required, as well as the need to express problems in

terms of graphics constructs. Work is currently underway to develop more general languages that

allow access to the hardware-accelerated functions that these cards provide [40, 296, 60].

In [326], Wirawan et al. have successfully executed several sequence alignment algorithms on com-

modity games console hardware equipped with a Cell [159] processor. The Cell architecture shares

21

strong vector processing characteristics with graphics processors and therefore allows similar speed

ups for suitably-written software. Future exploitation of Cell-like architectures for scientific ap-

plications looks likely if computational problems can be reformulated to take advantage of vector

processing techniques [327].

As the number of CPUs within a machine is scaled up, contention between multiple CPUs and

memory modules becomes greater. While bus and memory contention can be mitigated to some

extent with the use of more complex hardware [148, 79] and careful software design [257], eventually

adding more CPUs becomes detrimental to performance [149].

2.2.2.2 Distributed parallel computing

As contention between numerous components of large single parallel computers became too prob-

lematic, clusters composed of multiple, network-connected computers were seen as an alternative.

Distributed parallel computing addresses the issue of bus contention between internal components,

enabling much larger systems to be constructed; each node is an individual, independent computer

running independent processes. Distributed shared-memory computer systems are relatively cheap

to construct, especially if they are composed of standard high density rack-mounted blade servers

or Common Off The Shelf (COTS) desktop PC hardware. There are two major distributed parallel

computing paradigms: distributed shared memory and message passing. Distributed shared memory

allows distributed processes to address the same virtual memory space, permitting synchronisation

and data transfer operations. The message passing approach provides each process with its own

independent memory space, requiring messages to sent between them when data transfers or syn-

chronisation is required.

Distributed shared-memory computing provides an illusion of a single shared-memory computer to

the application programmer, when in fact threads and memory contents may be spread among a clus-

ter of computers. Several libraries have been created to ease development of parallel applications that

must execute over a large number of discrete nodes [292, 262, 293, 75]. These frameworks hide the

details of the actual hardware behind a layer of abstraction, presenting the application programmer

with environments containing virtualised components, and access to resources such as Distributed

Shared Memory (DSM) [187, 47]. Using the DSM model, parallel programs can be built in an ab-

stract fashion, without requiring knowledge regarding whether they are running on a single large

multi-computer, or distributed across multiple nodes of a cluster. With distributed parallel machines,

delays caused by contention for the bus between CPUs and memory is replaced by contention and

22

latency of the network connection between the nodes, as well as additional CPU overhead involved

in processing network messages.

Accessing the contents of memory stored on a remote node is much slower than accessing local

memory. This effect is termed Non-Uniform Memory Access (NUMA). Although multi-processor

machines with several memories also suffer from NUMA, the effect is much more pronounced when

using distributed clusters of machines, due to the greater latencies involved. Since the DSM is pre-

sented to the application as a single virtual address space, the application is not necessarily aware of

which memory segments are located locally, and which are located on remote machines. If memory

accesses are frequent and spread over a large portion of the address space some types of application

may suffer performance problems [87], although other studies have shown that networking overhead

is not a bottleneck for all applications [30].

The effects of NUMA can be mitigated to some extent via intelligent page placement techniques [36].

Various software and hardware-based replication techniques have been proposed to cache frequently-

used data locally to a node, while maintaining consistency in the case of multiple write operations

by distributed processes [243, 169, 77, 64]. Other techniques involve pre-fetching data before it is

required, and the use of multiple threads to ensure that CPU utilisation is high even when one or

more threads are blocked, awaiting an Input/Output (I/O) operation [224].

2.2.2.3 Distributed high-throughput computing

Non-shared memory distributed computing typically involves loosely-coupled distributed processes

that periodically communicate with a supervisor process, or synchronise with each other. IPC and

synchronisation may be achieved in several ways, including:

• Client-server: multiple client worker nodes contact a central server to acquire work and to

perform synchronisation processes.

• Peer to peer: distributed process communicate and co-ordinate with each other directly.

• Database-centric: a variation on the client-server approach, where a transactions within a cen-

tralised database are used to co-ordinate processes. The database is used as a kind of transac-

tional shared memory.

The highly-specialised nature of early parallel machines made it difficult to port programs among the

many vendor-specific distributed computing platforms. Application Programming Interfaces (APIs)

23

such such as MPI [101] were developed in order to facilitate code portability between the parallel

hardware produced by different vendors.

While the parallel processing approaches discussed in the previous sections provide application pro-

grammers with a convenient development environment, the paradigm is not without its disadvan-

tages. Performance can suffer if compute nodes need to transfer either large amounts of information

over a network connection, or send large numbers of IPC messages [291]. Parallel virtual machines

are also susceptible to node failures. Since the system is effectively running multiple parts of a single

program, it is possible that unreliable nodes can cause the entire system fail if no error checking or

redundancy is in place. There have been several proposed approaches to increasing the reliability of

parallel systems, including redundant threads and checkpointing [282].

2.2.2.4 Distributed Computing

Like parallel programs, distributed computing also involves splitting a large compute task into smaller

more manageable units. However, instead of multiple threads running within a single machine (or

distributed virtual machine), each unit of work executes as a separate process within physically and

logically distinct hardware. Distributed processes may communicate with each other, but IPC tends

to be for process synchronisation purposes, rather than large or frequent data transfers since there

is no “shared memory” model. In the main, distributed processes tend work in isolation from one

another in order to avoid overheads due to network latency or bandwidth contention [192, 154, 9].

Distributed programs can be written either with or without explicit knowledge of their existence

within a distributed environment. There are multiple frameworks that enable application program-

mers to write their software specifically to take advantage of distributed operations such as IPC,

object marshalling and data transfers as well as thread synchronisation using RPC-style methods:

Common Object Request Broker Architecture (CORBA) [309], Distributed Component Object Model

(DCOM) [261], Java Remote Method Invocation (RMI) [217]. On the other hand, it is also possible

to run ordinary, serial programs within a distributed environment with no use of specialised APIs.

Multiple copies of serial programs can be run with different data sets across large numbers of com-

pute nodes, i.e., program-level parallelism (SPMD). In this case, synchronisation between processes

and data collection is generally performed at the end of process execution by a distributed environ-

ment framework.

Distributed applications can be run either in homogeneous clusters, built from high-performance

compute nodes, or across a set of heterogeneous (in terms of hardware and/or operating system)

24

nodes, or even a combination of the two.

Typically a large organisation such as a company or university will have many hundreds or thousands

of desktop computers. These machines are located either in personal offices, or larger numbers are

provided in communal cluster rooms. It has long been known [227] that numerous workstations will

spend much of their time idle, particularly in the evenings and weekends - but also during ordinary

working hours. As personal desktop workstations become more powerful, it becomes increasingly

desirable to utilise their computational capabilities during their idle time [12].

Although distributed computing using otherwise-idle processing capabilities is more challenging

than using a parallel multi-processor server, there are significant economical advantages to doing so.

Powerful server equipment is expensive to acquire and often difficult to maintain. In addition, the

sheer number of available desktop computers installed on a typical university campus — numbering

in the thousands — provides a pool of raw computing power to rival that of a high-end dedicated

server cluster. The typical rolling hardware-refresh cycle for a university is in the region of 3-4 years.

When desktop computer equipment is upgraded, distributed compute processes will also benefit, with

no additional cost.

Distributed computing has been common in multiple forms for many years, and used in many differ-

ent disciplines. As such there are a wide variety of approaches to utilising remote compute resources

ranging from remote shell execution, to batch processing systems [128, 58] and more advanced

frameworks [192, 218, 105, 133] that deal with load balancing, and process checkpointing. One of

the main problems facing the basic remote-execution approach to distributed computation is reliabil-

ity. As the number of computers in the processing pool increases, the chance of a hardware failure,

or that a user terminates the running processes increases. Using the remote-execution or batch-

processing approaches is difficult for large-scale or long-running jobs under these circumstances,

and using a framework like Condor [192] might be a more sensible option in these cases.

Each type of system still has its uses, however. For example, even though the newer, feature-rich

systems such as Condor are clearly more advanced than a simple shell script or batch processing

system, they are also more complex to set up and use. In the case of Condor, there is a requirement

for installing and configuring job submission and queue services prior to running computational jobs.

For small-scale prototyping or one-off processing, a shell script or batch processor may be easier or

more convenient for the end-user, and would still provide acceptable performance and reliability.

With the rise in popularity of the Internet during the mid-1990’s, it was realised that there was a

potentially massive amount of compute resource available to be tapped in the form of personal com-

25

puters sitting in homes throughout the world. Seti@Home [154] was the first large-scale distributed

system to utilise so-called “public computing” or “volunteer computing”. It consisted of a central set

of servers charged with the tasks of: storing recorded telescope data; splitting recorded signal data

into 250kb chunks termed “work units”, distributing work units to computers across the Internet; and

storing/collating the results of detected “interesting” signal spikes for further analysis. The project

soon acquired enough computers donating processing time — over one million — that the project

received computational power twice that of the fastest supercomputer available at the time [9]. This

demonstrated that volunteer computing could potentially play a role in assisting scientific projects

short of computing power. The size of the work-units sent to Internet-connected machines mattered

greatly, due to the slow and expensive (dial-up) Internet connections predominantly used by home

users at the time. The success of the project hinged on the fact that it took much longer (hours) to

process a work-unit than it did to download the raw data, and upload results (minutes).

Following the success of the Seti@Home project, several other public distributed computing projects

were developed for various domains [273, 74, 208]. Each new project coded their analysis algorithms

directly into their own compute client. If people wanted to participate in multiple projects they

were required to download multiple client programs, each with its own binaries, configuration, and

platform requirements.

The Berkeley Open Infrastructure for Network Computing (BOINC) [9] project was proposed as a

solution to this problem. BOINC is a small generic client application designed to support multiple

distributed compute projects. After installing the BOINC client, the user must register themselves

with the distributed compute project(s) they wish to donate their CPU time to. The BOINC client then

downloads the required executable and data files from a particular project’s central server. The use of

a single client allows the user control over how CPU time is prioritised between different computing

projects. In the event that a particular project has no work currently to process, the BOINC client

allows another registered project to process instead.

In practice, it is possible for high-throughput systems to utilise a hybrid approach combining the ad-

vantages of parallel and distributed models. With the recent advent of multi-threaded and multi-core

CPUs, most workstations are capable of running two or more tasks concurrently. To take advantage

of this, either multiple single-threaded jobs can be sent to each workstation, or individual compute

jobs can take advantage of parallel processing techniques.

26

2.2.3 Summary

Properties of parallel processing platforms

Architecture Scalability (CPUs) Task suitability Limitations

Shared memory (SMP)
10s Tightly-coupled threads Memory contention

Frequent IPC Bus contention

NUMA shared memory (Massively Parallel Processing (MPP))
100s Tightly-coupled threads Bus contention

Frequent synchronisation

Distributed shared memory (MPP)
1000s- Loosely-coupled threads Network latency

10000s Frequent synchronisation Network bandwidth

Distributed, non-shared memory (clusters)

10000s- Largely independent tasks Network bandwidth

100000s Infrequent or no IPC Data distribution

Infrequent synchronisation

As of 2008, the majority (80%) of the top 500 supercomputers are cluster-based, rather than MPP

[301].

2.3 Data transfer protocols

Data transfers between networked computers can be achieved in different ways, both in terms of con-

ceptual differences as well as different architectural and implementation approaches. Although any

communications between distributed machines can be regarded as ‘data transfer’. Here, the phrase

‘data transfer’ is used to describe communication between machines for the purpose of information

exchange, as opposed to communications for synchronisation purposes or for initiating remote exe-

cution via RPC-like protocols. In a typical scenario, data may be located on one computer, but must

be processed on another. In order for the second computer to be able to process the data, the data

must be accessible to it.

Client-server transfer protocols consist of a server process and a client process, usually running

on different machines. Client and server implementations are protocol-specific. The File Transfer

Protocol (FTP) [29] [245] protocol is one of the earliest and most used file transfer mechanisms

within intranets and on the Internet. Other examples of widely-used client-server file transfer proto-

cols include Hypertext Transfer Protocol (HTTP) [92], WebDav [123] and Secure Copy (SCP), a file

transfer protocol that uses encryption provided by SSH [335].

Client-server transfer protocols are inherently centralised, and as such server processes can suffer

from scalability problems when under load from large numbers of client processes. Standard load-

balancing or protocol-specific caching techniques can be employed to improve the ability of a system

to perform better under heavy loads by making the same content available in multiple locations [263].

27

In contrast to file transfer protocols, network file systems support standard file system operations

over a network to remotely stored data. Network file systems such as Common Internet File System

(CIFS) and Network File System (NFS) have a number of advantages compared to file transfer pro-

tocols [219, 181]. By placing network transfer operations behind a file system view, most existing

applications will work seamlessly without modification. Random access to files content is also sup-

ported, permitting applications to start reading from the middle of files as opposed to acquiring the

entire file, as is necessary with some file transfer protocols. Updates to remote files are also possible

without having to transfer the entire file. As with other client-server systems, server-based network

file systems suffer from reduced performance when many client processes perform I/O operations

[13]. Server replication, client-side caching and more intelligent client requests have been proposed

to address this limitation [213, 20, 78].

2.3.1 Peer to peer, global-scale file transfer protocols and file systems

A plethora of distributed transfer protocols [57, 104] and file systems have emerged over the past

decade that distribute the responsibilities traditionally associated with server processes across peers

participating in the system [281, 174, 76, 319, 88]. These distributed systems have minimal or no

central server requirements and therefore improve scalability by supporting much larger numbers of

nodes [13, 319].

PAST [76] is a P2P storage system intended to utilise the collective disk capacities of Internet-

connected nodes in a self-organising fashion. PAST supports automatic replication of files for in-

creased reliability and distribution performance. Nodes participating in a PAST network are not

required to be ‘high availability’ dedicated machines, and may leave the network at any time with no

adverse effect on file availability. The authors claim that storage utilisation can approach 100% even

though no central control system exists.

As distributed systems become larger, it becomes more difficult to enforce synchronised actions

across all nodes, especially if nodes are unreliable or are managed by different administrative entities.

As a result, to avoid restrictive contracts that would necessitate ‘agreement protocols’ among nodes,

PAST implements weaker semantics on file-system operations than are routinely expected from local

or LAN-based file-systems. Important properties of the PAST system include:

• Immutability of published data: once a file identifier has been used, it cannot be re-used for

consistency reasons.

28

• PAST supports ‘reclaiming’ rather than ‘deletion’ of files: removal of data from the system

reclaims disk space from nodes, but does not necessarily remove the content from all nodes.

That is, once data has been published, there is no guarantee that it can be unpublished.

2.3.1.1 BitTorrent

BitTorrent [57] is a popular P2P file distribution system widely used for the efficient distribution of

large software packages across the Internet including Linux distributions and video game patches.

Peers that are downloading the same file co-operate with each other by transferring parts of the file

amongst themselves, rather than relying on a central server to upload files to all the peers.

Files are initially made available by publishing a torrent file. A torrent contains a hash

of the file content, as well as other data such as file names, lengths, and the Uniform Resource

Locator (URL) of a tracker [57]. Torrent files are lightweight pointers to the actual content, and

can therefore be disseminated via a standard HTTP server, or other means, such as email.

A seeder is a peer that has an entire copy of a file and is currently seeding (uploading) to other

peers. A leecher is a peer which currently has an incomplete copy of the file. While leechers are

attempting to acquire the entire file, they also upload the portions of the file they already have to other

peers. A tracker is a server that keeps track of available files and peers. Peers periodically contact

the tracker to exchange information about other peers that are currently seeding or leeching the file.

Contacting the server in this way is termed scraping 5. Peers may periodically scrape the server

in order to determine a) while downloading, whether it is worth sending a request to receive details

of new peers, and b) which files to actively seed based on the current number of seeds reported by

the tracker.

The original BitTorrent protocol was a hybrid-decentralised [14] P2P architecture, requiring a cen-

tralised tracking system to facilitate P2P bulk data transfers. Several improvements to the BitTorrent

protocol have since been made to decentralise the ‘directory service’ role played by torrent tracker

servers. Several BitTorrent clients have Distributed Hash Table (DHT) implementations that aid the

discovery of file content. A DHT stores a subset of key/value pairs on each node participating in

the network [223]. DHTs have been used to store peer information, forming a de-centralised dis-

tributed tracking system [249]. Removing the need for a centralised tracker improves scalability and

reliability by removing a single point of failure and contention.

5http://azureuswiki.com/index.php/Scrape, accessed 2009/04/20.

29

http://azureuswiki.com/index.php/Scrape

2.3.2 Summary

P2P systems are ideal for the mass distribution of large data files. The total system-wide bandwidth

of P2P systems can provide is typically far greater than the bandwidth of a set of central distribution

servers. For instance, when a new version of a large popular software package is released, there is

likely to be a large demand during the first few hours or days following the release. This demand may

far exceed the ability of a set of centralised servers to service all requests simultaneously. Distributing

these files via a P2P system such as BitTorrent can significantly reduce the bandwidth requirement

for the distributor, while at the same time increasing the speed that consumers can download the

requested file.

Properties of client-server protocols such as FTP:

• Low latency: it is possible to find items of interest quickly.

• Transfer rate is at best inversely proportional to the total number of resources being simul-

taneously transferred for a given amount of bandwidth to a server. Therefore for a computer

requiring several files, it is usually more efficient to serially transfer files since parallel requests

from multiple nodes will reduce performance.

Properties of BitTorrent:

• Higher latency than FTP or HTTP transfers, since there is a need to contact a tracker in order

to resolve peers hosting files of interest.

• System-wide transfer rates are higher than central-server approaches when large numbers of

concurrent inter-node transfers are taking place.

• Potentially the combined bandwith of all nodes participating in a particular transfer can be

utilised. As more peers obtain chunks of the file, less stress is placed on the initial seeder.

The torrent protocol is designed to notice which peers it can get pieces from the fastest -

automatically balancing network load.

• Therefore transferring multiple resources concurrently is probably more efficient than serially

transferring files from a single server.

30

2.4 Technologies underlying Grid systems

Grid computing is a form of distributed computing. This section introduces Grid systems in general,

and the technologies that are commonly used to implement Grid systems. The following section will

describe specific Grid implementations and their intended operating environments.

Traditionally, distributed computing has focused primarily on achieving the best use of compute

resources, dedicated clusters or otherwise. The phrase “Grid computing” is intended to convey the

use of pervasive distributed computing resources by software applications, in much the same way

as electrical appliances utilise a power grid. A grid is composed of a heterogeneous collection of

distributed “devices” that provide some kind of service to other members of the system. The “Grid

services” that participating devices expose might include: access to compute hardware, data storage,

or data querying. In fact, components do not necessarily have to be computers in the traditional sense.

For instance, remote sensor networks have been used to provide live data streams into compute grids

[240, 151]. In this case, the project’s sensors have minimal computational power and so would not

be considered to be part of a distributed computation system in the traditional sense. However, they

are considered Grid components because they are data sources that are exposed via Grid-services,

and therefore may communicate with other Grid components. The overarching aim of “the Grid”

concept is to enable different types of components to work together as a set of “black boxes”, each

exposing functionality via a publicly accessible set of services that can be utilised by other services

[111].

Grids have many, often conflicting definitions [143, 106, 272]. This ambiguity arises partly because

Grids have been deployed to many different research domains each with their own requirements

[25, 100, 206, 234, 237, 277], and partly because Grid deployment environments and technologies

vary considerably. A ‘Grid’ system does not conform to a specific mould. Rather, the heterogenous,

collaborative and cross-institution aspects of the system are emphasised [253, 106]. Grid systems

range from small systems composed of clusters of workstations, to large cross-continent collabora-

tions of super computers [172]. Participants of a Grid do not necessarily need to be computation

devices in the traditional sense. For instance, sensor nodes with small amounts of computational

power may be participants of a Grid along with high-powered computer clusters [151].

2.4.1 Web services

Web services [131] are a means of exposing data or computational resources to members of a dis-

tributed system. They form a client-server distributed system; multiple clients can request data or

31

computation exposed by a server. Unlike traditional distributed systems technologies such as RMI

[217] and CORBA [309], Web services can be used to more easily facilitate communication between

Internet-connected sites where firewalls may restrict traffic flow. Web services can be thought of

as ‘document-based’ computing rather than RPC or distributed objects [310]. Rather than calling a

remote method, or accessing a remote ‘object’, Simple Object Access Protocol (SOAP) messages are

transferred between clients and servers. The Web services specification does not specify a particular

message transport mechanism, and therefore Web service implementations must rely on existing pro-

tocols for message delivery. HTTP is a commonly used delivery protocol that conveniently allows

Web services to be implemented as web applications, hosted using existing web application container

infrastructure. The use of HTTP facilitates cross-site communication since HTTP is commonly al-

lowed through firewalls. However, other standard transport protocols such as Simple Mail Transfer

Protocol (SMTP) could be used to deliver Web service messages if necessary [165].

Extensible Markup Language (XML)-based SOAP messages are passed between clients and servers.

The use of XML for both service descriptions and message content makes Web services language-

and platform- and transport-neutral. While parsing XML data structures requires greater message

processing overheads than binary RMI-type messages [165], they are straightforward to parse. There-

fore clients may be written in almost any language, including many scripting languages 6.

Despite being an order of magnitude slower than RMI [165], Web services are rapidly gaining pop-

ularity in the field of bioinformatics where required data sets are distributed across multiple sites.

Bioinformatics analyses often require access to and integrate data distributed over several sites. Web

services permit this data to be exposed in a programatically-accessible way, while workflows facil-

itate the automation of data integration and analysis tasks [286]. While Web services are becoming

increasingly popular for data query and transport operations, integrating data from different sources

with different semantics is still an open area of active research [283]. Ontologies permit a com-

munity to share formal definitions of data items, enabling a shared interpretation across projects

[132, 16, 23]. Research in this area has focused on using ontological definitions and logical reason-

ing technologies in order to integrate data from different sources with varying semantics. Ontologies

and semantic reasoning have also been used as a means of locating Web services of interest based on

descriptions of their inputs and outputs [322].

As well as data querying operations, Web services can also be used to expose data processing ser-

vices. Such services may be custom-built, or may expose existing command line tools [275].

Web services can be used in either a synchronous or asynchronous fashion. Asynchronous operation
6http://www.soaplite.com/, accessed 2009/04/27

32

http://www.soaplite.com/

can be useful if the Web service request will take a significant amount of time to complete, either

because the request is resource-intensive, or because the request needs to join a queue. For example,

a request unique identifier (UID) may be returned by an initial call to the service that can be used by

a client to poll the ‘completeness’ of the requested task [38].

2.4.2 Workflows and pipelines

In bioinformatics, many analysis tools interact with plain text files of varying formats. One or more

files are taken as inputs, and one or more output files are produced after processing. It is often the

case that several different programs need to be chained together as part of a larger project. At each

link in the chain, the output of one program needs to be fed as an input to the next. This may involve

some parsing or other manipulation of the data to convert it into the format expected by the next tool

in the chain [65, 214, 235]. While batch systems and frameworks such as Condor provide access

to distributed CPU power, their operating models do not capture the processing often required at

the intermediate steps between the executions of batches of different types of jobs. To build large

analysis toolsets with distributed tools requires frameworks requires appropriate infrastructure [107].

Workflow and pipelining tools such as Taverna [236], GridFlow [44] and OpenKnowledge [68] have

been developed to automate the process of obtaining data exposed through Web services, avoiding

the requirement for researchers to manually ‘cut and paste’ content between sites [65].

2.4.3 Notification-based orchestration

Notification systems are essentially event-driven distributed systems [19]. Their event-driven prop-

erties are analogous to modern Graphical User Interface (GUI) programming toolkits. For example,

one or more graphical components may ‘subscribe’ to the events generated by ‘publisher’ compo-

nent. On activation — a mouse click, keyboard input — the event is propagated to the subscriber

components.

Publisher-subscriber notification systems have long been used as a means of process co-ordination

and IPC between distributed processes [33] and particularly in real-time CORBA middlewares [254].

Notification systems consist of publishers , subscribers , messages , topics , and a delivery

mechanism. Publishers and subscribers are typically independent distributed processes.

Notification systems offer a number of advantages over direct communication between distributed

processes:

33

• There is no requirement for both communicating processes to be available at the same time. If

one or more subscribers are unavailable at the time of message publication, then the subscribers

can retrieve awaiting messages at a later time.

• Publishing and subscribing processes need not be aware of each-other’s existence. De-coupled

message delivery allows flexibility in terms of dynamic subscriber registrations and de-registrations,

and also in term of subscriber location updates.

Subscribers may either use a push- or pull-based model for message collection from a notification

system. In the ‘push’ model, the notification system infrastructure actively attempts to deliver mes-

sages to a known subscriber location, such as a Web service endpoint. When using the ‘pull’ model,

subscribers periodically poll the system for new message, much like an email client. Both push and

pull models have advantages and disadvantages, and the best one to use in a particular situation de-

pends largely on the requirements of the system being developed. For instance, polling required by

the ‘pull’ unnecessarily wastes resources such as CPU cycles and network bandwidth when there

are no messages awaiting delivery. The polled resource might become overloaded if there are mul-

tiple polling components, or the rate of polling is too frequent. In contrast, push-based systems are

particularly suited to a set of asynchronous processes, and are perhaps more efficient since commu-

nication between components occurs only when necessary. However, push-based systems require

that the location of the recipients be at known locations. The push-based approach is therefore better

suited to situations involving static subscribers, such as those hosted on server hardware, whereas the

pull-based approach is better suited for mobile agents.

Notification systems can be used in Grid systems to orchestrate services by facilitating distributed

transactions, initiating bulk data transfers, requesting computation from a remote resource, or for

informing remote systems of a completed action [171, 18]. When used as a trigger for large data

transfers, notification systems have been likened to the control connection of the FTP protocol [285].

Client-server-based notification systems can suffer from perfromance problems, particularly if large

messages or large numbers of messages must be sent to a numerous subscribers. Notification systems

with a P2P architecture can alleviate certain scalability aspects of content delivery [164, 190], but

other aspects such as assuring message delivery, and assuring message ordering are more difficult.

Ensuring message logging is also more difficult in P2P systems due to the ‘peer horizon’, at which

peers are no longer visible [14, 15, 199].

34

2.5 Grid architectures

2.5.1 Introduction

The concept of a “Grid” is different to different user groups, partly because the concepts and tech-

nologies have evolved over time and partly because Grid-based systems are used in so many different

domains, each with their own set of requirements. Some domains are more compute-centric, while

others are more data-centric. For instance, a “computational grid” might be defined as:

“A computational grid is a hardware and software infrastructure that provides de-

pendable, consistent, pervasive, and inexpensive access to high-end computational ca-

pabilities.” [111]

Grids used for computational modelling, such as processing data from high-energy physics projects

fit into the above category [100]. On the other hand, some domains place more emphasis on the data

stored within a distributed system. Astronomical sky surveys, for example, produce vast amounts

of image data that must be efficiently stored and queried [234]. In addition to computationally- and

data-intensive applications, Grid-based systems have been proposed for other applications including

monitoring remote sensor networks, such as flood prediction [151]. In these latter cases, Grid infras-

tructure is used for its data sharing and notification properties; data can be exposed by sensor devices

in a standardised way to the rest of the system, potentially using the Internet as a communications

medium rather than custom cabling or wireless systems.

Implicit to all Grid definitions is the idea of a (potentially large) set of loosely-coupled nodes partic-

ipating in a distributed system, providing each other with various Grid services, potentially spanning

multiple geographically distant sites [129]. It has been pointed out that Grids should provide more

than just access to large amounts of compute power. The modern concept of a Grid system should

incorporate data management, security, and interoperability in addition to computational resources

[272].

The components of a Grid system might be spread across different institutions, located at geograph-

ically distant sites. Although nodes within a Grid environment could communicate via any protocol

(proprietary or otherwise), there has been a tendency for Grid-based systems to converge on the use

of standard, open protocols [161, 251] such as FTP, and Web services (Web Services Description

Language (WSDL), SOAP). Standardisation on suitable communication protocols is required for

effective data and resource sharing. Due to the potentially global nature of a Grid system, there are

35

practical issues to consider such as the traversal of data through corporate firewalls which, though

extremely challenging, is starting to be addressed [118]. Data transfer methods traditionally used

by distributed computation systems, such as shared file-systems are not necessarily suitable for Grid

infrastructures.

Web service oriented architectures address several of the communications requirements of cross-site

grids and many Grid frameworks have employed Web services to provide Grid-services. The dis-

tinction between “Grid services” and “Web services” has become somewhat blurred over the years.

The technical definition of a Web service defines it as a stateless entity - requests are considered as

distinct entities with no relationships between them. Grid-services on the other hand, often need to

maintain state information between requests, for example so that multiple requests from the same

client can form a session. Grid services are essentially Web services with extended functionality —

in particular state-full servers and event notification support [102]. In practice, both Grid and Web

services use the same technology, to the point where they might be considered synonymous in most

contexts [18, 41].

It has been suggested that in order for computing Grids to scale in the same way as utility grids such

as electrical grids, different levels of infrastructure to deal with global, local and site-specific re-

quirements should be developed. This is analogous to the national, regional and local infrastructures

seen in power grids [54]. Grids should be capable of managing fluctuations in supply and demand,

such as those caused by time zone differences [54]. While distributed computation systems such as

Condor and Sun Grid Engine (SGE) are certainly types of Grid technologies, they are primarily job-

scheduling systems. For the purposes of this thesis, they are considered to be essential components

of a Grid-based system, but not a complete Grid by themselves. For the purposes of this thesis, a

Grid-based system is defined as encompassing the following:

• Application-level workflow and pipeline management utilising SOAs.

• Data management facilities including: archival, distribution, and browse-able access.

• Job scheduling and enactment at a computer cluster or institution level.

Both client-server and decentralised architectures have been employed in development of Grid sys-

tems. Projects using these architectures have utilised a wide range of hardware, ranging from high-

performance dedicated hardware, to clusters of ‘volunteer’ desktop computers. Some Grid systems

have been developed with a single application in mind, while others are more generic in nature.

The suitability of a Grid middleware platform for a particular application domain depends to a large

extent on the properties of the computational work to be done.

36

2.5.2 High performance grids

Globus [110] is a widely-used Web services-based Grid framework. It allows compute resources at

multiple remote locations to be used collaboratively to achieve a domain-specific goal. Geographi-

cally and administratively distinct Grid resources can be combined into a virtual organisation. For

instance, federation of large data resources at multiple locations may be required for data-integration

purposes, or powerful computational resources may be exposed to facilitate large-scale data analy-

sis that would otherwise be unfeasible at a single institution. Globus addresses many of the needs

commonly required by large-scale Grid applications, such as resource discovery, task scheduling,

data transfer and data security. By providing commonly-required functionality as a series of open

source libraries, it promotes re-usability and increased quality/reliability. In fact, Globus has become

a de-facto standard for collaborative Grid projects involving the resources of large institutions.

Globus Grid services are described by the Open Grid Services Architecture (OGSA) specification

[107, 109]. An implementation of this specification is the Globus Toolkit [105]. It provides a series

of components, each fronted by a Web service, for providing functionality common to Grid appli-

cations. For instance, ‘execution management’ facilities are provided by several modules: the Grid

Resource Allocation and Management (GRAM) is responsible for configuration, staging, execution,

and monitoring of remote executables; the Workspace Management Service (WMS) allows the use

of virtual machines to execute pre-configured tasks in isolation of other processes. Data manage-

ment in a Globus system is provided by several complimentary modules: GridFTP is the underlying

data transport mechanism; Reliable File Transfer (RFT) is a layer on top of GridFTP providing reli-

able delivery; Replica Location Service (RLS) provides a decentralised mechanism for locating file

replicates.

Although co-ordination and state querying operations are facilitated by Web services, bulk data trans-

fers are performed by the GridFTP protocol. This protocol has been shown to support very high point-

to-point throughput when suitable equipment is available [4]. The RFT module augments GridFTP

with failure handling mechanisms and automated retry attempts, required when large numbers of

files must be transferred between sites without continual monitoring by an operator.

Many Grid service providers specialising in high-performance computing provide Globus installa-

tions on dedicated hardware, as well as other Grid middlewares such as Condor and batch processing

systems [24, 121].

37

2.5.3 Commodity grids

Commodity Grids are system composed of COTS hardware, typically large numbers of desktop

computers. These Grid systems may be dedicated to a particular projects processing needs, or may

make opportunistic use of the idle time of desktop computers. Alternatively, computational time may

be donated to the system by individuals with no formal connection to a project; such volunteer Grids

may be composed of many thousands of home computers [312, 289].

Although Globus has gained widespread acceptance, becoming a de-facto standard in the scientific

community, some have argued that its client-server approach and administrative upkeep require-

ments make it sub-optimal for desktop Grids [45]. Where large, dedicated computational resources

are available, such as the LHC Computing Grid [100], the service-oriented architecture is a logical

choice. However, Grids composed of multiple desktop computers have different properties.

Desktop computers typically have less processing capability, smaller amounts of RAM and disk

capacity, as well as slower network connections than dedicated high-performance servers. However,

if a Grid computation can be divided into small enough parts able to execute on less-capable machines

and each part is relatively independent, then desktop or volunteer Grids can offer a potentially vast

amount of computational resources extremely economically [308, 12, 127].

Distributed processing systems such as Condor [192] and various batch processing systems [294, 53,

128] capable of utilising the idle CPU time of desktop computers have been available for several

decades. However, their relative complexity, system administration requirements and potential de-

pendence on locally-available shared file-systems has limited their scope to large organisations with

the resources to manage deployment and maintenance of large numbers of nodes. In the mid-90s

the Seti@Home [154] project was one of the first, and arguably one of the most successful ‘volun-

teer computing’ projects. Its ease of use enabled ordinary computer users to participate in a large

distributed computation project, simply by downloading a small client program that connected to

a set of central servers. Communication between the client and the server was purely via HTTP,

facilitating its deployment to fire-walled machines behind proxy servers. Large computational tasks

were split into chunks called ‘work units’. Each participating computer could download a work unit,

process it, and upload the results. Due to the low speed of commonly-available Internet connections

available at the time (dial-up), bandwidth had to be managed carefully. While each work-unit was

roughly 400kB, the output size was typically much smaller. Although Seti@Home was a custom-

built, single-purpose project, it demonstrated that large-scale analyses could harness the power of

individual personal computers connected via the Internet. Over the next few years, several other

38

single-purpose distributed applications were released [279, 74].

As volunteer computing increased in popularity, it became clear that single-purpose compute clients

were too limited. If a user wanted to participate in multiple projects, they would need to download a

separate program for each project. Aside from inconveniencing the user, each separate project dupli-

cated programming effort, such as job management, error handling, and downloading and uploading

files. There was therefore a need for a generic client that could run manage several distributed com-

putation projects [9]. There are several advantages to such clients: a single API for developers;

common functionality is shared between projects; if one project suffers a server failure then other

projects can keep the worker nodes busy by sending additional work units.

2.5.4 P2P architectures in Grid organisation and communications

It has been suggested that P2P architectures and the goals of the Grid overlap in many ways [183].

P2P architectures have been put forward as a potential solution to client-server scalability problems

faced by increasing numbers of nodes in Grid systems. Many P2P approaches have been suggested

both for system organisation and resource location [306] as well as for scalability in data transfers

[315]. A number of distributed computing and Grid projects have recently begun to exploit P2P

techniques. These are described in this section.

2.5.4.1 Peer to Peer approaches to resource matching

An important ability for a desktop Grid system to have is to be able to match hardware and software

requirements of Grid tasks to appropriate worker nodes. Condor does this via its ‘class-ads’ system,

whereby desktop computers are registered with a central server. The Condor task scheduler then

matches submitted job requirements to worker nodes with appropriate hardware specifications.

A decentralised approach for matching computational tasks to worker nodes in a ‘’P2P Grid” [307]

has been proposed. The authors argue that this approach removes the need for a centralised server,

permitting very large Grids to be constructed in an ad-hoc manner from Internet-connected PCs.

Grid resources termed ‘producers’, such as individual desktop PCs attached to the Internet, describe

their locally-available resources via an XML description. This includes hardware information includ-

ing CPU architecture, and operating system type. The resource description also specifies ‘logical’

resources, such as available data files and software present on the machine. These ‘producer’ descrip-

tions can then be matched to similarly-structured ‘consumer’ descriptions that specify the require-

ments of computational tasks. A participant of the P2P Grid requiring a set of hosts (providers) to

39

perform computationally-intensive work can query for suitable machines in a decentralised manner.

The P2P Grid system is based on Gnutella [37]. Therefore, no centralised server or resource registry

is required. The authors point out that a system such as P2P Grid is suitable for environments where

the capabilities and available resources of participating host machines may change dynamically, such

as the addition or removal of USB storage devices.

Gridkit [43] is a component-based Grid framework. Gridkit is designed for deployment to dynamic

environments, where devices may not be continually connected, rather than the more static envi-

ronments suited to frameworks such as Globus. The authors point out that the resources allocated

to a Globus-based application are not dynamically configurable and that it is not possible to alter

application behaviours, including extensibility at runtime; that is, server restarts are required.

Gridkit appears to be geared towards real-time data collection from sensor networks[151]. As such,

it supports a wide range of Quality of Service (QoS) options and data collection capabilities, includ-

ing streaming information from remote sources. A small memory footprint small WS-stack) and

efficient routing algorithms allow Gridkit to execute within embedded devices with limited network

bandwidth. QoS requirements of a realtime system are met by the attachment of QoS specifications to

tasks, where a ‘task’ is defined by Gridkit to be a single unit of work. QoS specification descriptions

allow application domain-specific QoS terms to be defined in an ontology, allowing customised re-

quirements to be specified, such as ‘minimum frames per second’, ‘minimum latency’. The authors

claim that this fine-grained approach to application processing requirements gives a much greater

amount of control than other frameworks such as Globus, where ‘task’ requirements are specified in

terms of physical attributes such as numbers of CPUs, or amount of RAM.

Applications in a Gridkit system are constructed as a set of potentially distributed interconnected

components. Each component is responsible for the implementation of a particular type of function-

ality, such as providing access to a database, providing a buffering capability, or performing some

computation on a data stream: compression, transcoding and so on. A Gridkit ‘task’ is the compo-

sition of multiple components. Inter-component communication is provided by Gridkit in several

different forms: request-reply, multicast and notification-style publish-subscriber models..

Once an application has been specified in terms of components, a set of ‘virtual clusters’ can be con-

structed that represent mappings of components to suitable sets of physical hardware. For instance, a

virtual cluster can range from a group of processes located on a single machine, to a distributed set of

processes running on multiple machines. A virtual cluster appropriate to the needs of the application

can be constructed by examining the annotations that specify QoS requirements of the application.

For example, a requirement that states that the communication between two components should be

40

of very low latency may mean that the optimum physical layout is to place both component processes

on the same machine, or on machines that are topologically ‘close’.

2.5.4.2 Mobile agents in Grids

A Grid system intended to utilise Internet-connected PCs via mobile agents is outlined by Fukuda et

al. [117]. The authors point out that executing applications on computers under remote ownership

poses several problems including: reliability, trustworthiness and limited connectivity of available

computational resources. A solution based on mobile agents is proposed, providing the necessary

middle-ware to allow user jobs to navigate between computers as necessary in an automated fashion.

The infrastructure of the system consists of:

• A ‘moderator’ service that maintains user registration information.

• A web-based interface allows users to submit jobs to the system, allowing necessary job files

to be uploaded, and system requirement information to be provided.

• A mobile agent, an instance of which is created for each job and is responsible for managing

the job during its life-cycle.

• A Java user job wrapper responsible for mediating communications between the agent and the

application layers.

• A user job (application), to be written in Java, C or C++.

The mobile agent responsible for job execution will query a registry of available computers, termed

‘targets’, in order to find the best match in terms of system requirements. If no matching machine can

be found then other ‘moderator’ services, interconnected via the Globus Metacomputing Directory

Service, can be queried for suitable hosts. Once a suitable target machine has been found, the agent

initiates a transfer of the required data and executable files and a ‘child’ agent is started on the remote

machine. If more than one machine is required, for instance, for parallel computation, then multiple

child processes can be started on separate target computers. File transfers are handled via HTTP;

each desktop computer runs an instance of the Apache Web server [112].

Snapshots of program execution are required in order to migrate the application to another target

machine, in case the first machine suffers a failure or otherwise becomes unavailable. Such snapshots

need to be made periodically, to be backed up to other target machines. ANTLR [239] and JavaCC

41

[3] are used to pre-process C/C++ or Java user applications at compilation time in order to add the

necessary check-pointing hooks.

IPC between multiple target computers working on the same computational task is handled by the

Java-based wrapper. Since target computers may be operating behind firewalls, direct communica-

tion between them may be impossible. Instead, each target computer is assigned a unique identifier.

Communications between concurrent processes that would normally be routed directly to the appro-

priate worker nodes through an API such as such as Message Passing Interface (MPI) must first be

tunnelled through the HTTP connection back to the agent overseeing the process executions. The

agent then forwards the message(s) onwards to the intended recipients.

2.5.4.3 Ensuring fairness in a P2P Grid

One of the potential problems of “public” grid computing is the reliance on the good-will of vol-

unteers to provide computing power, and the compute projects to be not too “greedy” in terms of

the CPU time they consume. CompuP2P [135] is a distributed computation architecture that aims

to increase reliability over client-server approaches such as Seti@Home. CompuP2P introduces the

concept of “buyer” and “seller” nodes for resource providers and consumers. Resources to be shared

might include CPU power, or disk storage space. Seti@Home has a centralised architecture, where

only the server is permitted to schedule jobs for processing and only the peers perform computational

work. CompuP2P on the other hand, allows any node to submit requests and/or perform computa-

tion. Rather than rely on the good-will of participants in networks such as Seti@Home and BOINC,

CompuP2P implements ideas based on microeconomics to encourage participation in the network.

Participating peers can “sell” resources such as CPU time to other peers in need. Eventually, other

peers are able to reciprocate by making their available resources for a price. Peer-based negotiation

takes place to determine the best “price” and therefore which “seller” a buyer can obtain resources

from. This kind of scheme should work well when participants require roughly equal amounts of

resource from the system over time. It requires that “selfish” nodes eventually contribute back to the

system in order to gain “currency” required to purchase more resource. On a public network, this

may well be the case.

2.5.5 Cloud computing

Cloud computing, sometimes also referred to as utility computing, is still in its infancy, and as such

there are many conflicting definitions as to what it is [86]. Typically, a provider with a large amount

42

of compute resource sells units of computation to consumers. Users pay for units of computational

resources they use, such as CPU hours, units of disk storage, and units of network traffic. Cloud

computing offers the ability to dynamically expand an organisation’s compute power, for example,

to handle large numbers of requests at peak times [201].

There are various forms of Cloud computing, ranging from highly-specific applications such as email

and productivity applications [2], to intermediate-level building blocks for application developers

[51], to low-level virtual machine instances into which users can install any application they choose

[1].

Cloud computing is considered by some to be an evolution of Grid computing [168]. Grids require

the formation of virtual organisations formed from a group of institutions willing to share com-

putational resources. However, simply combining the existing computing resources from a group

of institutions is likely to result in a heterogenous environment, making it difficult to develop and

deploy applications. Fears over security also mean that system administrators may be unwilling to

make configuration changes that would make a Grid more accessible to its users and developers.

By contrast, Cloud computing aims to provide the end user greater flexibility and control over the

computing infrastructure they rent. To a large extent, this greater control is facilitated by allowing

users access to secured virtual environments, rather than allowing them free reign on the physical

hardware [168].

Clouds offers a number of advantages to hosting services locally, not least the convenience of not

having to manage server equipment in a local data center. Cloud providers will typically have spare

capacity to compensate for component failures, or even entire machine failures. Providers may have

data centers in several geographical locations to further reduce the risk of a single point of failure

[1]. Despite its apparent advantages, there is some concern that using vendor-specific Cloud-based

applications and utilities will result in being locked into particular providers [182].

2.5.6 Data management in high-throughput systems

Since rapid data transfer is critical to high CPU utilisation distributed computation systems, some

data transfer protocols and file systems have been optimised for this field [339, 4, 46].

Efficient transfer of data is essential for smooth running of a Grid system in order prevent CPUs from

becoming idle while awaiting file transfers. Large amounts of data (gigabytes to terabytes) from sev-

eral distributed resources might need to be transferred to many nodes for processing. In the context

of the Grid, data might need to be transferred between geographically distant sites using a Wide Area

43

Network (WAN) or public network, such as the Internet. Therefore care must be taken to ensure

that expensive network connections are not unnecessarily saturated, and that sensitive information is

properly encrypted.

The Globus project has developed GridFTP [4] which incorporates several extensions and improve-

ments to the FTP standard with Grid environments in mind [110]. For instance, transfers may be

mediated by a 3rd party, in addition to the FTP standard client-server transfers. The implementation

also supports easier traversal of data through firewalls compared to standard FTP, and provides better

security via Grid Security Infrastructure (GSI) and Kerberos. GridFTP also provides more efficient

large-scale data transfers by allowing data to be striped across multiple servers (analogous to RAID

0), and supporting partial transfers of data. Large Grid service providers such as TerraGrid typically

use GridFTP, SCP, HTTP, and other point-to-point means of communication [222].

Recent work has investigated the use of P2P data transfers within Grid systems as a means of improv-

ing efficiency and reducing the time machines spend waiting for data [316, 124]. Fedak et al. [89]

point out that while the popularity of ‘desktop Grids’ has massively increased in recent years, there

has only been a little work addressing data-intensive research applications running in such environ-

ments. They point out that the the existing popular ‘desktop Grids’ such as BOINC are client-server

based, and therefore may suffer from scalability problems. The BitDew system described in [89]

provides a development framework that allows the developer to specify how many copies of a data

item should be made available simultaneously, the useful lifetime of a data item, as well as which

protocol should be used to transfer data between nodes. The BitDew system has been demonstrated

by executing the bioinformatics application BLAST on up to 250 nodes. Both FTP and BitTorrent

transfers were used in two sets of experiments with a 2.68GB BLAST database needing to be trans-

ferred to each worker node. Fedak et al. clearly highlight the advantage of the BitTorrent transport

system in this case, where a large file must be transferred to each worker node; while the FTP transfer

test shows a linear decrease in transfer times as more nodes are added, the BitTorrent test shows a

constant transfer time as the number of nodes are increased.

2.6 High-throughput computation in e-Science and bioinformatics

One of the central aims of bioinformatics is to extract new knowledge from the data amassed in the

various public data repositories.

MyGrid [284] is an e-Science project centred around enabling scientists (and in particular, bioin-

formaticians) to more easily construct workflows utilising distributed data resources and compute

44

services. MyGrid consists of data repositories, services enabling access to data, agents providing

computational services, and a workflow description language and enactor.

One of the central components of MyGrid is Taverna [236], a workflow enactment and management

system. Taverna consists of an enactment engine for running workflows described in the SCUFL

language. It also provides a GUI for constructing, enacting and browsing the results of workflows.

Taverna provides an extensible result browsing architecture that provides generic views for plain text

or XML data, but also allows custom data visualisations to be added. Examples include image and

PDF viewers, and 3-dimensional protein structure viewers.

As discussed in the previous Section 2.2, there are several levels at which parallelism can be applied.

The decision of which level of granularity to apply parallel processing techniques has important con-

sequences for the ease of implementation and the types of hardware best suited to program execution

and therefore impacts the ultimate scalability of a system.

As the size of bioinformatics sequence databases continue to increase at phenomenal rates, full-scale

analyses become more difficult to perform in a reasonable time on a single machine. Fortunately,

many of the computational tasks in bioinformatics fit into the ‘embarrassingly parallel’ category.

One example is the sequence similarity search tool, BLAST [6]. The BLAST tool is already fast

compared to its predecessors and for this reason it is hugely popular and well-studied. The stan-

dard BLAST implementation can make use of several processors for certain steps of the algorithm,

which ultimately speeds up its search when compared to executing on a single CPU. The BLAST

algorithm has also been implemented in a distributed parallel fashion, using the MPI interface [252].

This approach enables a larger number of CPUs to participate in a sequence search, but the system

is ultimately limited by IPC overheads. Another implementation of BLAST utilises a Grid-based

framework to execute multiple, independent instances of the program on different data sets [119].

This approach permits ‘embarrassingly parallel’ scalability over thousands of nodes arranged in ge-

ographically distant clusters.

Executing BLAST on a large amount of sequence data has an embarrassingly parallel solution, since

the data set can either be split at the genome level for small sequences, or larger sequences can

be split into smaller sections. The various implementations of BLAST highlight the trade-offs for

targeting SMP-type hardware, distributed parallel approaches, and Grid approaches, respectively.

Also of interest is how a computational problem that is not easily parallelised, or only parallisable to

a small extent at a low (thread) level, becomes embarrassingly parallel at a high (program instance)

level when there is a requirement to perform exhaustive searches over all available data.

45

An added benefit of coarse-grained (program-level) parallelism is the ability to execute programs

on a large scale that cannot be easily modified, either because the source code is not available, or

would be difficult to parallelise. Large distributed systems have been constructed and shown to work

well with this kind of parallelism. In such systems, parallelism within individual program instances

becomes a less important issue. Instead, the focus of this thesis is on the distribution and staging

of data to remote compute resources, facilitating the coordination of multiple, large computational

tasks using a variety of bioinformatics analysis tools, and enabling the extension and updating of

such systems in the provision of an exhaustive data resource for biologists.

BioPipe Biopipe [147] is a Perl-based framework for constructing processing pipelines. Its purpose

is to allow analysis pipelines to be developed from re-usable components. The control mechanisms

are database-centric, while computationally intensive tasks are sent to a cluster of computational

nodes for parallel processing. Biopipe pipelines are described in an XML document that specifies

data sources, program executables, and execution ordering. Pipelines are constructed modularly

from several building blocks: Input/Output (I/O) components for handling data transport

and parsing requirements, analysis components for overseeing data processing, and application

wrappers that bridge Biopipe with existing analysis applications.

Data transfer and parsing operations decoupled from processing operations. A Biopipe I/O com-

ponent can handle data transfers from several types of data source, including Relational Database

Management Systems (RDBMSs), flat files, and HTTP transfers. Bioperl is employed to facilitate

an abstraction layer between particular data formats and analysis components. Biopipe analysis

components use in-memory Bioperl objects for processing, or conversion into an appropriate format

for use with third party applications. Such applications are supported through the use of wrappers

that provide the appropriate interfacing logic. Wrappers have been written for many popular bioin-

formatics applications such as BLAST [6], CLUSTAL W [304] and Genscan [42].

Pipeline enactment is performed by Biopipe’s job management system, which shares much in com-

mon with the Ensembl pipeline [246]. Job units are modular components that make use of one

or more Biopipe I/O handler components for the data acquisition, parsing, and result output op-

erations. Biopipe supports job distribution to worker nodes via the batch execution systems LSF [58]

and PBS [128].

PEDANT PEDANT[115, 313] is an automated genome annotation system providing an exhaustive

analyses of all publicly available genome sequences. Protein similarity information is provided via

46

Blast and the SIMAP project. Exhaustive InterProScan analyses are also provided. Notable fea-

tures of PEDANT include the pipeline approach, the use of a Grid architecture for computationally-

intensive programs, and Web service query interfaces to result data sets. Walter et al. point out that

it is becoming increasingly infeasible to re-compute data sets from scratch for every update — i.e.,

for every newly released sequence. As such, they utilise a pre-computed data similarity data set,

SIMAP, which they claim increases performance by between 5 and 60 times. An interesting property

of PEDANT is that there are no ‘releases’ as such; incremental updates are added as new genome

sequences are published. Presently PEDANT performs only single sequence annotations, although

there are plans to provide comparative analysis of genomes in the future.

2.7 Summary

Bioinformatics is a cross-disciplinary science, drawing on knowledge and expertise from several do-

mains. The rate at which new data is being generated is increasing exponentially. Currently, complex

workflows have been constructed by bioinformaticians to run advanced sets of analyses over fairly

small data sets [236]. Alternatively, large-scale data processing centres run pre-defined annotation

pipelines over large amounts of data [97]. Ideally, these two worlds could be combined. This requires

large amounts of computational power combined with a flexible analysis pipeline development and

enactment environment.

Many large organisations have a substantial numbers of desktop computers. It has been shown that

much of the time, these computers are under-utilised. Even at peak periods there are often a large

number of idle machines in public clusters. Utilising idle workstations for computationally-intensive

work has a number of advantages. There have been several works that have shown that utilising

commodity hardware is often extremely worthwhile, both in terms of cost-effectiveness of reusing

existing infrastructure more efficiently, and in terms of useful quantities of analysis work being per-

formed.

This thesis is concerned with how to develop and enact flexible, complex bioinformatics analysis

pipelines within a distributed computing environment composed of a mixture of dedicated compute

hardware and commodity desktop computer hardware. Furthermore, approaches to exposing this

functionality to bioinformaticians — who are experts at developing or interpreting the output of

advanced analysis algorithms, but who are not necessarily experts in distributed computing — are

also investigated.

This chapter has discussed relevant previous works and technologies for this field of research. The

47

next chapter discusses the motivations and requirements of a Grid system capable of addressing the

project aims introduced in Chapter 1.

48

Chapter 3

Microbase

3.1 Introduction

This chapter introduces the motivations and system-wide requirements for a distributed computa-

tion framework, Microbase, suited to performing long-running bioinformatics analyses. Subsequent

chapters discuss each component of Microbase, and how these components contribute to the overall

system requirements.

3.2 Motivation

Genome sequence data is becoming available at an ever increasing rate, with the number of active

genome sequencing projects increasing exponentially [191]. Publicly available sequence databases

such as GenBank double in size roughly every two years [27]. Parallelism is one of the most obvi-

ous ways to speed up the processing of large amounts of computational work. As CPU clock speed

increase limits are reached, desktop PCs are becoming multi-thread capable as processor manufac-

turers shift towards dual- and multi-core processors. What once was the domain of high-end server

hardware, is now becoming increasingly available in commodity hardware. Therefore, it seems

inevitable that exploiting parallelism is essential for future increases in performance, even within

individual computers [238, 144]. However, while the ability to run many threads concurrently has

the potential to vastly speed up the overall processing ability of a computer, the new capabilities

cannot be used under all circumstances. Older single-threaded programs will not see instant speed

improvements as was the case with previous CPU improvements such as clock speed increments,

or additional cache memory. There are two ways to overcome this limitation: re-write applications

49

to take advantage of parallelism; or run more than one application, or more than one instance of an

application concurrently. Although there are big differences between distributed compute systems

and standard desktop PC hardware, the underlying problem remains the same. Unless applications

are aware of their environment, or the operating system has enough processes to schedule simul-

taneously, then no advantage of parallel hardware will be seen; the additional CPU cores will be

under-utilised. In other words, parallel-processing capable machines are not inherently faster at

performing a single task, but they are capable of running several such tasks simultaneously, thus im-

proving overall throughput. Parallel architectures are ideal for solving multiple problems at a much

faster rate than a sequential processor would allow. They are also suitable for large-scale problems if

the computational work can be sub-divided into smaller units of work.

Large computational tasks in bioinformatics can often be split into more manageable chunks, suit-

able for execution on ordinary desktop machines rather than requiring the use of large dedicated

compute clusters. However, the implementation usually depends on how domain-specific problems

can be divided. Apart from the obvious application-level split, logical choices include splitting the

computation into genome- or protein-sized chunks. For instance, the all-vs-all alignment of a large

set of sequences1 has been calculated to be intractable on a single computer, requiring in excess of

1500 CPU years[119]. Instead, the mammoth task can be divided by performing multiple pair-wise

alignments on subsets of sequences. As long as the hits from each alignment are combined, the final

result set should be the same as that produced by a singe long-running task on a single machine. The

suitability of the data to fit smaller computers and be distributable among them makes utilisation of

general-purpose desktop computers attractive. These otherwise-idle machines can be put to good

use, maximising their investment and lessening the need to buy additional expensive server-room

equipment. Additionally, when the next hardware update cycle arrives, compute power available for

distributed job processing will be increased for no additional cost.

With mass-market dual- and quad-core x86 processors available from both Intel and AMD, it is

only a matter of time before multi-core CPUs become dominant in desktop PCs. This provides

the opportunity for desktop Grid systems to execute multiple single-threaded distributed compute

jobs on each desktop PC, or allow the applications that support multi-processor machines (such as

BLAST or InterProScan [337, 225]) to complete their tasks more efficiently. In effect, the best of

both the distributed and purely parallel worlds can be combined: isolated processes can run over

multiple worker nodes with minimal Inter-Process Communication (IPC), while at the same time,

multi-threaded parallel programs can utilise commodity multi-processor machines, forming a part-
1The nucleotide sequence ‘NT’ database contains entries from the GenBank, EMBL, and DDBJ databases, available

here: ftp://ftp.ncbi.nih.gov/blast/db/

50

ftp://ftp.ncbi.nih.gov/blast/db/

distributed and part multi-processing solution.

On a typical university campus, or large corporate environment, there are likely to be several thou-

sand desktop PCs. The sheer number of PCs effectively guarantees that a proportion of them will be

completely idle (i.e., no logged-in users) most of the time. Even during peak hours, a large number of

machines are available. At Newcastle University there are approximately 2400 computers participat-

ing in the Condor pool. One of the major motivations for developing Microbase is to take advantage

of increasingly powerful, but often under-utilised desktop PCs for CPU-intensive bioinformatics ap-

plications. There is therefore a requirement to handle a wide variety of hardware capabilities and

configurations. Dedicated compute resources (i.e., large cluster machines) may form part of the

available compute power, but a large proportion of a typical Microbase installation’s computational

power is intended to come from ‘cycle-scavenging’ idle time of ordinary desktop computers. One of

the most important aspects to consider is that the primary purpose of these desktop computers is not

for running Grid applications. They are ‘volunteer’ computers that make their resources available to

the system when they are not being used. The Grid compute client will run with the lowest priority

and may be interrupted by at any time by a more important task, such as a user log-in. The compute

client may be suspended, or even entirely removed without prior warning.

Although there is a vast potential of processing capacity available from commodity desktop worker

nodes, several challenges must be overcome in order to utilise them reliably.

• Desktop nodes may join or be removed from the system at any moment, without warning. It

must be possible to migrate work to alternative locations.

• Desktop nodes do not necessarily have narrow-interest domain-specific software installed.

• The logistical issues of the distribution of large files to remote computers needs to be consid-

ered.

• Although system administrators must initially permit the use of a Grid compute client, it is not

feasible to expect them to install and maintain required domain-specific applications. A low

administrative overhead is therefore required.

3.3 System-level requirements

The Microbase system requirements cover a broad range of categories including: data handling;

responsiveness; modularity; accessibility; environmental; reliability; and usability. The following

51

sections introduce the project-level requirements of a Grid system intended to support bioinformatics

analysis pipelines.

3.3.1 Environment-specific considerations

The Newcastle University Condor installation currently consists of over 2000 nodes forming a het-

erogeneous set of Windows and Linux machines with varying hardware capabilities. A 96-CPU

(64-bit Linux) dedicated cluster is also available. Apart from the ability to submit Condor jobs, and

Secure Shell (SSH) access to the Linux machines, we have no control or special privileges over the

machines; they are part of a centrally-managed system for which we have no administrator access.

Some temporary file space is accessible for the duration of a job execution. This file space is purged

at the end of a Condor session, so cannot be relied upon for persistent storage. Since most of the

available worker nodes are general-purpose desktop PCs, no assumptions can be made regarding the

availability of domain-specific software packages. Worker nodes are also susceptible to being re-

moved from the Condor pool at any moment, resulting in the termination of any active job(s) on that

node. The Windows nodes are configured to run Condor jobs only when no user is currently logged

in, so as not to impact on the user experience. Therefore, pool-disconnection events occur quite

frequently and unpredictably for a given PC. It is likely that more PCs will spend a longer duration

connected to the Condor pool outside of normal working hours [294]. Given the large number of

machines, there is also the possibility that hardware failures may regularly incapacitate small num-

bers of machines. Microbase must be able to work within the constraints of the centrally-managed

network at Newcastle. These constraints require:

1. Platform heterogeneity: the system must be able to cope with dynamically changing ratios of

operating system or CPU architecture availability by adapting the number of scheduled tasks

to suit the current platform availability distribution.

2. Job migration: Microbase must have the ability to migrate computational work to alternative

worker nodes when active node(s) become unresponsive or unavailable.

3. Handling job execution failures: Job execution failures resulting from environmental proper-

ties are expected to occur relatively frequently. A distinction should be made between a job

execution failure that occurs as the result of the execution environment, and a job execution

failure that is the result of a job implementation fault. In general, jobs should be retried in the

case of a failure, and a job re-execution should only reduce the overall efficiency of the system.

52

Failures should not impact the validity or accuracy of the results obtained from a computation,

and should not result in ‘duplicate’ data items.

In contrast, server machines available to Microbase can be considered to be much more reliable than

worker nodes. This class of machine typically has a large amount of high-performance disk capac-

ity. Administrative access is also available on server hardware. It is expected that high-availability

centralised services and databases can be deployed to server hardware, rather than desktop nodes.

• Microbase must support execution of domain-specific software on a variety of platforms, rang-

ing from 32-bit Linux and Windows-based desktops to 64-bit dedicated compute clusters.

• Automated installation of domain-specific applications to remote worker nodes must be sup-

ported. This requirement is needed to meet the needs of running in a non-dedicated environ-

ment, as well as reducing the demands on system administrators.

3.3.2 Scalability requirements

Scalability requirements are driven entirely by the environment Microbase is expected to be deployed

to. Each worker node present within an installation puts additional load on server architecture. Large

numbers of worker nodes will necessitate scalable server processes so that the load can be distributed

over a number of servers. Server load comes from a variety of sources, including: requests from

worker nodes for work, data transfers to and from worker nodes, and management of large SQL

result repositories. The responsibility for maintaining a scalable system is jointly shared between

the Microbase infrastructure and the applications that run within it. Microbase is responsible for

providing scalable and extensible infrastructure for domain applications to execute within, including:

• Efficient file transfers between nodes is required. Distribution of data files to multiple loca-

tions simultaneously is expensive in terms of server network and disk bandwidth. Due to the

operating environment Microbase is required to function within, multiple worker nodes will be

required to transfer the same files many times. In order to support these large scale file transfer

operations, Microbase is required to provide efficient distribution of files in order to minimise

transfer bottlenecks that might otherwise undermine the efficiency of the system.

• Low overhead software installations are required. Due to the transient nature of worker nodes,

repeated temporary software installations will incur additional network and disk load on server

resources.

53

Domain applications must also take some responsibility for the scalability of the system as a whole.

Microbase can guarantee scalability as long as domain applications ensure that shared-resource bot-

tlenecks are not introduced, such as frequent access or complex queries to shared SQL databases.

3.3.3 Data handling requirements

Microbase must handle a number of data management issues relating to the detection of new data

files, the management of data flows between applications, and the permanent storage of generated

data files. Some data management issues, particularly those to do with temporary, intermediate data

files also intersect with maintainability and extensibility requirements introduced next, in section

3.3.4.

Since primary bioinformatics data sources are continually being updated, it is necessary to keep

secondary data sets up-to-date by acquiring new data and performing new computational work. De-

pending on the requirements of the applications involved in a pipeline, and the overall goals of the

pipeline itself, secondary data sets must be processed in one or both of the following ways:

• Files produced by analysis applications must be permanently archived. This involves practical

issues, such as retrieval from ‘unreliable’ worker nodes,

• Depending on application requirements, result data may also need to be stored in a structured

data storage system, such as an SQL database.

3.3.4 Maintenance and extensibility requirements

There is a requirement for Microbase to support long-running analyses. Over a period of time, new

analysis tools, or new versions of existing analysis tools are periodically released and an analysis

pipeline may need to be updated to include these new versions. In the case of major software ver-

sion updates, for instance if the implementation is substantially changed, or the output file format

of a program changes, then the new software version may need to be run in parallel with the old

version. This increases the workload since both versions now need to be executed, but is useful if

processes further downstream in the pipeline expect data in one or other formats. It is also useful if

a comparison between the results produced by the different software versions is required.

It is also possible that entirely new applications will need to be added to an already-installed system.

Rather than re-installing and re-generating all data from scratch, it would be preferable to simply

add the new application to wherever it needs to be placed within the analysis pipeline. The new

54

application may have to “catch up” to the current state of the system by processing existing primary

data sets, but other applications should be unaffected by the addition of a new application.

The following functionality is essential for long-term maintainability, where programs as well as data

are added to the system incrementally:

• The data sets generated by new tools should compliment existing data sets, without requiring

existing data to be re-computed.

• It should be possible to add new analysis tools to any point of an existing pipeline, allowing

data to flow from one tool to the next.

• Newly added applications must be able to ‘catch up’ with the current system state; i.e., they

must have the opportunity to process all existing input data before being required to process

new information.

• Version control must be implemented for data files and program executables in order to main-

tain consistency.

Also essential for long-lived applications is the ability to determine when an application fails, and

in what circumstances a failure occurs. Crashes and bugs may be specific to a particular hardware

and operating system combination, software package, or even an individual computer. It is also of

interest to system administrators to gather hardware usage statistics, in order to determine cluster

utilisation and efficiency information.

It is essential to maintain detailed logs of every action performed by the system. Provenance trails

are essential so that the impact of a single data item at the top of a pipeline can be traced and assessed

as it propagates throughout the entire system. This information is useful for debugging failing jobs

as well as for inspecting the general data flows through the system [66]. In addition to the storage

of event graphs, all output data files should be stored. Even if an analysis is repeated, the old files

should still be accessible. This ensures that system events can be associated with result data, which

can be associated with a particular version of a data file and version of a program executable. As new

versions of programs or new versions of data items are added to the system, they become the system

defaults for new executions or query retrievals, but they do not entirely replace previous system

configurations. This ensures that an accurate provenance trail is maintained.

Scalability requirements discussed in the previous section require a Microbase installation to be able

to scale as workloads increase. The implications for a maintainable system are as follows:

55

• It must be possible to add new instances of server components to an existing system with the

minimal reconfiguration.

• Likewise, it must be possible to replace (i.e., migrate) currently installed server components to

different hardware, again with minimal reconfiguration.

The maintenance and extensibility requirements discussed in this section, combined with the previously-

discussed application support requirements point to the need for modularity. Although groups of ap-

plications may have data flow dependencies between them, there should be no inherent ‘integration’

between different applications. Modularity should enable additional applications to be inserted at

any point within a pipeline, without adversely affecting others. Therefore, Microbase must support

the addition of domain-specific functionality through independently-packaged modules.

3.3.5 Application support and workflow structuring

It is anticipated that the majority of applications that must be run as part of a typical bioinformatics

pipeline are existing analysis programs that are either single-threaded or exploit local machine-level

parallelism. Such programs are often command-line driven and are non-interactive, making them

amenable to automation. However, they will not necessarily be aware of distributed computing or

Grid infrastructures and services, or even remote file transfer protocols. Microbase is therefore re-

sponsible for ensuring that an appropriate execution environment is constructed on worker nodes for

applications that masks the complexities of a Grid environment. The applications themselves should

be oblivious to the fact that they are running within a distributed environment. Taking into account

the environmental conditions (Section 3.3.1), software installations will need to be performed every

time a worker node joins the pool of available worker nodes. There is therefore a need for this process

to be efficient so that the available CPU time of worker nodes is maximised.

In addition to the logistical requirements of staging data files and the practicalities of executing ap-

plications on remote nodes, there are high-level scheduling and data management issues that must be

addressed. Firstly, when an analysis application is run by hand, the human operator is responsible

for specifying command line switches and data file paths to be used that are appropriate for both the

application and the type of input data. For instance, it might make sense to for a particular bioin-

formatics application to work with prokaryotic, but not eukaryotic data sets. When an application

is executed in an automated fashion, the decision regarding appropriate data content and command

line formation must also be automated. The responsibility for the formation of appropriate command

lines lies with the software agent executing the application and ultimately the developer. While the

56

content of the data files and actual command line options are inherently application-specific, the pro-

cess of environment construction and data staging for any application is the same. Therefore, there

is a requirement for Microbase to manage these generic functions in order to ease the burden on the

pipeline developer.

Secondly, since analysis applications are not aware that they are executing as part of a larger work-

flow or pipeline, it is necessary for a management process to supervise high-level operations. The

tasks a supervisor application would need to undertake include: reacting to new input data becom-

ing available; scheduling instances of an analysis application to execute with the appropriate data;

concatenating result data from completed distributed executions; managing structured data stores,

such as pipeline-specific SQL databases; and announcing to the rest of the system when an analysis

task has been completed. These ‘supervisor’ applications would need to be written by the pipeline

developer, since they are inherently application-specific.

While it should not be necessary to modify existing applications to run within a Microbase system,

the pipeline developer will be required to write a ‘wrapper’ around analysis tools in order to supervise

their operation and to co-ordinate with other elements of the pipeline. The process of constructing

command lines is inherently application-specific, there is a requirement for Microbase to ensure

that such customisations are possible in a manner which is suitable for the heterogeneous execution

environment, and the pipeline developer.

1. It must be possible to re-use existing applications without modification.

2. In order to minimise the load on limited server resources, an efficient data transfer mechanism

is required for repeatedly copying files to worker nodes every time they join the Condor pool.

3. Microbase must manage the construction and removal of temporary execution environments

on worker nodes, providing the following functionality:

(a) software installations,

(b) staging of input data files,

(c) archival of result output files.

4. It must be convenient for pipeline developers to construct supervisor applications capable of

high-level management of analysis tools. Microbase should provide a development framework

that allows supervisor applications to achieve the following functionality:

57

(a) Perform co-ordination operations with other supervisors: be informed of new data items

as they enter the system, such as newly published genome sequence files; to inform other

applications when an analysis is complete. Announcements must be possible without

knowledge of specific recipients, or even if there are any recipients at all.

(b) Determine whether a new data item is relevant to a particular analysis tool.

(c) Determine the amount of computation required for a new data item.

(d) Distribute units of the computation among available worker nodes.

3.3.6 User requirements

Distributed systems are inherently more difficult and complex to use and maintain than single-

machine programs. One of the barriers to the uptake of a system is how difficult the system is to

use, administrate and develop for. There are typically three types of users of a Grid system and

usability issues impact these groups in different ways:

System administrators are required to install and maintain Microbase components and necessary

supporting software, such as application servers. System administrators need to manage the

day-to-day tasks involved in the general upkeep of the system, such as resolving networking

issues, monitoring compute cluster utilisation, and ensuring enough storage space exists for

result data.

Pipeline developers are responsible for constructing analysis pipelines from multiple bioinformat-

ics applications. These Bioinformatics applications may need to be adapted to fit a distributed

environment, or their output files reformatted in order to be fed as input to another program.

Developers need a working knowledge of Microbase and its public Application Programming

Interfaces (APIs) in order to adapt existing bioinformatics tools to a Grid environment, but do

not necessarily require in-depth knowledge of every component.

Research users may be biologists or bioinformaticians wishing to browse or query the output of one

or more analyses. These users are primarily interested in the results data from applications.

They may wish to submit domain-specific queries that integrate over the available data sets.

3.3.6.1 Developer requirements

One of the main motivations for Microbase is to achieve distributed, concurrent processing of mul-

tiple instances of existing applications. Such applications are typically designed for desktop use.

58

Although some applications may exploit small-scale Symmetric Multi-processor (SMP)-style paral-

lelism, they are not likely to be ‘Grid-aware’. In order to run such applications on a large scale the

following are required:

• Existing applications should not need to be modified in any way, and it should not be necessary

for them to have any knowledge of the Grid environment they are executing within.

• Microbase must provide insulation to these applications from the Grid, including:

– setting up and tearing down execution environments on distributed nodes;

– ensuring correct files are distributed to worker nodes.

Pipeline developers are likely to be bioinformaticians with experience of the programs they are using,

and knowledge of the results they generate. These developers will typically have some programming

knowledge, but will not necessarily be expert in distributed systems or parallel programming. In

order to ease the process of porting applications to execute within Microbase, the following func-

tionality must be provided by suitable library support and developer APIs:

• Ability to wrap domain-specific applications in a manner suitable for deployment to a hetero-

geneous set of worker nodes.

• Enabling a clear, modular separation to be made between server- and worker node-based com-

ponents, and their respective responsibilities.

• Provision for decoupled communication with other domain-specific applications.

3.3.6.2 System administrator requirements

The following assumptions are made regarding the deployment environment of a Microbase system:

• Administrative access is available for servers such that databases and web application container

directories are modifiable.

• No administrative access is required to desktop worker nodes, as long as the Microbase com-

pute client can be started by some means, such as via a system boot script, SSH, or Condor.

Microbase should therefore provide:

59

• The ability to install the core Microbase services, and required domain-specific applications to

a system operating under the constraints specified above.

• Changes to the system including the addition of new applications, or the modification of exist-

ing applications should be possible without major administrative effort.

• Server-based components should be ‘mobile’ in the sense that a redeployment to a different set

of servers should be feasible without major reconfiguration or data regeneration.

3.4 Architecture Overview

In section 3.3 we presented the requirements for a large-scale, generic, distributed compute platform.

This section will describe the architecture chosen for Microbase. Grid-based systems, particularly in

an e-Science context, are as much concerned with the flexibility and maintainability of a system and

matching user requests to shared computational resources over long periods of time, as they are with

scavenging every last available CPU cycle [108]. Any system fulfilling these requirements is likely

to become large and complex. Architecturally, such systems are often split into modular components

based on functionality (see Section 2.5). We have divided Microbase into the following components,

each of which provide an aspect of core functionality. Taken together, these components address the

system-level requirements discussed in the previous section:

• Notification system - facilitates de-coupled communication between components. Fully de-

scribed in Chapter 4 on page 69.

• Resource system - a scalable, distributed file store. Fully described in Chapter 5 on page 85.

• Job management system - provides job scheduling and failure management for heterogeneous

groups of worker nodes. Described in Chapter 7 on page 134.

• Domain-specific application components (termed responders) - these are user-written com-

ponents that either perform an analysis themselves, or delegate to a pre-existing analysis pro-

gram. A framework for the development of these components is discussed in Chapter 6 on

page 107.

Microbase consists of a set of separate, loosely-coupled services that co-operate together to pro-

vide the infrastructure required by Grid-scale applications. This architectural approach facilitates

scaleability and reliability through the ability to replicate service components over a number of

60

servers. In an actual deployment of a Microbase system, the various services listed above may

be located on a single physical server, or spread across several, potentially geographically distant

machines. For scalability reasons, an installation may contain more than one instance of a given

component type; for instance, data-intensive applications may benefit from multiple resource system

instances in order to service the needs of multiple concurrent data requests in a timely fashion. How-

ever, for the purposes of the immediate discussion, all instances of a particular component type can

be considered to be part of the same conceptual unit.

A notification-based approach has been adopted for high-level IPC between Microbase components.

Notification systems have been shown to facilitate the interaction and integration of geographically

distant Web services (see Section 2.4.3). In Microbase, the notification system is used to co-ordinate

the data flow between applications. It permits modular domain application components to register

an interest in a particular type of message and thus receive past and present announcements from

other application modules. Event-based messaging enables multiple entities in a distributed system

to communicate in a loosely-coupled fashion, essential in a dynamic and changeable environment

where the participants are not necessarily known until runtime. The Microbase notification system

provides a centralised event-driven communication facility for other services, enabling asynchronous

service orchestration to occur.

The Microbase resource system is responsible for storing and distributing input and output data files

for each registered application. In a distributed environment, data resources may need to be exposed

to a large number of worker nodes simultaneously. In addition, worker nodes must be able to find the

resources they require. The Microbase resource system consists of a central resource look-up facility

and a dynamically-expandable, scaleable file distribution system. The look-up service provides a

directory listing, where items may be tagged with user-defined meta-data to allow efficient querying.

The distribution system provides scaleable transfers via a peer-to-peer (P2P) protocol, facilitating the

rapid transfer of files to multiple nodes.

The Microbase job manager oversees the running of computationally-intensive tasks and manages

their execution environment. A job is a unit of work suitable for execution on a single computer.

A Microbase job implementation either performs domain-specific computation itself, or acts as a

thin wrapper around an existing command line application. A job scheduler is required to match

jobs to machines capable of running them, to queue jobs until a suitable node is available and to

keep track of and retry failed jobs. This allows the job requester to be de-coupled from the actual

hardware performing the execution. The Microbase job scheduler provides this functionality, and

additionally provides transparent distributed data transfers to and from worker nodes via the resource

61

system and publishes task execution reports through the notification system. Worker nodes execute

a Microbase compute client in order to process jobs. This compute client provides the capability to

acquire computational work from the job management system, stage data, and dynamically install

software. The compute client may run on top of existing distributed platforms such as Condor [192],

or may simply be started by a remote shell, such as SSH.

Together, the components described so far form the core of a Microbase installation (see Figure 3.1).

They provide the common, generic functionality that a typical analysis pipeline will require: high-

level, lightweight communications; an efficient bulk data transport mechanism; and a job scheduling

and execution system for CPU-intensive work. Domain-specific pipelines can be constructed to take

advantage of the infrastructure provided by the core components with the addition of one or more

components termed responders . A responder (see Figure 3.2) is a self-contained collection of

modules that, when taken together, encompass the entire scope of a domain application’s existence

within a Microbase system. The modules that comprise a responder may have completely orthog-

onal functions and may work in entirely different environments (see Figure 3.3), but together their

common aim is to support the domain-application within the Microbase environment. For example,

a standard bioinformatics command line application, its Microbase compatibility layer (wrapper),

and associated SQL database, Web service query interface and user interface would all be grouped

together within a responder . This semi-formal grouping of related domain-application modules is

essential for the fulfilment of several of the Microbase system requirements as discussed in the pre-

vious section, since it facilitates introspection of project components which then enables automation

and modularity in several areas.

3.4.1 Facilitating flexible and extensible analysis pipelines

Responders will be discussed in detail in Chapter 6. Here, it is important to point out that responders

have the following properties:

• Communication with the Microbase core components is possible via event messages trans-

ferred via the notification system.

• Responders are not inherently aware of other responders within the system.

• Responders can be organised into hierarchies, where several responders can be ‘connected’ via

shared interests in particular types of notification message.

62

Job management system

Job Scheduler

Job Scheduler

Job Server

Resource storage system

Resources
Resources

Resources
Resources

Responder ResponderResponder
xN ...

Notification
system

Events

Responder

Task splitter

Event listener

Compute
job

executable

Condor / SGE / BOINC
Microbase Client

Job completion
report

Job description
request

"Task
completion"
notification

"New task"
notification

Task description
notification

"New data"
notification

Bit Torrent
Transfers

file

(1)

(2)

(3)

(4) (6)

(7)

(5)
Worker nodes

Figure 3.1: Shows the interactions between the major components of a Microbase system. A notification system com-

ponent routes and stores all high-level messages between the other components of the system. This diagram shows how a

request for computational work from a domain-specific analysis application involves the core Microbase components:

A ‘new data’ event message (1) is sent to an interested domain application responder. The Web service component of this

responder interprets the message to determine if any computational work needs to be performed. An application-specific

task splitter then breaks the computational work into units manageable by individual worker nodes. A task description

message (2) results, which is forwarded via the notification system to the job management system (3). Here, the requested

work is added to a job queue until work is requested by worker nodes (4). Once a worker node has obtained the job

description, it downloads and installs the necessary files via a P2P transfer protocol from the resource storage system (5).

Files may either be transferred from dedicated resource system servers, or from other worker nodes running similar kinds

of jobs. On completion of a unit of work, individual worker nodes publish result files to the resource storage system and

job reports are submitted to their allocated job server. Once all jobs relating to the initial responder’s request have been

completed, a task completion notification message (7) is sent to the notification system, which is then forwarded on to the

responder that originally requested the computational work.

63

Structured
result

storage

Notification event handler
(Web service interface)

Responder

populates

Job implementation (including
cross-platform wrapper)

Platform-specific applications

Incoming event
notifications

schedules

Domain-specific Web service
query interface

Result data queries from
external applications

Outgoing
notifications of

completed analyses

queries

queries
User interface

Figure 3.2: A responder is a self-contained collection of modules providing domain-specific functionality. The compo-

sition of a typical responder is shown here. A responder minimally needs to contain two components: an event handler

and a compute job implementation. The event handler must respond to notifications by deciding how much work needs

to be completed to satisfy the event, by scheduling the required work, and to notify other responders when the work

has been completed. A job implementation must also be provided that is capable of executing computationally-intensive

applications on a number of potential platforms.

Structured
result

storage
Event handler

Job
implementation

Server
environment

Cluster
environment

Responder

schedules

Figure 3.3: Different parts of the responder are deployed to different environments. For instance, control logic and

databases are deployed permanently to reliable server-grade hardware, whereas computationally-intensive jobs are de-

ployed on-demand to one or more worker nodes. Job implementations for multiple platforms may be provided.

64

One of the most important objectives for Microbase is the ability to support flexible and extensible

analysis pipelines.

The modular design of a responder, coupled with the functionality provided by the Microbase system

together enable flexible and extensible analysis pipelines to be constructed. Several challenges must

be overcome in order to satisfy this key Microbase requirement: data preservation and co-ordination.

The responsibilities for enabling extensibility are shared between Microbase core responders and

domain application responders.

In typical analysis pipelines, intermediate files are discarded as they consume disk space and are of no

use to the originally-intended aim of the pipeline. However, to permit pipeline extensions at arbitrary

points, all intermediate files must be preserved. Figure 3.4 shows an analysis pipeline composed

of several programs. Apart from necessary data flow indicated by the arrows, each analysis step is

otherwise independent and has no influence on other responders. In Figure 3.4, it is assumed that

the goal of the pipeline is to obtain the results of responders 3, 7, and 5. The preceding responders

(1, 2 and 4) perform the computation necessary to support that goal, but from the perspective of the

pipeline, the preceding responders only contribute indirectly the required result data set.

If the aim of the pipeline shown in Figure 3.4 subsequently changes at a future time, then it is useful to

have an archive of the result data from the intermediate steps in order to facilitate pipeline extension

without re-computing the intermediate stages. For instance if responder 2 executed a Basic Local

Alignment Search Tool (BLAST) analysis and responder 3 filtered ‘interesting’ BLAST hits, then

from the perspective of the pipeline, there would be no need to keep ‘non-interesting’ result data

from responder 2. In this situation, adding responder A at a future time would be straightforward,

whereas adding responder B would require re-computation of the results from responder 2.

Re-executing applications in order to re-generate missing intermediate data is less desirable than

storing previous result data. Re-executing applications may be time-consuming, requiring many

CPU hours of to complete. Re-generated result files are also not guaranteed to be identical to the

original data files if software updates have been applied in the meantime. It is therefore preferable to

archive the original data files to guarantee consistency.

Through the use of notification messages, co-ordination of responders can be achieved. As re-

sponders are added to a system, they are registered as push subscribers with the notification

system. A loosely-coupled pipeline or hierarchy of independent responders then emerges (see Figure

3.4). Different stages of this pipeline are triggered asynchronously as messages trickle through the

system. A typical responder has no knowledge of its position within an analysis pipeline; it only has

65

Responder 1

Primary data

Responder 2 Responder 4 Responder 5

Responder 6

Responder 7

Responder 3 Future
responder B

Future
responder C

Future
responder D

Future data
source

Future
responder A

Future
responder E

Future
responder F

Future data
source

Future
responder G

Figure 3.4: A hypothetical analysis pipeline is shown consisting of seven responders, each presumably executing a

different type of analysis, and all reacting in response to the preceding responder in the pipeline. The first responder reacts

to new data becoming available to the system. Responders shown with solid lines are assumed to be present within the

‘current’ pipeline. Responders with dotted outlines show some of the potential extension points. Arrows indicate data

flows between responders.

Shows three different pipeline extension situations that a Microbase system must be able to handle:

1) ‘Future responder A’ shows a relatively simple extension of an existing pipeline. The output of ‘Responder 3’ is used

as the basis for the input of the new responder.

2) ‘Future responder B’ illustrates the importance of preserving data files from intermediate processing steps. The output

data of ‘responder 2’ is required in order for ‘future responder B’ to be attached to the system.

3) The addition of ‘Future responder C/D’ also require intermediate data files to be stored. This case also demonstrates

the ability to introduce entirely new primary data sources.

4) Finally, responders E, F, and G show that an entirely independent pipeline of responders could be added to the same

Microbase installation. In this case, the second pipeline should have no influence on the first.

knowledge of how to handle the stimuli it is registered to receive.

All of the core services provided by Microbase, except the notification service, are in fact responders

themselves. For instance, the job management system reacts to requests for computation, and reports

completion events via notification. The resource system also uses the notification system as a means

to announce the existence of new file resources. The modular responder-based approach not only en-

ables analysis pipelines to be extended arbitrarily, but the core functionality provided by Microbase

itself may also be extended by adding additional responders. The term core responder is used to

refer to a responder that provides core Microbase functionality, whereas the term domain respon-

der refers to a responder that provides application-domain functionality. The distinction is made

only to emphasise which responders that are essential and required for every Microbase installation,

and which responders provide functionality specific to a particular application domain. There are no

technical differences between core responders and domain responders .

66

3.5 Supporting technologies

The Microbase architecture is implemented using a set of open-source, standard technologies. The

use of existing software components allows systems to be constructed more rapidly by avoiding

unnecessary repetition of work. Open-source software purports the ability to customise these ex-

isting applications and libraries to suit our requirements, where this is necessary [328]. The use of

standards-compliant software facilitates interoperability with other languages, platforms, or research

groups. We have selected several technologies to support the development of Microbase, described

below.

Web services are an industry standard means of invoking services remotely, or accessing remote

data. They have the advantage that they run within a standard servlet container, work well over the

Internet (SOAP over HTTP avoids most firewall issues), and are relatively easy to develop [52, 72].

Web Service technology is rapidly maturing and several stable Web service implementation libraries

are freely available [73, 300]. Web services play an important role in Microbase. Having a well-

defined public-facing interface that hides inner implementation-specific details is desirable for the

long-term maintainability of a project, and the users/tools that depend on it. Web Services enable the

construction of such APIs relatively easily and are used intensively within Microbase for providing

access to remotely-hosted functions and “canned query” interfaces.

Microbase will require the bulk transfer of large amounts of binary data to multiple worker nodes.

BitTorrent (see Section 2.3.1.1) utilises a peer-to-peer transport protocol. While several such proto-

cols exist, we chose to use BitTorrent, specifically, the Azureus library [249]. Our chosen implemen-

tation of the BitTorrent protocol supports an entirely decentralised tracking system, removing one

potential bottleneck in a high-volume environment.

A Microbase-based system will often need to store large amounts of structured data. We have used

open-source relational database systems to fulfil this requirement, specifically, Hibernate [299] and

PostgreSQL [130]. These design choices for the core Microbase components do not dictate the

data storage options for every Microbase component. Although Microbase components have used

structured storage mechanisms, third party components are not required or even encouraged to use

the storage technologies we have chosen and are free to use their own data storage solution.

Most of the system is implemented in Java [216]. Given the requirements, a cross-platform language

such as Java is an obvious choice. Given the heterogeneous environment in which Microbase com-

ponents must run, the ability to execute applications without recompilation is a clear advantage. In

addition, the combination of Tomcat [113] and XFire [73] provides a base for hosting server-side

67

components.

The Maven build system [114] has been employed to compile the Microbase project. Maven allows

the tractable construction and compilation of large projects through a pattern-based design strategy

and its comprehensive dependency management. Microbase uses the ability to uniquely identify a

Maven project and its dependencies for both compile-time and runtime purposes.

68

Chapter 4

Notification system

4.1 Introduction

Notification systems are responsible for handling inter-component communications in loosely-coupled

distributed systems. The notification system itself is a centralised component at a location known by

all other components. System components that communicate via the notification system may be

located on the same server, or at different physical locations, potentially dispersed on the Internet.

Entities termed publishers are able to send messages to the notification system. Other entities

termed subscribers can register an interest in particular types of message. The notification system

ensures delivery of a message to all interested subscribers. A message consists of application-

specific content which is not parsed by the notification system and meta-data including a topic

which is used by the notification system to determine suitable recipients of the message.

In a Microbase system, the notification system provides reliable, ordered delivery of messages re-

quired for decoupled components to communicate. Microbase components may play the role of

either a publisher or subscriber , or both (Figure 4.1 on the following page).

4.2 Motivation

Although it would be possible for all Web service components to communicate directly with each-

other in a point-to-point manner, there are several reasons why this approach is not desirable for all

types of inter-responder communication. point-to-point (PTP) communication requires each compo-

nent to have knowledge of the endpoint(s) of the other components with which it needs to commu-

nicate, compromising the modular design requirement (Section 3.3.5 on page 56). If the locations of

69

Publisher

Notification
system

New
message

Push
subscriber

Request relevant
messages since last

pull operation

Message
archive

Push
subscriber

Pull
subscriber

Push
subscriber

Message push
to interested
subscribers

No delivery to
uninterested
subscribers New

message

New
message

New
messageTopic-

subscriber
registry

Push
subscriber

Queued delivery /
retries for

temporarily-failing
responders

Figure 4.1: Conceptual overview of the notification system. Publishers send messages labelled with
a topic. The notification system then determines which subscribers are interested in that message.
The message is forwarded appropriately.

70

these services change — for instance, after a scheduled redeployment or as a result of a server failure

— then the endpoints of the hosted services need to be updated, impeding system maintainability.

The configuration service (see Section 3.4 on page 60) reduces maintenance issues to some extent

through the use of its service type to endpoint registry. However, although endpoints of existing

services can be updated, the addition of new components, or removal of existing components would

pose a problem. In these cases, each component involved in PTP communication with others would

need to manage its own list of “interested” peers, potentially requiring a system-wide reconfiguration.

A notification-based approach (for background, see Section 2.4.3 on page 33) to communication

solves these issues:

• Provision of a single public API for the publication and reception of messages: an individual

component only needs to use one API in order to communicate with any other component.

(see modularity and developer user requirements).

• Participants in the system require less configuration maintenance, since they only need to com-

municate with the notification service directly.

• Publishers only need to ensure correct delivery to the notification system. The notification

system handles onward delivery to subscribers.

• The notification service manages topic-subscriber “interest” mappings, thereby allowing new

subscribers to be added without updating publisher components.

• The notification system should take responsibility for logging messages from publishers, pro-

viding a provenance trail useful for debugging, or inspecting a system’s state (see maintenance

requirements in Section 3.3.4 on page 54).

• New subscribers have access to the entire history of previously published messages, allowing

them to be brought up-to-date with the current state of the system (see system extensibility

requirements in Section 3.3.4 on page 54).

Grid systems are far more exposed to component failure than stand-alone systems. The addition of

more software and hardware components to a system increases the risk of observing an individual

component failure, either as a result of a software crash, or a hardware problem such as a network

outage. If PTP communication between services is analogous to instant-message communication,

then notification-based messaging is the Grid equivalent of e-mail. A notification system provides

71

greater reliability through the temporal decoupling of the message publication process from the mes-

sage delivery process. For instance, a publisher sending events to a set of subscribers can continue

to operate, even if one or more of the subscribers are temporarily unavailable. When the failed

subscriber(s) becomes operational again, the ‘missed’ messages will be forwarded appropriately. In

contrast, a PTP mechanism would fail in this situation since it requires both publisher and subscriber

to be ‘on-line’ at the same time.

A Microbase system is composed of core responder and domain responder components. As

described in Section 3.3.5 on page 56, a responder consists of at least one Web service-based server-

resident component, and at least one mobile component that may be resident on one or more transient

worker nodes. Server-resident components will typically be permanently registered, at largely static

locations. Therefore, the preferred delivery method for server-resident components is push sub-

scription . Due to the transient and mobile nature of worker nodes, pull-subscription is the

only possible delivery mechanism.

To support these two situations, the Microbase notification system needs to support two different

kinds of message delivery:

1. A post-style directed delivery system, that pushes messages to specific recipients at well-

known locations, and

2. a public bulletin-board system where anonymous, transient entities can collect messages rele-

vant to them.

It is not appropriate for all inter-component communications to be sent via the notification system.

For notification-based communication to be appropriate, the message content should be lightweight

and of public interest to other components. The notification system should be used when such mes-

sages need to be reliably delivered to decoupled subscribers and made persistent for future use by

newly-added subscribers. Communications that involve large quantities of data, or for which low

latencies are essential, are typically better served by direct PTP communication.

In Microbase, there are several categories of communication, only some of which are suited to

notification-based messaging. Examples of where communications are suited to notification-based

messaging are:

• The propagation of high-level state change information from a responder to other interested

responders .

72

• The coordination and synchronisation between processes executing within responders .

These messages are often implementation specific.

Types of communications that are not suited to notification-based messaging are:

• Queries for structured data stored by remote components.

• Queries for large data objects stored by remote components.

High-level state changes within components, such as ‘new data’ or ‘action complete’ announcements

may be of interest to other components. Even if no component currently installed within a system

is interested in a particular event type, a newly written or newly installed component may register

an interest at some point in the future. These events need to be permanently archived in case a new

responder interested in these message types is added to the system at a future time. Events of this

type are ideally suited to being handled by the notification system, since message recipients are not

necessarily known (and in fact, should not be known) by the publisher.

Coordination and process synchronisation messages between decoupled components must also be

transferred via the notification system. However, unlike high-level state events that are exchanged by

registered Web services, coordination and synchronisation requests typically need to be communi-

cated among ‘anonymous’ entities that are not registered with the system. Examples of anonymous

entities include transient worker nodes that join and leave the system unpredictably, or a domain-

specific process migrating between worker nodes. Synchronisation operations are generally either

time-dependent, highly implementation-specific or both. The necessity for a component to send these

types of event may depend on the current state of a system, such as the current unavailability of a par-

ticular resource required by that component. Coordination messages are necessary for the system to

operate, but there is nothing inherent in their content that is of interest to pipeline-level provenance.

Although this type of message must be stored until delivery is complete, there is no requirement to

archive them permanently.

Data queries to remote components are almost always implementation-specific; a component requires

a specific kind of data from a specialised source that can provide it. For instance, a component

requiring a list of unprocessed genome sequences needs to acquire that list from the component

responsible for maintaining genome sequence information. There is no reason for other components

to be interested in specific queries such as these; while a different component may also be interested

in sequence identifiers, its list of ‘unprocessed’ items will most likely contain different items. Routing

73

domain-data through a Web service-based notification system would not be advisable in any case,

since it would become an un-scalable single point of contention (see background Section 2.1.1).

For the reasons described above, data acquisition from remote storage is better handled by point-

to-point domain-specific Web service transactions where structured data resources such as SQL

databases need to be queried. Bulk data transfers, such as large files, are more appropriately achieved

via the Microbase resource system (introduced in Section 3.4 on page 60, and described in detail in

Chapter 5 on page 85), with the transfer being initiated by a lightweight point-to-point service call.

Therefore, these types of component communication should not be routed via the notification system,

and are not considered for the remainder of this section. The only types of communication that the

notification system is required to handle are lightweight status update notifications, or lightweight

requests to decoupled entities.

Point-to-point communication still has its uses, however. In cases where low latency is critical, mes-

sages are entirely implementation-specific and of no relevance to other components, or where there

are so many subscribers that it would be infeasible to use the notification system. Direct point-to-

point communication could be used, for instance, between tightly-coupled Web service components

within a responder. These communication types are not relevant to the notification system, and will

therefore not be considered further.

Although both high-level responder state messages and low-level coordination/synchronisation mes-

sages need to be routed through the notification system (for the reasons outlined above), their delivery

requirements are very different. A high-level responder event represents a major state change of some

kind, such as new data becoming available, or an event representing a successful or failed computa-

tion. These events are markers of important milestones and form points in a provenance trail linking

distributed events in a causation graph. As such, it is essential that these event notification messages

are archived permanently, ordered by time-stamp. It is also important that these messages are reliably

delivered to subscribers in the correct order. If a subscriber is not able to receive a message for some

reason, then the notification system must reattempt delivery at a later time.

Low-level coordination and synchronisation messages represent requests or notifications of state

changes that are necessary for the correct functioning of the system. These messages are a means

for components to send ‘housekeeping’ messages to other decoupled components. Examples of

this kind of message include announcements of new configuration settings (such as Web service

endpoints) and requests to make a resource available. Low-level messages are not directly related

to achieving high-level milestones, but they are nevertheless essential for the correct operation of

the system. In a typical deployment, low-level messages are sent at a greater rate than persistent,

74

high-level messages. However, the nature of the intended content of these messages is often time-

dependent. The contract between publishers/subscribers of low-level messages and the notification

system is therefore different from that of persistent messages. The emphasis is on delivery speed,

rather than reliability.

4.3 Requirements

During the development of the notification system, the following component-level requirements were

established to support Microbase system-level requirements:

1. Provide a decoupled communication mechanism to be used among a set of core responders

and domain responders . This mechanism supports the modularity and maintainability of

system-level requirements (see Section 3.3.4 and Section 3.3.5 on page 56).

2. Provide permanent storage for responder state change messages. These messages will

act as a log of important milestones over the system’s ‘lifetime’. Storage of these messages

contributes to system extensibility, and therefore satisfies the requirements described in Sec-

tion 3.3.4 on page 54.

3. The ability to add new topic types, publishers and subscribers dynamically to a running system,

facilitating the addition of new responders to an existing Microbase system, without the

need to restart services. See extensibility system requirements in Section 3.3.4 on page 54.

4. The ability to reconfigure push subscribers at run-time, allowing the Web service com-

ponents of responders to be migrated to new servers, without impacting message deliv-

ery. This contributes to satisfying system administrator maintenance requirements described

in Section 3.3.6 on page 58.

5. Provide the ability to chain messages together: Messages should have a ‘caused by’ field that

allows a message to state that it was published as a direct result of a preceding message. This

ability is required to satisfy system-level logging provenance requirements (see Section 3.3.4

on page 54).

In order to support the notification system-specific requirements, the notification system must:

1. Support a ‘reliable delivery’ mode where: messages are guaranteed to arrive at each subscriber

in publication time-stamp order; message delivery operations are repeated if a subscriber is

75

unavailable; newly-added subscribers are able to receive the entire history of notifications that

are relevant to them.

2. Support a ‘no guarantees’ delivery mode: fast message delivery attempts, but no guarantees

with regard to message ordering or delivery success.

These features are facilitators of seamless extensibility of a Microbase installation; each message

topic becomes a potential point at which future responders could be attached.

4.4 Architecture

The notification system forms the center of a Microbase installation. The notification system is

unique in that it is the only Microbase-core service provider that is not a responder. The notifica-

tion system handles the messaging between responders, facilitating asynchronous orchestration of

services. The notification system makes no distinction between core responders and domain

responders .

In the previous section (4.3), it was stated that the notification system must support two kinds of

message delivery: high-level state change events and low-level coordination and synchronisation

events. High-level events are termed persistent messages, due to their requirement to be stored

as a permanent record of the system. Low-level coordination and synchronisation messages are

termed broadcast messages.

4.4.1 Handling persistent messages

The centralised nature of the notification system has some important architectural implications. Fig-

ure 4.2 shows a typical scenario that consists of several domain responders interacting with other

domain and core responders. In order to ensure that inter-component messaging does not become a

bottleneck and to ensure reliable delivery, it is necessary to have well-defined semantics, defining the

behaviour of the notification system and the components that interact with it. Contracts that specify

component behaviour supporting the notification system requirements will now be explained.

The contract between the notification system and publishers is as follows:

• Messages are immutable once published

76

Notification
system

Genome downloader
(domain responder)

Job manager
(core responder)

Worker
node 1

Worker
node 2

Worker
node n

....

Job manager
(core responder)

Worker
node 1

Worker
node 2

Worker
node n

.... Resource system
(core responder)

Notification-based
communication

Point-to-point WS
communication

Bulk data
transfer

Genome analyser
(domain responder)

Resource system
(core responder)

1. The “genome downloader” responder is responsible for injecting new data into the system so
that it can be processed. This is a two-step process: firstly the data content is transferred to the
“resource system” via a bulk transport mechanism; secondly, a lightweight message is sent to
the notification system, announcing that a new sequence is available.

2. The “genome analyser” responder is registered to receive such events. It is responsible for
determining the computational work that is needed as a response to the ‘new sequence’ event.
Compute-intensive application(s) can be requested to run by sending a set of job descriptions
as a new message to the notification system.

3. The job management system (core responder) reacts to this event by adding the requested
computational work to a queue. Jobs will be scheduled when available worker node(s) become
available.

4. There may be many hundreds of worker nodes; having them all contact the notification ser-
vice directly would be intractable. Instead, point-to-point communication between the worker
nodes and their assigned job manager service is more appropriate. Worker nodes contact a
job manager for lightweight communications such as job descriptions, and completion reports.
Large data resources, such as the sequence file, are bulk-transferred via the resource system.

5. Once all requested jobs have been completed, the job management system fires a notification
stating that the work has been completed.

6. The ‘work completed’ event is sent back to the “genome analyser” responder. A further “anal-
ysis complete” message can then be sent.

Figure 4.2: Shows how the notification system might integrate domain responders with the
rest of a Microbase installation. This figure shows where it is appropriate to use different kinds of
communication to allow a scalable Grid system to be constructed.

77

• The semantics of a message sent with a given topic should not be changed between publisher

versions. Present and future subscribers need to be able to interpret the messages. If different

message content semantics need to be used, then a new topic name should also be used.

• The raw message format may be changed, but is not recommended. Assuming that the pub-

lisher provides a suitable message parsing library, the public API of this library never changes,

and the library is able to parse all previous formats, then the underlying message format can

be modified.

• Publishers are responsible for ensuring that any topics they require are registered prior to

sending a message.

• Publishers are responsible for ensuring that messages reach the notification system. For in-

stance, if the notification service is temporarily unavailable, they should resend the message

until the notification system acknowledges receipt.

• The notification system guarantees that if it actively accepts a message from a publisher, that

the message will not be lost (i.e., the message has been successfully archived).

• The notification system guarantees ordered delivery to each interested subscriber, in spite of

sporadic notification system or subscriber failures.

The contract between the notification system and subscribers is as follows:

• Messages are guaranteed to be delivered to subscribers in the correct order.

• Messages will remain queued until the subscriber successfully accepts delivery of a message.

• However, messages may, in rare circumstances, be delivered to subscribers multiple times.

Although the notification system has been designed to be tolerant of faults, the implementation

“fails safe” in some circumstances. This results in the need to re-send messages that might not

have been delivered, following a notification system server crash.

• Subscribers are required to acknowledge message delivery successes promptly. A message

delivery attempt locks various system resources while a message is in transit to a subscriber,

and while waiting for the subscriber to acknowledge receipt. An overly-long delivery time

may be interpreted as a timeout, and therefore as a failed delivery attempt.

The responsibilities of subscribers are therefore:

78

• Subscribers should acknowledge successful message delivery as quickly as possible, or risk

triggering timeouts which would be interpreted as message non-delivery. Therefore, sub-

scribers are recommended to implement a local message spooling system so that message

delivery and acknowledgement processes are decoupled from message processing activities.

• Keep track of and implement protection against duplicate message deliveries. The notifica-

tion system may deliver a message more than once if it suffers particular types of failure1.

Subscribers should only react once to a message, ignoring duplicate delivery attempts

• Subscribers should also guard against the possibility of duplicate message content. If a pub-

lisher (mistakenly, or otherwise) sends distinct messages with identical content, this may have

ill-effects if the subscriber naively processes the duplicate content2. The notification system

has no way of guarding against this situation since it does not parse message content. Again,

handling this situation is optional, depending on the subscriber implementation. It is even

possible that duplicate message content is required in some domain applications.

The notification system oversees message history and deliveries, but there is no requirement for

it to interpret message content. Therefore, communicating responders must be able to parse each

other’s messages. The recommended way of implementing this is for publishers to provide

an appropriate decoder library so that subscribers are not required to parse the raw message

themselves. Message content is not within the scope of the notification system specification. The

content of specific messages will be described in subsequent chapters.

4.4.2 Handling broadcast messages

Figure 4.3 shows the role and types of participants involved in message broadcasts.

Broadcast messages are sent between decoupled components when low-level, time- or implementation-

dependent requests or status updates need to be sent. Anonymous components not registered with the

notification system can also use broadcast messages via pull-subscription as a type of pubic “mes-

sage board”. Messages are not guaranteed to be delivered in order, and in fact, are not guaranteed

to be delivered at all. However, they are a quick and convenient way to send configuration informa-

tion anonymously in a loosely-coupled fashion. Broadcast messages may be kept for a configurable

1For instance, if a hardware or software failure occurs between the point of a successful delivery to a subscriber, and
before the associated database transaction (indicating delivery success) within the notification system is committed.

2Such as duplicated work, results, or worse, inconsistencies in results.

79

Notification
system

Job manager
(core responder)

Worker
node 1

Worker
node 2

Worker
node n

....

Job manager
(core responder)

Worker
node 1

Worker
node 2

Worker
node n

.... Resource system
(core responder)

Point-to-point WS
communication

Bulk data
transfer

Broadcast notification
communication

Figure 4.3: Shows how decoupled messaging can be achieved between registered subscribers, and
anonymous, unregistered entities (such as worker nodes). The diagram depicts how bulk data trans-
fers between cooperating processes on a set of worker nodes might be initiated with notification
event. The advantages of notification-based messaging are maintained: components only receive the
messages they are interested in, or in the case of anonymous subscribers, the message types they
request. For instance, in this case, the “job manager” responder does not receive resource transfer
requests, because this type of message is irrelevant.

amount of time within the notification system, but may be deleted after this time has elapsed. They

are certainly not kept forever in the way that persistent notification messages are.

The contract between the notification system and distributed components is as follows:

• Messages will be delivered to a subscriber in a ‘best effort’ fashion; i.e., message delivery will

be attempted a certain number of times, after which no more attempts will be made.

• There is no guarantee that a particular message will be delivered to a subscriber.

• There is no guarantee that messages will be delivered in the order that they were sent.

• Messages will be stored within the notification system for a ‘short’ period (minutes to hours).

During this time, they can be collected by pull-subscribers. After this time has expired, broad-

cast messages will be deleted.

• Therefore, ‘important’ announcements should be sent periodically, until the publisher can de-

termine that the message has been received by an appropriate subscriber, and that the requested

action has taken place.

• Anonymous message sending is permitted. Messages may need to be sent anonymously not for

security reasons, but because the originator is not necessarily registered with the notification

system.

80

There are a vastly larger number of potential participants needing this form of messaging, than ‘per-

sistent’ reliable messaging. From a scalability standpoint, a single central notification server may

not be sufficient to accommodate this load. However, replication (multiple instances) of a broadcast

notification system are permitted, due to the relaxed delivery requirements of ‘broadcast’ messages

compared to ‘persistent’ messages.

4.5 Implementation

The notification system is implemented as a set of XFire Web services.

• Administration service: manages publisher, subscriber and topic registrations

• Publisher service: allows publishers to send messages

• Message service: enables pull-subscribes to collect messages

• Push-subscriber interface: Enables developers to write a Web service capable of receiving

messages from the notification system

The process of receiving a message from a publisher, through to message delivery is shown in Figure

4.4. A notification message may be in one of three states:

• Not sent: indicates a new message

• Sending: indicates that the message may have been delivered to some subscribers, but there is

at least one outstanding delivery

• Sent to all: indicates that all interested subscribers have acknowledged receipt of the message

When a message is first received from a publisher, it is archived to a permanent message store, and

its state is set to “not sent”. If there are no interested subscribers, the message state is immediately

updated to “sent to all”. In this case, it will remain in this state until a subscriber registers an interest.

However, if there is at least one interested subscriber, the message state is changed to “sending”.

At this point, a delivery queue is populated, consisting of one entry per interested subscriber. The

delivery queue is emptied as successful deliveries are made. Once the delivery queue is empty, the

message state is updated to “sent to all”. The message will remain in this state until another subscriber

registers an interest.

81

Message state:
'sending'

New message arrived
from publisher

Store message in
permanent archive

Message
archived

Determine interested
subscribers

At lease one
interested
subscriber

Message state:
'not sent'

Attempt to publish
message

Correctly
delivered to

subscriber(s)
Delivery to one or

more subscriber(s)
failed

Update message state

No interested
subscribers

Message state:
'sent to all'

Attempt to publish
message

Figure 4.4: Notification system: message delivery states. New messages arriving at the notification
system Web service are permanently archived for future use. The topic of the incoming message
is analysed in order to determine whether any subscribers have registered an interest in this type of
message. If no subscribers are interested, the message is set to state ‘sent to all’. If there is at least
one subscriber, delivery is repeatedly attempted until the subscriber accepts the message or a retry
limit is reached. Once the message has been delivered to all interested subscribers, its state is set to
‘sent to all’.

82

4.6 Conclusion

The Microbase notification system provides de-coupled inter-responder communications in one of

two ways: a reliable, persistent delivery mechanism; and a transient message broadcast system. Both

delivery methods are required for the correct functioning of a Microbase system. Persistent messages

are sent between the Web service components of responder . These communications must be

logged and permanently stored in order to facilitate future expansion of the system, where a newly

added responder may be interested in receiving previous event notifications. All business-logic

messages should be sent using the reliable delivery mechanism for this reason.

In contrast, the transient message delivery system is intended to permit de-coupled communication

between unregistered, potentially anonymous subscribers such as worker nodes. The transient deliv-

ery mechanism is intended to allow machines to broadcast runtime configuration information such

as the announcement of the presence or location of a particular resource. This delivery mechanism

may also be used for sending messages between co-operating processes on different worker nodes.

The notification system as discussed in this chapter implies a centralised server architecture. Dis-

tributed notification systems exist [164, 190] that are inherently more scalable than a centralised

system. The advantage of such systems is the ability to propagate many large messages to hun-

dreds or thousands of recipients through the use of P2P techniques. However, obtaining provenance

information such as accurate publication times and therefore guaranteeing message ordering from

a P2P system is more difficult. Message delivery failure is also much more difficult to detect in

distributed notification systems due to the need to back-propagate ‘acknowledgement’ or ‘time-out’

messages. In light of the requirements placed on the Microbase notification system, we have adopted

a centralised notification system. We do not believe that the notification system will be a significant

bottleneck since the number of responders installed in a typical system is low — tens rather than

hundreds. Given the high-level nature of the persistent messages being sent between responders, the

rate at which messages are published should be relatively low. Messages should also be ‘small’ —

less than tens of megabytes — since large bulk data transfers should be routed via the Microbase

resource system (see Chapter 5 on page 85) rather than the notification system.

Worker nodes do, however, frequently send broadcast messages. Many worker nodes communicating

frequently enough would cause a single notification server instance to become a bottleneck. How-

ever, broadcast messages are not subject to the same archival, and delivery guarantees as persistent

messages. Therefore, it would be permissible to use multiple notification system instances for pro-

cessing high-frequency broadcast messages. A P2P notification system would also be suitable for

83

this purpose.

84

Chapter 5

Resource system

5.1 Introduction

Resource storage systems have several areas of responsibility: file distribution, permanent file archival

and version control. Distributed computation systems typically have a central data store that perma-

nently archives all information related to computationally-intensive project(s). A large computational

task is split into smaller units. If the task splitting is suitably performed, then large data sets can also

be split into manageable chunks for distribution to worker nodes. Each worker node receives only

the data it requires to complete its unit of work. It is the responsibility of the data storage system to

ensure that worker nodes have access to the appropriate files and that the files are stored reliably.

In a Grid setting, the real time (i.e., the perceived elapsed time from a user’s perspective) required to

complete a large computational task is the sum of the time taken to perform user computation, plus

the overhead of the Grid system. In data-intensive applications, a sizeable portion of the overhead

may be caused by large data transfers between the system’s permanent data store and the worker

nodes. Therefore, in addition to storing files reliably, the resource system is also responsible for

efficient distribution of files to remote hosts, such that the overhead time is minimised. The resource

system described in this chapter acts as the ‘file system’ for Microbase responders.

85

5.2 Motivation

5.2.1 Data identification and storage

Multiple communicating nodes participating in the system must be able to acquire data resources

from each other. The nodes therefore require a common naming scheme to resolve resource content.

The resource system for Microbase must be capable of uniquely identifying files. The identifier

assigned to a resource must never change, and the content of a published resource must also be

immutable once it has been assigned an identifier. These requirements are broadly consistent with

other naming schemes, such as Life Science Identifiers (LSIDs) [55].

Unlike an LSID, however, once published a resource will be expected to be available for down-

load indefinitely if requested. This can be achieved either with a centralised storage system using

dedicated hardware, or a distributed system using commodity hardware. ‘Centralised’ here does not

necessarily mean a single server since a set of servers could be combined into a single logical service.

A centralised system storing resources for Grid applications provides several advantages:

• Isolation: distributed worker nodes can perform their work in isolation, using their own local

storage, rather than higher-latency and possibly contended access to remote resources.

• Straightforward access to results: querying a single (logical) location is easier than querying

several distributed data stores, depending on the number of simultaneous queries, their com-

plexity, and the amount of data needing to be transferred.

• Reliability: it is straightforward and convenient to take backup, snapshots or replicate a cen-

tralised store. Also, Microbase utilises ‘unreliable’ worker nodes for computational work.

Permanently storing data on worker nodes would risk data loss.

In addition, it would be inappropriate for a Microbase system to permanently store large amounts

of data on worker nodes. Many worker nodes are likely to be general-purpose desktop PCs and the

primary users of these computers require the available disk space for their own use. Therefore using

a distributed storage approach for permanent data archival is unsuitable for Microbase.

5.2.2 Data distribution

Data transfer mechanisms are an essential part of any distributed computation system. Data must be

distributed to worker nodes from a permanent storage location, processed, and then finally the results

86

must be transferred back to the permanent data store. The background chapter (see Section 2.3 on

page 27) discussed several possibilities for data transfer between nodes in a distributed system:

• File transfer mechanisms such as FTP, HTTP, WebDav.

• Network file systems, such as Server Message Block (SMB) or Network File System (NFS).

• Direct access to structured data storage such as a relational database client.

• Distributed file transfer systems such as BitTorrent.

Centralised file transfer protocols such as FTP provide low-latency access to remote resources. The

entire file must be acquired by the downloading node before it can be used. Once downloaded, the

node has its own local copy of the file, which can be written to without affecting other nodes. How-

ever, the server’s available bandwidth must be shared between all downloading nodes, reducing the

scalability of the system. Mirror servers may be added to a system, but typically require (expensive)

dedicated servers, due to the disk space and network capacity requirements. Also, mirror servers

may not be able to handle bursts of high activity efficiently, such as many nodes requesting the same

file simultaneously — for instance, when thousands of similar jobs are scheduled.

There are several properties of a distributed computation system that suggest that a P2P transfer

protocol may better fit for the data transfer requirements than a centralised system:

• There are a large number of worker nodes active at a given time.

• Given the notification-based pipe-lined approach employed by Microbase, there will be a large

number of jobs of the same type, scheduled within a short space of time. Therefore, there will

be large demand for the same set of files within a similar timeframe.

Under these conditions, it is likely that a number of worker nodes will be processing the same type

of job simultaneously, and therefore require access to the same executable resources, such as Java

Archive (JAR) libraries and executable program files. It is also possible that there will be some

overlap regarding required data files, depending on requirements of the application. The transfer

performance of distributed protocols such as BitTorrent improves (see Section 2.3.1.1 on page 29)

as the number of participants actively transferring a file increases [134]. If worker nodes utilised

such a distributed transfer mechanism, then as more nodes started a particular job type, there would

automatically be more nodes available to acquire the resource(s) from. After the central data store

transfers an initial copy of a resource to a remote node, such a system would dynamically scale to fit

the number of worker nodes.

87

5.2.3 File version control

In order to satisfy Microbase provenance and logging system requirements (see Section 3.3.4), all

published resource files must be immutable. Immutability of published data is not seen to be over-

restrictive since analysis results do not change after the execution of a program. File immutability is

a property of other distributed file storage systems since it is a straightforward means of guaranteeing

data consistency with little server overhead other than to ensure the uniqueness of file identifiers[76].

If resources were allowed to change after publication, then the system would suffer from several

undesirable side-effects including:

• the loss of an accurate record tracing the production of data items back to a specific system

component.

• inconsistencies arising from unexpected concurrent updates to a resource from a different re-

sponder. This situation is analogous to un-synchronised access to shared memory in a multi-

threaded program. For instance, if a resource update occurred simultaneously with the distri-

bution of that resource to a number of worker nodes, then different worker nodes could find

themselves unknowingly using different versions of the resource.

Some resources do need to appear to change over time. More specifically, the resource files them-

selves are immutable, but a reference to the latest version of a resource must be provided to allow

system components to query the latest version of a resource at run-time. Although this may seem

an extravagant use of disk space, it is necessary for the reasons outlined above. For instance, a

new version of an application may be released, requiring the ‘replacement’ of the old application

resource. However, the older version(s) must still be present within the system in case some system

components require an older version. For example, if a new application version produces output files

of a different format to the previous version, then some system components may still expect to re-

ceive data in the older file format. A resource system supporting version control provides additional

benefits: users may wish to run several versions of an application concurrently in order to compare

the different outputs for equivalence or debugging reasons. Conversely, users might want to execute

multiple versions of a data set through a particular application version. The data management aspects

of these types of activities are generic, and therefore should be facilitated by the Microbase resource

system.

88

5.2.4 File querying

Worker nodes in a Microbase system are transient; they can join or leave the pool of available com-

pute power at any time. They are also generic desktop PCs, with a campus-wide ‘common desktop’

environment. Domain-specific software that is not pre-installed will need to be installed to available

computers prior to any computation work being performed. Due to the transient existence of these

machines as Microbase participants, it is likely that software installations will not survive beyond a

compute client termination. Operating in this kind of environment puts additional pressure on the

data distribution sub-system; not only do multiple worker nodes require applications, often large

ones, to be installed, but the process may have to be repeated several times per day.

Using a distributed peer-to-peer transport protocol alleviates several of the logistical and scalabil-

ity issues involved with bulk data transfers required when installing domain-specific applications to

multiple machines several times per day. However, a P2P transport mechanism alone does not re-

solve platform-related issues of the heterogeneous worker nodes. Although a domain responder

has knowledge of the specific version of an application required to perform computational work, it

cannot know ahead of time the operating system or processor architecture used by the worker node

assigned to process the work. Specifying resources by unique identifier (UID) is acceptable for data

resources, but is not suitable for platform-specific executable resources. To overcome this problem,

it is necessary for worker nodes to be able to query for appropriate resources at run-time, based on

the nodes’ actual hardware and software composition. The resource system must therefore provide

query-able annotations attached to resources in order to facilitate such queries.

Annotations are also useful in the wider context for attaching information commonly required of

file-systems, such as timestamps, version tags, and file content type information to resources. Some

of these annotations are required for operational purposes, while others may be useful for debugging

a running system. Resource annotations also contribute resource-specific information to the overall

provenance data set maintained by the Microbase system as a whole. It may also be useful for

domain responders to add their own domain-specific annotations to resources, in addition to the

general-purpose annotations. The resource system must allow querying of resources, based on the

presence or value of particular annotations.

5.2.5 Pipeline extensibility

Domain-specific applications will often store result data in a structured storage system, such as a

relational database. This allows efficient access to result data, and flexible querying. For instance,

89

querying Blast hits from a set of raw alignment text files is much less efficient than performing a

simple query to a relational database table. However, the trade-off is that in order to query a relational

database, its structure and semantics must be known. While custom relational databases for domain-

specific data may be required to efficiently query data, in order to satisfy the Microbase extensibility

requirements (see Section 3.3.4), a more generic storage system is also needed. The resource system

can assist in fulfilling this requirement (Figure 5.1 on the next page).

Suppose a computationally-intensive application generates a information-rich, but difficult to parse

output file. If only a small portion of the output is actually useful for current purposes, then it

would seem appropriate to parse the currently relevant information to a structured storage system

and discard the original report. However, if a new application is later added to the system that

requires access to the output data of the first program, then two data issues arise. Firstly, the new

application is unlikely to be able to query a custom data store, unless it was specifically written to

do so. Secondly, the new application may require additional information from the original output

data file that is not stored in the custom structured data store. Although the new application may be

capable of parsing the output files generated by the original application, if the original output files

had been discarded, then the computation would need to be repeated to re-generate the files.

The resource system is ideal for storing the raw, un-parsed output files produced by applications. By

archiving these files on a suitable ‘reliable’ archive node, the existence of the data can be guaranteed.

Using a P2P transport mechanism, the archived resources are available for mass-transfer at a later

time. In conjunction with the logs maintained by the job management system (see Chapter 7 on

page 134), the creation of a resource can be traced back to job execution that produced it. Therefore,

expandability of the system is improved at the expense of disk space storage for storing an additional

copy of raw output data.

5.2.6 Developer usability

The primary task of a domain-application developer is to write applications that are useful to their

area of interest. They may view the resource system as necessary for resource distribution, but do

not necessarily have the time to gain an in-depth knowledge of its internal workings. However, dis-

tributed file protocols, queue management, querying, and meta-data annotations all add complexity

to the resource distribution process. If the resource system is too intrusive to the application devel-

opment process, then developers may choose not make use of the provided capabilities, negating the

value of the system. The resource system must be straightforward to use, preferably not passing on

90

Structured
storage

Raw output
file storage

Responder 1

Primary data

Raw output
file storage

Responder 2

Structured
storage

Raw output
file storage

Responder 3

Structured
storage

Raw output
file storage

Future
responder 4

1. Responder 1 is notified of some new primary data. It performs computational work, and pub-
lishes its results to the resource system.

2. Responder 2 takes the raw output files from responder 1 and performs its own computational
work. In this example, responder 2 needs to store results in a structured data store (for example,
for query efficiency reasons). However, the resource system also archives the raw output file(s).

3. Responder 3 queries its data from the structured data storage of responder 2, rather than parse a
data file. Responder 3 puts its own outputs into structured storage. Again, the resource system
takes a copy of the raw output file(s).

At some time in the future — that is, after much computation has already been performed by the
system — responder 4 needs to be added to the system. Responder 4 must take its input data from
responder 2. However, responder 4 is a closed-source application that does have an understanding
of the custom data structure used by responder 2. Fortunately, the resource system has archives of
the raw output files generated by responder 2 (even though they were superfluous to requirements for
responder 3). Therefore, responder 4 can operate immediately, without the need to re-generate data
files.
Figure 5.1: Shows how the resource system enables domain responder pipeline extension. The
resource system is responsible for storing the raw file outputs as a result of responder computation.
Responders are responsible for maintaining their own custom structured data store, if they require
one. In this example, it is assumed that the computational work performed by each responder gener-
ates one or more data files. This is typically the case when running command line applications. The
content of the data file(s) may be parsed into a structured storage system if required.

implementation-specific complexities to the application developer. For instance, domain application

developers should not be required to have in-depth knowledge of the transport mechanisms used.

Ideally the system should be no more complex than accessing a local file-system. The same is true

of the data archival and version capabilities; the resource storage system must be as un-intrusive as

possible for developers, particularly in cases where permanently archiving raw data output files are

of no immediate benefit for them. The resource system has been designed in conjunction with the re-

sponder development guidelines and API (see Chapter 6 on page 107) to achieve these requirements

91

(see Section 3.3.6.1).

5.3 Requirements summary

The Microbase resource system is a support service that is intended to provide reliable and scaleable

data-handling facilities for the rest of the system. In addition to its data distribution duties for worker

nodes, it plays an important role in enabling system-wide requirements such as long-term storage,

provenance and version control support, to be met. The resource system has been designed with data

distribution-specific and Microbase system-wide requirements in mind.

The resource system is also required to assist with providing system-scale properties in conjunction

with other core components. It must:

• Support Grid execution on a collection of heterogeneous hardware, in conjunction with the job

management system (Chapter 7 on page 134). Specifically, it must support efficient transfers to

worker nodes, and provide the necessary support infrastructure to resolve issues arising from

the requirement to handle a heterogeneous set of worker nodes. In addition, problems arising

from worker node failures, such as data loss must be handled gracefully.

• Avoid single points of failure and single points of contention.

• Contribute to the overall system-wide provenance trail by providing file version control support

and meta-data annotations.

• Publication logs should be kept in the form of notification messages. These messages should

allow the resources to be traced to the responder that published them. Using the notifica-

tion system (Chapter 4 on page 69) to achieve this also facilitates the system extensibility

requirement (see Section 3.3.4), since future responders may need to be informed of resource

publication history.

• Assist developers by hiding details such as torrent files, distributed copy counts, and availabil-

ity as much possible (in conjunction with the responder developer environment, Chapter 6 on

page 107).

For the resource system to satisfy its obligations to the system-wide requirements, it must:

• Store data and executable resources, and dependencies including: platform-neutral Java classes,

and associated dependencies as well as platform-specific application packages.

92

• Assign unique identifiers to each immutable resource.

• Allow resources to be obtained by resolving their unique identifier.

• Allow resource meta-data annotations to be queried in order to resolve matching resource

UIDs.

• The use of a peer-to-peer protocol to enable efficient transfer of resources among worker nodes.

• Integrate with the notification system (see Chapter 4 on page 69) to provide appropriate notifi-

cation messages for resource archive success or failure events.

• Provide an API that masks as much of the underlying transfer mechanisms as possible.

5.3.1 Terminology

Resource file In Microbase, resources are coarse-grained immutable blocks of data; that is files,

rather than table rows. The resource system is intended to transport medium to large resources

— in the range of megabytes to gigabytes. Resources may be transferred among worker nodes

and archiver nodes.

Resource UID a 128-bit UID. This is the resource system’s equivalent of a file-name.

Tag key/value pairs that can be used to annotate a resource. Resources can be annotated with mul-

tiple tags. This enables categorisation of resources for organisational reasons. It also enables

querying of the resource system at runtime if the exact resource UID is not known.

Archive node A machine running an instance of a resource system Web service that guarantees to

provide an amount of permanent, reliable capacity for archiving files.

Permanent storage refers to storage capacity provided by archive nodes.

Cache storage refers to temporary storage capacity available to a worker node.

5.4 Architecture

The resource system operates in conjunction with the Microbase notification system in order to pro-

vide a reliable storage distribution system. The overall architecture of the resource system is shown

in Figure 5.2 on the following page. It consists of several parts:

93

• Torrent registry (Web service): maintains a registry of ‘.torrent’ files and their associated an-

notations. This service allows querying over archived resources.

• Archiver node (Web service): a server-based component responsible for distribution and per-

manent archival of resource files.

• A client library and developer API: maintains node-local incoming and outgoing queues of

resources. The library is capable of communicating with various resource system services. It

provides a convenient API through which user applications may gain access to the resource

system.

Re
so
ur
ce

 c
ac
he

 p
ub
lic

 A
PI

Azureus

User
Application

Torrent registry
(web-service)

.torrent/
meta-data
storage

Resource
Archiver
Webservice

Data file
storageResource

Archiver
Webservice

Data file
storageResource

Archiver
Webservice

Data file
storageResource

Archiver
(web-service)

Data file
storage

Notification
System

Download
manager

Seed
manager

Torrent transfers
Data resource
publications

Data resource
requests

User application Resource system server infrastructure

Local client
disk storage

Resource system
client

Torrent
tracker

Persistent notification
communication

Point-to-point WS
communication

Bulk data
transfer

Broadcast notification
communication

Point-point or DHT
communication

Figure 5.2: Resource system architecture - applications make requests to the resource system via an
API that hides the actual details of file transfers and communication with remote web services. This
figure shows how the various components that comprise the resource system interact with each-other,
and how they interact with other core Microbase services.

The various components and the types of interactions between them will now be discussed.

5.4.1 Bulk data transport protocol

The BitTorrent protocol is used for bulk data transfers between nodes within the resource system.

The BitTorrent protocol has been shown to be both scalable [89], and practical in terms of hardware

resource usage [62]. Specifically, the Azureus1 BitTorrent implementation was chosen to provide

the underlying transport mechanism. Azureus offers several advantages to Microbase over other

BitTorrent implementations. Its distributed tracking capabilities are useful in providing a scalable,

multi-site transport mechanism. Although a centralised set of trackers are recommended to minimise

peer resolution latencies, Azureus also supports a distributed tracker that can be used either as a

1Azureus is now known as Vuze. It is available from: http://azureus.sourceforge.net

94

http://azureus.sourceforge.net

backup to dedicated tracking servers or as a load-balancing mechanism. The distributed tracker is

based on a distributed hash table database. A portion of this database is stored by each Azureus

node. The distributed tracker works across the Internet (firewall permitting), potentially enabling a

compute Grid to transfer data among nodes located at multiple geographically distant sites in a de-

centralised manner — that is, without the need for ‘well known’ tracker server URLs. The majority

of worker nodes available to Microbase reside in common cluster rooms with restrictive network

access policies. The ability of Azureus to ‘reseed’ its distributed database from a user-specified

location allows restricted nodes to access the external distributed database via a ‘gateway’ node less-

encumbered with firewall rules, located elsewhere within the campus LAN.

Additionally, Azureus is available under a suitable open-source license that permits access and mod-

ification to the source code. Several modifications were required to enable handling large numbers

of torrents and to accommodate network peculiarities of a campus environment. Finally, Azureus is

written in Java, allowing it to be more easily integrated into the rest of the Microbase system.

5.4.2 Resource client API

The operation of the resource system depends on many low-level interactions between intra-resource

system components and several high-level messaging operations to external components — that is

other core responders or domain responders . Management of BitTorrent transfers and the

storage of resource meta-data adds to the complexity.

The resource system client (Figure 5.3 on page 97) has been designed to serve several purposes:

• Developer interface: provides a straightforward API for developers to acquire and publish

resources in their programs.

• Abstraction layer: provides an abstraction layer over the BitTorrent transfer protocol.

• Scalability: manages upload and download queues for user applications.

The client API provides facilitates publishing and retrieving data, and querying for the existence of

resources. This API operates in terms of resource UIDs and annotation tags, rather than torrent files

and magnet URLs. For instance, to retrieve a resource, an application does not need any knowledge of

the underlying BitTorrent communication mechanism. The API also provides a means for querying

resources based on annotations attached to resources.

The abstraction layer sits between the public interface that developers see, and the underlying BitTor-

rent implementation. Requests from the high-level interface in terms of resource UIDs and standard

95

Java constructs such as ‘files’ and ‘streams’ are mapped to torrent files and placed into transfer

queues. The abstraction layer also provides a local disk cache so that frequently-requested resources

do not need to be continually downloaded. If an application requests a file that is already present in

the disk cache, then the application is informed immediately that the ‘download’ has been completed.

Any resource file present in the disk cache is potentially available for ‘seeding’ to other resource sys-

tem nodes. Seeding files to remote nodes occurs automatically and without the knowledge of the

user application. This functionality allows nodes to transparently participate in a Grid distribution

network.

The resource cache implementation provides concurrent asynchronous upload and download capa-

bilities. Requests from the user application must be managed appropriately to avoid excess resource

consumption. If a user application were to submit hundreds of resource download requests within a

short space of time, system resources such as RAM and network ports could easily be entirely con-

sumed, resulting in decreases in efficiency or even node failure. Node-local system resources must

be managed in such a way as to ensure that the node receives all its requested files at the maximum

rate that available hardware resources allow, for instance through transfer queues and caps on the

maximum simultaneous active transfers.

When allocating local system resources such as network bandwidth, the distribution requirements

of the Grid as a whole must be considered in addition to the needs of individual nodes. Nodes

should allocate a portion of their available network bandwidth to sharing resources with other nodes,

even if they have a large queue of outstanding downloads. Resource system nodes would become

net bandwidth consumers if they were to download resources only, without providing any means of

sharing data with other nodes.

Although a small number of ‘selfish’ nodes can be accommodated, if every node participating in the

network were to behave in this manner, resource distribution bottlenecks would arise. Even though

a distributed peer-to-peer protocol is in use, the system would essentially be reliant upon a small

set of seeding distribution points if nodes refused to share resources after obtaining them. In cases

where many nodes are downloading a similar set of resources, it is essential to maintain balanced

incoming and outgoing traffic flows, even under high-demand situations. The responsibility for this

balance lies partly with the Microbase-specific client implementation and partly delegated onto the

underlying Azureus BitTorrent implementation.

96

Pu
bl

ic
 A

PI

Azureus

Download
manager

Seed
manager

Resource
system client Local client

disk storage

Figure 5.3: Resource system client architecture. The Microbase resource system consists of many
such clients, usually one per computer. Client instances may communicate with each-other in two
ways. Lightweight events may be sent via the notification system for coordination purposes. Bulk
transfers are achieved by direct peer-to-peer communication between Azureus components. The
download and seed managers translate high-level resource download/upload requests from a user
application into transfer-specific BitTorrent requests.

5.4.2.1 Azureus-Microbase integration

Azureus was originally developed as a BitTorrent client intended for desktop use, where users will

typically not have hundreds or thousands of torrent files queued, and certainly nowhere near that

amount active at any one time. Every torrent item queued within Azureus consumes system re-

sources, whether they are actively transferring or not. For instance, system memory and network

connection resources are used to periodically perform housekeeping operations such as scraping

(see background Section 2.3.1.1 on page 29). The more torrents that are queued within Azureus,

the more system resources it consumes. Microbase nodes — archive nodes in particular — must be

able to support many thousands of inactive torrents, and several tens of actively transferring torrents.

Clearly, the Azureus queue alone would not scale sufficiently to be able to support the intended use.

To address this problem, Microbase implements its own queuing mechanism in addition to the

Azureus queue (Figure 5.4 on page 100). For this purposes of this discussion, this additional queu-

ing system will be termed the ‘Microbase queue’. The Microbase queue is intended to contain all

torrent items located on a computer. It is required to have a static memory footprint, regardless of the

number of torrents it contains. Torrents can be in one of two states: ‘idle’ and ‘active’. Torrents that

are present only in the Microbase queue consume no system resources, other than disk space, and

97

are considered ‘idle’. A subset of the items contained in the Microbase queue can be placed into the

Azureus queue when data transfer with other networked nodes needs to take place. Torrents present

in both the Microbase and the Azureus queue are considered ‘active’ with respect to the Microbase

queue.

The Azureus queue may contain torrents in several states. The main Azureus states of interest here

are: ‘downloading’, ‘seeding’, and ‘queued’. The states ‘downloading’ and ‘seeding’ indicate that

the torrent is actively transferring data to at least one other node. The state ‘queued’ indicates that

no other node is presently connected to that torrent, but Azureus is actively seeking for nodes to

acquire the file from, or nodes that wish to acquire the file. Although each item in the Azureus queue

consumes system resources, there is an advantage in keeping it populated with as many items as

possible. If torrents exist within the Azureus queue, and are in state ‘queued’, Azureus can decide to

spontaneously start them (that is, change their state to ‘downloading’ or ‘seeding’) if it detects that

they are needed by a remote node. This is a useful form of load-balancing since Azureus can detect

the number of other nodes presently sharing or downloading a particular file and can adjust its own

queue states either to take advantage of good file availability, or to assist other nodes when a file is

scarce.

In order to download or share a file, it must be added to the Azureus queue. Since there are potentially

a far greater number of files in the Microbase queue than can be accommodated in the Azureus queue,

there is a need to manage the number and type of ‘active’ queue items such that:

• Incomplete files eventually get a chance to complete. That is, if downloads are made ‘inactive’

for some reason — for example, after a server restart, or download prioritisation — then they

need to be reactivated.

• Completed (seeding) files remain seeding for as long as possible in order to increase the avail-

ability for other nodes downloading the same file.

• Completed, ‘inactive’ files may need to be reactivated if another host requires access to them

after having been removed from the Azureus queue.

The management processes described above are performed by the ‘download manager’ and ‘seed

manager’ parts of the resource system client (See Figure 5.3 on the preceding page). The two

management processes cooperate to ensure the balance between downloading and seeding files is

maintained.

98

The download manager is responsible for ensuring that incomplete files are eventually completed. It

does this by periodically checking the progress of each incomplete file and taking appropriate action.

Incomplete ‘inactive’ files are added to the Azureus queue if necessary. If an ‘active’ download is

not making progress due to an inadequate number of peers to acquire data from, then a broadcast

message is sent to the notification system to request that other peers start seeding the file.

The seed manager is responsible for ensuring the locally-produced files, such as results of compu-

tation, are available to be collected for archiving. This is important since locally produced files are,

by definition, the only available copy on the network. If the results are lost — for instance if the

node is removed from the pool of worker nodes — then the computation will need to be repeated

at a later time. The seed manager is also responsible for ensuring that the node plays a part in the

overall distribution of resources to nodes. The seed manager responds to notifications from other

nodes requesting that a particular file is made more available. If the requested file exists locally, then

the seed manager may decide to honour the request by sacrificing a less sought-after torrent.

Balance between the numbers of actively downloading and seeding files is maintained by Azureus.

System-wide resource availability balancing is overseen by the resource system client, and enabled

by decoupled broadcast events delivered by the notification system.

5.4.3 Torrent registry

The torrent look-up service maintains a mapping of resource UID to torrent data. It also maintains a

set of annotations on resource entries in the form of key-value pairs (tags). Meta-data tags can be used

to annotate a resource, and resources can be annotated with multiple tags. This enables categorisation

of resources for organisational reasons. It also enables querying of the resource system at runtime if

the exact resource UID is not known, for instance if it is necessary to resolve a run-time dependent,

operating-system specific file.

The torrent registry database does not store the actual resource data. It is designed to be lightweight,

optimised for handling simultaneous torrent lookup or tag query requests from multiple resource

system clients. Resource system client instances may query a torrent look-up Web service for:

• A UID, resolving to torrent data for use with Azureus.

• A set of key-value annotation pairs, resolving to a set of matching UIDs.

The torrent registry database is essential to the resource system. Its point-to-point Web service com-

munication with worker nodes provides scalability, while its integration with the Microbase notifica-

99

Microbase
resource queue

Azureus queue

Resource A
(active, complete)

Resource B
(active, incomplete)

Resource C
(inactive, complete)

Resource D
(active, complete)

Resource E
(active, complete)

Resource A
(seeding)

Resource B
(downloading)

Resource E
(seeding)

Microbase
resource queue

Azureus queue

Resource A
(active, incomplete)

Resource B
(active, incomplete)

Resource C
(active, incomplete)

Resource D
(active, complete)

Resource E
(inactive, incomplete)

Resource A
(downloading)

Resource B
(downloading)

Resource C
(downloading)

Node 1 Node 2

.....

Resource D
(queued)

Resource D
(downloading)

.....

Notification
system

Bulk data
transfer

Broadcast notification
communication

Seed Resource C
request

Transfer monitorTransfer monitor

Seed Resource C
request

1. In the first case, Node 1 has a complete copy of Resource A, and is transferring it to Node 2.

2. In the second case, neither Node 1 nor Node 2 have a complete copy of Resource B. However,
they both have different parts of the file, and are therefore of mutual interest to each-other. In
this case, data transfer is bi-directional.

3. In the third case, Node 2 is attempting to acquire Resource D. However, there are no available
seeders, because Resource D is in state ‘queued’ within Node 1. The Azureus instance running
within Node 1 will notice this situation through the torrent tracker and will start Resource D in
‘seeding’ mode.

4. Node 2 is attempting to download Resource C, but there are no available seeders. Node 1
is seeding Resource E, but there are no interested downloading peers. In this case, there is
nothing either Azureus instance can do to improve the situation, since they are unaware of the
resources present in the Microbase resource queues. However, after a pre-defined timeout, the
transfer monitor process running within Node 2 notices that Resource C is making no progress,
and that the availability of Resource C is low. It sends a broadcast message to the Microbase
notification system, requesting that a node reactivates the resource. The notification system
passes on the request to interested subscribers (in this case other resource system nodes). One
or more of these nodes may decide to act on the request. In this case, Node 1 might remove
Resource E from the Azureus queue, and replace it with Resource C. After this occurs, the
Azureus instance running within Node 2 will detect a new seed (via the torrent tracker), and
initiate a download.

Figure 5.4: Shows how the two queuing systems interact to perform resource sharing logistics. Two
participants in a Microbase resource system are shown. In this simplistic example, each Azureus
queue is allowed to have four items in total.

100

tion system allows other responders to be informed of newly published files. In addition to providing

a functional look-up service, it facilitates the resource system’s wider obligations to provide a prove-

nance record for each file stored in the resource system.

5.4.4 Resource archiving

A resource archiver node is a server-based component that is responsible for the permanent archival

of a set of resources produced by other responders present in a Microbase system. The archiver

node architecture is shown in Figure 5.5. A resource archiver is actually an instance of a resource

system client exposed as a responder . Resource archive nodes are registered to receive requests

from the notification system about the availability of newly published resources. Archiver nodes

are responsible for downloading and maintaining a permanent copy of every resource file produced

by every job execution. When a download is completes successfully or fails, a notification is sent

to inform other system components of the success or failure. Resource archiver services should be

installed on ‘reliable’ server machines with large amounts of disk capacity. More than one instance of

a resource archiver may be present within a Microbase installation for load-balancing or redundancy

purposes.

Re
so

ur
ce

 c
ac

he
 p

ub
lic

 A
PI

Azureus

Download
manager

Seed
manager

Resource system
client Local client

disk storage

Respond to
archive requests

Respond to 'make resource
available' broadcasts

Notification
System

Torrent transfers direct to other
resource system clientsOther resource

system client(s)

Archiver node

Web service
(responder event

handler
implementation)

Incomplete
download

tracker

Persistent notification
communication

Bulk data
transfer

Broadcast notification
communication

Figure 5.5: The architecture of an archive node consists of an instance of the resource system client
wrapped inside a Web service. The Web service is actually a Microbase core responder that
responds to requests for resource archival. It also responds to requests from other nodes to activate
specified torrents.

5.4.5 Downloading a resource

There are two ways that a node may request a resource: either directly by its unique resource UID

(if known), or by querying for a set of key/value tag pairs. Unique identifiers of resources matching

101

the key/value pairs will be returned. The downloading node can then choose which of the matching

resources it wishes to acquire. If a downloading node notices that there are no seeds, or limited avail-

ability of a torrent, the broadcast functionality of the notification system is used. As described in

Section 4.4 on page 76, the broadcast functionality provides a non-reliable, but low latency message

delivery service. Unlike ‘ordinary’ notification messages, ‘broadcast’ messages are not stored per-

manently, and are therefore an ideal low-overhead mechanism for components wishing to message

each-other is a loosely-coupled, anonymous, fashion for synchronisation purposes. In this case, the

node downloading the file broadcasts a ‘please (re-)seed torrent X’ message. If a resource archiver

node, or another worker node receives this message, it may decide to start seeding the required tor-

rent by using an available upload slot. The node requiring the file may then proceed to download it.

The details of this process are shown in figure 5.6 and are entirely hidden from the client application,

except for the additional time taken to find suitable peers.

5.4.6 Publishing a resource

Resource publication requests are initiated from the user application (see Figure 5.7 on page 104).

The user application provides a file containing the content to be published, a UID to identify the

file content, and a set of key/value annotations for query purposes. The publication process itself is

asynchronous, allowing the client to continue processing while the resource system archives the re-

quested file. On receipt of a publication request, the resource system client generates the appropriate

.torrent file locally on the worker node. The torrent data is simultaneously transmitted to the

resource system torrent look-up Web service, and exposed via the locally-running Azureus instance.

Following a notification event indicating that a new file should be archived, one or more archiver

nodes are assigned to the backup operation. If the resulting BitTorrent transfer is a success, then the

archive operation is complete, and the resource can be considered ‘safe’ for use in future operations.

In this case, a final “resource archive successful” notification message is sent, which may be used as

confirmation that the file has indeed been permanently archived.

Two failure modes are also considered: temporary and permanent. Temporary unavailability of a

BitTorrent share may be the result of queue management operations described in Section 5.4.2.1 on

page 97. In this case, appropriate broadcast notification messages are sent from the archiver node

requesting that the torrent file be re-activated. Permanent failure occurs when an archiver node

reaches a configured number of retry attempts or a time-out value is reached. In this case, the archiver

node assumes that the file will never be available and so will never be archived correctly. This

102

Await resource
retrieval

Download
manager acquires

resource

Look up torrent
for resource UID

Need resource

Resource obtained

Resource
acquired, saved to
local disk cache

User Application Resource system client

Has free network
capacity / download slot?

Torrent look-up service

Torrent UID
Torrent look-up

successful

Request for
torrent sent

Torrent entry
exists

Torrent data
available

Download
manager

requests reseed Reseed
event sent

Remote worker node(s) or
resource system archiver node

Forward event to
listener(s)

Notification service

Reseed event arrived

Local worker node

Has free network
capacity / upload slot?

Ensure requested
torrent is seeding

Torrent is exposed
Bit-Torrent

transfer

>=1 seeding
node

No seeding
nodes

Broadcast
message

containing
torrent UID

Point-to-point webservice call

Point-to-point webservice call returns

Application informed of
completed download

Figure 5.6: A request for a download from a user application involves several other system compo-
nents. A request for a file with a specified UID is made from an application (green). The resource
system client then attempts to resolve torrent data for the specified file by querying the torrent look-
up service. Assuming the UID is recognised, the torrent data is returned from the Web service(data
size 1kB-150kB). The torrent is then added to the locally running download manager, within the
resource system client. Assuming at least one other Azureus node has a copy of the file, then the file
is transferred and the user application is informed of the completed download. However, if no other
nodes are currently seeding the required resource, then a request is sent to the notification system
(blue). This request is forwarded to interested nodes: archive nodes, or worker nodes. If another
node subsequently makes the required file available (a seed), then the local resource system client
can then proceed to download it.

situation may occur if a worker node is removed from the Microbase system due to user interruptions,

reboot, or other failure before the file can be successfully copied. If a permanent failure occurs, an

appropriate notification message is sent from the worker node to instruct interested subscribers. At a

minimum, this results in the torrent entry being deleted from the torrent look-up database.

As with the resource acquisition process (described in the previous section), the BitTorrent imple-

mentation details are masked from the user application.

5.5 Discussion

A resource distribution system has been developed to meet the scalability, reliability and extensibil-

ity demands of the Microbase system. Distributed collections of worker nodes are typically better

103

Await publication
outcome

Create .torrent
for data

Need to publish resource

Resource
publication failed

User Application Resource system client

Has free network
capacity / download slot?

Torrent look-up service

Resource data
Torrent storage

successful

.torrent
content

sent
Torrent entry

stored

"New resource to archive"
message sent

Expose data via
Azureus

Forward event to
listener(s)

Notification service

Archive request
arrived

Local worker node

Has free network
capacity / download slot?

Download
resource

Torrent archived
succesfully

Added to
upload queue

Point-to-point webservice call

Attempt to
disable another

torrent

Forward event to
listener(s)

Notification service
Archiver node

Await publication
outcome

Resource published

Await notification event or poll server

"Archive success"
message received

"Archive failure"
message received

Torrent is
shared

"Resource archive success"
message sent

Send notification

Send failure
notification

Download time-out
reached

"Resource archive fail"
message sent

Request remote
file is re-shared

Torrent is
unavailable

Forward
broadcast event

to listener(s) "Re-seed
torrent"

message sentNotification service

File exposed via
BitTorrent

"Re-seed
torrent"
message
received

Bit-Torrent
transfer

Forward event to
listener(s)

"Resource archive fail"
message received

Delete torrent
entry

Torrent data
deleted

Torrent entry
deleted

Figure 5.7: Shows various possible operations and state changes in different subsystems as an appli-
cation publishes a data file to the resource system. User applications running within worker node(s)
(green), call a ‘publish’ method on the locally-running portion of the resource system — the client
library (yellow, within boxed area). A Web service call is made to the resource system’s torrent
look-up service in order to register lightweight torrent data and its associated annotations. This
triggers a message to be routed via the notification system (purple), arriving at a resource system
archiver node (yellow, bottom). The archiver node attempts to perform the bulk transfer operation
via BitTorrent, directly from the worker node. The eventual outcome of this transfer operation is
published as another notification message, allowing listeners to perform the appropriate operations.

suited to course-grained application-level parallelism, rather than finer-grained, distributed thread-

based parallelism (see background chapter Section 2.2.1 on page 18). Exploiting application-level

parallelism allows each instance of an application to execute independently on its own worker node,

with little or no IPC required between worker nodes. Importantly for Microbase, this form of par-

allelism does not require modification of existing applications (see Section 3.3.5), provided that

a suitable data staging and execution environment exists. Specifically, of particular relevance to the

Microbase resource system, application-level parallelism typically requires large blocks of input data

to be staged prior to application execution, and blocks of result data to be retrieved post-execution.

This is in contrast to thread-level parallelism, where multiple threads may be working on the same

distributed shared memory model of, for instance, a matrix, requiring near-constant communication

of small sections of that matrix. P2P data transfer methods are well suited to the former case, and the

Microbase resource system has been designed with this in mind in order to efficiently distribute data

in the form of files to a large number of nodes.

104

By sitting as a layer between a domain application, the computer hardware, and the job scheduling

component of a responder , the resource system can contribute significantly to the high-level

Microbase system requirements. The resource system facilitates the de-coupling of job scheduling

operations from the execution of jobs on specific worker nodes. The ability to annotate resource

files enables worker nodes to perform runtime look-up operations in order to determine appropriate

platform-specific binary files. Therefore, scheduled jobs may be run on any available operating

system/architecture distribution that happens to be available at a particular point in time, provided

that suitable native-executable files are available for the platform(s). This helps to meet system-wide

environment requirements (see Section 3.3.1 and 3.3.5). The use of the BitTorrent protocol facilitates

large-scale data and software distribution by permitting worker nodes to work co-operatively. Each

node contributes network bandwidth and temporary disk space to the distribution system (see Section

3.3.2).

The use of a worker node’s local disk space as temporary storage of result data is advantageous to

system-wide efficiency and scalability for a couple of reasons. Firstly, the ability to cache result files

on worker nodes allows nodes to process new work while concurrently uploading the result files from

a previous job execution. Secondly, output files from one program may need to be used as input data

for another program. If the second program happens to execute on the same worker node, then the

required input data will still be available locally, and so no data transfer operation will be required.

If the second program executes on a different worker node, then files will need to be transferred to

that node. However, file transfers can occur directly between the two nodes via BitTorrent, requiring

minimal server overhead (Section 3.3.2).

The server-resident portion of the resource system, responsible for permanent archival of data, is

trivially extensible and scalable both in terms of disk capacity and in terms of load balancing worker

node requests. Larger numbers of worker nodes can be accommodated by simply installing addi-

tional archiver node instances, which can be done at runtime by starting another server application

container. File transfer protocols such as FTP can make available an unlimited number of files sim-

ply by exposing a shared directory. BitTorrent implementations cannot support limitless numbers

of ‘shared’ files simultaneously because each shared file consumes system resources. However, by

combining the BitTorrent implementation embedded in the resource system with the notification

system, de-coupled co-operation between nodes is possible. Messages can be sent requesting that

particular files are exposed via BitTorrent, making it possible to share as many files as there are disk

space, albeit not simultaneously and with a messaging delay overhead. Therefore, the Microbase

system-level extensibility requirements have been fulfilled (see Sections 3.3.2 and 3.3.4).

105

The resource system provides a facility for permanently archiving file-based resources. Stored re-

sources can be queried by name, version, or any other combination of implementation-defined an-

notations. Each version of a file is also uniquely identifiable. While this functionality alone is

insufficient to enable arbitrarily-extensible pipelines, it is necessary. When taken together with the

extensible notification system (see Chapter 4) and the way in which the job management system

(Chapter 7) works, the resource system provides an essential repository of software and previously-

completed data files required as ‘hooks’ to which future responders could be attached. Additionally,

file versioning permits hot-patching of user job implementations, including third-party native exe-

cutable files since, by default, the job management system selects the latest version of a given file.

Meanwhile, the archival of old software versions means that it is possible to re-run older software if

necessary, for example, to compare program outputs. The resource system described in this section

therefore addresses the scaleable distribution requirement (see Section 3.3.2 on page 53), and assists

with system wide extendibility and maintenance requirements (Section 3.3.4).

Regarding the raw data transport layer, the Microbase resource system compares favourably with the

data transfer protocols used by other desktop Grid systems, including support for client-side data

caching and server striping. The use of BitTorrent permits data transfers via Wide Area Networks

(WANs), such as Internet-connected nodes. Although the Microbase resource system does not scav-

enge desktop storage space permanently as other systems such as FreeLoader [308] do, the resource

system does temporarily cache large amounts of data locally, facilitating scalability in the presence

of bursts of high-demand for particular files.

Importantly for responder developers, no knowledge is required of the underlying BitTorrent trans-

port mechanism. Data publication and retrieval operations are exposed via a public API and deal in

terms of well-known, higher-level concepts such as files, unique identifiers and annotation metadata.

Handling of torrent files, file availability co-ordination and system resource management of ac-

tive files is handled by the underlying implementation and is not exposed to the application developer

(see Section 3.3.6.1).

106

Chapter 6

Responders

6.1 Introduction

The Microbase core components (notification system, resource system and job management system)

form a generic Grid infrastructure in which applications can operate. Microbase provides the means

to perform distributed computation for the end-user, enabling the execution of domain-specific anal-

ysis implementations for end users.

Domain applications need to be able to operate within the Microbase environment. This involves

one of the following: writing applications that make use of Microbase services explicitly; writing a

Microbase-compatible wrapper around an existing application; or modifying third-party application

programs to be “Microbase-aware”. This chapter discusses the first two options only. The modifica-

tion or recompilation of third-party software is not within the current scope. Such modifications are

likely to be application-specific and in any case are not always possible, for instance where the source

code of an application is not available, or is sufficiently complex to prohibit modification. Therefore,

this chapter discusses encapsulation of existing applications within a Microbase-aware wrapper that

is responsible for interfacing an application with the rest of the system.

Chapter 3 introduced responders as modular components through which a Microbase system can

be extended arbitrarily. This chapter describes the composition of a responder in more detail and

also discusses a framework, and a design pattern that has been developed in order to simplify the

development process for responder software developers. Previous works have emphasised the need

for Grid application programmers to structure their software into appropriate modules providing

different types of functionality, in order to allow the best use of available hardware and to assist

runtime program mobility [21]. Other works have highlighted the need for distributed application

107

development to be straightforward and convenient for application developers, while being conducive

for automated deployment in environments where administrative restrictions may be in place [116].

The framework described in this chapter aims to provide the necessary abstractions and support

infrastructure to provide a convenient means for developers to write Microbase Grid applications in

this way.

The term ‘responder’ arises from the event-driven nature of a Microbase system; a responder will

typically remain idle until triggered by a message received from the notification system. A responder

is a loose collection of modules that when taken together, encompass the entire scope of a domain ap-

plication’s existence within a Microbase system. This scope includes: the command-line application

itself, which may include one or more identical instances on worker nodes; an application-Microbase

bridge component; and server side modules such as Web service query interfaces and associated

structured databases. The term ‘responder’ refers only to the collection of modules defined by the

developer-imposed functional relation between the modules; it does not specify the physical deploy-

ment of responders, such as the location or number of instances of each sub-component that are

deployed to a system. The responder as a whole can be installed into an existing Microbase system

by installing each individual module to its appropriate location.

6.2 Motivation

6.2.1 Bridging Microbase and domain applications

For many typical bioinformatics command line applications, the idea of running anywhere other than

a single machine is an alien concept. There is therefore a need to bridge the conceptual and practical

differences between an application’s ‘world view’ of running on a single machine, and the reality of

a highly parallel and dynamic distributed environment such as Microbase.

When operating on a single machine, or dedicated computer clusters, domain applications are gen-

erally installed once and used repeatedly as required. In the Microbase environment, there is a

system-level requirement (see Sections 3.3.1 and 3.3.5) for applications to be installed to worker

nodes on-demand, and then removed when a worker node is re-claimed by a higher-priority task,

such as a user log-in. Per-node installations may have to be performed multiple times over the course

of a task enactment due to the volatile nature of the available worker nodes. There is also a system-

level requirement to support multiple operating systems and processor architectures, where this is

feasible. There is therefore a need for responders to expose domain applications in a form suitable

108

for cross-platform, automated deployments and executions. In addition to cross-platform deploy-

ment, responders also need to facilitate platform-agnostic execution of applications. Executing the

same domain application on different operating system platforms may necessitate slightly different

command line strings. For instance, an obvious example is the different executable file names used

on different platforms: .exe or .bat on Windows vs .sh or the executable file permission bit on

UNIX. In addition to platform-specific binary files, differences in program paths and names leads to

a requirement to encapsulate domain applications into convenient cross-platform packages. Previous

work has highlighted the need for completely automated installations of software in distributed com-

puting environments [271]. If packaged software were capable of being deployed to worker nodes

via the Microbase resource system, then this would also satisfy both the requirement for a responder

to function in a heterogeneous environment (see Section 3.3.1), and also the requirement for applica-

tions to be conveniently repeatedly installed (see Section 3.3.1 on page 52). If these packages were

also distributed by the Microbase resource system, then the scalability requirements for distributing

applications repeatedly to many worker nodes would also be met (Section 3.3.2).

There is also a system level requirement to handle job execution failures gracefully (see Sections

3.3.1 and 3.3.4). One way in which transient job execution failures can be dealt with is to migrate

them and their associated executable and data resources to a different worker node for another exe-

cution attempt at some point in the future. This further demonstrates the need for easily-migrated,

cross-platform executable packages of domain applications, since there is no guarantee that a fu-

ture execution attempt will occur using a worker node with the same operating system or processor

architecture as previous execution attempt(s).

In addition to deploying executable applications to remote worker nodes, run-time data transfers

also need to be handled. Most command line applications will expect their data input(s) to come

from arguments specified as part of the command line, or files on the filesystem local to the worker

node. Worker nodes cannot be expected to have the necessary files pre-loaded locally, and cannot

be relied upon to store output data files for more than a few hours. Therefore, data input files will

need to be transferred from a centralised, permanent file store to the worker nodes prior to execution.

While inter-node data transfers are handled by the resource system, the responder must specify (in

a cross-platform manner) which input files should be copied to a worker node in order to process a

particular job. Additionally, many programs will create new files during their execution. Some of

these files may be useful result files, while others are temporary intermediate files to be discarded.

The responder must therefore specify which output files should be copied from the worker node to

permanent storage on completion of an execution.

109

6.2.2 Responder pipelining, extendibility and developer convenience

Another Microbase system requirement is the ability to form automated pipelines of tasks (see Sec-

tions 3.3.2 and 3.3.5). The required responder functionality discussed in the previous section is not,

by itself, sufficient to support this system level requirement. There are two issues to be overcome:

automated command line generation and pipelining.

Executing a command line application on a single machine involves the operator locating the cor-

rect input files, determining appropriate values for command line arguments, and finally, invoking

the command. If the same program must be run with different sets of data, or the same data with

different parameters, then multiple command lines will need to be invoked. This process is fairly

straightforward since the researcher should be able to provide the appropriate values. Automating

this process is more difficult. If the computational work to be completed is known ahead of time,

then a suitable batch script or equivalent Condor-submit file could be constructed to execute each

command line in turn, either sequentially or in parallel on a set of worker nodes. However, in order

to satisfy Microbase system requirement (see Section 3.3.5), computational work must be determined

dynamically at run-time, with no human intervention. The responder therefore needs to be able to

receive event messages from the notification system, interpret these messages, and translate them

into computational work units (command lines) for distribution to worker nodes.

There is a system-level requirement to allow organising multiple domain applications into a struc-

tured workflow (see Section 3.3.5). In order for this requirement to be fulfilled, it must be possible to

co-ordinate these applications, and to permit data flows between them. In Microbase, the notification

system (Chapter 4) provides the necessary high-level messaging functionality required for responder

co-ordination, while the resource system (Chapter 5) allows scalable data transfers between differ-

ent processing stages of a pipeline. The responsibility of the responder framework discussed in this

chapter is to make this functionality conveniently accessible to responder and pipeline developers.

6.3 Requirements

The responder development framework has been designed to accommodate the overall system-level

requirements as described in Chapter 3:

• Facilitate scalable application deployment through domain-specific, modular, extensible com-

ponents.

110

• Extensibility and maintainability: each responder should be self-contained, and be able to co-

exist with other responders. A particular responder should not have unintended side-effects on

other responders present in the system.

• Extensibility: responders must use the Microbase resource system to store result file outputs.

Some or all of these files may or may not be required for the pipeline originally intended to

accommodate a given responder. However, future responders may require the existence of

these files. In order for future responders to operate correctly, and to avoid repeating work,

such files should be stored in the resource system rather than be discarded.

• Provide cross-platform computational abilities: it should be possible to write responder im-

plementations in an interpreted language such as Java, or have the capability of linking to

platform-native executable programs for multiple architectures.

• Development convenience: The responder framework must provide a straightforward API

which to wrap existing applications for use with Microbase. It must also be straightforward to

deploy responders and their wrapped applications.

In order to meet the above system-level requirements, the responder developer framework must pro-

vide application developers with the following capabilities:

1. Permitting responder developers to create cross-platform, distributed applications as a series

of Java Plain Ordinary Java Objects (POJOs). The compute-intensive work will be performed

either within one of these POJOs, or the POJO will act as a thin wrapper around a third-party

command line application.

2. Access to bulk data transfer capabilities of the resource system and the messaging capabilities

of the notification system.

3. Insulation from having to interact directly with Microbase Grid Web service APIs (notification

system and resource system) as discussed in previous chapters.

4. Enabling domain-specific platform-native applications to be encapsulated within packages ca-

pable of being efficiently transferred to multiple worker nodes via the Microbase resource

system.

5. Responder implementations must be able to specify their required input and output resources,

so that Microbase can provide the appropriate operating environment on worker nodes.

111

In order to integrate effectively with other responders, the framework must provide the facilities to:

1. React to external events from other responders present within a Microbase installation.

2. Generating new events for publication to the notification system in order to report completed

work or error conditions.

3. Respect the notification system requirement for reasonably-sized messages and timely message

receipt acknowledgements (see Section 4.4.1 on page 76).

4. Provide appropriate means for other responders to interpret generated notification messages.

For example, via provision of suitable message parsers.

It is unreasonable to expect a system administrator to unravel inter-dependencies between related

groups of responders. In order to meet system administration user requirements (see Section 3.3.6.2),

the following should be provided:

1. Self-registration of responders, including registration with the Microbase configuration service

and notification system. Appropriate notification topics and subscription entries will need to

be created.

2. Convenient installation of each responder module — some responder modules will need to be

deployed to Tomcat servers, others to the Microbase resource system.

6.3.1 Responder structure

The requirements for a Grid application development framework were discussed in the previous

section. This section describes the development of a framework intended to allow easier construction

of Grid-aware applications. Although writing applications that use Microbase Web services directly

is certainly possible, it is challenging for a number of reasons. There are a several different core

services, which may be distributed over several physical servers. For many cases, in-depth knowledge

of Microbase service APIs is not required, if a suitable insulation layer is provided. Developer

assistance is provided in the form of a software design pattern, which if followed, facilitates the

following:

• Abstraction over the notification system. There is only a need to handle domain-specific mes-

sage content, rather than responder-based handling of message queues, error recovery and so

on.

112

• Simplification of data transfers from the resource system to job implementations executing on

worker nodes.

• Computationally intensive jobs may be implemented as a Java ‘bean’ 1, where bean properties

specify data inputs and outputs.

• Enforcement of a clean separation between server-resident and worker-node resident portions

of the responder.

• Automatic detection of executable resources for publication to resource system.

• Assisted deployment to remote servers.

• Automated registration of a deployed responder with Microbase.

A responder wraps an entire unit of domain-specific functionality (see Figure 6.1). This typically

comprises:

1. a server-side component for responding to external event notification messages from the Mi-

crobase system

2. compute job component(s) that perform the CPU-intensive operations. Multiple instances of

these components will be run in a distributed fashion.

The architectural split is necessary in order to fulfill system-level requirements and to make the best

usage of the capabilities provided by the underlying technologies. For instance, a Web service-based

event handler is well-suited to receiving events from external components via the notification system

as a push subscriber . Having an ‘event handler’ module that implements the push subscriber

interface satisfies requirement to react to new data (see Section 3.3.5), allowing a responder to re-

act to external stimuli. Additionally, if the responder requires structured storage, or Web service

query interfaces, a server-based component is a logical and convenient place to put this functionality.

The server-resident portion of a responder is expected to remain idle until an incoming message is

received, at which point, it may schedule computationally-intensive work to be performed. Event

handler modules are responsible for:

• Announcing their presence and current Web service endpoint to a Microbase system. This

involves registration with the notification system in order to receive appropriate notifications

1http://java.sun.com/javase/technologies/desktop/javabeans/index.jsp, accessed 2009/05/13

113

http://java.sun.com/javase/technologies/desktop/javabeans/index.jsp

events. These announcements also permit event handler mobility, for instance, in the case

where excess server load or hardware failure requires the redeployment of a responder.

• Responding to relevant notifications events in order to schedule computationally-intensive

work.

• Deciding how to split a large computational task into multiple smaller units of work, each

suitable for execution on individual worker nodes.

• Publishing new notification events to inform other responders of the success or failure of work

items.

• Event handler modules should only perform lightweight operations, since they execute within

a server environment with limited processing resources

Meanwhile, a computationally-intensive job implementation can be placed in a separate, de-coupled

module. This module can be uploaded to the Microbase resource system and distributed to worker

nodes. Separating the computationally-intensive parts of an application from the organisational parts

(i.e., the event handler) ensures that system scalability requirements (see Section 3.3.2) are satisfied

by enabling BitTorrent distribution of program files to temporary worker nodes, whilst also providing

a ‘well known’ location for the routing of notification events. Environmental requirements (see

Section 3.3.1) are also met, since it would be possible to provide different executable modules for

different pre-compiled architectures. Job implementation modules have the following properties:

• Perform the vast majority of the ‘heavy-lifting’ computational work required by an application.

• Have a cross-platform or multi-platform implementation, where appropriate.

• Able to be deployed efficiently to large numbers of worker nodes.

• In case of worker node failure, should not perform any work that cannot be repeated elsewhere.

6.4 Developer support for responders in Microbase

Implementing any complex software component, such as a Microbase responder can be a fairly

involved process, particularly given the range of technologies used. Software development can be

made more straightforward in several ways, including:

114

Structured
result

storage

Notification event handler
(Web service interface)

Responder

populates

Job implementation (including
cross-platform wrapper)

Platform-specific applications

Incoming event
notifications

schedules

Domain-specific Web service
query interface

Result data queries from
external applications

Outgoing
notifications of

completed analyses

queries

queries
User interface

Figure 6.1: Responder architecture: A responder is a self-contained collection of modules providing a broad range

of domain-specific functionality. Different parts of the responder are deployed to different types of computer hardware.

For instance, databases are deployed permanently to reliable server-grade hardware, whereas computationally-intensive

job instances are deployed on-demand to one or more worker nodes. Job implementations for multiple platforms may be

provided.

• Providing library support that implements commonly-used features.

• Providing design ‘templates’ of individual program files, or even entire projects. This allows

the developer to start with a basic skeletal structure of a file or project and incrementally add

features as the need arises.

• Providing project layout recommendations provide familiarity across multiple projects. For

example, if implementation files are be laid out the same way in each project, program code

follows similar implementation patterns, and similar operations are performed in the same

types of module then moving from one project to another becomes easier.

The various responsibilities for providing the appropriate environment for executing domain appli-

cations in a distributed environment are split between the Microbase core services and the respon-

der implementation. For instance, file transfers and archiving, management of Structured Query

Language (SQL) databases, and data flow and co-ordination operations all require part-involvement

of Microbase core services and part-involvement of responder modules. Of the responder implemen-

tation’s responsibilities, there is sometimes a choice between whether a particular piece of function-

ality is better implemented in the server-based event handler module, or the worker node-based job

115

implementation module, or split between the two. It is the responsibility of the responder developer

to decide sensibly where (i.e., which responder module) to implement a particular piece of func-

tionality. While developing the Automated Genome Analyser (AGA) pipeline (see Chapter 8), we

discovered a pattern of commonly-needed project structures or functionalities that have since been

incorporated into the responder development framework described here.

This section describes implementation possibilities of commonly-required functionality, and suggests

how a typical responder implementation might be achieved. Where generic library support for a par-

ticular implementation task has been provided as part of the responder development framework, this

is pointed out. Finally, a Maven [114] project layout for the implementation of Microbase responders

is presented. The advantages of using Maven archetypes for software development are discussed in

Section 6.5. If the suggested Maven archetypes are used, the result will be a responder that has

strict modularity, can benefit from semi-automated installation into a Microbase pipeline, and whose

design structure will be familiar to other responder developers, promoting code re-use.

The intention of the responder development framework described here is to provide a straightfor-

ward self-contained development structure that minimises exposure to Microbase core service APIs

wherever possible. For example, abstract classes are provided for event handler and job imple-

mentation modules. These classes provide much of the commonly-required functionality and require

only that the developer add or override specific methods in order to provide domain-specific func-

tionality.

A complete tutorial on how to write a responder is beyond the scope of this chapter. An exam-

ple of a simple, but fully complete and working responder is provided in Appendix A. Complete

listings of example event handler and job implementation responder modules can be found at the

Microbase project Subversion repository: http://microbase.svn.sourceforge.net/viewvc/

microbase/trunk/microbase-examples/?pathrev=284.

6.4.1 Responder initialisation

The initialisation process of a responder involves the following actions:

• Registration of the Web service endpoint with the Microbase system.

• Registration of the responder with the notification system so that the responder is permitted to

send and receive notification messages.

116

http://microbase.svn.sourceforge.net/viewvc/microbase/trunk/microbase-examples/?pathrev=284
http://microbase.svn.sourceforge.net/viewvc/microbase/trunk/microbase-examples/?pathrev=284

After registration, if the event handler Web service is subsequently moved to a different physical

server, the host name part of its endpoint will change. In order to continue receiving event notifica-

tions, the notification service would need to be informed of this endpoint change. By ensuring that

service registration occurs at every service start, the Web service can be migrated between different

servers without any need for reconfiguration. This behaviour satisfies maintanaince and flexibility

requirements .

A minimal event handler implementation might resemble the following fragment:

public class MyEventListener

extends AbstractEventResponder

{

public MyEventListener()

throws ConfigurationException

{

setIncomingTopicIds(... list of topic IDs interesting to this responder ...);

setOutgoingTopicIds(... list of topic IDs published by this responder ...);

}

@Override

protected void responderInitialisation()

throws ConfigurationException

{

// ... responder-specific configuration ...

}

@Override

protected void dealBroadcastMessage(BroadcastMessage messageItem)

{

// ... handle broadcast message here ...

}

@Override

protected void dealMessage(MessageLogItem messageItem)

throws UnrecoverableException, TransientException

{

// ... handle message here ...

}

Behind the relatively simple event handler implementation, a complex set of operations must be

performed to fully initialise and register the responder with a Microbase system (see Figure 6.2).

These operations are performed entirely by the responder support library.

The Web service endpoint of the event handler is determined automatically, and registered automati-

cally. Notice that there are no references to the notification system Web service client at all. Instead,

117

the constructor contains two method calls that inform the support library of the UIDs of the notifi-

cation topics that are of interest to this responder implementation. If processing of the constructor

completes successfully, then the responder can assume that it has been successfully registered as a

publisher and a push subscriber with the notification system. Required message topics will

also be created, if they did not already exist.

After successfully registering with the notification system, the responderInitialisation()

method allows responder-specific initialisation to take place. The content of this method are entirely

responder-specific, but would be a suitable place to connect to database pools or perform consistency

checks before any message processing begins.

Abstract event
handler

Initial trigger
event occursNotification system

Necessary
message topic(s)

added

User responder
(event handler)

(re)register
responder endpoint

Endpoint / subscription
information sent

Perform
necessary

registration

Delegate to user
implementation

Incoming notification
message reception

blocked

Responder starts in
application server

Specify interested
topics

Event responder
initialisation

complete

public MyEventListener()
{
 setIncomingTopicIds(...);
 setOutgoingTopicIds(...);
}

Subscriber
endpoint updated

Topic information
passed to super

class

Perform responder-
specific initialisation

(e.g., connect to
SQL database) Control passed

back to user
implementation

@Override
protected void responderInitialisation()
{
 //Implementation-specific initialisation
 DbPool pool = createConnectionPool(...)

}

Implementation
specific initialisation

completed

Request undelivered
messages for this

responder

Stage 1:

Stage 2:

Stage 3: Initialise message queues

Find undelivered
messages

Add messages to
local queue

Web service
request sent

Bulk-download
outstanding
messages

Publisher
entry

updated

Incoming notification message
reception resumed

Figure 6.2: Shows the background tasks undertaken by the responder support libraries when a responder event handler

starts inside an application container.

Stage 1 involves blocking incoming messages while the responder is still in an initialisation state. The current Web service

endpoint is determined, and (re)registered with the notification system. Required message topics are also created, if this is

the first time the responder has been started.

Stage 2 allows the responder to perform implementation-specific initialisation operations. This might include contacting

external services, setting up database connection pools, and so on.

Stage 3 involves the bulk-download of existing notification messages that were perhaps sent while the event handler was

off-line. Finally, incoming event notification is re-enabled, allowing the event handler to respond to new messages.

6.4.2 Handling notification events

On successful completion of the responder-specific initialisation section, the event handler becomes

idle until there is a message for it to handle. When a new message arrives, either dealMessage() or

dealBroadcastMessage() are called, depending on whether the message is a ‘normal’ message

or a ‘broadcast’ message (see Chapter 4). Each of these methods are passed an object that includes

118

the content of the message, including meta-data listing publication time, which responder published

the message, and so on. Notice that there is no direct involvement with the notification system. The

responder developer only needs to override the appropriate method in order to process incoming

event notifications.

Figure 6.3 shows how a typical event handler portion of a responder operates as part of a chain of

responders. The operations shown in ‘User Event Handler 1’ are not absolutely required; an event

handler may perform any kind of operation as determined by the responder developer. Typically,

most event handlers will respond to an incoming event by requesting an amount of computational

work to be performed. If there is a ‘large’ amount of computational work, then the event handler is

responsible for splitting the required computational work into multiple parts for execution on differ-

ent worker nodes. It will then wait for the result of the computation, before sending a notification to

indicate that an analysis operation has been completed.

Interpreting incoming messages

The first challenge in processing an incoming message is to be able to interpret its meaning. There

are two issues for a responder developer to consider: message content and message format. We

make the assumption that if a responder registers an interest in a particular topic, then it should at

least have an understanding of the content of those messages. For the formatting of the message, the

specification of the notification system does not stipulate any formatting guidelines for the message

body. The convention we have adopted for internal Microbase messages, as well as messages sent

between AGA responders is to represent message content in the form of standard Java data beans.

This approach has the following advantages:

• Provides convenient access to message properties.

• Complex data types (sets or lists of items) can be used, if required.

• Java data beans can be easily serialised into an Extensible Markup Language (XML) message

body through the standard Java serialisation libraries.

The caveat, however, is that a responder wishing to parse a message sent by another responder must

have access to the appropriate message data bean in order to de-serialiser the message content. Since

different responders are separate, modular projects, this access is not provided by default. A solution

to this issue is discussed later.

119

Initial trigger
event occurs

New task notification
message arrived

Task processing

Task report sent

Job management
system

Event handler
schedules task

Task descriptor
message sent

User Event
Handler 1 Work needs to be

completed
Trigger event

arrived

Post-task
check failure:

send notification

Task report
message received

Data check
failed

Post-task
check success:
send notification

Data check
succeeded

Domain-specific
'failure'

message sent

Domain-specific
'sucess'

message sent

User Event
Handler 2

User Failure
Handler

Next user responder
in pipeline...

Perform necessary
failure-handling

operations

Forward event to
listener(s)

Notification system

Forward event to
listener(s)

Notification
 system

Forward event to
listener(s)

Notification system

Forward event to
listener(s)

Notification
system

Forward event to
listener(s)

User Event
Handler 1

User Event
Handler 2

User Event
Handler 3

User Event
Handler ...

Initial trigger
event occurs

Figure 6.3: Green shaded boxes are user responders, purple boxes represent actions performed by the Microbase notifi-

cation system. Actions performed by the task management system are represented by the cyan-shaded region.

A pipeline of responders is shown on the left of the diagram. The first responder has been expanded to show the types of

operations performed by a typical event handler:

1) A notification message is received.

2) If this event requires some computationally-intensive work to be performed, then the type of work needs to be deter-

mined.

3) A notification event is published by the user responder, containing details of the work to be performed.

4) This message is forwarded by the notification system to the job management system.

5) The job management system uses available worker nodes to complete the work. On completion, a task report is pub-

lished, and forwarded via the notification system, back to the user responder.

6) The event handler should inspect the task report for successful or failed jobs. The event handler should use application-

specific knowledge to determine whether the computation was successful in order to determine what further action to take.

7) On successful completion, the next responder in the pipeline is triggered by the publication of a ‘success’ message,

indicating that new data is available.

8) On failure, the responder developer can choose what action to take. For example, either the event handler could send a

‘failure’ message to alert another component to the problem, or it could attempt a corrective action itself.

120

Sending a message

Sending messages from a responder to the notification system is straightforward. The abstract event

listener provides appropriate methods for publishing messages. A responder simply needs to provide

a message topic, and a suitably-serialised message body.

Reliability, scalability, failure handling

There are a number of situations that may impede the efficient operation of responders, and the

operation of the notification system in general. If notification message delivery is tightly coupled

to message processing, then receipt of a message only occurs when successful processing of that

message is complete. This behaviour is required so that if message processing fails for some reason,

then it can be retried at a later time — when the notification system retries delivery. However, the

problem with this approach is that a notification system message delivery thread is occupied the

entire time that a message is being processed by a responder.

Queues are well suited to this type of producer-consumer problem by permitting both processes to

continue at their own rate; the notification system to wait for slow message processing operations.

The responder support library de-couples message delivery from message processing by maintaining

a buffer of messages received from the notification system. Each responder has its own unique, inde-

pendent buffer. Instead of processing a message immediately upon reception — a potentially lengthy

operation — the message can be added to the queue, permitting a successful delivery acknowledge-

ment to be sent back to the notification system straight away. This approach allows notification sys-

tem delivery threads to be freed quickly, allowing messages to other responders to be processed (see

Figure 6.4). However, in accepting the message and signalling a successful delivery, the responder

must take responsibility for handling errors that might occur during message processing.

There are two types of failure that may occur: permanent and transient. Permanent failures are those

where no matter how many times an action is retried, it will always fail. For example, if a data entry

is missing or inconsistent, or if a program bug prevents a successful operation. Other failures may

be transient, that is, if they are retried at a later time they may succeed. For instance if an event

handler must connect to a database or other external services in order to process a message, there

is no guarantee that those external services are continuously available. If such external services are

unavailable then message processing will fail. However, if the failed external service is repaired, then

a subsequent retry will succeed. A message processing attempt will also fail if the server hosting the

event handler suffers a failure, such as a power loss or unexpected reboot.

121

Notification message handling

Incoming notifications

Outgoing notifications

N
ot

ifi
ca

tio
n

pu
sh

 s
ub

sc
rib

er
 in

te
rf

ac
e

Message
collector

Message
publisher

Outgoing
message
queue

Incoming
message
queue

User
event handler

implementation

Figure 6.4: Messages received from the notification system are stored persistently in a queue, local to the responder.

Message delivery acknowledgement occurs as soon as a message is stored in the queue. This allows the notification system

to continue with further deliveries. From the perspective of the notification system, the message has been successfully

delivered and is no longer its concern. Meanwhile, queued message items are processed in order, at the fastest rate achiev-

able by the responder. If message processing is successful, the item is removed from the queue. If a fault occurs during

message processing, the message item will not be removed from the head of the queue, allowing it to be retried after a delay.

A similar queue is used to temporarily store outgoing message publications from the responder. Instead of send-

ing a message directly to the notification system, outgoing messages are first queued. If the notification system is

temporarily unavailable, then the event handler library will handle retry attempts. This approach enables a responder to

continue functioning in the absence of the notification system. It also adds reliability by ensuring that outgoing messages

are not lost if both the notification system and the responder suffer a crash simultaneously.

Additionally, the notification system itself is not guaranteed to be available continuously. If the

notification system is unavailable for a length of time, then it cannot accept messages published by

responders during this time. If the responder also suffers a failure while the notification system is

unavailable, then messages pending publication may be lost.

To address these issues, the responder support library stores messages in the local queue until they

have been successfully processed. A processing failure will result in the message being retried at

a later time. Message processing attempts that repeatedly fail due to non-environmental, transient

problems are skipped after a retry limit is reached.

6.4.3 Executing command line applications

Job implementations in Microbase can be thought of as an extended Java bean . Microbase func-

tionality is exposed indirectly; the developer does not need to interact directly with data transfer

mechanisms or core Microbase functionality. Bean properties are used to hold or reference in-

put and output data. Similar kinds of approach have been used in previous works (see Background

Section) as a means of simplifying development of distributed computation systems.

122

Consider the following Unix command line, which will execute the BLAST program over two se-

quence files to produce an alignment:

./bl2seq -p blastn -e 0.00058 -i sequence1.fasta -j sequence2.fasta -o blast_output.txt

The command string may be broken into several parts:

• Executable program name: bl2seq

• Inline command line arguments: -p blastn and -e 0.00058

• Command line arguments requesting input files:

-i /genomes/NC_000964.fna and -j /genomes/NC_002570.fna

• Command line arguments representing output files: -o blast_output.txt

The program name corresponds to the file name and location of the executable on the computer’s

disk. Some input parameter values are passed to the program in-line — the content embedded within

the command line string is a data item that will be used as-is by the application, or parsed into an

appropriate data type, such as a floating point number. Input values embedded in a command line are

necessarily small data items in order to fit within an operating system’s command line buffer space.

When large quantities of data need to be accessed by a program, such as a genome sequence, the

data is placed into a file instead. In this case, a command line parameter is used with an appropriate

‘pointer’ to the file containing the required data content. Similarly, command line parameters are be

used to specify where a program places its outputs.

The distinction between the different parts of a command line is important when executing an appli-

cation in a distributed environment. Worker nodes will not necessarily have the required input data

files, or indeed the executable files, on their file-systems. These files therefore may need to be copied

to the worker nodes at run-time. Microbase is responsible for handling these file transfers, but it must

be told which files need to be copied; this is the responsibility of the responder developer. Microbase

makes a distinction between input parameters and input files because it uses separate transfer mech-

anisms for each. The Microbase resource system is efficient at transferring large data items, such

as sequence files, but there is a prohibitively high overhead when transferring small items of just a

few bytes in size. Therefore, input parameters that do not represent file names (i.e. large resources)

are transferred as part of the job description sent to worker nodes via a Web service call. Again, the

distinction between these is application-dependent, and therefore the responsibility of the responder

developer to inform Microbase appropriately.

123

Dealing with job I/O

Java annotations allow information to be attached to classes , properties , methods , or even

other annotations . This information can be introspected at runtime if necessary. Microbase

makes extensive use of annotations in order to allow the job implementer to specify which bean

properties should be treated as Input/Output (I/O) entries for the job.

There are two annotations provided by the responder framework that can be used to specify the inputs

to job implementations:

@InputParameter allows the developer to specify ‘small’ data items to be passed to the Java im-

plementation. Valid java data types are: primitive types such as int , long , boolean , as

well as String values. Although it may be possible to send ‘large’ (megabytes) Strings as

parameters, this is not recommended.

@InputResource allows ‘large’ resources to be sent efficiently to a job implementation via the Mi-

crobase resource system. @InputResource allows the use of many structured data types to

be used within a Java compute job without the need for the implementation to have knowledge

of where the resource originated from, or how to marshal and un-marshal objects across a net-

work. Almost any serializable Java type may be specified used with @InputResource

. Microbase will handle deserialisation of complex types, including: Maps, Sets, and Lists.

The Java type File may also be specified for data items that will not fit into a worker node’s

available RAM, or for objects that need custom (de)serialisation. In this case, the raw file is

available to the job implementation. Using File is useful when input data is required to be

passed to a command line application, rather than for consumption by the Java wrapper.

An annotation is also provided to be used to specify the outputs of job implementations:

@OutputResource allows result items (such as structured Java objects, or files created as a result

of executing a command line application) to be ‘collected’ and archived by Microbase. The

same data-types supported by @InputResource are also supported by @OutputResource.

The following example illustrates how these annotations can be used:

124

The standard bean property ‘get’ and ‘set’ methods are annotated. At run time, the job management

system (described fully in Chapter 7) reads the content of these annotated methods in order to set

the appropriate values before control is passed to the job. If appropriate annotation values are used,

the job implementation can assume that the input values will be downloaded, de-serialialised and

‘set’ automatically. Likewise, when the job finishes executing the ‘ doWork() ’ method, the job

management system calls the appropriately-annotated ‘get’ accessor methods in order to retrieve the

result objects, exposing them to the resource system for archiving.

Dealing with platform-native executable packages

In order to satisfy the requirement, it must be possible to handle native executables in a cross-platform

manner. Non-Java platform-native applications must be downloaded and installed to the worker node

in the same way as other input resource files. However, there is an important difference — there is

no way to know until run-time which executable package file will be needed. For this reason, na-

tive executable packages cannot simply be treated as Java Files in the same way as a input data

files, because it is not possible to resolve them directly by their UID. Instead, the responder devel-

oper framework provides the class NativeExecutable , which represents a native application

package.

In order for a native command line application to work with Microbase, it must be ‘packaged’ ap-

propriately. Essentially, ‘packaging’ entails copying an application’s file structure, verbatim, into a

standard zip file, along with a Microbase-specific mappings file. The mapping file is a text file that

125

maps a developer-assigned name to each executable file path. For example, an application’s directory

structure might contain the following:

|-- bin

| |-- bl2seq

| |-- blastall

| |-- blastclust

| |-- blastpgp

| |-- copymat

... etc ...

Then, the a valid mapping file might be:

bl2seq = blast-2.2.18/bin/bl2seq

blastall = blast-2.2.18/bin/blastall

blastclust = blast-2.2.18/bin/blastclust

... and so on ...

Application resource files cannot be specified by a resource UID in a job description, so another

means of identification is necessary. Two further annotations have been provided:

PlatformSpecificResource This annotation is used to modify an existing InputResource anno-

tation. It specifies that the job input is a platform-specific resource, and allows the name and

version of a required software package to be specified.

UseSharedCopy If a worker node has multiple processing cores, it is possible that two or more

cores may be running the same application but with different data. The presence of this anno-

tation or absence of this annotation determines whether each job instance uses a shared native

executable installation, or whether each instance has its own unique copy of an application.

Program information specified by a PlatformSpecificResource annotation, combined with the

operating system and processor architecture information provided by the worker node runtime envi-

ronment are used to query the resource system for a matching file (Figure 6.5). The ability to tag and

query files in the resource system is essential for this runtime selection process to function.

6.5 Maven project layout

The conceptual architecture of a component in a typical software system may be distinct from its

physical implementation. For instance, particular implementation files can be placed within a di-

rectory structure at the choosing of the developer. Maven [114] is a project and build management

126

 OS Name: Windows
 CPU Arch: x86

User job implementation

 private NativeExecutable blastExePkg;

 @UseSharedCopy
 @InputResource(inputName="blastExePkg")
 @PlatformSpecificResource(resourceName="blast",
 resourceVersion="2.2.18")
 public void setBlastExePkg(NativeExecutable blastExePkg)
 {
 this.blastExePkg = blastExePkg;
 }

 blastExePkg.executeApplication("blastall", ...);

Available run-time properties identify the current platform:

Annotations on native executable input resource identify the required
version of an application:

Executing a program:

(1) Obtain worker node
runtime properties as well
as program name and
version information

(2) Query the torrent lookup
system for torrents matching
the information obtained in
step (1).

Annotations:
OS Name: Windows
CPU Arch: x86
Name: blast
Version: 2.2.18

Windows executable

.\blast-2.2.18-w32\bin\blastall.exe

.\blast-2.2.18-w32\bin\formatdb.exe

.\blast-2.2.18-w32\bin\....

Annotations:
OS Name: Linux
CPU Arch: x86
Name: blast
Version: 2.2.18

Linux executable

./blast-2.2.18-linux/bin/blastall

./blast-2.2.18-linux/bin/formatdb

./blast-2.2.18-linux/bin/....

Resource system
archiver node

(3) Acquire
appropriate file for
the current platform
(Bit Torrent transfer)

(4) Finally, the Java to execute
the native command. This is
the same for all supported
platforms.

Torrent look-up
service

.torrent/
meta-data

storage

Instantiation phase:
A) Runtime environment discovery
B) Acquisition of appropriate native application package
C) Installation of application to a temporary directory

NativeExecutable instance

Installed phase:
A) On calling executeApplication(), looks up requested
program name in the mapping file to determine the
domain-specific executable location, e.g.:
blastall --> .\blast-2.2.18-w32\bin\blastall.exe

B) Call application natively. This process blocks until
application execution is complete

Available annotated resource files:

Figure 6.5: Shows the way in which platform-specific applications are supported in the responder development frame-

work. The box on the left hand side shows the required Java code fragments to be written by a responder developer to:

a) specify that a particular version of a program is downloaded and installed, and

b) how to execute a command line.

When a job implementation is instantiated on a worker node, the Java annotation values are taken in combination with the

runtime platform information in order to query the resource system (top) for resource files with matching tags. Assuming

that a suitable file is found, it is downloaded via the resource system — either from an archiver node or from another

worker node with the same application installed. The downloaded file is then extracted and is ready for use. The command

name mapping file (introduced in Section 6.4.3) is used to map a platform neutral name into a platform-specific pathname.

In this case: ‘blastall’ 7→ ‘blastall.exe’.

127

system designed to facilitate the development of large, complex software projects. Notable Maven

features that are essential to large software developments are: uniquely-identifiable projects, depen-

dency management among projects, and project templates - archetypes . Microbase leverages

Maven’s “design by pattern” approach [248, 247, 266] to specify a mapping between high-level con-

cepts and implementation details in terms of project layout, through project templates. At first glance,

this approach appears to involve an additional learning curve for the application developer, and re-

stricts their free rein over the implementation process, with restrictions on where particular files must

be placed. However, the archetype-driven approach provides significant advantages. For instance,

it simplifies the development process and encourages modular design by providing well-defined lo-

cations for placing implementation files that provide a particular kind of functionality. Once the

layout of a single responder is mastered, the layout of every responder will be familiar. Furthermore,

this approach facilitates the re-use of responder projects by: providing self-contained projects that

can be plugged into another pipelines with minimal modification; the well-known project structure

brings some familiarity to ‘foreign’ responder program code written by other developers. Finally,

this approach facilitates semi-automated installation of a responder into a Microbase system, saving

the developer or system administrator some considerable effort. Correct installation of a responder

is a multi-step process, requiring the interactions of several Microbase components.

6.5.1 Responder project layout and interdependencies

The recommended project layout of a responder is shown in Figure 6.6. There are three typical

sub-projects:

1. The Web service specification Java Archive (jar) project should contain all publicly exposed

features features. These include: Web service interface and Java client factory, data beans

returned by Web service queries, and notification message beans. Other Maven projects and

in particular other responders can specify a Maven dependency to the ‘public’ jar so that can

gain access to the provided Web services and data.

2. A Web Application Archive (war) project containing the private implementation of the server-

based event handler module of the responder. This project should contain Web service im-

plementations and other ‘private’ entities, such as SQL database queries. The content of this

project is for deployment to an application container. Its endpoint should be registered with

Microbase in order to receive event notifications.

128

Web-service
implementation (war)

Web-service
specification (jar)

Responder

Job implementation
(+ jar depedencies

+ native dependencies)

Deployment to
container

Published to
Microbase resource

system

Web application
container

(e.g., Tomcat)

Microbase
resource system

Maven
dependency

Responder Installation

Microbase
configuration

system

Service endpoint
registration

Microbase
notification

system

Publisher,
subscriber, topic

registration

Figure 6.6: Shows the recommended responder sub-projects. A jar-based project should contain
all the publicly-accessible features of the responder, including: Web service specification interfaces,
Web service client factory utilities, data beans used for data transfer via a Web service, and notifica-
tion message beans. If this layout is followed, responders can be deployed to a system via a provided
automated installer utility.

3. A jar project containing one or more compute job implementations. Separating computa-

tionally intensive work from the management logic (implemented in the war file) enforces

modularity and provides a convenient package that may be distributed to worker nodes.

More than one event handler and job implementation project are permitted. Microbase only specifies

the layout of responder ‘event handler’ and ‘compute job’ sub-projects. The developer is also able

to add as many other non-Microbase-related sub-projects as they require to a responder root project.

These additional projects are under the complete control of the developer — i.e., they will be ignored

by the Microbase installation facilities.

Installing a responder into a Microbase system involves multiple steps: web application compo-

nent(s) must be transferred to a suitable deployment server; deployed web applications must be

initialised; and compute job implementations (and their associated dependencies) must be published

to the Microbase resource system. These steps can be automated if the components of a respon-

der are suitably separated, and a machine-interpretable project layout is available. Maven provides

such a machine-parsable project description, and the Microbase-provided responder archetypes en-

force suitable modularisation. Microbase provides an installation application that is able to interpret

responder project layouts. Given a base directory, the installer is capable of searching for Maven

129

Web-service
implementation

(war)
Web-service

specification (jar)

Responder 1

Job
implementation
(jar + resources)

Maven
dependency

Web-service
implementation

(war)
Web-service

specification (jar)

Responder 2

Job
implementation
(jar + resources)

Figure 6.7: Interdependencies between responders. The public Web service specification jar file can
be used to share Web service client factories, data beans, and notification message parsers between
responders.

archetypes that are either event handler or job implementations. Responder projects that follow the

suggested project layout therefore benefit from the installation infrastructure provided by Microbase.

Details of the installation process can be seen in Appendix A.

Inter-operations between responders are facilitated by sharing the content of the public Web service

specification jar with other responders via Maven dependencies. For instance, if the second respon-

der in a chain requires information from a previous responder, it may query the Web service interface

of the first responder by obtaining an appropriate Web service client, packaged in the public specifi-

cation jar. Access to responder-specific data beans is also possible, since they are also exposed via

the pubic specification jar.

6.5.2 Runtime role of Maven artifact information

Job implementation projects may require dependencies on other libraries. Common examples include

database clients, Web service clients for other responders, and libraries for parsing files. In order to

operate, these dependency libraries also need to be present in the resource system so that they may

be installed to worker nodes at runtime. The role Maven plays in enabling a functional Microbase

goes beyond project structuring and compilation. Specifically, Maven project data — the ability to

uniquely identify projects, and their dependencies — is used at runtime. When a job implementation

jar project is installed and uploaded to the resource system, the installation tool also checks its direct

and indirect dependencies. Dependency jars are uploaded to the resource system along with the

130

job jar. In addition, resource system annotations are used to tag the uploaded files with maven

artifact and dependency information. The presence of Maven artifact information attached

to resource files enables worker nodes to resolve dependencies at runtime, allowing them to download

and dynamically class-load the relevant Java code.

In addition to standard jar dependencies, Microbase system requirement also requires the ability to

handle platform-native programs. The standard Maven dependency mechanism applies to all plat-

forms, and are therefore insufficient for this task. Using the Maven dependency mechanism would

result in every platform native package being ‘required’ and therefore downloaded and installed to

every worker node, regardless of the actual worker node platform. The standard Maven jar ar-

chitype has been extended with an additional directory ‘mb-resources’ to hold platform-specific

resources. The advantages for this extension are twofold. Firstly, it provides developers with a con-

sistent location to place packaged platform-native executions. Secondly, this extension allows all

platform native files to be uploaded to the resource system at installation time, but only requires rel-

evant files to be downloaded to matching worker nodes at runtime; the dependencies are ‘soft’ - the

final link is only made at runtime (see Figure 6.8).

Appendix contains a directory listing of a sample job implementation project.

6.6 Conclusions

This chapter has discussed an application development framework that has been developed for cre-

ating applications that can take advantage of the distributed computing facilities provided by Mi-

crobase. A responder development framework has been provided for assisting pipeline developers

to adapt existing analysis applications for execution within a Microbase environment. The respon-

der development framework presented here makes use of POJO style programming in order to hide

the complexities of accessing Microbase Web service components directly. The notification system,

resource system and job management system are not visible to event handler or job implementations.

Additionally, Microbase responders share some similarities with mobile agent-based approaches. For

instance, the wrapper layer in [117] is analogous to Microbase responder job implementation wrap-

per. The wrapper is responsible for specifying job input and output requirements. Unlike the system

outlined by Fukada et al., inter-job IPC is not directly supported, since IPC is usually considered to

be highly implementation-specific and Microbase is more focussed on running existing, unmodified

programs. Instead, the framework described here provides access to the Microbase resource system,

allowing applications to take advantage of BitTorrent data transfers. The Microbase responder event

131

Compute job
(jar)

Compute job dependency
specification

Maven
dependency

Standard Java
library (jar)

Platform-
specific app
(Windows)

Platform-
specific app

(Linux)

Loose dependency
specified by resource

system tags

Standard Java
library (jar)

Figure 6.8: Shows dependencies between a job implementation project, and two third-party jar li-
braries it needs to operate. ‘Soft’ dependencies to two platform-native executable packages are also
shown. All of the packages shown will be uploaded to the Microbase resource system when the
responder is installed. Worker nodes will download and temporarily install all jar libraries, because
they are specified in the Maven dependencies. However, only the relevant native software package
will be downloaded.

handler is analogous to the mobile agent layer in [117]. In Microbase, event handlers are usually

static entities on designated servers, but can be redeployed to another application container with

minimal disruption, since the event handler will re-register itself with the system at startup.

Instead of interacting with the notification system messaging directly, an event handler must only

know how to interpret incoming messages. Likewise, an event handler only needs to specify which

message topics it is interested in; it does not need to explicitly register or have a concept of being a

subscriber or having a Web service endpoint, since this functionality is handled by the responder

support libraries.

In terms of file resource handling, it has been shown that Java annotations on job implementations can

be used to initiate BitTorrent transfers at runtime. The developer does not need to have knowledge of

where input resource files come from, nor how they are transferred. Non-file based data resources,

such as complex object graphs may also be annotated as being input or outputs of a job execution. The

job management system will ensure that the appropriate serialisation or de-serialisation operations

take place so that these entities can be handled by the Microbase resource system in the same way as

ordinary files.

Finally, an automated installation utility makes use of the standard project structure to allow devel-

132

opers to install the various modules of their responders to the appropriate locations.

133

Chapter 7

Job management and enactment

7.1 Introduction

In large-scale distributed computation systems, there are often several users needing to execute nu-

merous computationally-intensive workloads on a limited number of hardware resources. By defini-

tion, hardware resources such as CPUs and disk storage units are spread over a number of locations.

If users were to submit work directly to worker nodes — for example, via SSH [335] — the result

would be chaotic, with some worker nodes becoming overloaded while others sit idle. A job schedul-

ing system must be employed to manage the allocation of computational work to available hardware

resources, and to smooth spikes in user demand. Systems such as LSBATCH [314], PBS [128], LSF

[58], and Condor [192] have been developed for managing large computer clusters, accessible via

several users. These systems allow users to submit jobs to a central point at any time. Instead of

being sent for immediate processing, user submissions are added to a queue. Items in this queue are

processed according to the Quality of Service (QoS) implementation employed by the management

system. Strategies might include first-come, first-served (First in, first out (FIFO)), priority awarded

to ‘shorter’ tasks, enforced fairness based on the number of jobs a user submits or the number of CPU

hours they accrue, or a heuristic-based approach [84, 338, 35]. Using a job management system ap-

plies an organisational layer to work distribution, permitting more effective load balancing over the

available hardware. In addition, ‘greedy’ users can be accommodated by reducing the priority of

their jobs at times of high demand.

Job management systems provide a number of other advantages. For instance, during execution there

is a possibility that one or more software or hardware components of a distributed system will suffer

a failure. Most job management systems provide facilities to automatically retry failed jobs without

134

user interaction. Job management systems also often provide facilities to stage input data to, and

retrieve result data from remote nodes. Another common feature of these systems is the ability to

match the hardware requirements of a particular workload with a suitable worker node, ensuring that

large workloads are not placed on inappropriate machines.

7.2 Motivation

In a typical university campus environment, desktop computers located in cluster rooms are often

idle, even at peak usage times . At Newcastle University there are approximately 2500 CPUs from

computers participating in a campus-wide Condor pool1. Depending on the time of day, much fewer

CPUs are available to the Condor pool since the primary purpose of most of the machines is to support

users in their daily work. Operational overheads including data transfers, application installation

and user interruptions further reduce the effectiveness of a computational Grid system running ‘in

between’ users in such an environment. Nevertheless, harnessing even a fraction of the available

power would be worthwhile, providing a valuable contribution of processor cycles required by many

fields of computationally-intensive research.

Although heavily used by both staff and students, many campus desktop PCs spend a considerable

amount of their time idle, that is, with no user logged in. Many of these computers are located in

common cluster rooms and run the university-wide “common desktop”, which is a Windows XP envi-

ronment customised with a set of applications commonly required by many departments. There is no

possibility of administrator access to these machines; all operations must run under the Condor sys-

tem user in a controlled environment. Other platforms available to the Condor pool (approximately

10% of the machines) consist of 32- or 64-bit Linux machines. Some Linux machines are desktop

PCs located in common cluster rooms, while others are rack-mounted server clusters, dedicated to

high-throughput computation. Both the Windows and Linux desktop machines remove themselves

from the Condor pool when there is a user logged into the local console. However, the resources of

Linux machines may be shared between Condor processes and remotely logged in users; i.e., if there

is no user present at the local console, then Condor processes on the Linux machines may co-exist

with remote SSH user sessions. If a machine is removed from the Condor pool while processing a

unit of work, some or all of its progress may be lost depending on how often the job synchronises its

state with an external server.

Before the potential computational power can be harnessed, several properties of the available hard-

1http://bsu.ncl.ac.uk/condor/ [accessed 2009/10/02]

135

http://bsu.ncl.ac.uk/condor/

ware must be considered:

• The primary users of the machines in the Condor pool take precedence, and may interrupt any

worker node at any time.

• The heterogeneity of worker nodes, and changes in the availability of particular platforms

require that work distribution strategies processes are evaluated dynamically.

• Worker nodes may need specialist software to be temporarily installed for the duration of a

computation.

• There is a need for input data files to be staged efficiently to worker nodes.

The heterogeneity of the available worker nodes in terms of operating systems and processor ar-

chitectures complicates the issue of distributing work. Condor’s ‘class ad’ system can be used to

determine whether a given user job is suitable for execution on a particular worker node. However,

the user or software process that schedules jobs for processing must have knowledge about the cur-

rent availability distribution of particular platforms or processor architectures in order to schedule

jobs in the correct ratios, otherwise the distribution of work across platforms will not necessarily be

balanced. There is therefore a need for a job management system that can react dynamically to the

changing availability of worker nodes in a heterogeneous environment.

In spite of the constraints imposed by environmental properties and administrative policies, we be-

lieve that useful amounts of computational power can be extracted from the idle time of Newcastle

University desktop PCs. Harnessing this power may reduce the load on existing dedicated computer

clusters, while at the same time providing greater energy efficiency from existing infrastructure, given

that desktop CPU cycles would otherwise have been wasted.

In addition to utilising under-used desktop computers, there is also the possibility of utilising remote

processing resources, such as Amazon’s Elastic Compute Cloud [1]. CPUs located in the Amazon

cloud can be leased in order to extend the processing power available locally. Amazon CPUs have

the advantage that processing will not be interrupted by user logins. However, efficient data staging

and software installation operations are essential due to the low bandwidth of Internet connections

compared with the throughputs achievable via local Local Area Networks (LANs).

136

7.3 Requirements

The job management system provides functionality essential for the operation of a Microbase in-

stallation. The job management system must support the computational needs of the responders

present within a given Microbase installation by providing access to hardware resources in an orderly

fashion. Hardware resources must be shared fairly among the processes competing for computational

resources. While the primary purpose of the job management system is to fulfil its component-level

requirements detailing its work management obligations, the job management system also plays an

important role in fulfilling high-level, system-wide requirements. For instance, its presence on all

worker nodes puts the job management system in the unique position of being able to assist the P2P

resource system. CPU cycles, network bandwidth and local disk capacity of worker nodes can be

used to share file distribution loads, and to provide more nodes for the distributed BitTorrent tracker.

Communication between worker nodes for these system-level requirements is facilitated by messages

routed via the notification system.

The component-level requirements of Microbase job management system are to:

• Accept work submitted from responders.

• Notify responders when submitted work has been completed.

• Hold jobs in a queue until all required input files are available and an appropriate worker node

is available to process them.

• The job management system must match jobs to worker nodes based on worker node capabil-

ities, such as CPU, RAM, disk capabilities.

• Maintain detailed logs of job enactments. These logs will assist system administrators trac-

ing infrastructure faults, and developers locating bugs. Logging information also provides an

essential source of timing information, allowing system efficiency calculations to be made.

• The job management system should mask individual job enactment failures from responders

as far as possible. Jobs must be retried a suitable number of times to be sure that a failure

is a result of the job implementation, rather than an artefact of the unstable environment it is

executing within.

• Match job requirements to worker node capabilities (CPU, RAM, disk requirements).

137

• Handle job processing failures due to environmental conditions, such as worker node hardware

failure and user login interruptions. Units of work must be migratable so that they may be

retried on different worker nodes.

• Provide automated set-up and tear-down of transient execution environments on worker nodes.

This includes automated software deployment, and data resource transfers. Post-execution

tidy-up operations must clean intermediate temporary files to free disk space for the next job

enactment, while ensuring that the result data files are kept long enough to be archived.

• The job management system must facilitate cross-platform job development and enactment by

abstracting hardware platforms from job implementations.

The job management system also participates in achieving the following system-level requirements:

• Scalable file transfer requirement (see Section 3.3.2): providing hardware resources, including

network bandwidth and disk capacity to the resource system.

• Worker nodes have a responsibility to keep downloaded files longer than are required by an

individual node, in case other worker nodes require the same files. In this case, the resource

system can take advantage of the additional ‘seeders’, reducing load on the central file distri-

bution servers.

• Worker nodes are required to balance the need to maintain files on their local disks for the

purposes of sharing with other nodes, against their own individual requirements for local disk

capacity.

7.4 Architecture

The job management system has been designed to serve the computational requirements of re-

sponders present within a Microbase system. Its duties include scheduling jobs, enactment of jobs,

providing a provenance trail for future auditing and debugging exercises, as well as dealing with a

range of potential failures that might occur during job processing. In addition, it shields the re-

sponder components from requiring detailed knowledge about the actual hardware and software

configurations regarding the pool of available worker nodes. The job management system is com-

posed of a job server component and a job enactment client (Figure 7.1). One or more instances

of a job server are deployed to a Web service container, such as Tomcat [113]. An instance of the

138

enactment client runs on each worker node. The job management system collaborates with other

core system services in order to meet its component- and system-level requirements.

When a responder within the Microbase system requires a large amount of computationally inten-

sive work to be completed, it should instruct the job management system to carry out the work,

rather than complete the computation itself. The job management system is intended to de-couple

components requesting computation from components that provide computational power. Loose

coupling between a responder requesting computational work and the task scheduling system means

that responders do not need to know implementation- or even installation-specific configuration in-

formation regarding the available worker nodes. Therefore, configuration changes can be made to

computer clusters (for instance, the addition or removal of nodes) without the need to reconfigure

every responder present within an installation. If more nodes are added to the system, or existing

nodes are upgraded, responder components automatically benefit from increased performance.

The job management system represents computational work in the form of jobs and tasks . A

job is a unit of work small enough to execute on a typical desktop computer. However, many real

world problems (tasks) require more hardware resources than a single desktop computer provides.

Therefore, large computational problems are represented by a task composed of multiple jobs

, each of which may potentially be run in parallel on multiple worker nodes. The responsibility of

splitting a computational problem into jobs lies with the responder , since the work division

process is inherently problem-specific.

The process of administrating a computational task is as follows. A responder requests computa-

tional work by sending a task description message (Figure 7.2 on page 141) via the notification

system to the job management system. This message contains details of the computational work to

be completed, such as the Maven artifact information of the responder job implementation jar,

as well as the Java class name and input parameters to use for each job . The descriptions of these

units of work are added to an internal queue within a job server instance and distributed to worker

nodes appropriately. The job management system then sends a task completion message back

to the responder once all job enactments have completed. These task reports contain a summary of

the overall task enactment, including which jobs ran successfully, which jobs failed and the resource

system UIDs of result data files.

139

Responder Notification
System

Job
descriptions

Job
manager

Job
ServerJob

ServerJob
ServerJob

Server

"New task"
message

"New task"
message

"Task report"
message

Resource
System

Torrent transfers

Web Service calls Web Service calls

Condor / SSH / ...

Microbase Client

Condor / SSH / ...

Microbase Client

Condor / SSH / ...

Microbase Client

Condor / SSH / ...

Microbase Client

Figure 7.1: The Microbase job management system. Interactions with other Microbase components
are shown. Communication between a responder requesting computational work and the server-
resident portion of the job management system is mediated by the notification system. Worker nodes
running the job enactment client must communicate with the resource system in order to acquire re-
source files necessary for executing computational work. Worker nodes must also respond to requests
from other participants of the resource system to make files available via BitTorrent when required.
In this case, co-ordination is achieved via Web service calls and ‘broadcast’ notification messages,
while bulk data transport operations utilise P2P BitTorrent-transfers.

140

Job 1

Job 2

Job n

Metadata:
Task UID,
Task type,

...

"New task" message

Figure 7.2: Contents of a task description notification message. The description consists of
metadata relating to the task itself, such as its type name, the level of parallelisation to use and other
high-level properties. A set of descriptions for each job is also provided. Job descriptions specify
the executable programs and data files required to execute a job. Large data resources are not passed
within the message itself. Instead, Resource system UIDs are used as a reference to large data files.

7.4.1 Failure handling

Job execution failures can occur for several reasons: an environmental failure; corrupt or incorrect

input data; or a bug within the job implementation itself. The Microbase task enactment system

enables responders to handle each of these failure types.

Environmental failures are not caused by a job implementation bug, but are the result of a prob-

lem with the enactment environment itself. Environmental failures therefore have a wide range of

potential causes, including hardware failures, network problems, or software-related problems. En-

vironmental failures are often transient. Therefore, Microbase deals with them by retrying a failed

job at a later time, possibly on a different worker node. By retrying the job at a later time, problems

arising from congested networks or overloaded shared resources (e.g., SQL databases) can be over-

come. Re-executing a job on a different worker node overcomes local transient issues, such as a full

disk. These types of failure are almost completely masked from the responder. Microbase will re-try

job executions, potentially on different worker nodes, many times until a successful execution has

been achieved or a retry limit is reached. Only if the retry limit is reached will the responder that

originally requested the work be informed that there has been a job failure (see Figure 7.3).

The Microbase task enactment system allows hot-patching of job implementations. If a job enact-

ment failure is caused by a bug in a job implementation, a repaired version can be uploaded to the

Microbase resource system. No other changes or server restarts are necessary, provided that the bug-

fixed job implementation keeps the same public interface as the original (i.e., takes the same number

and types of inputs, and the same number and types of outputs). The ability to hot-patch job imple-

mentations in a large system is important, since server restarts may be disruptive to other unrelated

responders.

141

Notification
system

"New task" message

"Task completion report"
message

Attempt job execution

Compute
cluster(s)

Job failed

Re-attempt job execution

Job succeded

Job server

Figure 7.3: The job manager insulates the responders from certain types of job failure caused by
the execution environment by retrying jobs on different nodes until there is a successful execution.
An execution failure is only reported back to a responder if the job failed ‘too many’ times.

7.4.2 Logging

Provenance is important to long-running, large-scale systems, particularly when the intended envi-

ronment consists of heterogeneous computer clusters. Informative logs are particularly useful when

debugging a system, or when a provenance trail detailing which programs and data combinations

produced a particular result is required. The following types of data need to be included:

• UIDs for every resource stored.

• Data resource version(s) used.

• Executable program version(s) used: this needs to include both the job implementation (.jar)

and any 3rd party application distributions, for example, Blast .

• Host name of the worker node used to execute the job.

• Operating system name and version.

It is important to record where (i.e., which worker node) job execution attempts were performed

(see provenance and logging requirements 3.3.4). A host name is guaranteed to uniquely identify

a computer at any particular point in time. However, node configurations may change over time,

perhaps as a result of a hardware change or administration change (for instance reduced disk capacity

available to the Microbase client due to repartitioning, or user quota changes). These changes may

positively or negatively impact the ability of a particular job implementation to function on a worker

node. Therefore, storing only the hostname is not sufficient as it does not take into account hardware

142

or system configuration information. As a result, the job server database must maintain a record of

the worker nodes in terms of their hardware specification and several environmental properties in

order to uniquely identify them:

• Worker node host name,

• Hardware capabilities (CPUs/cores, RAM available to the JVM, writeable disk space),

• Operating system (name, version, architecture),

• JVM (Java version, Java VM version, VM vendor).

When a compute client first starts up, it registers itself with a job server, providing this information.

As a result of this registration step, the client receives a unique identifier which may then be used to

request work. If the compute client is subsequently restarted on the same worker node at a later time,

it will receive the same unique id if none of the registration information has changed. However, if

one or more details have altered (perhaps due to a memory upgrade, or new JVM version), a new

identifier will be assigned. If a worker node change is rolled back (for instance, if an old JVM version

is restored), then the previous identifier will be re-used. All job execution attempts are associated

with the worker node configuration they were processed with.

7.4.3 File versioning

The Microbase resource system provides versioning capabilities and unique identifiers for every re-

source it stores, whether data or executable program resources. The unique resource identifiers (IDs)

play an important part in job execution logs. Each job execution report stores the UID of the input

resources used, including the UID of the job implementation (.jar) used perform the computation.

Logging the version of executable file(s) used as well as the data file(s) is important when a Mi-

crobase installation may outlive a particular job implementation deployment.

All old job implementation versions are kept within the resource system indefinitely. This is im-

portant to ensure repeatability of results, should a comparison between the new and old software

versions be required at some point in the future. By default though, new executions will use the

latest version of a job implementation.

143

7.4.4 Overseeing computational work

7.4.4.1 Process of enacting a task

Once a notification message from a responder requesting work has been received by the job manage-

ment system, the system begins to track the progress of the task (Figure 7.4). Each work unit (job)

is extracted and added to a job queue. The progress of jobs through the job management system will

be discussed in the next section. As far as task progress is concerned, a task can be considered to

be complete when all of its component jobs have completed, either by successful execution, or by

reaching a failure limit.

On the completion of a task, a task report is composed. This report contains details of each job’s

execution: the resource UIDs of generated data files, whether the job enactment was successful

or not, execution logs and error reports of failures. The task completion report is published to the

notification system. At this point, the task is considered to be completed, and is no longer the concern

of the job management system.

During the enactment of a task, detailed logs are stored. These logs contain state changes, timing

information and runtime environment information about each job enactment. Log entries and cal-

culated statistics may be queried at a later time through the job management system’s Web service

interface.

7.4.5 Job enactment

Enacting a job involves complex interactions between several core Microbase components. This

section explains the processes that occur from initial submission of a job that has been extracted

from a task message, to job migration and execution on a worker node, and finally the completion

report and results obtained as a product of the enactment.

Jobs are executed on available worker nodes. The job management system differentiates between a

job and a job execution . Over time, there may be multiple execution attempts for each job,

although only one job execution runs at any given time.

There are seven possible states a job can be in. A job can only be in one of these states at any given

time:

New a newly submitted job, and yet processed by the scheduler.

144

Mark task complete

New task notification
message arrived

Jobs queued /
processing

Extract individual
jobs

Job report(s) available

Examine job
status reports

Task report
available

Send task report
notification

Task report
sent

Log task metadata

Figure 7.4: The processing of a task by the job manager, from initial receipt of a “new task” message,
though to the sending of a “task complete” notification. A task remains in an ‘incomplete’ state as
long as at least one of its jobs is queued or is processing. Once all of the jobs of a particular task
have been completed, i.e. they have either successfully executed or have exceeded a retry limit, then
a task report can be generated. The task report contains an entry for each job. A job entry consists
of details such as whether it was successful, the worker node(s) it executed on, how much system
time was spent setting up the environment, how much effort was expended on actual processing,
which input resource files were requested during processing, and which output files were produced.
The task report message is then published to the notification system to inform the responder that
requested the computation.

145

Waiting the job has been recognised by the system, but is not ‘releasable’ yet because one or more

required input files are not yet available in the resource system.

Queued the job is ready to execute once a worker node becomes available.

Processing the job has been leased for execution by a worker node.

Archiving indicates that a worker node has completed processing the job, either successfully or

otherwise. Output resource files need to copied from the worker node to the resource system.

Success indicates that job processing has completed successfully and that all output resources were

archived correctly.

Failure this state represents a final job failure; i.e., a job that has exceeded its maximum number of

retries.

An overview of job state changes is shown in Figure 7.5. This figure fits into the high-level overview

diagram discussed in the previous subsection (Figure 7.4) between the transitions “Jobs queued /

processing” and “Job report(s) available”.

When a job is first entered into the system, its state is new . This means that the entry has been

accepted, but has not yet been processed. Jobs in this state are waiting in a queue to be processed by

the job scheduling system.

Periodically, the job scheduler checks for new jobs. Upon noticing a new job, the job scheduler

examines the job’s requirements. The job moves into state waiting . It remains in this state until

its input resources are satisfied (exist within the resource system).

Once a job’s required input files are all available within the resource system, it is ready to be executed.

The job’s state will be changed to queued , and it will remain in this state until it is chosen to run on

a suitable worker node. If a worker node matching or exceeding the system requirements of the job

requests more work, the job may be selected to run. In this case, the job is leased to a worker node,

and its state is changed to processing . The job remains in this state until: a) the worker node

reports a successful completion of the job; b) the worker node reports an enactment failure, or c)

nothing is heard from the worker node; i.e., the worker node fails to renew its lease after a specified

time-out period.

Microbase makes the distinction between failures caused by the enactment environment, and failures

of the job implementation itself. Environmental failures include hardware failures as well as failure

of any Microbase core service. These failures are distinct from job implementation failures, which

146

New job description
generated

Job state: new

Submit job to
job server

Job server 'notices'
new job

Job state: waiting

Check job input file
availability

Job state: queued

Assign job to worker
node (generate

execution attempt)

Job state: processing

Wait for job
success report

Job execution
report received

All required input resource
files are available

Worker node available
(requesting work)

Worker node reports
job execution sucess

Job lease timeout
(lease expiry)

Wait for job timeout

Enactment failure
response

Enactment
success response

Log job enactment
as "succeeded"

Log job enactment
as "failed"

Job enactment report:
success

Job enactment report:
failure due to job

implementation error

Execution attempt
limit not reached

Reset job Wait for job
failure report

No response
received

Notification event
from Microbase
resource system

Job state
change

Worker node
reports job

execution failure

Persistent
data item

Web-service
call from compute

node client

Job state: success

Job state: archving

'Archive fail'
message(s) received

Wait for archive
failure message

'Archive success'
message(s) received

Wait for archive
success message

Job execution
failure report

received

Job outputs
archived

Job state: failure

Log job
failure

Log job enactment
as "failed"

Job enactment report:
failure due to

environment error

Execution attempt
limit reached

Failure counters
updated

Not 'too many' jobs in
state 'archiving'

Lease timeout
reached

Wait for job
failure report

Enactment failure
response

Worker node reports
job execution

environment failure

Execution environment
failure has occured

Job outputs not
archived correctly

Figure 7.5: The various states a job progresses through during its lifetime, starting with new , and
ending in either success or failure .

147

originate from within the user job itself. These failures may be the result of a bug in a user job, or

incorrect data being passed to a user application. The job management system records which failure

types occur and appropriate error messages and logs that may aid system monitoring or debugging.

If either the domain-specific job implementation or the Microbase enactment environment suffers a

failure, then the job must retried at a later time. In the case of a job execution failure, rather than

simply deleting the results of execution (e.g., output data files), any result files that were produced

are archived to the resource system. Although this incurs additional overhead in terms of increased

CPU load, network bandwidth and disk storage requirements, having copies of output files, logs,

and error streams of a failed process is invaluable when debugging applications running on remote

worker nodes.

Two counters are used to track the number of times a job fails: one counter records Microbase

environment failures; another for failures originating from within the job implementation itself. If

both counters are within their retry limits, then a failed job’s state is reset to queued , allowing it

to be re-executed at a later time. However, if the maximum number of retries for either counter is

exceeded, then the job state is changed to failed . This state indicates a permanent failure.

In the case where a job execution completes successfully, the job it represents changes state to

archiving . In the archiving state, the job is effectively complete except that the output re-

sult files are still located on the worker node that processed it and are therefore not ‘safe’. During the

archiving phase, the resource system is instructed to make a permanent copy of these output files.

If it succeeds, then the job execution is logged as successful, and the job state is changed to success

. If resource archival fails for some reason, for example if the worker node is interrupted before an

archiver node can copy the result files, then the job execution is recorded as a failure caused by a

fault with the environment.

7.5 Compute client

An instance of the Microbase compute client runs on every worker node participating in the system.

The compute client is a Java application, so can be run without modification on any platform with

a suitable Java Virtual Machine (JVM). The compute client is intended to provide services for the

jobs that will run on worker nodes. These include: registration of worker nodes with a job server;

dynamic (temporary) installation of job implementations and third party applications they require;

acquisition of input data resources for jobs; a temporary workspace for the job to use as scratch space;

publication of result files; and reporting of job execution completion to a supervising job server.

148

The compute client application consists of several subsystems that primarily operate to provide an

execution environment for the job management system, but also play a role in satisfying Microbase

system-level requirements. Figure 7.6 shows the conceptual layout of the compute client, and its

interactions with other Microbase components. A compute client instance contacts a job server

to obtain a job description. The job description is added to a queue of jobs local to the worker

node. In order to execute computational work specified in a job description, the worker node must

first acquire capability to perform the domain-specific work. This task is performed by a the job

dependency manager using Maven dependency information attached to resource system artefacts,

as described in Chapter 6. The dependency manager interacts with the local resource system client

instance to download the necessary jar files. A standard Java classloader is then used to dynamically

add a job implementation to the local Java runtime environment. Meanwhile, input data resources

and platform-native software are also acquired via the resource system through the job resource

manager and the local software manager , respectively.

The resource system client embedded in the compute client maintains a local copy of all downloaded

files, as well as published result files, allowing the disk space of a worker node to be used as a local

cache. By caching previously downloaded files, future job executions that require some or all of these

files will benefit by not having to wait for them to be downloaded. The resource system as a whole

also benefits from reduced load. The resource system client allows each worker node to become part

of the distribution system for files that are also required by other worker nodes. Torrent availability

between nodes is co-ordinated via broadcast messages routed via the notification system.

7.6 Job execution by compute clients

The process of acquiring and enacting a job is summarised in Figure 7.7. If the worker node has at

least one idle CPU, then it contacts a job server to request a job description. On receipt of such a

description, the worker node first ensures that the job lease is updated periodically so as to remain

in control of the job. If the compute client fails to update the job lease then the job management

system may decide that the worker node as crashed, or otherwise been removed from the pool of

available computers. If this happens, the job may be assigned to a different compute client running

on a different node.

Since the response from the job server only contains an XML description of the job, the next task to

be performed is to download the job implementation itself, as well as the input data it requires. If

the job has platform-specific binary executable dependencies, only the files relating to the currently

149

User job implementation

Resource
system

Job management
system

Requests for work Job completion reports

Local software
manager

Resource system
client instance

Job queue control
Local
torrent
storage

Point-to-point WS
communication

Bulk data
transfer

Broadcast notification
communication

Torrent lookup
service

Other worker
nodes

Worker node

Access to
resource
system

Access to command
line applications

Job dependency
inspector

Classloader

Job input / output
specifications

Computational
work

Notification
system

Maven
dependency
information

Torrent
availability

co-ordination

Bit Torrent
transfers

Resource system
annotation

queries

Dependency information
used to construct job

execution environment

Persistent notification
communication

Task
completion

reports

'New task'
message

notification

Download job jar /
classload

Job resource
manager

Archiver nodes

Figure 7.6: The internal components of the compute client and how they interact with other Mi-
crobase components. A job queue holds jobs until their required files are all present, and a CPU
lease is available to execute them. A dependency manager determines which third-party jar files
are required to execute the job, and ensures that they are added to the Java class path. A local
software manager ensures that required platform-native applications have been installed prior to
job execution. The resource system client instance underpins all bulk data transfers, co-ordinates
transfers with other worker nodes, and provides remote resource system nodes access to files stored
on the worker node’s local disk.

150

running platform are downloaded. If this step fails, then the node is unable to continue. In this case,

the job server is notified of an environment failure and the compute client requests another job to

process instead.

Assuming all required input resources were successfully downloaded, control is handed to the newly

installed compute job. Execution of the job can terminate in one of two ways: successfully, or with

an exception. In either case, any output files produced are made available to the resource system for

archival purposes. In the case of a successful termination of the compute job, the compute client

contacts the job server to report a successful job enactment. If the job execution raised an exception,

the job server is contacted to inform it of the failure. In either case, output resource files are kept on

the worker node for as long as possible (usually until the disk is full and files need to be deleted, or

the compute client exits). Keeping resource files available to the BitTorrent client for the maximum

length of time enables other nodes to acquire the resources, even if the current client has no further

need for them. This cycle repeats until the worker node is removed from the pool of nodes.

7.7 Performance analysis

7.7.1 Introduction

The computational effort expended by a system can be divided into two parts: the amount spent

performing ‘useful’ work, i.e., processing user jobs; and the amount of ‘wasted’ effort expended on

system overheads such as network I/O. Although any computer system suffers from CPU under-

utilisation if it becomes data-starved, the effect is more pronounced in a distributed system where

it may be necessary to transfer large files over a network before any processing can take place. In

Microbase there are additional overheads including the management of transient software installa-

tions on worker nodes, and the requirement of worker nodes to share the file distribution load — i.e.,

a worker node may need to transfer files that are not relevant to its current job processing to other

worker nodes in need of input data.

The performance of the Microbase job management component can be evaluated through the analysis

of various timing measurements taken of a running system. In the case of the job management

system, we are primarily interested in the amount of user work that can be achieved within a given

timeframe on a particular collection of computer hardware. The job management system depends

on all of the other core Microbase components at some point during a task enactment. Therefore,

determining the efficiency of a given task enactment demonstrates the efficiency of the system as

151

Job lease acquired,
added to queue

Request work
from job server

Download input
data resources

failure

Add lease to list
of renewable

leases

Job lease
renewal
required

Job lease
renewed

Job server lease
renewal request

success

Delete / tidy
temporary job

files

Wait for next
lease renewal

due time

Has >=1 empty job queue slot(s)

Job server lease
renewal request

fail

Failed to renew job lease - either because
the renewal attempt was too late, or the

server refused renewal for its own reasons

Job lease renewal
request refused

Job lease renewal
request accepted

Job lease not
renewed

Error
acquiring
resources

Download input
data resources

success

No error
acquiring
resources

e.g., resource
missing, disk full, ...

Delete / tidy
temporary job

files

Process job

Job ready
for

processing

Report job
execution failure

Report job
execution
success

Exception thrown
during processing

Processing
completed
succesfully

Job
processing
complete

Publish job
outputs to

resource system

Job results
exposed via
Bit-torrent

Job tidy-up
required

Web-service call
to job server

Key

Bit-torrent
communication

Local event

CPU is
available /

acquire
CPU lock

CPU lock
released

Job
removed

from queue

Job lease no
longer required

Figure 7.7: The processes involved within a compute client instance when acquiring and enacting
a job. Each node has a work queue. The maximum size of the queue is determined by the number
of CPUs available, and the amount of job pre-caching that is performed by the node. If there is an
empty queue slot, a Web service call is made to one of the job server instances. If there is work
available — jobs in state ‘releasable’ — then a lease is acquired, and required data files are queued
for downloading. File transfer and job-specific software installation occurs concurrently with other
executing jobs. However, processing of the newly downloading job does not start until there is an
available CPU; another job has finished processing. On completion of job processing, generated data
files are published to the resource system. Temporary data files that do not need to be archived are
removed, freeing disk space for the next job.

152

whole, since the overheads imposed by other system components are also taken into account.

Computational effort may be measured by timing how long a job, including all of the necessary

support activities, fully utilise one or more distributed hardware resources. The collected timing

measurements can then be used to calculate system properties such as:

• task throughput: the number of processed jobs per time unit

• total system throughput: job rate over all concurrently executing tasks

• pipeline efficiency: average efficiency for each stage of a processing pipeline

• system efficiency: required system effort for a given amount of ‘useful’ work output; i.e., the

proportion of computational effort spent performing user-requested work, as opposed to the

time spent performing overhead ‘housekeeping’ operations.

Different groups of users may be interested in different aspects of system performance. For instance,

end users may be interested in the wall-clock time required to complete their computational work;

system administrators are interested in computer cluster saturation, whether adding additional worker

nodes improves overall throughput of the system, or whether worker node failures or job execution

re-assignments are having a significant adverse effect on system efficiency. Meanwhile, developers

are interested in tuning their job implementations to minimise overheads and maximise the amount

of system time spent performing ‘useful’ computational work. Therefore, there are a number of

ways in which raw performance measurements can be interpreted. In order to accommodate these

different viewpoints, a detailed breakdown of how the system spends its time while performing a task

enactment is required. Raw timing information can then be represented in different ways to suit the

different user perspectives. Typically these different interpretations determine which system events

are included in ‘useful work time’, which are ‘overheads’ and which are not included at all.

Timing measurements within Microbase are performed at several levels: an individual job execu-

tion attempt; the aggregation of job execution attempts required to successfully complete a job ;

the sum of all of the jobs that are required to complete a task ; and the sum over a set of completed

tasks in a pipeline required to satisfy the processing needs of a given set of input data.

The following definitions have been used to clarify various time measurements throughout the rest

of this section. For the purposes of benchmarking the system, it is assumed that the processing of

jobs, tasks, and pipelines will eventually succeed — that is, run to completion without error — even

though individual job execution attempts may fail.

153

Generic terms, applicable to any level of timing granularity (level-specific variations will be defined

next):

elapsed time the wall clock time taken to perform a particular job execution, task, or pipeline.

system time the total number of CPU hours consumed while executing a job, task, or pipeline. This

time includes both user job processing time and housekeeping overheads such as data transfers

between worker nodes. System time is therefore a measure of the total effort expended by

a system over a particular period of elapsed time .

overhead time the portion of the system time that is consumed by housekeeping operations or

which is spent blocking due to contention for shared compute resources.

processing time the portion of system time observed to be spent performing requested user

computation, excluding all overheads such as data transfers. Processing time is therefore

a measure of the effort expended by the system on ‘useful’ work.

theoretical maximum processing time the total number of CPU hours available to Microbase over

a specified elapsed time , given a particular hardware configuration.

total speedup the quotient of the total system time by the elapsed time .

useful work speedup the increase in performance of the system, given the processing time

achieved within an elapsed time .

efficiency the ratio of processing : overhead times.

node utilisation the percentage of a task’s elapsed time for which a node was contributing system

time .

7.7.2 Data collection and analysis

Timing information is collected from a number of different sources, including job manager server

components as well as individual worker nodes. Measurements are also made at different levels of

granularity, from individual job execution attempts through to the pipeline-level timestamps. These

timing measurements must be interpreted carefully in order to obtain meaningful statistics. Interpre-

tation is made more difficult by the properties of a distributed system. The inherent parallelism of

processes spread over multiple computers as well as multiple threads executing within nodes makes

154

it difficult to determine how much time is spent performing useful work, and how much is spent on

overhead operations such as file transfers.

The timeline of events for processing a typical task is shown in Figure 7.8. While the elapsed

time for a task can be used to give some idea of the performance of the system, it is not sufficient

to accurately gauge the speedup achieved, especially if multiple tasks from several responders are

competing for computational resources at the same time. The elapsed time measurement also

does not provide a detailed analysis of how the system spends its effort - how much effort is expended

on useful work and how much on housekeeping overheads.

Worker node utilisation

Perhaps a more realistic task enactment case is shown in Figure 7.9. Again, a task enactment consist-

ing of five jobs is displayed. In this case, there are three worker nodes available to complete the work.

All three worker nodes are fully utilised until approximately half way through the elapsed time.

At this point, jobs 1, 3, and 4 are complete, and job 2 is almost complete. Because only one job is left

incomplete (job 5), it is inevitable that not all worker nodes can be utilised with respect to this

task. From the perspective of the displayed task, the total utilised time is defined as the sum of

the time periods for which the worker nodes were actively contributing to the progression of the task;

the utilised time for a task is the average utilised times for each worker node contributing

work to the system. In a real-world system where multiple tasks are simultaneously active, the ‘idle’

times shown in the diagram would in fact be used to process jobs from other tasks. The presence of

other tasks in the system does not affect how the utilised time for the displayed task is calculated.

A high utilised time as a percentage of the task elapsed time indicates high levels worker

node dedication to a task. A lower percentage utilised time indicates that worker nodes are each

contributing a proportionally smaller amount of their time to processing a task, indicating that the

system as a whole may be under high load with many tasks competing for computational time.

Worker node efficiency

Efficiency is the ratio between the amount of effort expended on useful work and the total effort

expended by a system. Microbase calculates the efficiency of worker nodes during the portion of

time that they are utilised by a particular task . This means that worker node time that is not spent

processing a task for some reason — i.e., idle time as shown in Figure 7.9 — is not counted as being

inefficient.

155

Task received
(job manager admin /queuing)

Task report published

Job (re)execution(s)

Responder sends task

Responder receives report

Us
er

 w
or

kM
es

sa
gi

ng
 /

ad
m

in
 o

ve
rh

ea
ds

M
es

sa
gi

ng
 /

ad
m

in
 o

ve
rh

ea
ds

Re
sp

on
de

r w
ai

t t
im

e
(e

la
ps

ed
 ti

m
e)

Task timeline

Figure 7.8: Shows the stages involved in task enactment. From the perspective of a responder re-
questing computational work, the elapsed time of the entire task is the most important. This is
the time taken from initial task submission, through to the time at which a ‘task completion’ report
is received by the responder. The elapsed time therefore includes more than just job processing
times — it also includes overheads incurred through the use of the notification system, administration
operations performed by the job management system, and the idle time that jobs spend in a queue
while waiting for an appropriate worker node to become available for processing.

156

Task elapsed time

Server(s)

End time

Job 1

NS JS NSJS

Start time

Node 1

Job 2a

Job 3

Job 4

Job 5a

Job 2b

Job 5b

Job 5c

Idle

Utilised

Node 2

Node 3

Figure 7.9: The execution of five jobs by three worker nodes. Job 1 and job 3 execute success-
fully, but the first attempt at executing job 2 fails. After the failure of job 2 , node 2 goes on
to execute job 4 , which succeeds. Meanwhile, the failed job 2 happens to be retried on node
3, where it then successfully completes. Job 5 requires three execution attempts before it finally
completes successfully.
Green shaded regions show periods of time where machines are idle with respect to this task. Red
shaded regions show periods of time where the machines are fully utilised in processing this task. No
worker node is 100% utilised while processing the displayed task of five jobs, and the server appears
to have a large portion of ‘idle’ time. If multiple tasks were simultaneously active, then many of
these ‘gaps’ would be filled by performing operations for other tasks.

There are several housekeeping operations that can potentially reduce the efficiency of a worker

node. The ‘useful’ processing time performed by a worker node is preceded by job execution

environment set-up operations, and followed by environment destruction and result archival opera-

tions. Environment set-up costs, including data file downloads and software installations, are classed

as overhead time, as are operations to archive the results (see Figure 7.10).

The Microbase compute client has been designed to mitigate overheads as much as possible by pre-

loading the ‘next’ job while the ‘current’ job is executing (see Figure 7.11). The result files generated

Job execution

Environment
setup Processing

Environment
destruction

Figure 7.10: Executing a job first involves setting up an appropriate environment. This includes
downloading data files and software packages from the resource system. Once the environment has
been constructed, user job processing can begin. On completion of the computation, result files must
be copied back to a resource system archiver node, and domain-specific software must be removed.

157

Job execution 1

Environment
setup Processing Environment

destruction

User job processing
(compute thread)

Overhead time
(housekeeping threads)

Job execution 2

Environment
setup Processing Environment

destruction

Job execution 3

Environment
setup Processing Environment

destruction

Figure 7.11: Shows a worker node with a single CPU processing three jobs, one after another. For
each job, there is an initial environment set-up cost, which includes the acquisition of necessary
input data files and the installation of necessary software (jar files and platform-native executable
programs). Job processing may begin after the environment has been constructed. The next unit
of work is requested, and its independent environment is constructed in parallel with the currently
processing job. On completion of the first job, the CPU is allocated to the now read-to-run second
job. Meanwhile, the results of the first computation are uploaded to a Microbase archive server, and
the inputs of the third job are downloaded.
If the working environment of the second job can be constructed before the first job finishes pro-
cessing user work, then the second job effectively has no set-up overhead. On the other hand, if
the working environment of the second job takes longer to construct than it takes for the first job to
complete user work processing, then the set-up overhead is reduced, but not completely eliminated.

by the ‘current’ job are uploaded to a server. The job environment is destroyed while the ‘next’ job

starts processing. For jobs where the set-up time is smaller than the processing time, this source of

overhead is completely eliminated, allowing an unbroken chain of ‘useful’ processing stages (Figure

7.11), permitting very high efficiencies. .

The resource system instance present on worker nodes may put additional stress on the disk and

network hardware components of worker nodes. We make the assumption that network I/O transfers

and the CPU usage associated with these transfers has a minimal impact on user job processing

on worker nodes. Previous work has shown that the use of BitTorrent causes spikes in CPU usage

compared with client-server transfers, but has a background level of less than 10% on modern CPUs

[62].

7.7.3 Timing results

In a Microbase system, individual job executions can fail due to a multitude of potential software or

hardware failures. For the purposes of system benchmarking, job execution failures are permitted on

the assumption that the overall job enactment ultimately succeeds within the retry limit. In this case,

158

a failed job execution attempt would simply have a negative impact on overall system efficiency,

since additional effort has been expended by the system with no gain in useful work (see Figure 7.9).

When evaluating the efficiency of a job enactment, failed job executions are important to end-users

since it impacts the time they must wait for their result sets. System administrators may also wish

to know how job failures impact the overall efficiency of a system, whereas developers may be more

interested in the efficiency of successful executions only if they regard most types of job failure as a

property of the environment.

There are many performance-related considerations that should be taken into account when deciding

suitability of Microbase for a particular type of computational work. From the point of view of the

task submitter (end-user):

• How long does a typical task take to complete in real time?

• How great is the overhead of running a job within Microbase compared to a single machine?

If one worker node was used, how much slower does the Microbase system run, as opposed to

running the task without Microbase on a single node?

• How does the speedup vary with the number of available worker nodes?

• Does the speedup achieved peak at some point, or continue to increase linearly with the number

of worker nodes?

System administrators and developers may be interested in evaluating:

• How much of the elapsed (wall-clock) time is due to Microbase overhead?

• If a job performed no processing at all, how long (elapsed time) would it take to receive a

completion notification?

• How much of this inhered overhead due to resource archival, and how much is due to notifica-

tion message processing and administration tasks?

• How much time do jobs spend in a ‘queued’ state? Does the addition of more worker nodes

reduce this time?

• The overall efficiency of the system: how much useful work is obtained from the effort (system

time) provided? what is the ratio of useful work to idle time to environment setup time?

159

These questions can be addressed by collecting suitable timing information obtained from system

benchmarks. However, it is clear that wall-clock elapsed times alone are insufficient to answer these

kinds of questions. A detailed breakdown of how much time the system spends on particular types

of task is required.

7.7.4 Benchmarking methodology

The benchmarking setup configuration included the following:

• Server 1: Dual 3Ghz Xeon with 2GB RAM

• Server 2: Dual-core 2Ghz Athlon 64 3800+ with 4GB RAM

• Server 3: 3Ghz Pentium 4 with 1GB RAM

• Server 4: Athlon 64 3200+ with 1.5GB RAM

• A varying number of nodes from a pool of 83 dual-core Linux deskop PCs. Each machine is

equipped with Intel Core2 6300 CPUs and 2GB of RAM.

It was necessary to spread services over multiple machines for several reasons. Firstly, a single

instance of Apache Tomcat had difficulty deploying all the services, even when appropriate Java

RAM settings were increased. Secondly, it was necessary to test whether multiple instances of

resource system archiver nodes had an impact on system performance. Additionally, this benchmark

configuration demonstrates the distributability of Microbase core components, as well as the ability

of the resource system to scale by providing multiple Web service instances.

7.8 Results

7.8.1 Performance benchmarks

Minimum feasible job execution time

In order to determine the feasibility for parallelising an application for use with Microbase, it is

necessary to understand the latencies and overheads imposed by the system. Of particular interest

is the minimum amount of computation time per job required before the system becomes ‘efficient’

— when the amount of useful computational work exceeds system overheads. In order to find the

160

Figure 7.12: A summary of multiple tasks of 20 synthetic compute jobs running on 10 worker nodes.
As the job length is increased, overall efficiency increases greatly. To achieve levels of 90% effi-
ciency, compute jobs should last 5 minutes or more.

job computation time threshold at which the system becomes feasible, a number of tasks composed

of synthetic jobs of varying length were executed. These tasks were executed with the compute

client’s pre-caching feature enabled; while one job is processing, the next is downloaded and prepared

concurrently in order to minimise the elapsed time spent performing data transfer operations.

The synthetic job used for this set of benchmarks requires no input files. The only input file(s)

required by each node are therefore the job execution jar file and its dependencies. The only

output file resulting from execution is a small (1-2kB) log file. The length of simulated compute time

was varied to determine the absolute minimum effective job time. Figure 7.12 shows how efficiency

increases as the processing time of a job increases with respect to the overhead time.

Distribution of large data files via the resource system

In order to test the effectiveness of the resource system at handling large files with varying numbers

of worker nodes, a set of tasks requiring a single 500MB input data file were executed. The time the

jobs spent performing ‘computation’ was set at 60 seconds. Each job produces a 1MB ‘result’ file

containing randomised bytes. The number of jobs involved in each run was set equal to the number

of worker nodes, so that each worker node executed exactly one job. Therefore, in the ideal case, the

execution time for each task should be constant. Test runs were performed with 10, 15, 30, 43, and

83 nodes. Since these benchmarks aim to test the overhead of the resource system, job multi-tasking

and job pre-caching functionality was disabled since these features result in file operations running

concurrently to ‘useful’ work, and therefore mask data transfer overheads to a certain extent. Results

are shown in Figure 7.13.

The task completion time clearly increases as the number of worker nodes increases, but it is also

clear that the amount of ‘useful’ computational work obtained as a result of adding additional worker

161

Figure 7.13: File transfer times for a 500MB file with varying numbers of worker nodes. The chart
shows task completion time in minutes (blue), and number of worker nodes (red). As the number of
worker nodes doubles from 40 to 80, there is only a 10% increase in file transfer times, indicating
that worker nodes were transferring data among themselves.

nodes dwarfs the additional data transfer costs. In this test, each job takes exactly one minute to

complete. Therefore, 83 minutes of ‘useful’ work were completed in approximately 12 minutes of

‘real’ time. While this is only a 7x overall speedup, this set of tests aimed to show the scalability of

the resource system using large files. In the test run involving 10 nodes, approximately 5GB of input

data was transferred, while in the 83-node test, 41.5GB of data was transferred, demonstrating the

effectiveness of the BitTorrent protocol.

Effect of job pre-caching

In order to determine the effect of job pre-caching on worker node CPU efficiency, the following set

of benchmarks were performed. A single worker node was configured to run a set of five jobs, each

with a simulated computation time of 90 seconds. Therefore, the theoretical best possible execution

time is 450 seconds. A job queue length of 1 means that the worker node will not obtain the ‘next’

job until the ‘current’ job has finished processing. With a queue length of 2, the worker node will

process one job while downloading the next. The table below shows the efficiency increases obtained

by increasing the job queue length.

Job queue length Actual duration(s) Efficiency

1 1588 28.34%

2 882 51.02%

4 590 76.27%

162

Figure 7.14: The execution timeline of an entire task. Each line represents a job execution attempt.
25 machines were active, so there are approximately 50 jobs active at any time; one executing; one
queued. The effect of job caching can clearly be seen, with new jobs becoming active before currently
running jobs have finished, Jobs can be seen to complete in roughly blocks of 25, since the synthetic
job implementations all have exactly the same ‘user work’ time. However a minority of jobs are
shown to take longer to complete than others. The extended execution time of these jobs is likely
to be due to a delay in the result archival stage - the job is likely to have finished executing, but for
some reason the BitTorrent peer discovery operation to archive the result file has taken longer than
usual.

Node utilisation charts

A visualisation of a task consisting of 200 jobs executing on 25 machines is shown in Figure 7.14.

The timeline for each job is indicated by a horizontal line. Each horizontal line represents the the

start and end timestamp of each job and includes set-up time, processing time, result archiving time

and the idle ‘queued’ time that jobs spent cached on a worker node. Each machine pre-caches one

job; so each worker node is preparing the ‘next’ job, while the ‘current’ job is processing. Each job

requires exactly 5 minutes of raw computation time, although the actual active time will be greater

due to system overheads such as job migration. Figure 7.15 represents the same task execution from

the point of view of each worker node. A high level of cluster utilisation can be seen. Nodes become

idle only at the end of the benchmark, when no unprocessed work remains. In a ‘real’ system, the

worker nodes would start processing jobs from another task after at this point.

In this particular benchmark, the actual task running time was 49 minutes. The total ‘useful’ work

163

Figure 7.15: Shows the start and end times of each job for each numbered worker node. Overlapping
job executions due to pre-caching can be seen clearly. All 25 nodes are shown to be fully utilised for
around 45 minutes. Only 5 machines remain active after this time, while they finish the remaining
jobs.

time was 1000 CPU minutes, while the time wasted on overheads was 590 minutes. However, be-

cause system overheads of job environment preparation and result archival run concurrently with user

work, with 25 worker nodes, an overall speedup of 20.2x was achieved. The average node utilisation

was 90.4%. The efficiency of each node for its utilised time was 89.5%.

7.8.2 Administration toolkit

In order to monitor a running system, a Web-based monitoring system was developed. The selec-

tion of screenshots shown below illustrate the job management system monitoring software while a

Microbase system is running: Figures 7.16, 7.17, 7.18, 7.19, and 7.20. The user interface provides

facilities for viewing currently executing jobs, and which nodes they are executing on. There is also

a facility to start new synthetic benchmark jobs.

7.9 Conclusions

The task enactment system can handle failures with varying degrees of transparency. It is able to

almost completely mask job failures caused by environment failures, is able to assist with the han-

dling of corrupt/incomplete/incorrect input data and allows the developer to cope with bugs in the

164

Figure 7.16: A screenshot of the Microbase job server Web interface. An overview of the status of
the system is shown. The system shown here is nearing the end of its computational work: 25 jobs
remain unprocessed; 50 jobs a currently processing in parallel; 1 job has finished processing, but
cannot be marked ‘complete’ until the Microbase resource system has archived its result files; 4150
jobs have successfully completed.

Figure 7.17: This screenshot displays the currently active worker nodes and their associated job lease
details. This view allows the user to glance through the active nodes to see what type of job nodes
are running, as well as how long the jobs have been running on each node.

165

Figure 7.18: This screenshot shows the types of information stored about each worker node that
requests jobs from the system. Nodes are identified by their UID which corresponds to a particular set
of configuration information, including hostname, operating system version, and various hardware
properties. If the software or hardware configuration changes over time, the worker node will be
assigned a new UID.

Figure 7.19: A summary of the current jobs running within a Microbase system. Various metadata is
associated with running jobs, including the number of job execution attempts that have failed. There
are two separate failure counts. The first keeps track of failures that occur as a result of an internal
error within a job implementation. Another counter records the failures that occur as a result of the
enactment environment experiencing a fault.

166

Figure 7.20: Submitting test jobs: the Web interface provides a means for scheduling benchmark test
jobs manually.

job implementation projects to some extent. The system has been shown to be tolerant of repeated

job failures. Failures result only in increased task completion time.

When assigning job leases to worker nodes, some use of job failure history could be made. If a

particular job has been assigned to a specific worker node several times before, with each execution

resulting in failure, then perhaps the system should look for another worker node instead. Other

statistics could also be used: repeated failures of particular task types on specific nodes, or particular

platforms. Or perhaps, a specific worker node is repeatedly failing any job it attempts to execute

(potentially indicating a hardware failure, or software configuration problem).

It has been shown that the the minimum job length is around 3-5 minutes due to Microbase overheads

associated with job migration. The minimum feasible job length was based on minimal data transfers

to the node, so the minimum feasible job length is likely to increase with the length of time taken

to acquire data resources. However, data file acquisition has been shown to be efficient with the use

of BitTorrent, mitigating resource transfer overheads. Considering many bioinformatics workloads

have execution times running from several minutes to several hours, the minimum job time appears

to be acceptable.

Cloud computing providers often make use of rapid Virtual Machine (VM) cloning techniques in

order to meet the computational demands of consumers [177]. However, such VM image clones

all start from an initial shared state. If the software or data required by a remote process is not

pre-installed within the VM image, then it must be obtained at runtime, after the VM has booted.

167

The Microbase compute client, coupled with the resource management system provide a bandwidth

efficient method for achieving just-in-time software and data population of worker nodes.

Unlike Condor [192], there is no ‘class-ad’ system, whereby nodes are matched to jobs. There is

no need to manually register worker nodes prior to job execution. On startup, a Microbase compute

client announces its presence and system properties to an available job server. This approach is

advantageous since other properties, such as a list of resource files local to the worker node can be

passed, allowing the server to choose jobs for the client based upon which data files or software the

client already has.

On receiving a request for work from the client, the job server searches for an appropriate job based

on the hardware properties of the worker node.In this respect, the Microbase compute client re-

sembles the BOINC [9] distributed computing client. Also similar to BOINC is the ability of the

compute client to download and install necessary software dynamically. Unlike BOINC, however,

the Microbase client maintains a local repository of downloaded files which may be re-used by any

future job if required.

In addition to computational work, machines running Microbase compute clients also extends the

resource file distribution mechanism of by actively seeding a number of resource files they have

previously downloaded. Compute clients also respond to broadcast notifications from other clients

requesting a particular file for seeding. This cooperative behaviour ensures that files that are in high

demand are available from a large number of sources. A number of other desktop Grid systems

have demonstrated the advantage of P2P transfers of large files [316, 62, 317]. However, Microbase

extends this concept with the addition of dependency links between files. Since compute job imple-

mentation projects follow an extended Maven [114] design pattern, the project object model

contains rich information regarding project requirements, such as database drivers and other library

dependencies. All files downloaded by the compute client are stored in a common directory before

being copied to a distinct execution specific temporary directory. Therefore, common resource files

required by multiple job implementations will only be downloaded once, thereby reducing network

bandwidth and server load. Maven dependencies allow the distinction between different versions

of the same library. Since each compute job instance has its own unique Java class-loader, running

different compute jobs that require different versions of the same library simultaneously is possible.

This functionality essentially comes for no additional developer effort; since responder projects are

build with Maven anyway, the compile-time metadata is simply used at runtime by Microbase to

prepare a suitable job execution environments.

168

Chapter 8

Automated Genome Analyser

8.1 Introduction

The availability of complete microbial genome sequences has lead to major advances in the un-

derstanding of microbial evolution and adaptation as well as a deeper insight into protein function

and gene regulation [305, 241, 324, 146]. Many forms of genomic analyses have been developed

and new information can be obtained from the examination and comparison of sequences. With the

ever increasing number of sequences available, more detailed analyses are becoming possible. How-

ever, such analyses are often extremely computationally intensive [205, 256, 195]. The ability of

computer systems to scale in parallel to meet this challenge is essential [258]. Several large-scale

analysis projects use dedicated clusters of computers for this task, while others are beginning to

utilise processing effort ‘donated’ by home or workplace desktop computers [208, 233].

A genome analysis pipeline was constructed partly as a demonstrator application for the Microbase

Grid framework, and partly to construct a query-able data source that provides computational access

to analysis information, as well as being browsable by bioinformaticians. Microbase was designed

to provide an environment suitable for such large-scale, long-running analyses. The AGA analysis

pipeline consists of a set of modules that have been developed using the Microbase responder

design pattern described in the previous chapter. The main function of AGA is to enable existing

bioinformatics applications to be executed in a distributed computing, and provide a set of Web

services for querying processed data. A separate program, the AGA browser, consumes data from

responder Web services and provides a Web-based Graphical User Interface (GUI) for browsing

integrated result data.

169

8.2 Motivation

There is a need to demonstrate how Microbase provides a useful resource and is able to utilise real-

world bioinformatics data in keeping with the requirements discussed in Chapter 3. Applying a well-

known, well-understood analysis application such as Blast was carried out to provide a suitable

demonstration of the performance of Microbase in all-against-all sequence comparison analyses. The

various forms of the Blast program make a suitable use-case, since their computational require-

ments range from the moderately-intensive BlastN , to the extremely computationally-intensive

BlastP .

Several analysis tools were run over available bacterial sequences to construct a data set useful for

biologists. The resulting data set must be kept up-to-date by incremental additions as new genome

sequences become available. In addition, it is useful for biologists to be able to browse or query

generated data sets conveniently, in the similar way to existing visualisation tools . Furthermore,

it was also desirable for bioinformaticians to construct ‘canned’ queries that take advantage of the

event-driven nature of Microbase. For instance, biologists may not be interested in the entire data set

that all against all approaches provide. Instead, they may be only interested in a small subset of the

data, such as a set of genes or protein sequences relevant to their research. It must be possible for

domain-specific notifications to be sent to notify users when ‘interesting’ data appears.

Suitable access to and presentation of bioinformatics data sets is as important as the efficient gen-

eration of data sets. AGA is intended to provide both a user interface and programmatic access to

generated data sets.

8.3 Architecture

The AGA pipeline is primarily composed of a set of independent domain-specific Microbase re-

sponders. Each responder is responsible for a particular analysis type or data storage. The Web

service component of each responder provides data set-specific methods, through which it is pos-

sible to query result data. For instance, a responder storing genome sequence information would

provide methods for retrieving protein sequences belonging to a particular genome entry. An addi-

tional AGA component is a GUI interface consisting of several applications which draw together the

data from each responder into an integrated visualisation tool. AGA can therefore be conceptualised

as consisting of two phases: a data analysis phase that uses Microbase services, and a separate data

querying and visualisation phase (see Figure 8.1).

170

Microbase

Responder

Data

Responder

Data

Responder

User interface

Data generation
phase

Query phase

Data

Worker nodes

Figure 8.1: Each responder works independently. On receipt of a notification message indicating the
presence of a new genome sequence, each responder performs its own assessment of the computa-
tional requirements of the task. Responders use the functionality provided by Microbase to schedule
and distribute computational work. Each responder typically maintains its own results database. On
completion of computational work, the information contained in the separate databases can be re-
integrated via the Web service query interface of each responder. In AGA, this kind of integration is
performed by the GUI.

171

The data flow of the AGA analysis pipeline is similar to other automated analysis systems such as

PEDANT [115, 313] in that a list of available sequences must be queried in order to determine if new

data is available for processing. New data is then downloaded, ready for processing. An overview of

the AGA pipeline is shown in Figure 8.2. On detection of a new file, the file is first downloaded, and

then parsed into a sequence repository by a responder termed the ‘Genome Pool’. The ‘Genome Pool’

then publishes a message indicating that the sequence file is now available in the repository. In AGA,

there are several responders that are interested in ‘new genome’ events and more could be added

to the system at any time. The current AGA pipeline contains MUMmer and several forms of the

Blast program. These tools populate sequence similarity databases by delegating computationally-

intensive operations to Microbase. The resulting data sets can be queried by each responder’s Web

service interface. Each responder publishes notification messages to signify a completion event, for

example, to indicate the availability of a new Blast report. Currently these notifications are not

used within the current AGA pipeline. They are stored by the notification system for future use,

should additional downstream responders need to be added in future.

8.3.1 AGA responders

The work of a responder may be classified into two categories: work that must be performed serially,

and work which may be parallelised. Serial processes include the decision of how large compu-

tational tasks should be split and database bulk insertions and consistency checking. Processes that

can be parallelised include executing analysis applications, and parsing the resulting output files. The

server-based component of a responder executes the serial portions of the work, while the compute

job component of the responder perform the parallel portions of the work. In AGA, responders work

in the following way:

• Responders receive an event notifying them that new data has arrived

• The responder server component performs some initial checks to decide what, if any, compu-

tational work must be performed.

• Worker nodes then execute the required jobs. Each job should be as independent as possible

from other jobs and from centralised services. Jobs should try not to repeatedly access re-

sources that might become a bottleneck. These characteristics are achievable while running

programs such as Blast , since even the output files are deposited in the distributed resource

storage system. However some communication with a server is required in order to maintain a

172

BlastN

Data

Genome Pool

Data

tBlastx

Data

BlastP

Data

MUMmer

Data

FTP Scanner

Data

Future
components ...

Data

New file
notification

New genome
notification

New genome
notification

Future
components ...

Data

New BlastP result
notificationNew BlastN

result
notification

New tBlastx
result

notification

New MUMmer
result notification

Figure 8.2: Shows the flow of data between responders throughout the AGA analysis pipeline. The
presence of new files is detected by the ‘FTP Scanner’ responder. Other responders can react to the
presence of new data files if they are of interest. In this example, the ‘Genome Pool’ responder is
interested in ‘new file’ notifications where the file is a GenBank genome sequence. On receipt and
successful parsing of the sequence file, a a ‘new genome’ notification message is published. Several
responders react to the presence of a new genome within the system and schedule their respective
analyses to execute within the job management system. On completion of these analyses, each
responder publishes its respective analysis completion notification message.

173

structured data store. For example, after Blast has executed, the worker node will parse the

output file into a structured form, pass it to a server, which inserts data into a database (several

approaches are compared below).

• Meanwhile, the server component awaits a notification indicating that all jobs have finished.

On receipt of this notification, the server based component may opt to perform additional work.

The types of task commonly performed at this stage include data insertion or data consistency

checking.

Different AGA responders have been designed in slightly different ways, partly due to the iterative

software development approach used. This chapter evaluates these approaches and concludes with

the ‘best’ way to write a responder in order to make the most of available computer resources.

Remote file scanner responder

The remote file scanner is the means by which new primary data can be recognised and automatically

imported into the processing pipeline. The file scanner responder could potentially be re-used in

other pipelines since it is only concerned with files and has no concept of genome sequences or

bioinformatics data formats.

The file scanner responder contains a server-based event handler that may be configured to periodi-

cally scan a remote File Transfer Protocol (FTP) site for particular types of file defined by their file

extension. For example, the responder could be configured to find all .gbk files located within the

NCBI [27] FTP server. Scans may either be of a single directory level, or recurse an entire directory

tree. The first scan of a remote site results in a set of notification messages containing details of

every matching file. Subsequent scans result in notifications detailing changes that have occurred

since the last scan, such as new files, file deletions, and changes in file properties including length

and timestamps.

The compute job implementation of the file scanner responder simply downloads a file from re-

quested Uniform Resource Locator (URL) and exposes it to the Microbase resource system. The file

scanner responder is therefore a convenient means of importing data into the system. Once archived

by the resource system, data files are available to any current or future responder that requests them.

174

Genome Pool

The Genome Pool responder is responsible for maintaining an up-to-date service-oriented repository

of currently available genome sequences. The Genome Pool reacts to new genome files being made

available via the remote file scanner responder. It must then populate a structured database with the

content of these files. Finally, for each successfully parsed file, a notification message is sent in order

to inform downstream responders of the availability of a new genome entry.

The Genome Pool responder, like the other major responders, has followed an incremental develop-

ment cycle. The initial version of the Genome Pool stored genome sequence files directly as binary

objects in a database, together with additional indexed metadata for querying purposes. The initial

version was adequate for locating genome sequence files and their annotations, but lacked the ability

to perform rich querying. This initial version was finally superseded by a more functional replace-

ment database and query service written in collaboration with Nakjang [230] as part of her doctoral

dissertation examining high-throughput analyses of surface and extra-cellular proteins. The remain-

der of this Genome Pool description describes the new version, which is currently unpublished.

The Genome Pool responder was developed to parse genome files in GenBank [27] format into a

structured database. The server-side component is responsible for reacting to incoming events, as

well as maintaining an SQL database. The event handler module also provides Web service query

methods for accessing the various types of data stored. The Genome Pool database is responsible

for providing a query-able repository of genome sequences and their associated annotations. This is

achieved via the SQL database and its associated Web service query interface.

When a new genome entry is added to the database, a message is sent to the notification system to

inform other downstream responders of the availability of the data. The notification message sent by

the Genome Pool contains the following details:

• The Microbase resource system ID of the genbank file

• the Microbase resource system IDs of two FASTA -formatted files generated by the Genome

Pool.

• GenBank accession number

• Genome file version

• Taxonomy information

• Organism name and description

175

• Genome type (chromosome, plasmid, mitochondria)

A Microbase compute job implementation provides the parsing functionality for the Genome Pool

responder. The compute job module parses the GenBank file directly into the database via Java

Database Connectivity (JDBC) SQL statements. In addition to the database insertions, two FASTA

format files are created by the job, containing the nucleotide and amino acid sequences respectively.

These FASTA files are uploaded to the Microbase resource system. The purpose of these two files is

to assist the scalable distribution of sequence data to worker nodes. Sequence data for an organism is

typically a couple of megabytes in size and is potentially required by large numbers of worker nodes

simultaneously, so a centralised database repository is not a scalable solution. Therefore, in addition

to providing a rich centralised query interface, the Genome Pool responder also publishes sequence

data to the Microbase resource system. Worker nodes may then perform efficient bulk data transfers

of sequence data via BitTorrent.

The Genome Pool responder has been designed as a generic, reusable component and it has been

used within the AGA pipeline to provide downstream responders with genome sequence informa-

tion. However, the programmatically-accessible Web service query interface of the Genome Pool

facilitates its use as an online genome database in its own right.

BLAST-N responder

The BlastN responder runs the well-known Blast tool [6] in a pairwise fashion. The BlastN

responder (see Figure 8.3) is responsible for reacting to ‘new genome’ notifications published by

the Genome Pool responder. The BlastN responder consists of a Web service component, and a

compute job component, as defined by the responder design pattern introduced in the previous

chapter. The BlastN responder maintains its own relational database for storing blast result data

and status information.

On receipt of a ‘new genome’ notification message, the Web service component of the BlastN

responder adds the sequence identifier obtained from the message to a local database table. Next, a set

of job descriptions are generated that together represent the pairwise comparison of the new sequence

against each existing ‘known’ sequence. The jobs are then scheduled together as a BlastN task

and are submitted to the Microbase job management system by sending a ‘new task’ notification

message. For the BlastN responder, all of the information required to schedule compute jobs is

either obtained from the notification message, or the database owned by the BlastN responder.

176

If additional metadata about the new sequence was needed, it could be obtained by querying the

Genome Pool Web service.

The compute job implementation responder component is relatively straightforward. It takes two

FASTA -formatted nucleotide sequence files as inputs. Behind the scenes, the worker nodes executing

the compute jobs acquire nucleotide sequence files via the Microbase resource system, rather than

querying the Genome Pool responder for sequence data directly. Therefore, worker nodes requiring

the same input sequence can potentially obtain the data from another worker node, rather than a

central server. The standard Blast formatdb command is run with one of the sequences, followed

with an appropriate blastall command. On completion of a Blast analysis, the raw Blast

report is marked for upload to the resource system. Meanwhile, the content of the report is parsed

into an object object model consisting of a ‘report’ object and set of ‘hit’ objects. The object model

is sent to the Web service component of the responder for insertion into the BlastN relational

database. Although the raw Blast report output file is not used by AGA beyond parsing its content

into the server-based structured database, permanent storage of the raw report file within the resource

system is necessary for facilitating future extension of the pipeline. A responder developed in the

future may require access to the original raw Blast report, rather than the structured data stored by

the responder.

On completion of all BlastN jobs for a particular ‘new genome’ notification, a ‘new Blast result’

message is published to the notification system. Currently, this message is not used by any existing

AGA component. However, if a future responder were to be added that consumed Blast hits or

Blast report files, then this message could be used as a suitable hook to which the new responder

could be attached.

Pairwise BLAST-P responder

The pairwise BlastP responder works in a similar manner to the BlastN responder. The pro-

teomes of organisms present in the Genome Pool are compared in a pairwise manner, resulting in n2

comparisons for each proteome. Each compute job executes a single pairwise comparison.

During the development of the BlastP responder, it became clear that improvements had to be

made to improve scalability. For a given set of input data, the BlastP result database was typically

found to be an order of magnitude larger than the BlastN database. The database server became

overloaded and resulted in many worker nodes remaining idle while they attempted to insert results

into the database. To overcome this bottleneck, responder operations were reordered as shown in

177

"Task report"
message

Notification
system

"New genome" message

Job
management

system

BLAST-N
responderGenome Pool

"New genome"
message

Store
sequence ID

"Task description"
message"Task description" message

BLAST-N
database

"Task report" message

"New BLAST-N result" message

Individual jobs report BLAST
results on completion BLAST report(s)

stored

Sequential
operation

Parallel
operation

Figure 8.3: Executing a BlastN task in Microbase. ‘New genome’ messages from the Genome
Pool responder are propagated via the notification system to the BlastN responder. The BlastN
responder decides what computational work is necessary, and publishes an appropriate ‘task descrip-
tion’ message which is subsequently delivered to the Microbase job management system. The job
management system then executes BlastN jobs on available worker nodes. When a worker node
completes a BlastN process, it then parses the resulting text file into an object model and sends
this to its parent Web service component. The Web service component then immediately inserts the
parsed Blast results into its relational database. Finally, once all jobs have finished executing, a
‘task complete’ report is published by the job management system and is forwarded to the BlastN
responder Web service. The BlastN responder checks the task report for successfully completed
jobs and publishes an appropriate ‘new BlastN result’ message. This message is not currently used,
but is stored within the notification system for future extensibility.

178

Figure 8.4. Instead of persisting result data at the end of each job completion, results are serialised

to a temporary file residing on the server. Once all jobs belonging to a task have been completed, the

server then performs all the required database insertions.

"Task report"
message

Notification
system

"New genome" message

Job
management

system

BLAST-P
responderGenome Pool

"New genome"
message

Store
sequence ID

"Task description"
message"Task description" message

BLAST-P
database

"Task report" message

"New BLAST-P result" message

Individual jobs report BLAST
results on completion

BLAST report(s)
bulk-inserted to

database

Parsed BLAST
report(s) rapidly

stored as
temporary files

Sequential
operation

Parallel
operation

Figure 8.4: Executing a BlastP task in Microbase. The ordering of operations is subtly different
to the BlastN responder design, but achieves significant scalability improvements. ‘New genome’
messages from the Genome Pool responder are propagated via the notification system to the BlastP
responder. The BlastP responder decides what computational work is necessary, and publishes an
appropriate ‘task description’ message which is subsequently delivered to the Microbase job manage-
ment system. The job management system then executes BlastP jobs on available worker nodes.
When a worker node completes a BlastP process, it then parses the resulting text file into an object
model and sends this to its parent Web service component. The Web service component writes the
object model to a temporary disk file as quickly as possible. Once all jobs have finished executing, a
‘task complete’ report is published by the job management system and is forwarded to the BlastP
responder Web service. The BlastP responder performs bulk result insertion operations by reading
the Blast reports stored in temporary files into the database. This approach is significantly more
efficient since the worker nodes do not block on database operations and can be processing jobs from
another task instead (data not shown). Finally, the BlastP responder publishes an appropriate ‘new
BlastP result’ message which is stored for by the notification system for future extensibility.

BLAST-P with the NCBI Non-redundant database

Another responder was implemented that executes BlastP with a single large database, rather than

comparing sequences against each other in a pairwise fashion. In common with the other Blast re-

sponders, this responder also reacts to ‘new genome’ notification messages published by the Genome

179

Pool. Blast searches are performed with each proteome against the NCBI non-redundant protein

database [250], which has a compressed size of 2.4GB. The large file transfers required by this

responder make it a good use-case for benchmarking the performance of the Microbase resource

transfer system with large numbers of worker nodes.

Comparing the sequences of an entire bacterial proteome against the NCBI non-redundant database

takes in the order of 10-12 hours on a single modern desktop machine (Intel Core2 duo, 2GB RAM).

Therefore, for each ‘new genome’ event received, BlastP -nr responder schedules jobs that analyse

a block of 100 proteins each.

8.3.2 AGA Viewer

The AGA visualisation tool is a browser-based set of applications for monitoring the progress of

analyses, browsing genome sequences and annotations, and visualising pairwise sequence compar-

isons. The user interface was written using the Google Web Toolkit [125]. The interface draws its

data from the public Web service query methods provided by each responder (see Figure 8.5).

The genome browser application displays glyphs representing Coding Sequence (CDS) regions and

other annotations provided by the Genome Pool responder Web service interface. Genome sequences

can be chosen based on searchable properties, such as their accession number, organism name, and

so on. It is possible to zoom and pan the view in order to display the required region.

The comparison viewer application displays two parallel genome browser tracks described above, to-

gether with similarity information shown as linking regions between the two browser tracks (Figures

8.6 and 8.7). The result is comparable to other visualisation tools . However, unlike existing tools,

it is possible to switch between, or select multiple comparison data sets simultaneously to determine

if different analysis methods correlate with one another. Comparison data sets are colour-coded in

order to differentiate them. Different comparison data is loaded on-demand from the appropriate

responders.

8.4 Results

8.4.1 System configuration

The following table shows the hardware specifications of the worker nodes that took part in the bench-

marks described in this section. The benchmarks were performed using a cluster of Linux computers

180

BlastN

Data

Genome Pool

Data

tBlastx

Data

BlastP

Data

MUMmer

Data

InterPro Scan

Data

SharkHunt

Data

Available
responder
databases

GWT Interface

Servlets

Browser-
based GUI

Genome Pool Blast*

Genome
Browser

Comparison
Visualisation

MUMmer

Custom
sequence

analysis queries

Web service queries Web service queries

Figure 8.5: Shows the architecture of the AGA GUI interface. The user interface is implemented
using the GWT framework. The GUI is entirely separate from Microbase — no contact is made with
core Microbase services. Data is retrieved from several responders via standard Web service queries.
The structure of the GWT interface is divided into two layers: the first layer is a set of server-based
GWT servlets , one for each responder. The second layer is a set of browser-based applications
that communicate with one or more GWT servlets to obtain their data.

181

Figure 8.6: The AGA viewer. A list of available genome sequences is obtained via the Genome Pool
Web service. A genome comparison window can be opened, and two sequences selected. Genome
comparison data is then obtained from appropriate responder Web service interfaces and integrated
with the genome information data.

Figure 8.7: A visualisation constructed from the integration of several data sources. The view depicts
two bacterial genome sequences. Red bars highlight regions of similarity between the two sequences.
The data source providing information for the comparison track can be switched between BlastN
and BlastP . The view can be panned left and right as well as zoomed in order to locate features
of interest. The region shown suggests that top sequence has several genes not present in the bottom
sequence.

182

at Newcastle University, as well as a set of pay-per-use machines from the Amazon Compute Cloud

(Amazon EC2) [1].

Newcastle desktop PC Amazon ‘small’ Amazon ‘medium’

CPU Intel Core2 duo, 2Ghz 1x 1EC2 2x 2.5EC2

RAM 2GB 1.7GB 1.7GB

Disk space 25GB 160GB 350GB

The CPUs provided by Amazon EC2 are not guaranteed to be of a particular vendor or generation.

Instead, a leased machine has a CPU capable of a certain measure of performance measured in ‘EC2’

units that are a measure of relative performance to other CPUs provided by Amazon. For example,

the ‘medium’ Amazon node has two CPUs, each of which is 2.5 times faster than the single CPU

present in the ‘small’ Amazon node configuration.

The Amazon instances executed custom virtual machine image generated via the following steps:

• An existing public ‘barebones’ Debian 5.0 image was obtained from http://alestic.com/

[accessed 2009/10/08].

• Various system configurations were performed, including the creation of a ‘microbase’ user.

A security group was created to permit Azureus BitTorrent traffic to reach the node.

• Java was installed, required by the Microbase compute client.

• Finally, a snapshot of the running instance was taken using the Amazon tools. This snapshot

was used for the experiments described in this section.

A small configuration script can be passed to Amazon instances that execute at boot time. A script

was written to download the Microbase compute client from a web server and execute it. The com-

pute client was configured to communicate with a Microbase job server Web service located at New-

castle University.

8.4.1.1 BLAST-P NR responder using Amazon EC2 and Newcastle nodes

This experiment is of interest because of its global nature. The experiment involved pre-loading a Mi-

crobase/AGA installation with two bacterial genome sequences: Staphylococcus aureus USA300_TCH1516,

and Staphylococcus aureus COL. The BlastP -nr responder divided the computational work into

blocks of up to 100 proteins, resulting in 54 jobs. The 2.4GB NCBI non-redundant database Blast

database was used for this benchmark. 34 worker nodes at Newcastle University and a further 20

183

http://alestic.com/

nodes at Amazon’s European data centre were started simultaneously. Each node was configured to

execute one job at a time, and to allocate all local CPUs to that job. Therefore in this experiment,

each worker node executed exactly one job and both available cores were allocated to the BlastP

process. Timing information is summarised in the table below:

Duration

(jobs)

(mins)

Durations

total (mins)

Useful

work

(mins)

Job process-

ing speedup

Job ef-

ficiency

(%)

Overall

speedup

Overall effi-

ciency (%)

202.38 239.3 4948.4 24.45 45.28% 20.68 38.29%

The parallel portion of the task (job execution) took just over 200 minutes to complete. The entire

task, including database insertion operations took 240 minutes. Using 54 worker nodes resulted in

an overall task speedup of approximately 21x. The reason for this low efficiency is mostly due to

the worker nodes executing a single job, and the time taken to transfer the 2.4GB Blast database

to each node. In a more realistic scenario, each node would execute multiple jobs, thereby reducing

the impact of the one-off file transfer operation. However, the main purpose of this benchmark was

to demonstrate the ability of the resource system to distribute large files to multiple nodes simultane-

ously.

Figure 8.8 shows a BitTorrent client monitoring the Blast database file as it transferred to the

worker nodes. The machine serving the Blast database is connected to the network via a standard

100Mbps network adaptor. However, the total speed for the BitTorrent ‘swarm’ reached a peak of

900Mbps, demonstrating the the worker nodes were transferring data among themselves.

The ‘CloudWatch’1 facility of Amazon EC2 permits the collection of a number of statistics such as

CPU and disk utilisation. At the time of the experiment, network bandwidth monitoring of instances

did not appear to function correctly. However, the total amount of bandwidth sent to and received

from the Amazon data centre was available.

During the benchmark, 5.82GB of data was transferred to the Amazon data center, costing $0.58.

1.79GB of traffic was sent back to Newcastle University, costing $0.30. If the entire 2.4GB Blast

database had been transferred to each node via a centralised protocol such as FTP, 48GB would

have needed to be transferred to the Amazon data center. This would have cost $4.80. Therefore,

the resource distribution via BitTorrent was 8.25 times cheaper for this benchmark than using a

centralised protocol.

CPU analysis of the 20 Amazon worker nodes confirms the length of time taken to download the

2.4GB database. The CPU utilisation graph in Figure 8.9 shows the processor usage of 10 Amazon

1http://aws.amazon.com/cloudwatch/ [accessed 2009/09/26]

184

http://aws.amazon.com/cloudwatch/

Figure 8.8: Monitoring the progress of a BitTorrent file transfer of a 2.4GB Blast database file
using a standard Azureus client [249]. Machines local to the resource archiver node serving the file
(hostnames: (cage*.ncl.ac.uk) manage to acquire the file at a much faster rate than remote machines
(hostnames: ec2-79-*) since the local network is much faster than the Internet connection. However,
as soon as one of the remote ‘ec2’ machines acquires a file chunk, it is immediately shared with the
other ‘ec2’ machines via Amazon’s internal network.

185

nodes2. Processor utilisation is shown to be very low for approximately 25 minutes. This time

corresponds to the length of time estimated for a BitTorrent transfer of 2.4GB. After 25 minutes, CPU

utilisation rises to 10% for approximately 10 minutes, presumably due to the worker node making a

copy of the downloaded file to an isolated job execution temporary directory, and decompressing the

file. After this, CPU usage rises to between 20-30% while the machines start the ‘blastall’ process and

begins to read the database file. After a short period, CPU usage reaches 100%. Also of interest on

this graph is the apparent failure of one of the nodes. The node represented by the purple line appears

to downloads the file correctly, but then appears not to progress, with CPU utilisation remaining at

close to 0%. Analysis of the log file produced for that worker node suggests that one of the timeout

values for detecting job inactivity had expired, causing the job to be reported as a failure.

Figure 8.9: CPU usage graph for 10 Amazon nodes for approximately the first 40 minutes of the
experiment. The X axis represents time. The Y axis represents CPU utilisation. The Amazon
instances used for this experiment have two CPUs, so a value of 100% represents indicates both CPUs
are fully utilised. Note the CPU usage of all nodes remains low during the data staging time, rising
only once all nodes have downloaded the necessary executable files and Blast 2.4GB database.

While downloading a large file via BitTorrent the CPU utilisation is negligible. Each node is pre-

sumably in contact with a significant number other nodes — perhaps 20 to 30 — yet maintaining

these connections does not appear place a significant burden on the CPU. This observation provides

evidence that the parallelised job caching and result archival operations (as described in Chapter 7)

do not have a high impact on concurrently running processes, and are therefore a good approach to

reducing the amount CPU time that is ‘wasted’ while waiting for resource transfers to complete.

2the CloudWatch graph is limited to 10 nodes. Another graph was generated of the remaining 10 nodes and showed a
very similar layout.

186

8.4.1.2 BLAST-P Pairwise responder using Amazon EC2

The BLASTP-NR responder was a good test case for Amazon since it highlights the advantages of

BitTorrent transfers to a large number of remote nodes. The BLASTP-pairwise responder used in

this benchmark poses a different challenge to the resource transfer system. Instead of one extremely

large database file, each proteome is compared with each other proteome. Each job will therefore

require two FASTA -formatted files as input. Since an exhaustive pairwise analysis is performed,

more than one worker node will require the same files at some point. However, this is likely to be at

different times. Also, not all worker nodes will require all files.

The benchmark was performed using 40 bacterial sequences comprising the Staphylococcus and

Bacillus genome sequences available from the GenBank FTP site.

The Genome Pool database was populated using 10 worker nodes local to Newcastle since the

Genome Pool responder cannot yet function in the Cloud. The Newcastle nodes were then shut

down, and 20 ‘medium’ Amazon instances were started with a job queue size of 2. Therefore, there

were a maximum of 80 jobs active at any one time: 20 worker nodes, with 2 CPUs per node with 2

jobs in a queue (one processing, and one downloading/installing).

The CPU and disk utilisation graphs from CloudWatch are shown in Figures 8.10, 8.11, and 8.12.

187

Figure 8.10: CPU usage for 20 Amazon EC2 nodes over the duration of the experiment. It is interest-
ing to note that CPU utilisation remains consistently above 90% even though each node is executing
multiple jobs that require different data files. The Microbase compute client is successfully prepar-
ing the ‘next’ job while the current job is processing. All worker nodes were started at the same
time, however, node ‘ia-35cb9db’ initially failed to connect to the Microbase job server running at
Newcastle. Following a manual restart, the node worked correctly.

188

Figure 8.11: Disk reads for 20 Amazon EC2 nodes over the duration of the experiment. Disk reads
were surprisingly light, indicating that once obtained via BitTorrent network transfer, most files were
cached in memory.

189

Figure 8.12: Disk writes for 20 Amazon EC2 nodes over the duration of the experiment. A large
number of disk writes indicate a) many output files being written as the 1600 jobs were completed,
and b) FASTA sequence files being written to disk as they are transferred among the nodes.

The CPU utilisation graphs show that the Amazon nodes are almost continuously at 100% utilisation

(Figure 8.10), indicating that the job caching mechanism used by the compute client was success-

fully preparing jobs ahead of time to ensure uninterrupted computation. There is a node that appears

to be continuously idle: ‘i-a35cb9d4’. On inspection of the log files, it appears that the compute

client failed early in its initialisation phase. On manually restarting the Microbase client on node

‘i-a35cb9d4’, the node correctly contacted the Web service and proceeded as normal. This is rep-

resented on the graph as the pink line that jumps to 100% much later than the other nodes. The

failure of the node did not affect the outcome of the experiment in terms of the expected number of

database results. In fact, it demonstrates the failure handling mechanisms that regularly deal with

190

individual worker node failures. Although the Amazon nodes tend to be reliable, desktop computers

at Newcastle regularly fail without warning, either due to hardware problems or user interruptions.

The larger number of jobs in this run means that job life is much shorter than with the BLAST-NR

jobs. The disk statistics reflect this, with much greater fluctuations. Disk usage typically occurs at the

beginning of a BLAST-P job when reading the sequences and at the end, while writing the alignment.

Other possible disk access include: preparing the temporary directory for the next job, while the

current job is still executing; uploading the previous job’s alignment file to the Microbase resource

system; and sharing sequence data files with other nodes, again via BitTorrent. Disk access tends to

be mostly write-access, with the only significant disk reads occurring at the start of job processing.

This pattern is consistent with worker nodes worker nodes having ample RAM in which files are

cached. Disk reads are infrequent because the worker nodes have enough memory to almost entirely

cache software and data files. Disk writes are fairly continuous since output files are generated from

the BLAST-P process, and new sequence files will be arriving via BitTorrent.

Regarding server capacity for the distributed job processing phase, the current server configuration

appears to be adequate. The number of completed jobs waiting to have their files archived is a good

measure of server stress. With 20 worker nodes executing 40 jobs concurrently, there were between

10 and 20 jobs with outstanding archive operations. The system should therefore be able to cope

with much greater numbers of worker nodes.

The parallel job processing of 40 proteomes executed on 20 nodes, with a combined total of 40

CPUs completed expended 6521 ‘useful’ CPU minutes in just over 3 hours of wall clock time. The

parallel phase therefore completed with a 36x speedup. However, a very slow database configuration

prevented a reasonable speedup from being attained. It took a further 18 hours to populate the

structured database with the Blast hits, resulting in an overall speedup of just 5x.

8.4.2 Benchmarking an entire pipeline of responders

A final set of benchmarks show how the system scales when a number of responders are executed to-

gether as a pipeline, rather than individually. For this set of benchmarks, 18 Staphylococcus genome

sequences were used. The BlastN responder has been omitted from these tests, since it did not

scale beyond 10 nodes.

The following table shows the speedups achieved when executing the pipeline on various numbers

of worker nodes. In this case, all worker nodes are local to Newcastle University.

191

No. workers Job process-

ing duration

(mins)

Total respon-

der duration

(mins)

Useful job

time (mins)

Speedup of

job process-

ing

Efficiency of

job process-

ing (%)

Overall

speedup

Overall

efficiency (%)

36 1720.93 1727.35 54659.89 31.76 88.23% 31.64 87.90%

71 1000.7 1024.02 53432.42 53.4 75.20% 52.18 73.49%

75 920.82 935.52 53636.55 58.25 77.67% 57.33 76.44%

A faster database server machine was used for this benchmark that obtained approximately 2.5x faster

raw row insert performance compared to the database machine used in the previous experiment. The

Blast responder Web services were also installed to the same physical machine as the database

software, eliminating network transfers between client and server. The results show that the database

insertion phase did not have a large effect on the overall speedup value, although at roughly 9 million

rows each, BlastP -pairwise and BlastP -nr responders had much smaller result sets than those

generated by the benchmark in Section 8.4.1.2. Therefore, further work with larger data sets would

be required to confirm that the database bottleneck issue has been resolved.

During this experiment it was noticed that before the end of the parallel job processing stage, the

database was being populated by both BlastP -pairwise and BlastP -nr responder results from

completed tasks. When responders are in ‘data insertion mode’, even a single bulk insertion thread

put significant load on the database server. An initial concern from the previous experiments (Section

8.4.1.2) had been that database insertion took far too long in relation to the parallelised job process-

ing. However, it appears that for at least some of the time, there is an overlap between parallel job

processing and result insertion. Because the ‘serial’ step of inserting the result from each job is being

started before all tasks have completed, it appears that the best possible use is being made of all

hardware.

Two conclusions can be drawn. When scheduling jobs, the Microbase job scheduler should attempt to

prioritise tasks with only a small number of remaining incomplete jobs. Prioritising those jobs would

allow tasks to be completed sooner, and therefore database insertion operations to begin sooner. Sec-

ondly, splitting large sets of jobs into multiple tasks has proven to make better use of server-based

resources, again because data insertion operations are started earlier. The earlier the database inser-

tion process commence, the shorter time is required to complete the entire workload of a responder.

Bulk-insertion of large results sets into a centralised database can only feasibly be performed by se-

rialised transactions, so the overall performance of the system can be increased if as many results as

possible are inserted while distributed jobs are being processed.

192

8.5 Conclusions

AGA has demonstrated the ability to construct bioinformatics pipelines using the Microbase system.

It also provides a useful tool for biologists in the form of a browser-based visualisation tool. A large

data set has been constructed executing multiple unmodified bioinformatics applications operating

within a distributed processing framework. The data set can kept up-to-date automatically by period-

ically scanning for newly-released sequence data. The data set may be browsed via a GUI interface,

or queried programatically via a number of Web service interfaces.

Responders are extensions of notification system push subscribers . Processing pipelines com-

posed of responders are inherently extensible. For example, it would be possible to attach new

responders to react to the events from the Genome Pool. In this case, the entire history of ‘new

genome’ events would be passed to a newly attached responder, enabling it to bring its result data

up-to-date. In fact, the pipeline could be extended at any point connected with a notification event.

8.5.1 Responder development experience and data flow

Whilst variation in development occurred throughout the duration of this project, all AGA responders

follow the same general pattern as discussed in Chapter 6: the server-based component is responsible

for notification message handling, task splitting and management of a structured data store, while the

worker nodes are responsible for operations that can be parallelised. With each AGA responder there

are minor differences with the way in which a compute job communicates with its management Web

service, that have considerable consequences for scalability. This section presents some refinements

to the design pattern described in Chapter 6 that take into account our real-world experiences of

implementing an analysis pipeline using Microbase.

The Genome Pool responder compute job implementation communicates directly with its parent SQL

database. As such, we found that its scalability was impaired as a result of the database becoming a

bottleneck. The direct connection to the database also limited the potential of this responder to run

in a Cloud environment since the relational database was located behind a firewall.

The BlastN responder implementation offered a slight improvement in design. Instead of commu-

nicating directly with the relational database, compute jobs construct an object model representation

of analysis result data and transmit this to the Web service interface of the responder. The Web ser-

vice implementation then immediately inserts the results. The BlastN database schema is relatively

simple in comparison to the Genome Pool database. Even so, scalability was poor, with around 10

193

worker nodes able to saturate the database server. While monitoring a running system, it was discov-

ered that the CPUs of worker nodes remained idle for long periods while they awaited the completion

of database transactions.

The BlastP -pairwise and Blast -nr responders improved on earlier designs with by implementing

a slightly different approach. Instead of inserting data immediately upon completion, the Web service

component simply serialises the result data object model to a temporary file as shown in Figure

8.4. This operation is fast since no database transactions need to be executed. The worker node

can also immediately start processing the next job. On completion of all the jobs in a task, the

Web serviceresponder component bulk-inserts the results from all successfully-completed jobs. This

approach offers a number of advantages. The parallel execution phase of a responder is vastly more

scalable than the Genome Pool and BlastN responders. If computational tasks are suitably split

into a number of Microbase tasks , then the database insertion stage also runs in parallel to job

processing, for at least some of the time. Evidence for parallel job processing and database insertion

was presented in the whole-pipeline benchmark results, where database insertions were observed to

proceed concurrently with job executions towards the end of the job processing stage.

8.5.2 Future work

The Microbase notification system is used for responder co-ordination operations within AGA. In

future, it would be possible to make use of event notifications for high-level application purposes.

For instance, one possible extension would be to allow users to register an interest in the completion

of particular analysis type or data type, and be notified when a significant event occurs. The AGA

browser application could be extended to display such event notifications. This kind of functionality

could be used by biologists who might be interested in a specific organism or gene name. When an

event involving a specified gene occurs, such as a significant Blast hit, the user could be informed

immediately instead of having to periodically browse or query the result data themselves.

194

Chapter 9

Discussion and conclusions

9.1 The Microbase System

9.1.1 Architecture choices

Microbase is a robust and scalable system that permits the parallel execution of numerous bioin-

formatics analysis tools in a flexible way. A variety of distributed systems architectures have been

utilised in the Microbase framework. When viewed as a whole, Microbase appears as a collection of

interconnected distributed components, providing a broad range of services. Each service provides

a particular unit of functionality, whether this is ‘core’ functionality such as task scheduling or file

management, or application domain-specific functionality. Within a functional unit, interactions are

typically client-server based, since this is a practical approach for a) collecting results in a central,

coherent location after distributed processing and; b) servicing data requests and queries from 3rd

party clients. Finally, Microbase makes used of a decentralised P2P architecture for large-scale file

transfers among participating computers.

The choice of architecture for different areas of Microbase contribute to its overall properties and

suitability for meeting the requirements described in Chapter 3. For instance, the use of Service Ori-

ented Architectures (SOAs) facilitate straightforward access to application data via standard Simple

Object Access Protocol (SOAP) [59]. Although Web services introduce an element of centralisation,

bottlenecks may be overcome with standard techniques such as service mirroring or database clus-

tering [333, 166, 320]. In addition, the server-resident portions of responders are movable by a

system administrator.

A collection of distributed components termed responders form the core Microbase system. Most

195

of the time responders are independent of each-other, with occasional synchronisation operations

being performed via the Microbase notification system. Responders may also optionally communi-

cate directly with each other via their Web service query interface. The decision to distribute the

Microbase core functionality as well as application workflow steps across a number of Web services

was made to facilitate flexible deployment options. For example, a system administrator is able to

choose freely which components are installed to which physical server hardware. It is possible to

install multiple instances of some responder services, such as the resource storage system, in order

to support larger numbers of worker nodes.

Microbase has a partly centralised, partly P2P and part-mobile Grid system. It could be argued

that there is no need for a central server of any kind; that all data storage, querying and logging

could be stored in an entirely distributed environment. Several such P2P computational Grid systems

exist. However, the focus of Microbase is to provide an environment amenable to all aspects of

large-scale data analyses, covering not just the computational phase, but also the data querying and

integration phases associated with an analysis pipeline. For instance, SQL databases are a proven

means of large-scale data storage and retrieval, while Web service technologies a convenient means

of providing programatic and well-defined access to such data stores [244]. These technologies are

essentially centralised in nature, but are widely-used, well-understood industry standards that work

well over Internet connections [52].

Long-term analysis pipelines require an operating environment that is extendable with the addition

of both new data and new software, is tolerant of failures, and is maintainable through patchable

software components. The emphasis in the development of Microbase was therefore not only on

computational efficiency of the immediate-term, but also on the flexibility of the system as a whole

over long periods of time. Also important was the issue of responder development, which must

be straightforward in order to encourage uptake and use of the system by the community. Finally,

the practical issues associated with the availability of non-dedicated, ‘donated’ hardware resources

at university campus, as well as transient hardware rented from a commodity ‘cloud computing’

provider was addressed.

The Microbase system was developed with these concerns in mind. The approach provided by Mi-

crobase offers a good compromise between the requirement for well-defined, accessible data sources,

and that for dynamic, flexible and scalable data distribution. Centralised server-based components

have been used where reliable access to data via complex queries is required. Where significantly

large amounts of computational power are available, but with sporadic availability and reliability,

mobile agent approaches have been used to mitigate the effects of node failure on the system. Where

196

file-level access is required by a large group of sporadically-available nodes, a P2P distribution net-

work has been used. This mix of technologies and the varying types of available hardware have been

used to its best potential. In addition, in the campus-style environments in which Microbase was

designed to run, there will always be a need for a central server in the system since computational

results and logs must stored reliably. In an environment such as Newcastle University most, if not all

cluster machines are switched off at various times of the year, and are frequently being powered off at

night in an effort to save energy. Therefore, cluster nodes cannot be relied upon to store information

permanently.

Types of functionality that are best provided by centralised infrastructure are hosted on dedicated

servers. In order to minimise the risk of these services becoming bottlenecks for the rest of the

system the server-based components that are subjected to high loads are distributable over multiple

server machines. The best example of this approach is the resource system, where it is possible for

multiple archiver nodes to pool their network bandwidth and disk capacity.

9.1.2 Scalability

In this project it has been demonstrated that by dividing a scientific workflow into multiple modular

stages, applications can be flexibly upgraded and application extensibility is easily achieved. This

work has also shown that it is possible to extend the pipeline indefinitely with the addition of new

‘responder’ components, which may be located on their own physical hardware. However, with

these advantages comes increased latency between the analysis stages. Following the processing of

a single data unit, such as an individual genome sequence, through all the required processing stages

from start to finish results in a processing time that is far slower than would be achieved by a custom

batch script running on a single machine. However, given enough simultaneous work units and a

suitably large number of worker nodes, large amounts of hardware can be used in parallel to achieve

vast performance increases.

It has also been shown that the number of computers used as worker nodes can be scaled effectively

as long as there is adequate server capacity. The ‘rate limiting step’ appears to be the result archival

stage, in which many worker nodes require result data to be reliably stored. Here, however, the

server-side support can also be extended extensively through the addition of potentially hundreds of

‘archiver nodes’. The addition of archiver nodes requires no reconfiguration other than the deploy-

ment of an additional instance of a Web service to a new computer. This form of expansion is also

the preferred means of disk-space expansion, since in addition to additional storage capacity, net-

197

work and CPU resources can also be used. Again, the disadvantage to this approach is the increased

latency seen during the peer resolution phase of torrent acquisition.

9.1.3 Responder development framework

Microbase is a distributed computing framework that provides a number of services, such as publish-

subscribe event notification, P2P file transfers and job scheduling abilities. Together these form a

novel platform on which distributed processing pipelines can be built. However, building applications

directly using Microbase Web services is complex, since it requires knowledge of several services

and how they interoperate. This complexity was the motivation for the responder design pattern

and associated abstraction layer described in Chapter 6.

The responder development architecture assists with a number of challenges commonly associated

with distributed application development such as difficulties in using Grid technologies, difficulties in

deployment and maintenance of application components, and difficulties in structuring applications

to make the most of available hardware and to avoid implementations that may result in performance

bottlenecks [153, 265, 255].

For the application developer, the responder development framework provides an API that is de-

coupled from Microbase itself. Microbase services and implementation details are hidden behind

a layer of abstraction. For example, the application developer would construct a compute job by

starting with a standard Java data bean. Bean properties would then be annotated with metadata that

informs Microbase whether a particular property is an input or output from the job. At no point is

the developer exposed to BitTorrent or resource system lookup queries.

The responder design pattern also provides clearly defined guidelines about which component should

host particular types of functionality: management and query functionality should be placed within

the Web service component, while computationally-intensive operations should be placed into the

compute job component. The rigid structure of a responder means that applications can be designed

for scalability since the developer knows which parts of the system will take advantage of paral-

lelism and P2P data transfers, and which parts of the system will provide management of centralised

structured storage.

Third party developers will also be able understand the structure of a responder more easily because

it follows a common pattern, thereby facilitating re-usable components. For example, they will be

able to easily adapt an existing responder to fit their pipeline by modifying only the Web service

component to respond to event topic names that are present within their pipeline.

198

For system administrators, responders provide modular units of functionality that can be deployed

or moved to another application container or server at will. New responders can be added to a

Microbase installation by deploying them to an application container - existing responders and Mi-

crobase services do not need to be shut down. Because server and client components are contained in

separate projects, and the directory structure and project descriptions (Maven project object models)

are machine-interpretable, tool support for deployment management can be provided (see Appendix

A). The installer application aids system administrators by ensuring that Web service components of

responders are deployed to an application container of their choosing. It also parses project depen-

dencies of compute job components, including jar libraries, command line software packages, and

data files and ensures that these files are published to the Microbase resource system so that they are

available to install on worker nodes.

9.1.4 Comparisons with other frameworks

To my knowledge there are no other systems that are similar to Microbase in terms of complete

functionality and overall architecture. However, a number of other systems have been described that

have been developed to tackle high-throughput data analysis that share similarities at the component

or architectural level.

The Microbase job management component provides functionality that is broadly similar to Condor.

Both the Microbase job manager and Condor [194] maintain a queue of job descriptions containing

details of the programs and data to be used. However, Condor uses a ‘push’ model, where jobs are

actively sent to registered worker nodes. In contrast, the Microbase compute client pulls work from a

remote server. The ‘pull’ model reduces the amount of system configuration that is necessary, since

the server does not need to know the location of every worker node. On startup, a Microbase compute

client will announce the system configuration and hardware specifications of the worker node. The

Microbase job server uses these details to find suitable jobs that fit the capabilities of the worker

node. Condor has a similar ‘ClassAd’ system.

Although Condor has been used in a number of large deployments with hundreds of worker nodes it

is not ideally suited to the kinds of data-intensive work that pipelines such as AGA perform [302].

The reliance on a centralised infrastructure for data distribution is the limiting factor in terms of

scalability for applications requiring large data files [303]. For example, attempting to transfer large

files to even a modest number of local worker nodes using Condor quickly results in the file server

becoming overloaded.

199

While Condor has been used in Grid applications spanning multiple sites, it is most often used to

aggregate resources local to an institution, while a higher-level framework handles cross-site com-

munication and coordination operations [106].

BioAgent [215] applies mobile agents to bioinformatics data processing. Different agents in a BioA-

gent system perform different types of processing. In some respects the architecture of BioAgent

resembles the responder architecture in Microbase. Microbase is different to this because although

Microbase compute jobs are fully mobile, they are always tethered to the Web service component of

a responder. An entirely agent-oriented approach would not be the most optimum solution for types

of computational task Microbase is targeted for. Pipelines developed with Microbase are likely to

have large, typically immobile dependencies such as a multi-gigabyte Relational Database Manage-

ment System (RDBMS) attached to them. Having the Web service responder components local to

the database storage which is faster than having to remotely connect via a network, which is the case

for a mobile agent. For Microbase, combining a semi-permanent but nonetheless moveable server

component with a highly mobile lightweight ‘job’ component better reflects our intended applica-

tion use cases. Moreover, making this architectural split encourages better use of available hardware

resources; worker nodes execute in isolation on discrete units of highly computationally intensive

work, while highly capable server machines are used for the structured storage and complex query-

ing of large datasets.

The system presented by Elmroth et al. [85] integrates a workflow editor with Grid services. Their

system defines a separation between workflow processing and performing computational tasks. The

workflow components present in the system by Elmroth et al. are similar in purpose to the Microbase

notification system and responders’ Web service components. The motivations principles behind the

Grid toolkit appear to be similar to those of Microbase. Elmroth et al. argue that the definition of a

workflow should be decoupled from the way in which it is enacted, and that domain-specific func-

tionality should be added via plugins. However, the emphasis in [85] appears to be centered around

the workflow, and in particular how to import workflows from different representation languages

in order to determine the order in which to execute Gridtasks. In Microbase, there is no specific

workflow as such, but the notification system and responders with appropriate subscription interests

provide equivalent functionality.

Microbase currently makes use of a P2P architecture for the sole purpose of transferring bulk data

items. A number of other works use P2P for resource discovery and matching of compute providers

with compute consumers. Cao et al. [45] have demonstrated such a system that works across admin-

istrative domains. A small number of machines on different private addressing schemes were linked

200

as a P2P Grid, with messages successfully traversing routers.

For data bulk data transfers, Microbase utilises the BitTorrent protocol. Other P2P protocols, such as

Gnutella [103] were also investigated. However BitTorrent was found to best suit our needs because

peers involved in a transfer started sharing content with each other long before they had a complete

copy themselves. Although the Limewire client [198] was observed to be capable of downloading a

file from multiple sources simultaneously, this only occurred once each source had a complete copy

of the file (data not shown). Nodes with partially-complete copies of the file would not share to other

peers. BitTorrent therefore has the clear advantage for distributing large data items to multiple remote

worker nodes via a ‘slow’ Internet connection, since as soon as one chunk has been transferred to one

of the remote hosts, all hosts at the remote site will effectively have that chunk soon afterwards (see

Chapter 8). In some respects, the Gnutella protocol, and in particular the Limewire implementation

are more advanced the BitTorrent. For example, Limewire supports advanced decentralised search

capabilities that can make use of keywords, file types and other properties such as file size. In Mi-

crobase, these operations are performed in a centralised way via a Web service. Distributed resource

lookup for Microbase is a feature that is worth investigating as an area for future work.

Machida et al. recently proposed an approach that overlaps the data staging and execution phases of

job execution [204]. Machida et al. state that most current Grid systems perform ‘simple staging’,

where data is stored centrally and is staged to each machine in turn which often results in high data

transfer overheads and data starvation of worker nodes. Their system implements a file replication

system that works in a similar fashion to the Microbase resource storage system. A central service

handles lightweight requests for files and matches peers with each other, while the bulk data transfers

are handled in a decentralised manner. Their approach utilises an application-level multicast protocol

that takes advantage of the routing features of modern network hardware. A machine transmitting a

file can essentially transfer the data to any number of peers at an O(1) cost for machines connected

to the same router. Since no complex P2P connections need to be maintained, this approach is

potentially more efficient than BitTorrent transfers if all machines require the same file at exactly the

same time. However, traffic between multiple geographic sites is HTTP-based. Therefore, the entire

file must be completely transferred to the remote site before it can start to be distributed to remote

worker nodes; in effect, the file must be transferred twice. In contrast, BitTorrent provides a much

more efficient distribution method in this case since worker nodes at the remote site start to receive

the file as soon as the first file chunk arrives, as shown by the AGA use case.

201

9.1.4.1 Programming models

In terms of design paradigms and programmer toolkits, the Microbase responder development frame-

work compares favourably with similar abstractions for other systems. Having a design pattern or

abstraction layer sitting above core services typically reduces application development time by guid-

ing developers in good programming practise and masking underlying complexities of distributed

systems [90].

The JaSkel project [90] provides a set of abstract Java classes for writing multi-threaded parallel

applications. The classes developed by Ferreira et al. provide a set of templates with a range of

hooks into which application developers insert their application-specific code. The templates are

not suitable for every situation, but makes application development much easier when the program-

ming problem can be made to fit the design pattern. The Microbase responder architecture is very

similar in its approach in that classes for forming basic Web service and compute job components

of a responder are provided. The Web service abstract class provides programmer hooks for im-

plementing notification message handling, and provides assistance with message serialisation and

publication. Initial registration assistance is also provided that includes automated registration of the

responder with the notification system. Another abstract class is provided for the implementation of

compute jobs. A hook with a well-defined contract permits the developer to place computationally-

intensive operations in the appropriate place. Input and output resource file requirements of the job

are facilitated through a set of standard Java bean properties, extended via Microbase annotations.

MapReduce [69] is a programming paradigm developed by Google for the parallelisation and dis-

tribution of large computational tasks. The MapReduce design pattern consists of two stages. In

the ‘map’ phase, a large input data set is split into multiple chunks. A distributed set of processes

then perform computationally intensive operations over each chunk in parallel, resulting in a list of

outputs associated with each input. These operations must be independent of one another in order to

achieve a high scalability. The output of each . The ‘reduce’ phase, consists of a set of distributed

processes that combine the separate outputs from the ‘map’ operation to form a coherent result.

For example, a parallelised search application over a large document might first split the large doc-

ument into sub-documents. the ‘map’ function for each sub-document would count the number of

occurrences of the specified regular expression. For each match it would emit an output value. The

‘reduce’ function would then iterate over each output of the ‘map’ function, forming a running total

of matches for a particular sub-document. The advantage of this approach is that the task splitting

and reduction operations can be recursive, for example a sub-document could in turn be split into

202

sub-sub-documents.

An application of the MapReduce programming model to bioinformatics is the recently published

CloudBLAST system [209]. A large list of sequences in FASTA format is split into multiple chunks.

For the distributed ‘map’ stage, the Blast application is executed over each chunk. The result of

each execution is then merged back into a single file. The ‘reduce’ phase is not used in CloudBLAST,

but Matsunaga et al. suggest that a ‘reduce’ phase could be used to filter or classify the results in

some way. Matsunaga et al. also demonstrate a multi-site system where clusters at two universities

are connected via a Virtual Private Network (VPN). However, the system still requires a manual

staging step in that necessary data and applications must be distributed in a virtual machine image to

the remote location.

For bioinformatics applications such as Blast or other applications that follow the model of input

file → processing → text output, it is difficult to see the advantage of the MapReduce approach

over other methods if the results must always be parsed back to a structured database for stringent

consistency and completeness checking via RDBMS constraints. If the result data is to be exposed

for browsing purposes, or for programmatic querying via Web services and consistency is to be

maintained, then a central database or database cluster is the most convenient means of achieving

this. The database insertion stage will be the rate-limiting step since it is necessarily centralised

in nature. On the other hand, if no rich database structure is required and a storage solution such as

BigTable [51] is sufficient, then the MapReduce technique offers an elegant solution that is inherently

scalable.

It would be possible to implement MapReduce-style computation using Microbase. Instead of a

single compute job implementation per responder, two such compute job components would be re-

quired: one for the ‘map’ stage, the second for the ‘reduce’ stage. The Web service responder

component would schedule a pair of these jobs for each block of computational work. Through

the notification system, the MapReduce-style responders could be integrated with multiple other

MapReduce responders, or indeed responders written using other parallel programming paradigms.

9.2 Use cases

A number of projects are using Microbase to provide access to computational resources. These

projects are briefly introduced in the following subsections. These use-cases are important for a

number of reasons. They demonstrate the utility of Microbase, and provide valuable insight into its

203

usefulness and limitations, and have therefore provided a measure of whether the original require-

ments (see Chapter 3) were sufficient. The use-cases have also demonstrated the re-use of responders.

For example, the ‘genome pool’ responder developed in collaboration with Nakjang [230] has been

subsequently re-used without modification for the metaSHARK parallelisation project. Two of use-

cases have also contributed directly and indirectly to AGA. Although not part of the AGA analysis

pipeline, metaSHARK results are accessible from the metaSHARK responder query Web service.

Support has been added to the AGA genome browser interface to display metaSHARK results along-

side annotations derived from the AGA pipeline.

Perhaps most importantly these use cases have demonstrated the accessibility of the responder devel-

opment framework to bioinformaticians with some experience with programming, but whose primary

experience is not that of software development.

9.2.1 AGA

The AGA analysis pipeline described in Chapter 8 has shown that it is possible to split up several

large-scale bioinformatics computational tasks for distribution to many worker nodes. The individual

results from each job were then successfully recombined into a coherent set of independent databases.

Several such workloads were completed, with each task type having its own individual database. The

set of result databases were then successfully integrated for use by a Web-based genome browser and

comparison visualisation tool.

AGA is not so much a tightly-integrated pipeline as a set of independent modules that happen to

react to particular types of event. The only stipulation is that a responder must be able to interpret the

notification messages that it receives. The development of AGA demonstrated the modularity and

flexibility of responders. A prime example is the replacement of the genome pool responder.

AGA is a proof-of-concept analysis pipeline. AGA has shown that Microbase can execute an event-

driven set of processes. As new data arrives, it is forwarded to interested responders, which update

appropriate data sets incrementally. AGA has also been used to demonstrate that new responders can

be added to an existing pipeline without affecting existing data sets.

AGA viewer

The AGA viewer is not part of the processing pipeline. It is a separate project that has demonstrated

the ability to re-integrate the data generated by several distinct responders. Because the AGA viewer

204

application queries the Web service components of responders directly, the data available to the

viewer is updated the moment new jobs completed. Whilst the AGA viewer is currently a proof-

of-concept Web application it can still provide a valuable visual genomic comparison resource for

biologists.

9.2.2 Mucosa project

“Comparative and evolutionary genomics of the surface proteome of mucosal microorganisms” [230]

is an ongoing PhD project aiming to identify surface proteins associated with microbes thriving in

a mucosal habitat. The project requires an extra-cellular protein identification pipeline that involves

multiple protein analysis tools, as well as comparative genomics using sequence similarity data.

The project has developed a distributed processing pipeline including novel databases and statistical

analysis steps, as well as re-using many existing bioinformatics software applications. The bioinfor-

matics tools required by the ‘mucosa’ project include: SignalP [26], TMHMM [173], InterProScan

[337], LipoP [163], and Blast [6]. These tools have all been successfully run within the Microbase

system.

The genome pool database used in the Mucosa project was co-developed by myself and Nakjang

[230] and was later incorporated into the AGA pipeline.

Whilst the system is still in development preliminary results indicate promising values for system

throughput:

• Approximately 1300 genome files were parsed and added to the genome pool. This was per-

formed on a single desktop worker node in approximately six hours.

• 2.5 million proteins were analysed on cluster of between 40 and 50 machines over a 4 week

period. Each Microbase job contained 100 proteins and took between 45 and 60 minutes to

execute on a dual-core desktop machine.

The InterPro Scan work was a useful example of a relatively long-lived analysis task. The machines

were available to Microbase almost un-interrupted during this time since most undergraduate students

were away. During this time, several Microbase server restarts were required due to various problems

associated with software that was still under active development at the time. The worker nodes

were also forcibly rebooted once a week for routine system updates, causing jobs to fail and require

subsequent re-runs.

205

The analysis pipeline developed by the Mucosa project is large and complex (Figure 9.1). At the

current time, it as executed almost 200,000 jobs, using mainly the Linux desktop cluster machines

available at Newcastle University. The pipeline developed for the Mucosa project was an incremental

design, with responders being added to the system as research needs dictated. The design allowed

for new tools to be added incrementally to the existing system. The Microbase notification system

automatically informed the new responders of the existing message history so that the new responders

could update themselves to the current system state. Microbase job descriptions were only generated

for newly-added tools during this time. When new genome files are added to the system, jobs for all

responders are generated as expected.

9.2.3 Parallel metaSHARK

The second project, undertaken by Illiasova [155] demonstrates the ability to parallelise the execution

of metaSHARK. metaSHARK is a software package that identifies genes using solely unannotated

DNA sequences as input data. However, it is extremely computationally intensive; a typical bacterial

sequence can take in excess of 48 hours on a typical desktop machine.

In effect, metaSHARK is itself an entire pipeline of tools including PSI-BLAST [7], HMMER [80],

MUSCLE [81] and GeneWise [34]. A parallelised version of metaSHARK using Condor already

exists. It has required substantial modification to the original metaSHARK implementation. Each

stage of the metaSHARK pipeline has been parallelised. Modification to the metaSHARK program

itself has meant that any future version of metaSHARK must also be similarly modified in order

to execute in a parallelised fashion. The aim of parallel Sharkhunt is to parallelise an unmodified

metaSHARK distribution by dividing the input into manageable blocks, rather than dividing each

execution stage. For example, for each DNA sequence to be analysis, several Microbase jobs are

produced, each assigned a different set of PRIAM profiles [56].

The parallel Sharkhunt project is still under active development and is yet to be published. However,

initial results have shown an almost linear speedup as the number of CPUs was increased. Currently,

the project has been tested with 12 dual-core nodes. The high level of efficiency is probably due to

the extremely CPU intensive nature of the work; analysis of a single genome sequence takes in the

region of 24-48 hours to complete on a single machine.

206

Figure 9.1: The Mucosa pipeline: diagram by Nakjang [229]. New genome files are detected and
collected by the AGA ‘file scanner’ responder. Following an event notification, the ‘genome pool’ re-
sponder schedules a job for each newly-acquired genome file that simultaneously parses the file into a
structured database, and generates FASTA sequence files that are archived in the Microbase resource
system. On successful completion of these jobs, the ‘genome pool’ responder fires a ‘new genome
available’ message. The Microbase notification system propagates this message to the five other
responders shown to be interested in receiving ‘new genome’ events. The ‘ Blast ’, ‘TmHmm,’,
‘SignalP’, ‘LipoP’ and ‘InterPro Scan’ responders then schedule their own jobs independently. After
these jobs complete, another set of responders perform a filtering over the generated data sets, which
flag the data items that are relevant to the Mucosa project using various heuristics. The filtering stage
employs responders with server-based components only. The filtering stage is database-intensive so
Nakjang decided the best solution was to perform the processing locally with respect to the data. Fi-
nally, a manual snapshot of each database is made, which pools all relevant results into an integrated
database used for predicting extracellular proteins.

207

9.2.4 AptaMEMS-ID

Microbase provides a framework ideally suited for executing exhaustive analyses using a variety of

tools. It has the ability to keep datasets updated, and the flexibility to add new tools without impacting

the wider system.

The AptaMEMS-ID project [211] aims to identify unique surface proteins of infectious organisms,

and therefore requires exhaustive analysis of bacterial protein sequences by using a number of soft-

ware tools. The aim is then to apply pattern matching and machine learning techniques over the gen-

erated data set. Several relevant software components developed by the AGA and Mucosa projects

are being successfully re-used with minor modifications to build the initial data set. Development is

on-going and additional tools such as OrthoMCL [188] will be added to the pipeline in the near fu-

ture. The AptaMEMS project will ultimately require the analysis of all available bacterial sequences.

9.2.5 iGem 2009

iGEM is an annual synthetic biology competition where students compete to build novel organisms

from standardised building blocks. The Newcastle University team aims to simulate a population of

cells living within an environment [325]. Each cell may perform various operations, such as consum-

ing food resources, or spawning a daughter cell to an adjacent location within the environment. The

purpose of the simulations are to determine how their modifications to an organism’s DNA affects

the growth rates of the population as a whole 1.

The simulation project is slightly different to the other use-cases discussed so far. Instead of a

traditional processing pipeline, where data flows from top to bottom, the cell simulation is effectively

self-sustaining until terminated by the operator. The simulation of a cell is CPU intensive, so each cell

executes within a Microbase job. When a cell ‘spawns’ another cell, a new Microbase job description

is created for the new cell. The daughter cell process will then be initialised on its own worker node.

A job only ends when a cell eventually dies, so the simulation as a whole tends to become more CPU

intensive the longer it remains running. The iGEM team plan to utilise the Amazon EC2 service

[1]. It took the software developers on the team about a week to learn Microbase, deploy their own

Microbase installation and implement a responder for executing their simulation application [297].

1http://2009.igem.org/Team:Newcastle/Modeling/Population [accessed2009/09/27]

208

http://2009.igem.org/Team:Newcastle/Modeling/Population

9.3 Evaluation

One of the benefits of Microbase for large organisations such as universities is to utilise their existing

desktop machines for computationally-intensive tasks. The effects on the primary users of the desk-

top computers can be minimised by running Microbase an top of a system such as Condor, which

can be configured to shut down jobs when a local user is detected. Microbase then re-queues the

abandoned job and migrates it to another node, installing necessary software if necessary. Of course,

powerful dedicated cluster nodes can also be used for processing jobs. It was concluded in Chapter

8 that Microbase jobs could be migrated around the world if necessary

In order to maximise the potential throughput, the application developer must use the Microbase

functionality appropriately. The developer is responsible for ensuring that tasks are divided into

appropriately-sized units. If too many jobs complete too quickly, the resource storage system be-

comes strained and worker nodes either spend their available time performing BitTorrent peer discov-

ery operations required for file transfers, or sit idle due to a fail-safe throttling mechanism designed to

temporarily suspend new jobs from starting until the resource system load reduces to normal levels.

Microbase itself is cross-platform and is able to run on any platform with an appropriate JVM. How-

ever, the lack of availability of binary executables for some platforms, particularly for bioinformatics

applications reduces the number of worker nodes that can be harnessed. For instance, although there

are many thousands of CPUs available within the Newcastle Condor pool, in practice bioinformatics

analysis work is performed on the Linux clusters — roughly 10% of the available CPUs.

9.3.1 System efficiency and job design considerations

The suitability of Microbase for a particular workload must be evaluated prior to writing a responder.

When designing and implementing a responder, it is important to understand the advantages and

limitations of the system. To a large extent, the suitability of Microbase for a particular class of work

depends on the ability of jobs to work in isolation from one another and to transfer data in large

blocks, rather than in smaller fragments. Microbase performs much more efficiently when the data

workloads are amenable to BitTorrent transfer.

Efficiency analysis of the AGA pipeline has shown that the less CPU-intensive and the more data

intensive a workload is, the less efficiently the work will be completed. This is to be expected, given

the nature of the Microbase resource system that relies on the BitTorrent protocol. The minimum

amount of computation per job for a Microbase implementation of an application to be worthwhile

was calculated at around minutes (see Chapter 7).

209

The scaleability of the resource system may be undermined by compute job implementations that

require continual access to other shared resources (such as relational databases) throughout the course

of their execution. When running computational tasks on a single computer, the emphasis is on the

developer to write an implementation that is efficient as possible. This task includes ensuring that

no superfluous computation or data copying is performed. In the case of an application running on a

single machine or on a small set of nodes, the most efficient means of obtaining a data set may be to

perform a highly specific query to a database that returns exactly the data required for a specific unit

of computation. Given appropriate indexing, such a query should be reasonably fast even for large

datasets, and has the benefit that only the exact amount of data that is required for the computation is

transferred, keeping network traffic and server load to a minimum. However, in a Grid environment,

the ability of a system to scale to many hundreds or thousands of nodes outweighs the efficiency

concerns of an individual node. The database would be swamped with requests if many hundreds of

nodes attempted to connect simultaneously.

Therefore, in the Microbase resource system the level of granularity at which data can be requested

at is not that of an SQL table row, but that of a block of data represented by a torrent. The actual

size of a torrent depends entirely on the publisher and may range from several kilobytes to several

gigabytes. For jobs that need to work on a portion of this block, rather than the entire file, this means

that significantly more data may be transferred than is actually used by the worker node. While

this seems a waste of bandwidth from the perspective of the worker node, it does have a number of

advantages for the system as a whole. The major benefit is the ability to use BitTorrent as the basis

for large-scale data transfers; the compromise is the tradeoff of ability to support large numbers of

nodes against the possibility that some workloads may not use all of the data they transfer. On the

other hand, if multiple worker nodes are working on different parts of the same data file, the extra

work involved in transferring the whole file is not necessarily wasted, effort since other worker nodes

can benefit from increased resource availability and network bandwidth.

9.3.2 Service and data security in a Microbase system

At present, Microbase is suited to a semi-secure environment. At Newcastle University, desktop com-

puters are trustworthy since administrator access is restricted to support staff, and there are adequate

file permissions to prevent tampering with Microbase-installed software and data files. Likewise,

Amazon provides suitably private virtual machines instances [1]. Presently, the Microbase Web ser-

vices provide the greatest potential security threat. There is some protection against bugs or malicious

attempts to call Web servicemethods. For example, one worker node may not interfere with or post

210

results for a job assigned to another worker node. However, no communications are currently en-

crypted and there is no strong authentication. Although security is less of a concern when operating

Microbase across a set of privately-addressed machines, it is potentially one of the biggest barriers to

the use of Microbase when using global compute resources. Nevertheless, this Web service security

should not be a long-term problem, since there are several well-known and readily-useable methods

that could be adopted, including WS-Security [228] and signed certificates, coupled with hosting

Web serviceson Secure Sockets Layer (SSL)-enabled application containers.

9.3.3 Achievements

Although the potential of AGA has not yet been reached, it has provided valuable knowledge and

insights into developing high throughput applications that can be executed across multiple geograph-

ical sites. The insights gained while experimenting with the AGA pipeline have allowed other de-

velopers to construct their own analysis pipelines using efficient, distributed components. The use-

cases described in the previous section have shown that highly data-intensive and long-term analysis

pipelines can be successfully enacted by Microbase. The system has been successful in overcom-

ing both worker node and server failures. While the system does periodically fail and requires user

intervention to restart Web services, it fails ‘safe’.

The developers of the pipelines described in the previous section have some experience in comput-

ing science and Java programming, but all have very varied backgrounds including bioinformatics,

medical science and mathematics. I believe that the responder architecture of Microbase enables

developers to parallelise these kinds of applications in a relatively straightforward manner, without

having to consider the usual difficulties associated with parallel systems, such as locking shared

resources to prevent simultaneous updates. In part, this can be attributed to the way Microbase op-

erates, the restrictions it places on the way responders operate, as well as the overall ‘best working

practices’ of responder design:

• The resource storage system supports only immutable data items. This allows for highly-

scalable file distribution via BitTorrent. However, a side effect is that no conflicting updates to

files can be made by compute jobs. Any changes to data require a new ID to be assigned.

• The notification ensures that messages are delivered to responders reliably, and in the correct

order. The responder architecture then enforces serial the processing of notification messages.

• Developers are encouraged to ensure that each responder they write maintains its own inde-

pendent result database. Each responder is should also perform all database write operations

211

within the server-based component of the responder. The server component is forced to pro-

cesses notification messages serially, reducing the risk of competing or conflicting updates to

data sets.

For many research applications, distributed sets of processes can executed largely independent of

each other. We have found that most bioinformatics applications can be parallelised effectively

within the above restrictions. Meanwhile, the way in which responders operate permit convenient

and straightforward implementation options for the application developer.

Another major achievement has been the ability to the use existing, well-understood protocols such

as SOAP and BitTorrent to permit cross-site operations with relative ease. Both technologies have

proven themselves to be amenable to Internet use. Web services are not typically blocked by cor-

porate firewalls, enabling convenient cross-site communication. Although BitTorrent appears to be

a somewhat less “socially acceptable” form of content distribution — there have been numerous

queries from the network security staff at Newcastle requesting details of what data had been trans-

ferred to remote nodes — the sheer efficiency and scalability advantages of BitTorrent, as well as its

decentralised nature are indispensable to the scalability of the Microbase resource storage system.

The resource system has the potential (see Chapter 8) to save an organisation large amounts of their

own institution’s bandwidth, and also reduce costs when using rented commodity hardware, such as

Amazon’s EC2 system. Although it would be possible to manually stage large files at remote loca-

tions, the resource system described in Chapter 5 ensures that worker nodes themselves provide the

necessary file mirroring capacity dynamically.

Finally, the Microbase system and the AGA analysis pipeline has been made available as SourceForge

project2, where it will continue to be developed.

9.4 Future work

There are a number of specific changes and investigations that could be made to enhance Microbase.

One future development would be the inclusion of a number of other data transfer protocols to the

resource system, in addition to BitTorrent. These protocols would be selectable at runtime by the

requesting worker node. For example, BitTorrent could be selected as the transfer mechanism where

large (e.g., > 15Mb) files are to be transferred. A simpler, lower-latency protocol such as point-

to-point HTTP or FTP [92, 245] among would be preferred where ‘small’ files must be transferred

2http://sourceforge.net/projects/microbase/ [accessed 2009/09/28]

212

http://sourceforge.net/projects/microbase/

since in these cases, a large proportion of the time taken to copy such a file is due to BitTorrent peer

discovery, rather than actual data transfer [317].

It would also be beneficial to investigate the use of P2P technology for more than file transfers.

Currently, the server-based components of responders may become overloaded if too many requests

are made. For example, a Microbase job server instance may become slow if too many worker nodes

connect to it simultaneously. In order to alleviate a highly-loaded server a system administrator would

need to deploy more instances of the service to another physical host. One potential area for future

work would be to permit starting temporary responder service instances as jobs that run on worker

nodes. The idea being that these temporary instances would deal with the surge of requests, and

eventually trickle data back to the central job server instance. A number of reliability and security

aspects would need to be investigated to achieve this aim. Another possibility would be to use a

Distributed Hash Table (DHT) in order to find other worker nodes processing similar types of job.

Finding other nodes running the same applications may be useful if P2P IPC is required among

distributed processes.

The Microbase administration user interface could be improved significantly. Currently, a Web-based

interface provides live monitoring of several aspects of the system such as: job queues, the ability

to browse notification messages and resource system file metadata. A Taverna-like workflow viewer

and editor would make complex pipelines easier to visualise for application developers [152]. The in-

tegration of Microbase with Taverna workflows would be of benefit to the bioinformatics community.

A large number of existing workflows are available for download [122]. Re-using existing Taverna

workflows by incorporating them into a Microbase responder may speed up development time, and

allow multiple instances of such workflows to be executed in parallel. A Taverna workflow enactor

could be packaged within a Microbase job, allowing application developers to incorporate existing

workflows within a Microbase pipeline. The workflow editor could also be used to design jobs for

Microbase if the complexity rises to the point where a plain Java implementation becomes difficult

to maintain or too verbose. The use of a graphical editor may also reduce the barrier to developing

Grid applications, particularly if developers are not fluent in Java.

AGA could be extended to make use of the amassed analysis data to further research in comparative

genomics. Several evolutionary pressures act on bacterial genomes, resulting in continual flux from

biological processes such as deletion and lateral gene transfer events [220, 226, 200]. Artefacts of

these biological processes can be observed as features such as insertion, deletion, translocation, and

inversion events. Currently, these rearrangements can be viewed graphically with tools such as the

Artemis Comparison Tool [48] and GenomeComp [332]. These rearrangement features can reveal

213

important aspects of the functionality and phenotypes of bacterial organisms. However, comparing

large numbers of sequences manually is time consuming, and requires an experienced biologist to

analyse each pair of sequences. With the increased rates of genome sequencing now being seen, it

is becoming increasingly infeasible for biologists to manually analyse these sequences. Therefore,

it is becoming increasingly necessary for computational methods to aid biologists in the systematic

derivation of knowledge from this data. AGA would provide the base from which such comparison

software could be built by providing up-to-date homology data. Additional responders would be

needed for further sequence analysis, such as IslandPath [150]. A combined logical and probabilistic

approach has already been developed, and it would be interesting to combine this with in a high-

throughput fashion with Microbase [95].

Further development of the AGA browser Web application is an area of particular interest. One

possible area of future work would be the integration of the notification system with the AGA viewer

application. Biologists might be able to set up triggers that run small, pre-defined queries in response

to a notification event. These ‘responder-lets’ might be configured to send an email or otherwise

notify the biologist when a new set of data arrives that is of interest to them. For example, when

analysis results regarding new organism closely related to one they are studying become available,

or when a new Blast report contains hits to a gene or set of genes they are investigating.

The nature of academic software means that many analyses have not been tested under a wide range

of configurations. For example, applications may make assumptions about the availability of admin-

istrator access is available; others might be are heavily-reliant on third-party libraries which require

administrator access to install. One area of exploration for future research would be the use of VM

technology to increase configuration flexibility and expand the number of worker nodes available to

Microbase. Several Grid projects have already exploited the advantages that virtualisation provides

[94, 118, 221]. Microbase already uses VM images with the Amazon EC2 system. At Newcastle

University, the use of virtualisation technology for Microbase is feasible. Virtualisation technology

is already in use to provide students using Linux clusters access to a standard campus Windows in-

stallation without the need to reboot their machine. While the use and installation of a Microbase

VM on every campus desktop would still require a potentially lengthy administrative process, there

is at least a precedent for the technology’s use. Although virtualisation is a source of further system

overhead, including both an additional hypervisor layer, and the extended start-up times associated

with launching a virtual machine, it offers significant advantages over using a ‘raw’ physical ma-

chine and there is evidence to suggest that the additional overheads are not massive [221]. A VM

could be customised to better suit Microbase and its users. Whereas system administrators are reluc-

214

tant to provide privileged access to physical hardware, it is probable that administrator access would

be provided to certain users who oversee a Microbase installation composed of VMs. The installa-

tion of a Linux VM on campus Windows machines would allow these currently unused machines

to participate in large-scale bioinformatics analyses. Also, more people may be willing to donate

their machines to the processing pool if all Microbase processes were contained within a VM; there

is a hugely reduced risk of Microbase processes adversely affecting the host machine, since VMs

typically work within enforced limits of RAM and disk space.

As Cloud computing technology continues to mature, the potential computing power available to

researchers has increased to a point unimaginable a few years ago. At the same time, available data

in bioinformatics is increasing at an equivalent or even greater rate. There is a need for parallel

and distributed computing frameworks which have a straightforward programming model that hide

the underlying complexities. However, abstraction usually comes with an increased risk of trade-

off against flexibility, speed, or efficiency. In order for Grid abstractions to deliver on performance

as well as simplicity, the middle-wares they are built upon must make the most efficient use of the

available hardware. The work presented in this thesis has addressed several of these challenges by

providing a design pattern that fits the usage patterns of a large number of bioinformatics analy-

sis tools, backed by an appropriate framework that has been shown to fit current Grid and Cloud

distributed computing models.

215

Appendix A

How to write a responder

A.1 Introduction

Microbase implements a generic Grid infrastructure, providing your applications with a distributed

processing environment to operate in. A common use-case for Microbase is to wrap existing non-

distributed, command line applications in a such a way that many instances can be run in parallel

within a distributed environment.

At the end of this tutorial, you should be able to:

• package and deploy applications to a distributed environment

• use event notifications to schedule computationally-intensive tasks

• monitor jobs running in real time

To run programs within the Microbase environment, a responder must be implemented. Respon-

ders are modular components that can be registered with a Microbase installation to allow domain-

specific functionality to be integrated. Responders act as the interface between the Grid-based Mi-

crobase core components, and stand-alone domain-specific applications. Compute-intensive applica-

tions wrapped by a responder might either be pure Java, or may be an existing command line utility

written in any language. A common use-case for Microbase is to wrap existing command line appli-

cations in order to run them in parallel over a set of distributed worker nodes. This guide explains how

to implement a responder as a thin wrapper around an existing command line application, and how

to overcome operating system and CPU-architecture differences when deploying native applications

to a group of heterogeneous worker nodes.

216

This guide explains how to package a widely-used bioinformatics application, BLAST.

A.2 Microbase

To successfully build, deploy, and run a distributed application using Microbase requires three sepa-

rate environments: a development environment; a server environment and a work environment. The

development environment contains the necessary tools and source files to compile your application(s).

It is also the base from which these applications will be deployed to the server environment.

The server environment hosts much of the core Microbase infrastructure, and the server-based parts

of user-developed responders. This includes a set of Web services(hosted in a container such as Tom-

cat), and their supporting databases (such as PostgreSQL). This environment provides permanent

storage of Microbase housekeeping data, log files as well as user-data generated from responders.

As such, the server environment should be located on ‘reliable’, dedicated machines. The server

environment should perform ‘lightweight’ operations, such as responding to new data events, and

scheduling appropriate CPU-intensive jobs to run in the work environment. In other words, entities

hosted in the server environment should not perform computationally intensive work that could oth-

erwise be farmed out to the work environment. The server environment may consist of one or more

physical or logical servers. Different core Microbase components or responder implementations may

be deployed at will to any number of available servers, depending on load-balancing or other con-

cerns such as disk storage availability. Web servicesmay also be located on different servers than

their supporting databases.

The work environment is responsible for performing computationally-intensive work. The work en-

vironment consists of one or more worker nodes whose hardware may range from a standard office

PC, up to high-specification dedicated compute cluster node. The only requirement is an installation

of Java, and some means of starting the Microbase compute client, for instance via ssh, Condor, Sun

Grid Engine, or equivalent.

A.2.1 Requirements

A development environment containing:

• Java 6 JDK

• Subversion: used for managing the Microbase source tree

217

• Microbase source code: your responder will be built against the provided public APIs

• Maven 2.0.x: used for building projects. Also used to generate the skeleton structure of new

responder projects.

• Google Web Toolkit: used for building the Microbase web-based GUI

• Development environment: An IDE such as Netbeans 6.x is recommended (Netbeans supports

Maven projects with the appropriate plugin)

Deployment server providing:

• Java 6 JRE

• Tomcat 6.x: used as a application container for Microbase core services, and server-side com-

ponents of responders. Tomcat may be obtained from: http://tomcat.apache.org/.

• PostgreSQL: structured storage system used by Microbase components. Versions 8.2 and 8.3

have been tested.

• SSH server: used to copy compiled web applications from the development environment to the

deployment server.

Work environment with:

• Java 6 JRE

• Some means of starting the compute client (manually, via SSH, via Condor, etc ...)

A.3 Quick-start virtual machine image

In a ‘real world’ deployment, each of the environments described in the previous section would

be located on physically distinct hardware. However, setting up a large-scale system suitable for

distributed computation involves a large amount of system administration (installing servers, config-

uring database server connectivity, etc). This is a daunting task, especially for new users to learning

how to write applications for the Microbase framework. Therefore, for the purposes of learning and

small-scale development and testing of responders, we have constructed a virtual machine quick-

start image containing everything required to write and deploy a simple responder application. You

218

http://tomcat.apache.org/

can immediately get to work on your responder without the hassle of installing Microbase, Post-

greSQL, Tomcat, etc from scratch. The VMware image provided will obviously not be able to

provide production-scale performance. You can use the virtual machine as a convenient environment

as both your development and deployment system. However, for more serious development it would

make more sense to use the VMWare appliance as a staging deployment server, while performing

actual development on a faster physical machine.

In terms of hardware requirements for the virtual machine, RAM is the most limiting factor. To run

the VMWare machine, we recommend a host machine with a minimum of 1GB. The virtual machine

image is configured to provide 600MB RAM to the guest operating system. If your host machine

has more than 1GB RAM, we recommend ‘upgrading’ the virtual machine to use a higher amount of

RAM for increased performance.

The virtual machine image may be downloaded from this location:

http://madras.ncl.ac.uk/microbase-vmware/

It should be possible to run the image on a Windows or Linux PC by downloading the free player

available here: http://www.vmware.com/products/player/

PCs running Mac OSX need to use: http://www.vmware.com/products/fusion/

Virtual machine notes:

• Once opened in VMware, you can use the username ‘microbase’ and password ‘microbase’ to

log into the virtual machine. If you need administrator access (for restarting services, etc), you

can use the command sudo -s to obtain a root shell.

• If the screen resolution appears low, it can be increased by resizing the VMware window after

proceeding past the initial login screen.

• Increasing the memory available to the virtual machine can dramatically increase performance.

• If you encounter any problems implementing the responder developed during this tutorial, the

virtual machine image contains a complete ready-to-compile responder project that can be used

for reference purposes. It is available in the directory $HOME/microbase-trunk/microbase-

tutorial.

• The virtual machine supports ‘snapshots’. This feature can be used to save progress through

the tutorial, or to roll back changes. As a last resort, it is possible to roll back to the snapshot

named ‘original’ which restores the VM to its original state.

219

http://madras.ncl.ac.uk/microbase-vmware/
http://www.vmware.com/products/player/
http://www.vmware.com/products/fusion/

A.4 Responder architecture

A responder wraps an entire unit of domain-specific functionality. This typically comprises:

1. a server-side component for responding to external event notification messages from the Mi-

crobase system

2. compute component(s) that perform the CPU-intensive operations. Multiple instances of these

components will be run in a distributed fashion.

Responders can either be written purely in Java, or can wrap an existing application written in any

language. The guide focuses on wrapping an existing command line application within a responder,

in order to run it within a distributed environment. This is the most challenging case, since it requires

the platform-native command line application to be packaged in an appropriate way for automated

deployment.

Structured
result

storage

Notification event handler
(Web service interface)

Responder

populates

Job implementation (including
cross-platform wrapper)

Platform-specific applications

Incoming event
notifications

schedules

Domain-specific Web service
query interface

Result data queries from
external applications

Outgoing
notifications of

completed analyses

queries

queries
User interface

Figure A.1: Responder architecture

The event handler part of a responder is responsible for receiving and acting upon events from ex-

ternal sources. In the ‘real world’, these events will deliver structured, machine-parsable message

from other responders or other sources (such as a process that periodically scans FTP sites for new

data). For the purposes of this guide, the events will be simple plain-text messages. Event handlers

must interpret incoming event messages to determine the amount of computationally-intensive work

that needs to be performed. The event handler should not perform this work itself; it should merely

220

inform Microbase that there is new work to be performed. Microbase will handle the actual queuing,

scheduling, worker node configuration, job enactment, and job failure retries. Finally, Microbase

will inform the responder’s event handler when the computational work is complete, via another

notification. Event can be used to chain responders together into an automated processing pipeline,

with the output of one responder triggering the input of the next, and so on.

The ‘compute job’ part of a responder is responsible for performing necessary ‘heavy lifting’ com-

putational work. This may include custom Java code, or command line applications. Jobs need to be

distributable and migratable to worker nodes available to the system.

The distinction between these two types of component arises from the need to deploy event handlers

to a server environment, and compute jobs to worker nodes. The distinction is also useful for respon-

der development purposes, cleanly separating what work to run (event handler) from how to run that

work (compute job).

A.5 Writing a responder

This guide explains how to construct a simple responder that will perform all against all pairwise

alignments of several bacterial genome sequences. This is an O(n2) problem on the number of

genomes to be compared, so is ideally suited to being processed in a distributed environment. The

remainder of this guide assumes that you are at least familiar with the basic Microbase architecture. It

also assumes that you are using the virtual machine quick-start appliance, or already have a working

Microbase installation deployed.

One of the most challenging aspects of constructing a Microbase responder is creating the initial

project structure that will house your application. To be able to interact with Microbase, your ap-

plication will depend on several libraries provided by the Microbase system. Additionally, some

components of a responder will reside within a server environment (i.e., Tomcat), while others need

to migrate between, and execute on worker nodes available to the system. This requires that the

different types of component are handled appropriately, and registered correctly with Microbase.

Microbase provides tool support for automating many of these deployment and registration tasks.

However, to do so it must be able to introspect your project’s structure to determine the function, and

therefore the appropriate destination for each component. This means that your responder project

should follow a structured, modular pattern. The advantages of following this approach are:

• it is immediately obvious to the developer which parts of the project execute on a server, and

221

which parts execute on worker node.

• all responder projects will follow the same basic layout, enabling faster responder develop-

ment once the design pattern is mastered. A familiar project layout also aids understanding of

responders developed by other people.

In order to simplify matters for both the developer, and the automated install process, we have de-

veloped a set of Maven archetypes1 that help to create the initial project structure template. These

archetypes handle the construction of necessary project directory structures, sample Web service-

configuration files and template Java code. The Microbase libraries required by responders are also

added as project dependencies. In short, the Maven archetypes will perform all the necessary ad-

ministrative work required to allow you to start writing Java immediately. Project(s) created by the

archetypes can be opened immediately in Netbeans.

A.5.1 Root project directory

It is recommended to organise all of a responder’s components under a root project directory named

after the responder. This is useful if your application requires the development of several responders.

Each responder then has its own components neatly contained in its own directory. This approach

is useful if responder code needs to be shared between multiple applications; a copy can be made

of the root directory, which includes all responder-specific web-services, database support and user

interface code.

To start, a root project directory needs to be created. This project does not actually contain any code,

but it will act as a home for your responder’s components (for ‘real’ responders, you should probably

change uk.ac.ncl.mygroup and my-new-responder to something meaningful):

If you are using the virtual machine, double click the terminal icon labelled home on the desktop
to obtain a terminal window. The following command should create a new responder project root
directory within your user’s home directory. Since this is quite a long command line, it is probably
easiest to copy and paste into the terminal window.

mvn archetype:create \

-DarchetypeGroupId=uk.org.microbase \

-DarchetypeArtifactId=responder-base \

-DarchetypeVersion=1.0 \

-DgroupId=uk.ac.ncl.mygroup \

-DartifactId=my-new-responder \

-Dversion=1.0

1See http://maven.apache.org/guides/introduction/introduction-to-archetypes.html for an introduction to Maven
archetypes, although a full understanding is not required.

222

After a few moments, you should see BUILD SUCCESSFUL, and a new directory will have been
created, containing a single pom.xml:

my-new-responder/

‘-- pom.xml

The my-new-responder will now be the root directory for this responder project. This directory is

just a standard maven project directory. This tutorial covers Microbase-specific modules only, but

any Maven project may be added as a child project.

A.5.2 Compute job sub-project

A compute job implementation executes within the work environment (A.2). This section describes

how to package a command line application for deployment to a Microbase system, and how to write

the necessary Java class wrapper.

A.5.2.1 BLAST

First, lets take a look at the application to be wrapped and its requirements. The program can be

downloaded from here: http://www.ncbi.nlm.nih.gov/BLAST/download.shtml, or is avail-

able in the VMware session under $HOME/blast.

BLAST is capable of aligning either DNA or protein sequences. Several bacterial sequences have
been placed into $HOME/genomes. To see it in action:

cd ~/blast/blast-2.2.18/bin

./bl2seq -p blastn -e 0.00058 -i ~/genomes/NC_000964.fna \

-j ~/genomes/NC_002570.fna -o blast_output.txt

This particular example should complete within a few seconds. It should create a file blast_output.txt

of around 3MB. The output file contains the alignment. The actual content is not important, but you

might wish to compare it to the output generated by Microbase, when the job implementation is ex-

ecuted, later on. However, what is of interest is the way the program was run and the meaning of the

various parts of the command string:

• Executable program name: bl2seq

• Input parameters (passed by value): -p blastn and -e 0.00058

• Input parameters representing files (passed by ‘reference’): -i /genomes/NC_000964.fna and

-j /genomes/NC_002570.fna

223

http://www.ncbi.nlm.nih.gov/BLAST/download.shtml

• Input parameters representing output files (passed by ‘reference’): -o blast_output.txt

The program name corresponds to the file name and location of the executable on the computer’s

disk. Input parameters are values that are passed to the program in-line. The content embedded

within the command line string are a data items that will either be used as-is by the application, or

parsed into an appropriate data type, such as a floating point number or a file name. Input parameters

are necessarily small data items in order to fit within an operating system’s command line buffer

space. While small quantities of data can be passed ‘in-line’ (such as the -e value above), when

large quantities of data need to be accessed by a program, the data must be placed into a file. An

input parameter is used with an appropriate ‘pointer’ value to the file containing the required data

content. Similarly, input parameters an be used to specify where a program places its output files.

The distinction between the different parts of a command line is important when executing an ap-

plication within a Microbase environment. In a distributed environment executable files, data files,

and command line strings need to be transported to remote worker nodes. Microbase implements a

bulk data transport mechanism that is efficient at transferring large blocks of data, such as entire files.

However, this transport mechanism is much less efficient at transferring tiny data items such as the

-e cutoff value. Small data items are transferred via a more appropriate method. The responder de-

veloper needs to be inform Microbase which transport mechanism should be used for each command

line parameter.

The heterogeneity of the worker nodes requires that the responder job implementation and the Mi-

crobase framework work together to ensure that executable files are installed on worker nodes with a

matching platform since programs compiled for Windows will not execute on Linux, and vice-versa.

Essentially, Microbase will ensure that the correct version of platform-native software is installed on

worker nodes, assuming that the responder:

• provides platform-native executable files in a package suitable for distribution via the Mi-

crobase resource system,

• and these packages are tagged with appropriate meta-data that indicates the operating system

and processor architecture they are intended to execute on.

Satisfying the responders’ obligations, therefore requires:

1. Writing a Java wrapper. This specifies the I/O requirements of a computational job, and the

transport mechanism to be used for data items.

224

2. Writing a mapping file used by Microbase to determine executable command paths in a multi-

platform environment

3. ‘Zipping’ the native application directories, together with appropriate mapping file. One pack-

age is required for each platform to be supported.

4. Tagging the resulting zip file(s) appropriately, so that worker nodes may query for it at

run-time

This implementation process will now be explained.

A.5.2.2 Java component

Begin by creating a job sub-project for the responder. To create a new compute job project, execute

the following from within the responder root directory:

mvn archetype:create \

-DarchetypeGroupId=uk.org.microbase\

-DarchetypeArtifactId=job-quickstart \

-DarchetypeVersion=1.0 \

-DgroupId=uk.ac.ncl.mygroup \

-DartifactId=my-compute-job \

-Dversion=1.0

As a result, your responder project should now look like this:

my-new-responder/

|-- my-compute-job

| |-- pom.xml

| ‘-- src

| ‘-- main

| |-- java

| | ‘-- uk

| | ‘-- ac

| | ‘-- ncl

| | ‘-- mygroup

| | ‘-- HelloJob.java

| |-- mb-resources

| | ‘-- test.foo

| ‘-- resources

‘-- pom.xml

225

A.5.2.3 Implementing the Java component of a job

At this point, it should be possible to load the project created in the last step into the NetBeans

IDE. Launch the IDE (the NetBeans icon on the desktop), and open the “my-new-responder” project

(remember to enable the “Open Required Projects” option in the open dialogue box.

You should now see two projects listed in the “projects” pane on the left hand side. Expand the

project named “uk.ac.ncl.mygroup-my-compute-job”. Open the “Source Packages” tree until you

reach “HelloJob.java”. Open this file in the editor.

Figure A.2: The ‘hello world’ job as created by the Maven archetype. This job takes one input param-
eter that specifies how long the job should ‘compute’ for. The doWork method uses this parameter to
wait the specified number of seconds.

There are several items of interest:

• a no-arguments constructor

• a property accessed by bean-style getter/setter methods, with annotations

• a “doWork” method

At this point, some information about how Microbase enacts a job may be useful. The steps involved

226

from the point of view of a worker node are as follows. Bold text indicates where control of the

execution thread is passed to the user job implementation:

• The Microbase compute client running on a worker node requests a unit of work from the

server. A job description is returned, if there is work available.

• The job description is examined to determine which resources (executable files, input files)

need to be downloaded

• After acquiring necessary resources, the Java component of the job implementation is class-

loaded. The constructor of the job implementation is called at this point.

• The job instance is informed of input parameters and input resources. The ‘set’ methods of

annotated input bean properties are called at this point.

• The job is then ready to run. doWork() is called at this point.

• Job result files are uploaded to the Microbase resource system. The ‘get’ methods of anno-

tated output bean properties are called at this point.

• The job implementation class is unloaded, and the entire process repeats with a new unit of

work.

The compute job implemented in the example simply prints a message, waits a specified number of

seconds, prints a second message, and then exists. It takes one input: an integer value that specifies

the number of seconds that is should ‘work’. The input parameter is stored in the variable jobCom-

puteTime. This looks like a standard bean property, with ‘getter/setter’ accessor methods with one

difference: the ‘setter’ method is annotated with @InputParameter(inputName=”jobComputeTime”).

This annotation is important - it is notifies Microbase that ‘jobComputeTime’ is a property that needs

to be set before the job is executed.

There are several types of annotation that can be used to specify the inputs to job implementations:

@InputParameter allows the developer to specify ‘small’ data items to be passed to the Java im-

plementation. Valid java data types are: primitive types (int, long, boolean, etc) and String.

Although it may be possible to send ‘large’ (>MBs) Strings as parameters, this is not recom-

mended.

@InputResource allows ‘large’ resources to be sent efficiently to a job implementation via the Mi-

crobase resource system. @InputResource allows the use of many structured data types

227

to be used within a Java compute job without the need for the implementation to have knowl-

edge of where the resource originated from, or how to marshal / un-marshal objects across a

network. Almost any serializable Java type may be specified here (Microbase will han-

dle deserialisation of complex types, including Maps, Sets, Lists, etc). The Java type File

may also be specified for objects that will not fit into RAM, or for objects that need custom

deserialisation. In this case, the raw file is available to the job implementation. Using File is

especially useful if input data is required for a command line application.

@PlatformSpecificResource used to specify a resource whose content depends on the hardware or

operating system platform that the compute job is executing on. This input type is useful for

requesting a platform-native binary in a platform-neutral way. Note that any bean property

annotated with @PlatformSpecificResource must be associated with the data-type Na-

tiveExecutable. This data-type is an interface to a packaged command line application. It

allows execution of these applications in a straightforward manner. An example will be shown

below.

Annotations can also be used to specify compute job outputs:

@OutputResource allows result items (such as structured Java objects, or files created as a result

of executing a command line application) to be ‘collected’ and archived by Microbase. The

same data-types supported by @InputResource are also supported by @OutputResource.

A.5.2.3.1 Job I/O To run BLAST, we need to pass a mixture of input parameters and input re-

sources. First, delete the property jobComputeTime and its associated methods. Add the following

properties to HelloJob:

Figure A.3: The BLAST job implementation will require several inputs and one output. The inputs
are: the executable BLAST package; a Java primitive value; two sequence files. The output is a file
containing the alignment.

Then add the appropriate getter / setter methods (see Figure A.4 on the following page). Notice

that the annotations on these methods specify whether the property is an input or an output, and

228

Figure A.4: Microbase must be told which of the properties (defined in Figure A.3 on the preceding
page) are inputs and which are outputs. The mapping is achieved by annotating the accessor methods,
as shown. Notice that the values of annotation properties such as inputName and outputName do
not need to match the bean property names. Note: to save some typing, alt-insert can be used within
Netbeans to auto-generate the getter/setter methods. Then, only the annotations need to be added by
hand.

how the property is to be transported from a Microbase server to a worker node. For instance, the

e value input is annotated with an @InputProperty, while the two genome file inputs are anno-

tated with @InputResource. The alignment file produced by running BLAST is annotated as being

an @OutputResource. The BLAST executable itself is annotated with @PlatformSpecificRe-

source, indicating that the worker node should decide at run-time which version of a resource it

should download. The string values embedded within the annotations allow Microbase to bridge

its systems with domain job implementations. The details of annotations will be revisited in the

following sections.

229

A.5.2.3.2 Performing computational work A worker node executes your job implementation

by calling the doWork() method. A job’s specified input properties are guaranteed to be populated

before a the doWork() method is called (assuming suitable values were received from a job server).

Command line applications such as BLAST will also be downloaded and installed automatically

prior to execution.

There are two ways in which the doWork() method may terminate: either cleanly, by returning nor-

mally; or by throwing a JobProcessingException. If the method returns cleanly, without throw-

ing an exception, then the worker node assumes that the job processing was successfully completed,

and informs the Microbase system appropriately. However, if the doWork terminates by throwing

an exception, the worker node assumes that a processing failure occurred. The Microbase system

is informed of the failure, and is passed the stack trace for logging and debugging purposes. In the

failure case, the job will also be re-queued so that it will run at a later time, potentially on a different

worker node.

The implementation of the doWork method required to run BLAST needs to generate a command

line, using the available parameters. This is shown in Figure A.5 on the next page.

All command line processes have the ability to output to either or both of the two standard UNIX

streams: standard out (STDOUT) and standard error (STDERR), whether they are executing on

Linux, Windows, or other platforms. Whether these streams contain useful content is entirely

application-dependent. For the purposes of this guide, the content of these streams will be sent

to the screen and will be displayed when the job runs on a worker node. For ‘real world’ jobs, you

may wish to capture this information by writing it to a file (handily, the Java FileWriter class im-

plements Appendable, so this is trivial), or you may want to ignore the streams completely if no

useful information is returned.

The Java implementation for the compute job is now complete. On completion of doWork, the

content of the alignmentOutput file will be copied back to the Microbase resource system.

A.5.2.4 Packaging platform-native applications

For this example, we will package the BLAST application for two platforms: Linux/i386, and Win-

dows/i386, although only the Linux package will actually be used for the purposes of this guide.

You can find BLAST distributions for various operating systems under $HOME/blast. This directory

contains unmodified BLAST distributions, as downloaded from the NCBI site.

First, change the working directory to that of the Linux BLAST distribution:

230

The parameters passed to this method are as follows:

• The first two parameters specify where the ‘standard’ STDOUT and STDERR streams are
directed to.

• The third parameter corresponds to a key value in a map. This value does not correspond to an
executable file on a disk (although it may be named similarly). Instead, the string ‘bl2seq’ is a
platform-neutral name assigned to the application that gets mapped at run-time to a platform-
specific command path. This allows the Java job implementation to run an application with-
out having to know the exact location, or for that matter the platform-specific filename (e.g.,
‘bl2seq’ on Linux vs ‘bl2seq.exe’ on Windows). Command name 7→ path mappings will be
explained in the following Section A.5.2.4 on the preceding page.

• The remaining parameters form command line parameters passed to the application, equivalent
to the BLAST command line described earlier (Section A.5.2.1 on page 223).

Figure A.5: How to run a native executable application from within a Java compute job imple-
mentation. The executeApplication() method on the NativeExecutable instance delegates
processing to a command line application.

cd ~/blast/linux-blast

You should see a directory structure that resembles something like this:

blast-2.2.18

|-- bin

|-- data

‘-- doc

Under the ‘bin’ directory, you should see:

231

|-- bin

| |-- bl2seq

| |-- blastall

| |-- blastclust

| |-- blastpgp

| |-- copymat

... etc ...

Step 1 - create the executable path name properties file There are several executable files within

the ‘bin’ directory. Currently, however, these files are not accessible from the job implementation

because Microbase does not know that, for instance, bl2seq is an executable file. To run one

of these files from a job implementation, it is necessary to explicitly specify which file(s) are re-

quired. This can be done by constructing a standard Java properties file. This file must be called

exe_mappings.properties. This file will map an abstract name to an operating system-specific

file path. The name field is the identifier used by the Java job implementation at run-time to recog-

nise an executable file. This name does not need to mirror the actual executable file name, but it is

advisable that it is similar for readability and consistency reasons.

bl2seq = blast-2.2.18/bin/bl2seq

blastall = blast-2.2.18/bin/blastall

blastclust = blast-2.2.18/bin/blastclust

... and so on ...

Note that not every executable file under the ‘bin’ directory needs to be added to the mappings file.

Only the programs called by the Java job implementation need to be entered. So for this example,

only the bl2seq entry actually needs to be present.

Step 2 - create the resource file Once the name mappings file is complete, a package can be
created that can be used by Microbase. The following command will create such a package. It will
create a file “mb-blast-2.2.18-linux-ia32.zip”, that contains the original blast distribution, as well as
the mapping file created in the previous step.

zip -r mb-blast-2.2.18-linux-ia32.zip exe_mappings.properties blast-2.2.18

Step 3 - create the resource tag file Files stored within the Microbase resource system may have

meta-data associated with them in the form of tags (key/value pairs). Worker nodes can use these

tags at run-time to find platform-native resources that match the particular platform they are running

on. Therefore, the developer is required to provide these tags in an appropriately named file. The

232

Microbase installer will use this file at install-time to deploy the resource file created in step 2 with

the appropriate tags.

The resource tag file should be named: <resource_file_name>.resource.tag.properties, so

in this case, the tag file name will be: mb-blast-2.2.18-linux-ia32.zip.resource.tag.properties

The tag file content should be:

res.name=blast

res.version=2.2.18

res.file_type=ZIP

res.file_content=PLATFORM_SPECIFIC_RESOURCE

platform_specific.os_name=Linux

platform_specific.os_arch=i386

Notes:

1. The values you use for the res.name and res.version tags are arbitrary. You just need to

ensure that the string values specified in the properties file are the same as the string values

specified in the InputPlatformSpecifiicResource annotation, within the Java job imple-

mentation.

2. The tag platform.specific.os.name needs to be set to the name of the operating system

that the native executable(s) run on as returned by System.getProperty(‘‘os.name’’).

3. The tag platform.specific.os.arch needs to be set to the architecture that the native

executable(s) run on as returned by System.getProperty(‘‘os.arch’’) Note that this

varies according to the operating system. For instance, Linux reports intel ia32 hardware as

“i386”, whereas Windows reports the same hardware as “x86”.

4. The values for the tags res.file_type and res.file_content should not be changed.

Step 4 - copy files into project directory structure Finally, the files “mb-blast-2.2.18-linux-

ia32.zip” and “mb-blast-2.2.18-linux-ia32.zip.resource.tag.properties” should be copied into the mb-

resources directory of the job implementation Maven project. This will allow the resource to be

found and published by the Microbase installer.

This can be accomplished by executing:

cp mb-blast-2.2.18-* $HOME/my-new-responder/my-compute-job/src/main/mb-resources

233

Troubleshooting If you encountered any problems with application packaging in the steps above,

there is a pre-packaged BLAST file available in $HOME/blast/prepackaged. The content and

layout of this archive file may be helpful.

Packaging the Windows-native executable

Note: for the purposes of this tutorial, packaging a Windows executable is not necessary. It is

here for reference only, to highlight the differences to packaging for Linux/i386.

The process of creating a BLAST package for the Windows/32 platform is identical. Only the plat-

form specific values change. This part is not strictly necessary for this tutorial (unless you wish to

test the job implementation on Windows). For a ‘real world’ deployment, the process of creating

platform-specific packages would need to be repeated for each platform.

Step 1 - create the executable path name properties file Under Windows, executable file names
have the extension “.exe”:

|-- bin

| |-- bl2seq.exe

| |-- blastall.exe

| |-- blastclust.exe

| |-- blastpgp.exe

| |-- copymat.exe

... etc ...

Therefore, the Windows exe_mappings.properties file will look like this:

bl2seq = blast-2.2.18/bin/bl2seq.exe

blastall = blast-2.2.18/bin/blastall.exe

blastclust = blast-2.2.18/bin/blastclust.exe

... and so on ...

Step 2 - create the resource file Again, run the zip command to create the resource file:

zip -r mb-blast-2.2.18-windows-ia32.zip exe_mappings.properties blast-2.2.18

Step 3 - create the resource tag file Next, the resource tag file needs to be created. The differences
are the operating system-specific tag values:

res.name=blast

res.version=2.2.18

234

res.file_type=ZIP

res.file_content=PLATFORM_SPECIFIC_RESOURCE

platform_specific.os_name=Windows\ XP

platform_specific.os_arch=x86

A.5.2.5 Final job implementation directory

The job implementation directory structure should look like the structure shown as follows. If it

does, proceed to the next section.

my-new-responder/

|-- my-compute-job

| |-- pom.xml

| ‘-- src

| ‘-- main

| |-- java

| | ‘-- uk

| | ‘-- ac

| | ‘-- ncl

| | ‘-- mygroup

| | ‘-- HelloJob.java

| |-- mb-resources

| | |-- mb-blast-2.2.18-linux-ia32.zip

| | |-- mb-blast-2.2.18-linux-ia32.zip.resource.tag.properties

| | ‘-- test.foo

| ‘-- resources

‘-- pom.xml

A.5.3 Event handler sub-project

The previous section introduced job implementations that run within a worker node. This section

will describe the server-resident, event handler part of a responder that is responsible for scheduling

instances of the job implementations. The event handler is a web-service implementation of the

Microbase notification system’s push subscriber. This project therefore builds as a web archive (.war)

and will need to be hosted within a container such as Tomcat.

You can create a new skeleton event handler project by executing the following Maven command
from within the "my-new-responder" directory. After executing the command, the responder direc-
tory should look similar to the directory structure shown in Figure A.6 on the following page:

mvn archetype:create \

-DarchetypeGroupId=uk.org.microbase \

-DarchetypeArtifactId=event-quickstart \

235

-DarchetypeVersion=1.0 \

-DgroupId=uk.ac.ncl.mygroup \

-DartifactId=my-event-handler \

-Dversion=1.0

my-new-responder/

|-- my-compute-job

| |-- pom.xml

| ‘-- src

| ‘-- main

| |-- java

| | ‘-- uk

| | ‘-- ac

| | ‘-- ncl

| | ‘-- mygroup

| | ‘-- HelloJob.java

| |-- mb-resources

| | |-- mb-blast-2.2.18-linux-ia32.zip

| | |-- mb-blast-2.2.18-linux-ia32.zip.resource.tag.properties

| | ‘-- test.foo

| ‘-- resources

|-- my-event-handler

| |-- pom.xml

| ‘-- src

| ‘-- main

| |-- java

| | ‘-- uk

| | ‘-- ac

| | ‘-- ncl

| | ‘-- mygroup

| | ‘-- HelloEventResponder.java

| |-- resources

| | ‘-- META-INF

| | ‘-- xfire

| | ‘-- services.xml

| ‘-- webapp

| ‘-- WEB-INF

| ‘-- web.xml

‘-- pom.xml

Figure A.6: A responder project containing two sub-projects: a job implementation and an event
handler

As you can see, this has created a web application project that is an XFire Web serviceimplemen-

tation. When built, this project will generate a web archive (.war file) that can be deployed to a

Tomcat (or equivalent) application container. Load this new project into NetBeans.

236

A.5.3.1 Implementing the event handler

A.5.3.1.1 Registering to receive event notifications Event handlers need to be able to receive

events from other components within the Microbase system in the form of messages. These messages

may be notifications of new data arriving in the system, or notification that a computational task has

completed. Messages can be used to chain multiple responders together into a pipeline.

Although Microbase handles automatic registration of your event handler implementation (such as

its Web serviceend-point and message topic registrations), the developer is responsible for specifying

which types of message their responder should receive. This is done by requesting that the responder

is registered with a set of topic names. The responder described in this section needs to receive two

types of event:

1. Notification of ‘new’ data files to process

2. Notification of the completion of a BLAST job.

The responder needs to sent two types of event:

1. A request to Microbase to schedule a computationally intensive task

2. A message sent in response to a task completion report (in a ‘real world’ system, this would

be used to inform the next responder in a pipeline that a BLAST task has just completed).

In the NetBeans IDE, open the Java file HelloEventResponder. You should see some example

topic registrations in the constructor of this class. Change the constructor to read:

The first line informs Microbase that this event handler should receive events of type ‘new sequence

data’, and a Microbase event that indicates task completion. The second line informs Microbase that

the responder will send messages of type ‘blast complete’. Microbase will handle the registration

of these topics within the notification system, and will also register the responder as a subscriber to

these messages.

237

A.5.3.1.2 Handling event notifications At this point, the class is a valid event handler and would

receive events if deployed to Microbase. However, it currently does nothing with these events. Events

are handled with the dealMessage() method. All events received by the handler are delivered via

this method. Before events can be handled, they need to be filtered by type because different types

of messages must be handled in different ways. We will use the dealMessage() method to split

messages based on their topic, and delegate onto appropriate handler methods:

A handler method for ‘new sequence data’ notifications will now be written. What does a ‘new

sequence data’ message look like? It’s entirely up to the responder developer. In a production-quality

system, this would usually involve an XML-based message, containing appropriate domain-specific

meta-data. In this example, the message content will be a human-friendly space-separated list of

sequence names. The message content will need to be parsed, and the names extracted. It will then

be necessary to schedule an appropriate number of jobs so that an all-vs-all comparison is performed.

Each job will perform a single pairwise comparison between two sequences.

238

New data notifications are dealt with as follows:

1. The content of the message is parsed to obtain a list of sequence names that need to be com-

pared.

2. The sequences are to be compared in an all against all fashion. It is necessary to schedule a

series of compute jobs implemented in Section A.5.2 on page 223 to execute each pairwise

comparison. Since the event handler and compute job implementation are separate decoupled

projects, the event handler needs a way to reference the job implementation. This is achieved

by using the Maven project information specified when the compute job project was created

(Section A.5.2.2 on page 225), specifically group id, archetype id, version. In addition,

the fully-qualified class name containing the job implementation is required. This information

enables a remote worker node to find, download and install the required compute job at run-

time.

239

3. For efficiency reasons, sets of related job descriptions are bundled into a ‘task’ (the task is

simply a container).

4. The next code section loops over the sequence names and creates job ‘descriptions’ for each

pair of sequences. It is important that the input parameters and input resource names speci-

fied here match the annotation strings specified in the job implementation (see Figure A.4 on

page 229). The newly created jobs are added to the ‘task’ container.

5. Finally, the task description is published as a notification. The Microbase notification system

propagates the task message to the job management system, where the jobs will be queued

until suitable worker node(s) are available to process them.

On completion of the task (i.e., all jobs complete), a notification will be sent back to the BLAST

responder. The responder must handle this event as well. In this case, a simple ‘blast complete’

notification will be sent. Currently this message is not used by component. However, if another

responder were added to the system at a future time, the ‘blast complete’ message history could

be used to inform the new responder of previously completed work. The code fragment in below

shows how this is achieved. This demonstration application emits human-readable ‘blast complete’

messages in response to a ‘task complete’ message being received from the job management system.

These messages are generated in the following way:

1. A set of job execution reports are obtained from the ‘task complete’ message.

2. A human-readable summary is produced by iterating through these job execution reports in-

cluding: inputs used, output resource produced, and whether the job run was successful of not.

If the enactment was unsuccessful, an execution log is appended.

3. Finally, the ‘blast complete’ message is published to the notification system.

240

A.5.3.2 Modifying services.xml

At this point, the event handler should be capable of handling events from the Microbase notification

system. However, one small configration detail needs to be completed before the project can be

compiled.

In the filesystem tree (above), you should be able to find a file named services.xml. Currently this
file looks something like this:

<beans xmlns="http://xfire.codehaus.org/config/1.0">

<service>

<name>PushSubscriber</name>

<serviceClass>uk.org.microbase.notification.ws.subscriber.push.spec.PushSubscriber</serviceClass>

<implementationClass>HelloEventResponder</implementationClass>

</service>

</beans>

The <implementationClass> line needs to be changed from this:

<implementationClass>HelloEventResponder</implementationClass>

to this:

<implementationClass>uk.ac.ncl.mygroup.HelloEventResponder</implementationClass>

241

The package name needs to be added because the event handler Maven archetype currently does not

support inserting the group id / package name into XML files. The <implementationClass> line

should always mirror the fully-qualified Java classname of the event handler implementation class.

Bear this in mind if you re-factor the event handler project.

At this point, the entire responder has been implemented and is ready to be deployed.

A.6 Installation / Deployment

This section assumes that you have a completed responder, ready for compilation and deployment

to a Microbase installation. The Microbase installer is capable of installing responders as well as

the core Microbase components. If you are using the virtual machine image, the Microbase core

components will already have been installed, and you can skip many of the installation steps.

To run the installer, open the terminal session named Microbase build. In the tab named in-

staller, run the following script:

./installer.sh

You should now be at the “welcome” screen of the GUI installer. The VMware image used for this

guide already has many of the settings configured for you. For instance, you can simply click through

the PostgreSQL and Tomcat configuration screens. They are shown below for clarity.

Installer step 1: if you see this screen, then the installer has compiled and started successfully.

242

Installer step 2: Configuration of the PostgreSQL server(s) that will store data for the core

Microbase components, and potentially user responder components. For this tutorial, leave these

options set to the defaults

Installer step 3: Configuration of the Tomcat server(s) that will host the server-resident portions of

responders. For this tutorial, leave these options set to the defaults

243

Installer step 4: Database server selection for the configuration service. For this tutorial, leave these

options set to the defaults

Installer step 5a: Project selection. Here, you can specify the project directory for your responder.

This is required because Microbase takes over the compilation and deployment of your responder.

Microbase can only do this if it knows the location of your responder project.

244

Installer step 5b: Project selection. Select the responder’s root directory

Installer step 5c: Project selection. Make sure that your responder is checked. If not checked, the

installer will ignore the project. Make sure that the Microbase project is unchecked. Recompiling

Microbase would do no harm, but it is unnecessary in this case, and may take several minutes to

compile.

245

Installer step 6: Compilation. Press the ‘compile’ button. You should hopefully see a ‘BUILD

SUCCESSFUL’ message. If so, proceed to the next step.

Installer step 7a: Deployment. This step deals with deployment of server-side components to a set

of remote Tomcat servers. If more than one Tomcat server is defined in step 3, then multiple Tomcat

servers will be available to deploy to. In this case, the Tomcat server is simply ‘localhost’ because it

is running within the virtual machine. Select your responder in the left-hand pane. ‘Add’ it to the

Tomcat server listed on the right hand side. Finally, click the ‘deploy’ button at the bottom of the

screen. You may ignore the Tomcat warning here, since Tomcat has not been started yet.

246

Installer step 7b: Deployment complete. This pop-up window should appear during service

deployment. The image shown here indicates that all services were copied correctly.

Installer step 7c: Start Tomcat. At this point, we need to step outside of the installer GUI for a

moment in order to start the Tomcat server. On the desktop of the virtual machine, you should see a

‘Tomcat’ terminal icon. Open the terminal, and type ./startup.sh. This command should have

started the server. You can monitor the startup process if you wish by changing to the ‘log’ terminal

and typing tail -f catalina.out.

247

Installer step 8: ‘Kick’ responders. The last step started the Tomcat server. However, it is now

necessary to ‘kick’ each of the deployed responders so that they initialise and self-register. The

kick-start process allows responders to auto-create the databases they need.

Installer step 9a: Find compute job implementations. It is necessary to deploy the compute-job

portion of responders to the Microbase resource system. Compute job ‘jar’ files, as well as their

Java dependencies and required command line applications need to be copied to the resource system

so that they are accessible to worker nodes. Completing this task allows worker nodes to

automatically install applications on-demand. Click the ‘find resources’ button to instruct the

248

installer to find all compute-job implementation projects.

Installer step 9b: Deploy compute job implementations: Finally, the resources found in the previous

step need to be deployed. Unfortunately, it is necessary to go back to the command line again.

Switch to the command line window that you started the GUI installer from. Select the 2nd tab,

‘publish resources’. Type the command ./publish_resources.sh. This script takes the list of

resources generated by the GUI installer and copies them to the Microbase resource system via

BitTorrent. After this step completes, then your responder is installed and is ready to test.

Note that this final step depends on an active Internet connection to allow the BitTorrent implemen-

tation’s distributed database to connect. No torrent data is transferred externally, only lightweight

connections to a BitTorrent tracker are made. Please be patient, it may take a minute or two to initi-

ate connections to this external service. For performance reasons in a production-quality deployment,

it would be advisable to connect to a torrent tracker running somewhere on your local network. This

is relatively straightforward, but is beyond the scope of this tutorial.

A.7 Testing

This section shows how to test the new responder. Before proceeding, it might be worth closing

the NetBeans IDE and the Microbase installer if they are still open. If the virtual machine image is

running in 600MB (the default), this will free up a substantial amount of memory and will improve

performance.

249

Before jobs can be scheduled, some input data (genome sequences) needs to be uploaded to the
resource system. Usually, this would be done automatically by Microbase (by scanning an FTP site,
for instance). To upload some sequences, open the ‘Testing’ console icon on the desktop, and run the
following commands:

./resource-client.sh publish NC_000964 some_description $HOME/genomes/NC_000964.fna

./resource-client.sh publish NC_002570 some_description $HOME/genomes/NC_002570.fna

./resource-client.sh publish NC_003997 some_description $HOME/genomes/NC_003997.fna

Each command uploads one genome sequence to the resource system. Once all the data has been

uploaded, a notification must be sent to inform the system that new data is available (this is the notifi-

cation message we defined in Section A.5.3.1 on page 237). In a production system, this notification

would be sent automatically.

To send the notification, open Firefox (desktop icon). In the bookmark toolbar, click the ‘Microbase

GUI’ entry. From the ‘Applications’ menu, choose ‘Notification admin’. You should see a window

similar to Figure A.7.

Figure A.7: Notification system administration interface. This can be used for monitoring a running
system, as well as injecting messages for testing responders. The ‘message list’ tab allows paging
through all archived messages. Double-clicking an item will display the message content in a pop-up
window.

Click ‘Testing’ and ‘Send message’. From the drop-down list of topics, select ‘new sequence data’.

From the drop-down list of publishers, choose any publisher except ‘HelloEventResponder’ (for the

purposes of this guide, it does not matter which publisher sends the ‘new sequence data’ message).

In the ‘content’ box, add the following space-separated sequence names ‘NC_000964 NC_002570

NC_003997’ (Figure A.8 on the following page)

Finally, click ‘send’. This sends the notification of ‘new data’, which should arrive at your responder.

The responder will then schedule a set of jobs to perform the all-vs-all comparison of the specified

genome sequences. These jobs will arrive at the job server, ready for processing.

Currently, the web interface to Microbase is undergoing a re-write. Therefore, to see the jobs added

to the system, you will need to browse to ‘Microbase GUI2’ available on the bookmarks toolbar of

Firefox. Once there, open the ‘job server’ application (Figure A.9 on the next page).

250

Figure A.8: Sending a test message

Figure A.9: The job server GUI shows currently queued, processing and completed jobs. In this case,
a large number of jobs are running over a cluster of worker nodes.

To run jobs, the Microbase compute client needs to be started. Usually, this would be started via an

automated means such as Condor or Sun Grid Engine. For this demonstration it needs to be started

manually. Change to the ‘job enactment’ tab of the ‘Testing’ console and type the following:

./node_start_small_ram.sh --normal

251

After a while the compute node will start. The following sequence of events should occur:

1. The worker will contact the job server (running within Tomcat) for a job description.

2. The required job implementation (jar) will then be downloaded.

3. After class-loading and introspecting the job implementation class, the worker node will down-

load the required resource files (in this case, the Linux/x86 BLAST executable, and two

genome files).

4. The BLAST executable will then be installed, and processing should begin — check the GUI

within Firefox for ‘processing’ jobs. You might also want to have top (see Figure A.10)

running within a terminal to see bl2seq running.

5. Once the job is complete, Microbase is informed that the resulting alignment file is available

for archiving.

6. Simultaneously, the next job description is obtained, and processing begins.

7. Once all jobs have been processed, the compute client will remain running (it can be killed

with CTRL-C).

8. The task should be marked ‘complete’, and a notification event will be sent to indicate this.

Finally, if you wish to inspect the data produced, every resource stored by the resource system is

located in $HOME/data/torrents.

If you had any problems implementing the responder, a complete ready-to-compile version is avail-

able in $HOME/microbase-trunk/microbase-tutorial.

252

Figure A.10: A ‘Bl2seq’ processing running within a Microbase job.

253

Bibliography

[1] Amazon EC2. http: // aws. amazon. com/ ec2/ . [accessed 2009/10/05].

[2] Google Apps. http: // www. google. com/ apps/ . [accessed 2009/10/02].

[3] JavaCC. https://javacc.dev.java.net/, 2009. [accessed October 2008].

[4] William Allcock, John Bresnahan, Rajkumar Kettimuthu, and Michael Link. The Globus
striped GridFTP framework and server. SC ’05: Proceedings of the 2005 ACM/IEEE confer-
ence on Supercomputing, Nov 2005.

[5] I Altintas, C Berkley, E Jaeger, M Jones, B Ludscher, and S Mock. Kepler: Towards a grid-
enabled system for scientific workflows. In the Workflow in Grid Systems Workshop in GGF10
- The Tenth Global Grid Forum, Berlin, Germany, Jan 2004.

[6] S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–410, Oct 1990.

[7] Stephen F Altschul, Thomas L Madden, Alejandro A Schaffer, Jinghui Zhang, Zheng Zhang,
Webb Miller, and David J Lipman. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Research, 25(17):3389–3402, Aug 1997.

[8] Gene M Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. Proceedings of the American Federation of Information Processing Societies
Conference, AFIPS, 30:483–485, Jan 1967.

[9] D Anderson. BOINC: a system for public-resource computing and storage. Grid Computing,
2004. Proceedings. Fifth IEEE/ACM International Workshop on, pages 4 – 10, Oct 2004.

[10] D Anderson, E Korpela, and R Walton. High-performance task distribution for volunteer
computing. e-Science and Grid Computing, Jan 2005.

[11] S Anderson. Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic
Acids Research, 9(13):3015–27, Jul 1981.

[12] T Anderson, D Culler, and D Patterson. A case for NOW (networks of workstations). Micro,
IEEE, 15(1):54 – 64, Feb 1995.

[13] T Anderson, M Dahlin, J Neefe, and D Patterson. Serverless network file systems. ACM
Transactions on Computer Systems (TOCS), 14(1):41–79, Jan 1996.

[14] S Androutsellis-Theotokis and D Spinellis. A survey of peer-to-peer content distribution tech-
nologies. ACM Computing Surveys (CSUR), Jan 2004.

254

http://aws.amazon.com/ec2/
http://www.google.com/apps/

[15] Fred Annexstein, Kenneth Berman, and Mihajlo Jovanović. Latency effects on reachability
in large-scale peer-to-peer networks. SPAA ’01: Proceedings of the thirteenth annual ACM
symposium on Parallel algorithms and architectures, Jul 2001.

[16] M Ashburner, C A Ball, J A Blake, D Botstein, H Butler, J M Cherry, A P Davis, K Dolinski,
S S Dwight, J T Eppig, M A Harris, D P Hill, L Issel-Tarver, A Kasarskis, S Lewis, J C
Matese, J E Richardson, M Ringwald, G M Rubin, and G Sherlock. Gene Ontology: tool for
the unification of biology. Nat Genet, 25(1):25–29, May 2000.

[17] InfiniBand Trade Association. Infiniband. http: // www. infinibandta. org/ home . [ac-
cessed 2009/05/09].

[18] M Atkinson, D DeRoure, A Dunlop, and G Fox. Web service grids: an evolutionary approach.
Concurrency and Computation: Practice and Experience, 17:377–389, Jan 2005.

[19] Jean Bacon. COBEA: A CORBA-based event architecture. in Proceedings of the 4th Confer-
ence on Object-Oriented Technologies and Systems, USENIX, pages 117–131, May 1998.

[20] Greg J Badros. A caching NFS client for linux. 4th Annual Linux Expo, Durham, NC, Nov
1998.

[21] L Baduel, F Baude, D Caromel, A Contes, and F Huet. Programming, Composing, Deploying
for the Grid. 2006.

[22] S Baset and H Schulzrinne. An analysis of the Skype peer-to-peer internet telephony proto-
col. INFOCOM 2006. 25th IEEE International Conference on Computer Communications.
Proceedings, pages 1 – 11, Apr 2006.

[23] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L McGuinness,
Peter F Patel-Schneider, and Lynn Andrea Stein. OWL Web ontology language reference.
http: // www. w3. org/ TR/ owl-ref/ , 2004. [accessed 2009/05/07].

[24] P Beckman. Building the teragrid. Philosophical Transactions: Mathematical, Jan 2005.

[25] Brett Beeson, Steve Melnikoff, Srikumar Venugopal, and David Barnes. A portal for grid-
enabled physics. ACSW Frontiers ’05: Proceedings of the 2005 Australasian workshop on
Grid computing and e-research, 44, Jan 2005.

[26] Jannick Dyrløv Bendtsen, Henrik Nielsen, Gunnar von Heijne, and Søren Brunak. Improved
prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 340(4):783–95, Jul
2004.

[27] Dennis A Benson, Ilene Karsch-Mizrachi, David J Lipman, James Ostell, and Eric W Sayers.
GenBank. Nucleic Acids Research, 37(Database issue):D26–31, Jan 2009.

[28] Alex Berson. Client/server architecture. McGraw-Hill, 1992. ISBN: 0-07-005076-7.

[29] A Bhushan. RFC 141: A file transfer protocol. http: // www. faqs. org/ rfcs/ rfc114.
html , 1971. [accessed 2009/04/20].

[30] A Bilas and J Singh. The effects of communication parameters on end performance of shared
virtual memory clusters. Supercomputing, ACM/IEEE 1997 Conference, Oct 1997.

[31] A Billion, R Ghai, T Chakraborty, and T Hain. Augur–a computational pipeline for whole
genome microbial surface protein prediction and classification. Bioinformatics, 22(22):2819–
20, Nov 2006.

255

http://www.infinibandta.org/home
http://www.w3.org/TR/owl-ref/
http://www.faqs.org/rfcs/rfc114.html
http://www.faqs.org/rfcs/rfc114.html

[32] Tim T Binnewies, Yair Motro, Peter F Hallin, Ole Lund, David Dunn, Tom La, David J
Hampson, Matthew Bellgard, Trudy M Wassenaar, and David W Ussery. Ten years of bac-
terial genome sequencing: comparative-genomics-based discoveries. Funct Integr Genomics,
6(3):165–185, Jun 2006.

[33] K Birman and T Joseph. Exploiting virtual synchrony in distributed systems. SOSP ’87:
Proceedings of the eleventh ACM Symposium on Operating systems principles, Nov 1987.

[34] Ewan Birney, Michele Clamp, and Richard Durbin. Genewise and genomewise. Genome
Research, 14(5):988–95, May 2004.

[35] J Blythe, S Jain, E Deelman, Y Gil, K Vahi, A Mandal, and K Kennedy. Task scheduling
strategies for workflow-based applications in grids. Cluster Computing and the Grid, 2005.
CCGrid 2005. IEEE International Symposium on, 2:759 – 767 Vol. 2, Apr 2005.

[36] W Bolosky, R Fitzgerald, and M Scott. Simple but effective techniques for NUMA memory
management. ACM SIGOPS Operating Systems Review, 23(5), Nov 1989.

[37] F Bordignon and G Tolosa. Gnutella: Distributed system for information storage and searching
model description. Journal of Internet Technology, 2002.

[38] M Brambilla, S Ceri, M Passamani, and A Riccio. Managing asynchronous web services
interactions. Web Services, 2004. Proceedings. IEEE International Conference on, pages 80 –
87, Jun 2004.

[39] A Brodtkorb. The graphics processor as a mathematical coprocessor in MATLAB. Complex,
Intelligent and Software Intensive Systems, 2008. CISIS 2008. International Conference on,
pages 822 – 827, Feb 2008.

[40] I Buck, T Foley, D Horn, J Sugerman, and K Fatahalian. Brook for GPUs: stream computing
on graphics hardware. ACM Transactions on Graphics (TOG), 23(3):777–786, Jan 2004.

[41] K Buetow. Cyberinfrastructure: Empowering a “third way” in biomedical research. Science,
308(5723):821–824, Jan 2005.

[42] C Burge and S Karlin. Prediction of complete gene structures in human genomic dna. Journal
of Molecular Biology, 268(1):78–94, Jan 1997.

[43] W Cai, G Coulson, P Grace, G Blair, and L Mathy. The Gridkit distributed resource manage-
ment framework. LECTURE NOTES IN COMPUTER SCIENCE, Jan 2005.

[44] J Cao, S Jarvis, S Saini, and G Nudd. Gridflow: workflow management for grid computing.
Cluster Computing and the Grid, Jan 2003.

[45] J Cao, F Liu, and C Xu. P2PGrid: integrating P2P networks into the Grid environment.
Concurrency and Computation: Practice & Experience, 19:1023–1046, Jan 2007.

[46] P Carns, W Ligon III, R Ross, and R Thakur. PVFS: a parallel file system for linux clusters.
In Proceedings of the 4th Annual Linux Showcase and Conference, pages 317–327, Jan 2000.

[47] J Carter, D Khandekar, and L Kamb. Distributed shared memory: where we are and where
we should be headed. Hot Topics in Operating Systems, 1995. (HotOS-V), Proceedings., Fifth
Workshop on, pages 119 – 122, Apr 1995.

[48] Tim J Carver, Kim M Rutherford, Matthew Berriman, Marie-Adele Rajandream, Barclay G
Barrell, and Julian Parkhill. Act: The artemis comparison tool. Bioinformatics, 21(16):3422–
3, Aug 2005.

256

[49] M Castro, P Druschel, A-M Kermarrec, and A Rowstron. Scribe: A large-scale and decen-
tralised application-level multicast infrastructure. IEEE Journal on Selected Areas in Commu-
nications (JSAC), pages 1–11, Sep 2002.

[50] K Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1):63–75, Jan 1985.

[51] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson Hsieh, Deborah Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert Gruber. Bigtable: A distributed storage system
for structured data. Transactions on Computer Systems, 26(2), Jun 2008.

[52] Kamalsinh Chavda. Anatomy of a web service. Journal of Computing Sciences in Colleges,
19(3):124–134, Jan 2004.

[53] Chungmin Chen, K Salem, and M Livny. The DBC: processing scientific data over the Inter-
net. Distributed Computing Systems, 1996., Proceedings of the 16th International Conference
on, pages 673 – 679, Apr 1996.

[54] M Chetty and R Buyya. Weaving computational Grids: how analogous are they with electrical
Grids? Computing in Science & Engineering, 4(4):61–71, Jan 2002.

[55] T Clark, S Martin, and T Liefeld. Globally distributed object identification for biological
knowledgebases. Brief Bioinformatics, Jan 2004.

[56] Clotilde Claudel-Renard, Claude Chevalet, Thomas Faraut, and Daniel Kahn. Enzyme-
specific profiles for genome annotation: Priam. Nucleic Acids Research, 31(22):6633–9, Nov
2003.

[57] Bram Cohen. Incentives build robustness in BitTorrent. Workshop on Economics of Peer-to-
Peer Systems, Jan 2003.

[58] Platform Computing. Load sharing facility. http: // www. platform. com , 2009. [accessed
2009/05/05].

[59] World Wide Web Consortium. SOAP Version 1.2 Part 0: Primer (Second Edition). http:

// www. w3. org/ TR/ soap12-part0/ . [accessed 2009/10/02].

[60] NVIDIA Corporation. Compute unified device architecture (CUDA). http: // www.

nvidia. com/ object/ cuda_ learn. html . [accessed Nov 2008].

[61] F Corradini, L Mariani, and E Merelli. An agent-based approach to tool integration. Interna-
tional Journal on Software Tools for Technology Transfer (STTT), 6(3):231–244, Jan 2004.

[62] F Costa, L Silva, I Kelley, and G Fedak. Optimizing the data distribution layer of BOINC
with BitTorrent. Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on, pages 1 – 8, Mar 2008.

[63] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems Concepts and
Design, volume Fourth edition. 2005.

[64] A Cox, S Dwarkadas, P Keleher, Honghui Lu, R Rajamony, and W Zwaenepoel. Software
versus hardware shared-memory implementation: a case study. Computer Architecture, 1994.
Proceedings the 21st Annual International Symposium on, pages 106 – 117, Mar 1994.

[65] Tracy Craddock, Colin R Harwood, Jennifer Hallinan, and Anil Wipat. e-Science: relieving
bottlenecks in large-scale genome analyses. Nat Rev Microbiol, 6(12):948–54, Dec 2008.

257

http://www.platform.com
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/
http://www.nvidia.com/object/cuda_learn.html
http://www.nvidia.com/object/cuda_learn.html

[66] S Davidson, S Cohen-Boulakia, A Eyal, and B Ludascher. Provenance in scientific workflow
systems. IEEE Data Bulletin Engineering, Jan 2007.

[67] R de Knikker, Y Guo, J Li, A Kwan, K Yip, David W Cheung, and Kei-Hoi Cheung. A web
services choreography scenario for interoperating bioinformatics applications. BMC Bioinfor-
matics, 5(25), Jan 2004.

[68] Adrian Perreau de Pinninck, David Dupplaw, Spyros Kotoulas, and Ronny Siebes. The open-
knowledge kernel. International Journal of Applied Mathematics and Computer Sciences,
4(3):162–167, Jun 2007.

[69] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, Jan 2008.

[70] K Decker, X Zheng, and C Schmidt. A multi-agent system for automated genomic annotation.
Proceedings of the fifth international conference on Autonomous agents, pages 433–440, Jan
2001.

[71] A L Delcher, D Harmon, S Kasif, O White, and S L Salzberg. Improved microbial gene
identification with glimmer. Nucleic Acids Research, 27(23):4636–41, Dec 1999.

[72] Dan Diephouse. Maven quick-start tutorial. http: // docs. codehaus. org/ display/

XFIRE/ Quick+ Start . [accessed 2009/04/19].

[73] Dan Diephouse. XFire. http: // docs. codehaus. org/ display/ XFIRE/ Home . [ac-
cessed 2009/04/19].

[74] Distributed.net. Project RC5. http: // www. distributed. net/ rc5/ . [accessed
2009/05/07].

[75] B Dreier, M Zahn, and T Ungerer. The rthreads distributed shared memory system. Proc. of
the 3rd Int’l Conference on Massively Parallel Computing Systems, Jan 1998.

[76] P Druschel and A Rowstron. Past: a large-scale, persistent peer-to-peer storage utility. Hot
Topics in Operating Systems, 2001. Proceedings of the Eighth Workshop on, pages 75 – 80,
Apr 2001.

[77] Michel Dubois, Jin Wang, Luiz Barroso, Kangwoo Lee, and Yung-Syau Chen. Delayed
consistency and its effects on the miss rate of parallel programs. Proceedings of the 1991
ACM/IEEE conference on Supercomputing, pages 197–206, Aug 1991.

[78] Dan Duchamp. Optimistic lookup of whole nfs paths in a single operation. In Proceedings of
the 1994 USENIX Summer Conference, pages 161–169, Aug 1994.

[79] R Duncan. A survey of parallel computer architectures. Computer, Jan 1990.

[80] S R Eddy. Profile hidden markov models. Bioinformatics, 14(9):755–63, Jan 1998.

[81] Robert C Edgar. Muscle: multiple sequence alignment with high accuracy and high through-
put. Nucleic Acids Research, 32(5):1792–7, Jan 2004.

[82] Nature Methods Editorial. Metagenomics versus Moore’s law. Nature Methods, 6(9):623–623,
Jan 2009.

[83] Jeri Edwards and Deborah DeVoe. 3-tier client/server at work. John Wiley & Sons, 1997.
ISBN: 0 471-18443-8.

258

http://docs.codehaus.org/display/XFIRE/Quick+Start
http://docs.codehaus.org/display/XFIRE/Quick+Start
http://docs.codehaus.org/display/XFIRE/Home
http://www.distributed.net/rc5/

[84] H El-Rewini, H Ali, and T Lewis. Task scheduling in multiprocessing systems. Computer,
28(12):27 – 37, Dec 1995.

[85] E Elmroth, F Hernandez, and J Tordsson. A light-weight grid workflow execution service
enabling client and middleware independence. Parallel Processing and Applied Mathematics,
Lecture Notes in Computer Science, 4967:754–761, 2008.

[86] Hakan Erdogmus. Cloud computing: Does nirvana hide behind the nebula? Software, IEEE,
26(2):4 – 6, Mar 2009.

[87] A Erlichson, N Nuckolls, G Chesson, and J Hennessy. Softflash: analyzing the performance
of clustered distributed virtual shared memory. ACM SIGOPS Operating Systems Review,
30(5):210–220, Jan 1996.

[88] Jayson Falkner. Tranche project. https: // trancheproject. org/ . [accessed
2009/05/07].

[89] G Fedak, H He, and F Cappello. Distributing and managing data on desktop grids with Bit-
Dew. UPGRADE ’08: Proceedings of the third international workshop on Use of P2P, grid
and agents for the development of content networks, pages 63–64, Jan 2008.

[90] J Ferreira, J Sobral, and A Proenca. Jaskel: a java skeleton-based framework for structured
cluster and grid computing. Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE
International Symposium on, 1:4, May 2006.

[91] D Field, G Wilson, and Christopher van der Gast. How do we compare hundreds of bacterial
genomes? Current Opinion in Microbiology, 9(5):499–504, Jan 2006.

[92] R Fielding, J Gettys, J Mogul, H Frystyk, L Masinter, P Leach, and T Berners-Lee. RFC 2616:
Hypertext transfer protocol – HTTP/1.1. http: // www. faqs. org/ rfcs/ rfc2616. html ,
1999. [accessed 2009/04/20].

[93] W Fiers, R Contreras, F Duerinck, G Haegeman, D Iserentant, J Merregaert, W Min Jou,
F Molemans, A Raeymaekers, A Van den Berghe, G Volckaert, and M Ysebaert. Complete
nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the repli-
case gene. Nature, 260(5551):500–7, Apr 1976.

[94] R Figueiredo, P Dinda, and J Fortes. A case for grid computing on virtual machines. Dis-
tributed Computing Systems, Jan 2003.

[95] K Flanagan, R Stevens, M Pocock, P Lee, and A Wipat. Ontology for genome comparison
and genomic rearrangements, Jan 2004.

[96] R D Fleischmann, M D Adams, O White, R A Clayton, E F Kirkness, A R Kerlavage, C J
Bult, J F Tomb, B A Dougherty, and J M Merrick. Whole-genome random sequencing and
assembly of haemophilus influenzae Rd. Science, 269(5223):496–512, Jul 1995.

[97] P Flicek, B. L Aken, K Beal, B Ballester, M Caccamo, Y Chen, L Clarke, G Coates, F Cun-
ningham, T Cutts, T Down, S. C Dyer, T Eyre, S Fitzgerald, J Fernandez-Banet, S Graf,
S Haider, M Hammond, R Holland, K. L Howe, K Howe, N Johnson, A Jenkinson, A Kahari,
D Keefe, F Kokocinski, E Kulesha, D Lawson, I Longden, K Megy, P Meidl, B Overduin,
A Parker, B Pritchard, A Prlic, S Rice, D Rios, M Schuster, I Sealy, G Slater, D Smed-
ley, G Spudich, S Trevanion, A. J Vilella, J Vogel, S White, M Wood, E Birney, T Cox,
V Curwen, R Durbin, X. M Fernandez-Suarez, J Herrero, T. J. P Hubbard, A Kasprzyk,
G Proctor, J Smith, A Ureta-Vidal, and S Searle. Ensembl 2008. Nucleic Acids Research,
36(Database):D707–D714, Dec 2007.

259

https://trancheproject.org/
http://www.faqs.org/rfcs/rfc2616.html

[98] L Florea, C Riemer, S Schwartz, Z Zhang, N Stojanovic, W Miller, and M McClelland.
Web-based visualization tools for bacterial genome alignments. Nucleic Acids Research,
28(18):3486–96, Sep 2000.

[99] M J Flynn. Some computer organizations and their effectiveness. IEEE Transactions on
Computers, c-21(9):948–960, 1972.

[100] European Organization for Nuclear Research. LHC computing grid. http: // lcg. web.

cern. ch/ LCG/ . [accessed 2009/05/14].

[101] MPI Forum. MPI: A message-passing interface standard (version 1.1). http://www.mpi-
forum.org/docs/mpi-11-html/mpi-report.html, Apr 1995.

[102] Open Grid Forum. The open grid services architecture, version 1.5. 2006.

[103] The Gnutella Developer Forum. The Gnutella protocol specification v0.4. http: // www9.

limewire. com/ developer/ gnutella_ protocol_ 0. 4. pdf . [accessed 2009/04/20].

[104] The Gnutella Developer Forum. The annotated Gnutella protocol specification v0.4. http: //
rfc-gnutella. sourceforge. net/ developer/ stable/ index. html , 2001. accessed
2009/04/20.

[105] I Foster. Globus toolkit version 4: Software for service-oriented systems. Journal of Computer
Science and Technology, 21(4):513–520, Jan 2006.

[106] I Foster and A Iamnitchi. On death, taxes, and the convergence of peer-to-peer and grid
computing. In 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03), pages 118–
128, Jan 2003.

[107] I Foster, C Kesselman, J Nick, and S Tuecke. The physiology of the grid. Grid Computing:
Making the Global Infrastructure a Reality, Jan 2003.

[108] I Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: enabling scalable
virtual organizations. Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM
International Symposium on AB - ER -, pages 6–7, 2001.

[109] I Foster, H Kishimoto, A Savva, D Berry, A Djaoui, A Grimshaw, B Horn, F Maciel, F Sieben-
list, R Subramaniam, J Treadwell, and J Von Reich. The open grid services architecture,
version 1.0 (gfd-i.030). page 62, Mar 2005.

[110] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit. International
Journal of Supercomputer Applications, 11:115–128, Nov 1997.

[111] Ian Foster and Carl Kesselman. The Grid: Blueprint for a new computing infrastructure.
Morgan Kaufmann Publishers Inc., 1999.

[112] The Apache Software Foundation. Apache HTTP Server Project. http: // httpd. apache.
org/ . [accessed 2009/09/30].

[113] The Apache Software Foundation. Apache tomcat. http: // tomcat. apache. org/ . [ac-
cessed 2009/04/19].

[114] The Apache Software Foundation. Maven. http: // maven. apache. org/ . accessed
2009/04/19.

[115] D Frishman and H Mewes. Pedantic genome analysis. Trends in Genetics, 10:415–416, Jan
1997.

260

http://lcg.web.cern.ch/LCG/
http://lcg.web.cern.ch/LCG/
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf
http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://httpd.apache.org/
http://httpd.apache.org/
http://tomcat.apache.org/
http://maven.apache.org/

[116] K Fritsche, J Power, and J Waldron. A Java distributed computation library. Proceedings of
the 2nd International Conference on Parallel and Distributed Computing, Applications and
Technologies PDCA, Taipei, Taiwan, pages 236–243, 2001.

[117] M Fukuda, Y Tanaka, N Suzuki, L Bic, and S Kobayashi. A mobile-agent-based PC grid.
Autonomic Computing Workshop, Jan 2003.

[118] A Ganguly, A Agrawal, P Boykin, and R Figueiredo. WOW: Self-organizing wide area overlay
networks of virtual workstations. Journal of Grid Computing, Jan 2007.

[119] Mark K Gardner, Wu chun Feng, Jeremy Archuleta, Heshan Lin, and Xiaosong Ma. Parallel
genomic sequence-searching on an ad-hoc grid: experiences, lessons learned, and implica-
tions. Conference on High Performance Networking and Computing, Nov 2006.

[120] M Garland. Sparse matrix computations on manycore GPU’s. Design Automation Conference,
2008. DAC 2008. 45th ACM/IEEE, pages 2 – 6, May 2008.

[121] N Geddes. The national grid service of the uk. e-Science and Grid Computing, 2006. e-Science
’06. Second IEEE International Conference on, pages 94 – 94, Dec 2006.

[122] C Goble and D De Roure. myExperiment: social networking for workflow-using e-scientists.
In: Proceedings of the 2nd workshop on Workflows in support of large-scale science, pages
1–2, Jan 2007.

[123] Y Goland, E Whitehead, A Faizi, S Carter, and D Jensen. RFC 2518: HTTP extensions
for distributed authoring – WEBDAV. http: // www. faqs. org/ rfcs/ rfc2518. html ,
1999. [accessed 2009/04/20].

[124] B Goldsmith. Comptorrent: Applying bittorrent techniques to distributed computing.
eprints.utas.edu.au, Jan 2006.

[125] Google. Google web toolkit. http: // code. google. com/ webtoolkit/ . [accessed
2009/09/30].

[126] P Grace, G Coulson, G Blair, L Mathy, and W Yeung. Gridkit: Pluggable overlay networks
for grid computing. Lecture Notes in Computer Science, 3291, Jan 2004.

[127] J Grant, R Dunbrack, F Manion, and M Ochs. Beoblast: distributed blast and psi-blast on a
beowulf cluster. Bioinformatics, Jan 2002.

[128] PBS GridWorks. OpenPBS. 2001. accessed 2009/05/05.

[129] A Grimshaw and W Wulf. Legion: The next logical step toward the world-wide virtual com-
puter. Communications of the ACM, 40, Jan 1996.

[130] PostgreSQL Global Development Group. PostgreSQL. http: // www. postgresql. org/ ,
2009. [accessed 2009/04/19].

[131] W3C Working Group. Web services glossary. http: // www. w3. org/ TR/ ws-gloss/ .
[accessed 2009/04/20].

[132] T Gruber. Toward principles for the design of ontologies used for knowledge sharing. Inter-
national Journal of Human-Computer Studies, 43(5-6):907–928, Jan 1995.

261

http://www.faqs.org/rfcs/rfc2518.html
http://code.google.com/webtoolkit/
http://www.postgresql.org/
http://www.w3.org/TR/ws-gloss/

[133] Zhijie Guan, Francisco Hernandez, Purushotham Bangalore, Jeff Gray, Anthony Skjellum,
Vijay Velusamy, and Yin Liu. Grid-flow: A grid-enabled scientific workflow system with a
petri net-based interface. Concurrency and Computation: Practice and Experience, 18:1115–
1140, Jan 2006.

[134] L Guo, S Chen, Z Xiao, E Tan, X Ding, and X Zhang. A performance study of BitTorrent-like
peer-to-peer systems. Selected Areas in Communications, IEEE Journal on, 25(1):155 – 169,
Jan 2007.

[135] R Gupta and A Somani. Compup2p: An architecture for sharing of computing resources in
peer-to-peer networks with selfish nodes. Second workshop on the Economics of Peer-to-Peer
systems, Jan 2004.

[136] John Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31(5):532–533,
May 1988.

[137] D Guthridge. Scalable, high performance infiniband-attached SAN volume controller. Cluster
Computing, 2008 IEEE International Conference on, pages 453 – 458, Jan 2008.

[138] Neil Hall. Advanced sequencing technologies and their wider impact in microbiology. J Exp
Biol, 210(Pt 9):1518–25, May 2007.

[139] Mark Halling-Brown, David Moss, and Adrian Shepherd. Towards a lightweight generic
computational grid framework for biological research. BMC Bioinformatics, 9:407, Oct 2008.

[140] B Harris, A Jacob, J Lancaster, and J Buhler. A banded Smith-Waterman FPGA accelerator for
mercury BLASTP. International Conference on Field Programmable Logic and Applications,
pages 765–769, Jan 2007.

[141] Bjarne E Helvik and Otto Wittner. Network resilience by emergent behaviour from simple
autonomous agents. In Dependable Computing Systems: Paradigms, Performance Issues, and
Applications, pages 449–478, 2005.

[142] A Hey and A Trefethen. The data deluge: an e-Science perspective. In: Grid Computing -
Making the Global Infrastructure a Reality, ISBN: 0470853190:809–824, Jan 2003.

[143] T Hey. e-Science and its implications. Philosophical Transactions: Mathematical, Jan 2003.

[144] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. Computer, 41(7):33 –
38, Jul 2008.

[145] C Hoare. Monitors: an operating system structuring concept. Communications of the ACM,
17(10):549–557, Jan 1974.

[146] Kathryn E Holt, Nicholas R Thomson, John Wain, Minh Duy Phan, Satheesh Nair, Rumina
Hasan, Zulfiqar A Bhutta, Michael A Quail, Halina Norbertczak, Danielle Walker, Gordon
Dougan, and Julian Parkhill. Multidrug-resistant salmonella enterica serovar paratyphi a har-
bors inchi1 plasmids similar to those found in serovar typhi. J Bacteriol, 189(11):4257–64,
Jun 2007.

[147] S Hoon, K Ratnapu, J Chia, and B Kumarasamy. Biopipe: A flexible framework for protocol-
based bioinformatics analysis. Genome Research, Jan 2003.

[148] E Horowitz and A Zorat. Divide-and-conquer for parallel processing. Transactions on Com-
puters, Jan 1983.

262

[149] Takashige Hoshiai. Approximate analysis of access contention for multi-processor systems
with common bus arbiters. Systems and Computers in Japan, 27(9):12–22, Dec 1996.

[150] W Hsiao. Islandpath: aiding detection of genomic islands in prokaryotes. Bioinformatics,
19(3):418–420, Feb 2003.

[151] D Hughes, P Greenwood, Coulson G, and G Blair. Gridstix: supporting flood prediction using
embedded hardware and next generation grid middleware. World of Wireless, Mobile and
Multimedia Networks, 2006. WoWMoM 2006. International Symposium on a, page 6, May
2006.

[152] D Hull, K Wolstencroft, R Stevens, and C Goble. Taverna: a tool for building and running
workflows of services. Nucleic Acids Research, Jan 2006.

[153] S Ibrahim, Hai Jin, Li Qi, and Chunqiang Zeng;. Grid maintenance: Challenges and existing
models. Information and Communication Technologies: From Theory to Applications, 2008.
ICTTA 2008. 3rd International Conference on, pages 1 – 6, Apr 2008.

[154] W Sullivan III, D Werthimer, S Bowyer, J Cobb, D Gedye, and D Anderson. A new major
SETI project based on project SERENDIP data and 100,000 personal computers. Proceedings
of the Fifth International Conference on Bioastronomy, 161, Jan 1997.

[155] A Iliasova. Personal communication, Newcastle University, UK., 2009.

[156] L Ismail and D Hagimont. A performance evaluation of the mobile agent paradigm. ACM
SIGPLAN Notices, Jan 1999.

[157] ISO. Information technology - open distributed processing - reference model: Overview.
ISO/IEC 10746-1, 1998.

[158] M Itoh and H Watanabe. CGAS: Comparative genomic analysis server. Bioinformatics, Feb
2009.

[159] C Johns and D Brokenshire. Introduction to the cell broadband engine architecture. IBM
Journal of Research and Development, 51(5):503–519, Jan 2007.

[160] G Johnson, D Kerbyson, and M Lang. Optimization of infiniband for scientific applications.
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on,
pages 1 – 8, Mar 2008.

[161] J Joseph, M Ernest, and C Fellenstein. Evolution of grid computing architecture and grid
adoption models. IBM Systems Journal, 43(4):624–645, Oct 2004.

[162] W Min Jou, G Haegeman, M Ysebaert, and W Fiers. Nucleotide sequence of the gene coding
for the bacteriophage MS2 coat protein. Nature, 237(5350):82–88, May 1972.

[163] Agnieszka S Juncker, Hanni Willenbrock, Gunnar Von Heijne, Søren Brunak, Henrik Nielsen,
and Anders Krogh. Prediction of lipoprotein signal peptides in gram-negative bacteria. Protein
Sci, 12(8):1652–62, Aug 2003.

[164] M Junginger and Y Lee. A self-organizing publish/subscribe middleware for dynamic peer-
to-peer networks. IEEE network, (January/February):38–43, Jan 2004.

[165] Matjaz Juric, Bostjan Kezmah, Marjan Hericko, Ivan Rozman, and Ivan Vezocnik. Java RMI,
RMI tunneling and Web services comparison and performance analysis. SIGPLAN Notices,
39(5), May 2004.

263

[166] L Juszczyk, J Lazowski, and S Dustdar. Web service discovery, replication, and synchroniza-
tion in ad-hoc networks. Availability, Reliability and Security, 2006. ARES 2006. The First
International Conference on, page 8, Mar 2006.

[167] M Karo, C Dwan, J Freeman, J Weissman, M Livny, and E Retzel. Applying grid technologies
to bioinformatics. High Performance Distributed Computing, 2001. Proceedings. 10th IEEE
International Symposium on, pages 441 – 442, Jul 2001.

[168] K Keahey, M Tsugawa, A Matsunaga, and J Fortes. Sky computing. Internet Computing,
IEEE, 13(5):43 – 51, Sep 2009.

[169] Pete Keleher, Alan Cox, and Willy Zwaenepoel. Lazy release consistency for software dis-
tributed shared memory. ACM SIGARCH Computer Architecture News, 20(2):13–21, May
1992.

[170] Z Konfrst. Parallel genetic algorithms: advances, computing trends, applications and perspec-
tives. Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International,
pages 162–169, Mar 2004.

[171] A Krishna, V Tan, R Lawley, S Miles, and L Moreau. The myGrid notification service. In
Proceedings of The UK OST e-Science second All Hands Meeting 2003 (AHM’03), pages
475–482, Jan 2003.

[172] A Krishnan. GridBLAST: a Globus-based high-throughput implementation of BLAST in a
Grid computing framework. Concurr Comp-Pract E, 17(13):1607–1623, Jan 2005.

[173] A Krogh, B Larsson, G von Heijne, and E L Sonnhammer. Predicting transmembrane pro-
tein topology with a hidden markov model: application to complete genomes. Journal of
Molecular Biology, 305(3):567–80, Jan 2001.

[174] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels,
Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, and
Ben Zhao. Oceanstore: An architecture for global-scale persistent storage. Proceedings of the
Ninth international Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000), 2000.

[175] Tamara Kulikova, Ruth Akhtar, Philippe Aldebert, Nicola Althorpe, Mikael Andersson, Alas-
tair Baldwin, Kirsty Bates, Sumit Bhattacharyya, Lawrence Bower, Paul Browne, Matias Cas-
tro, Guy Cochrane, Karyn Duggan, Ruth Eberhardt, Nadeem Faruque, Gemma Hoad, Carola
Kanz, Charles Lee, Rasko Leinonen, Quan Lin, Vincent Lombard, Rodrigo Lopez, Dariusz
Lorenc, Hamish McWilliam, Gaurab Mukherjee, Francesco Nardone, Maria Pilar Garcia Pas-
tor, Sheila Plaister, Siamak Sobhany, Peter Stoehr, Robert Vaughan, Dan Wu, Weimin Zhu,
and Rolf Apweiler. Embl nucleotide sequence database in 2006. Nucleic Acids Research,
35(Database issue):D16–20, Jan 2007.

[176] Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin Shumway, Corina
Antonescu, and Steven L Salzberg. Versatile and open software for comparing large genomes.
Genome Biol, 5(2):R12, Jan 2004.

[177] Horacio Lagar-Cavilla, Joseph Whitney, Adin Scannell, Philip Patchin, Stephen Rumble, Eyal
Lara, Michael Brudno, and Mahadev Satyanarayanan. Snowflock: rapid virtual machine
cloning for cloud computing. EuroSys ’09: Proceedings of the 4th ACM European confer-
ence on Computer systems, Apr 2009.

264

[178] O Lampe, I Viola, N Reuter, and H Hauser. Two-level approach to efficient visualization of
protein dynamics. Visualization and Computer Graphics, IEEE Transactions on, 13(6):1616
– 1623, Nov 2007.

[179] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21(7):558–565, Jul 1978.

[180] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, C-28(9):690 – 691, Sep 1979.

[181] Paul J Leach and Dilip C Naik. A common internet file system (CIFS/1.0)
protocol. http: // www. microsoft. com/ about/ legal/ protocols/ BSTD/ CIFS/

draft-leach-cifs-v1-spec-02. txt , 1997. [accessed 2009/04/20].

[182] N Leavitt. Is cloud computing really ready for prime time? Computer, 42(1):15 – 20, Jan
2009.

[183] Jonathan Ledlie, Jeff Shneidman, Margo Seltzer, and John Huth. Scooped, again. Second
International Workshop, IPTPS 2003 Berkeley, Feb 2003.

[184] Hurng-Chun Lee, Jean Salzemann, Nicolas Jacq, Hsin-Yen Chen, Li-Yung Ho, Ivan Merelli,
Luciano Milanesi, Vincent Breton, Simon C Lin, and Ying-Ta Wu. Grid-enabled high-
throughput in silico screening against influenza a neuraminidase. Ieee T Nanobiosci, 5(4):288–
295, Jan 2006.

[185] Sung Lee, Taowei David Wang, Nada Hashmi, and Michael P Cummings. Bio-steer: A se-
mantic web workflow tool for grid computing in the life sciences. Future Gener Comp Sy,
23(3):497–509, Jan 2007.

[186] Isaac T S Li, Warren Shum, and Kevin Truong. 160-fold acceleration of the smith-waterman
algorithm using a field programmable gate array (fpga). BMC Bioinformatics, 8:185, Jan
2007.

[187] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM Trans-
actions on Computer Systems, 7(4):321–359, Jun 1989.

[188] L Li, CJ Stoeckert, and DS Roos. OrthoMCL: Identification of ortholog groups for eukaryotic
genomes. Genome Research, 13(9):2178–2189, Jan 2003.

[189] Wenlong Li, Xiaofeng Tong, and Yimin Zhang;. Optimization and parallelization on a mul-
timeida application. Multimedia and Expo, 2007 IEEE International Conference on, pages
1854 – 1857, Jun 2007.

[190] M Linderman, N Ahmed, J Metzler, and J Bryant. A hybrid publish subscribe protocol. Pro-
ceedings of the ACM/IFIP/USENIX Middleware ’08 Conference Companion table of contents
Leuven, Belgium, pages 24–29, Jan 2008.

[191] Konstantinos Liolios, Konstantinos Mavromatis, Nektarios Tavernarakis, and Nikos C Kyr-
pides. The genomes on line database (gold) in 2007: status of genomic and metagenomic
projects and their associated metadata. Nucleic Acids Research, 36(Database issue):D475–9,
Jan 2008.

[192] M Litzkow, M Livny, and M Mutka. Condor-a hunter of idle workstations. Distributed Com-
puting Systems, Jan 1988.

265

http://www.microsoft.com/about/legal/protocols/BSTD/CIFS/draft-leach-cifs-v1-spec-02.txt
http://www.microsoft.com/about/legal/protocols/BSTD/CIFS/draft-leach-cifs-v1-spec-02.txt

[193] M Litzkow, T Tannenbaum, J Basney, and M Livny. Checkpoint and migration of unix pro-
cesses in the condor distributed processing system. Technical Report Computer Sciences Tech-
nical Report #1346, University of Wisconsin-Madison, Jan 1997.

[194] Michael Litzkow, Miron Livny, and Matt Mutka. Condor - a hunter of idle workstations.
Proceedings of the 8th International Conference of Distributed Computing Systems, pages
104–111, Apr 1988.

[195] Chun-Chi Liu, Chin-Chung Lin, Ker-Chau Li, Wen-Shyen E Chen, Jiun-Ching Chen, Ming-Te
Yang, Pan-Chyr Yang, Pei-Chun Chang, and Jeremy J W Chen. Genome-wide identification of
specific oligonucleotides using artificial neural network and computational genomic analysis.
BMC Bioinformatics, 8:164, Jan 2007.

[196] Weiguo Liu, B Schmidt, G Voss, A Schroder, and W Muller-Wittig. Bio-sequence database
scanning on a gpu. Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, pages 8–15, Mar 2006.

[197] Yang Liu, Jianrong Li, Lee Sam, Chern-Sing Goh, Mark Gerstein, and Yves A Lussier. An
integrative genomic approach to uncover molecular mechanisms of prokaryotic traits. PLoS
Comp Biol, 2(11):e159, Nov 2006.

[198] Limewire LLC. Limewire client. http: // www. limewire. com/ . [accessed 2009/04/19].

[199] Boon Thau Loo, Ryan Huebsch, Joseph M Hellerstein, Timothy Roscoe, and Ion Stoica. An-
alyzing p2p overlays with recursive queries. Technical Report: IRB-TR-03-045, University of
California at Berkeley, Intel Research Berkeley, pages 1–6, Nov 2003.

[200] H Lovell, J Mansfield, S Godfrey, R Jackson, J Hancock, and D Arnold. Bacterial evolution
by genomic island transfer occurs via dna transformation in planta. Curr Biol, Sep 2009.

[201] R Lucky. Cloud computing. Spectrum, IEEE, 46(5):27 – 27, May 2009.

[202] B Ludäscher, I Altintas, C Berkley, and D Higgins. Scientific workflow management and the
kepler system. Concurrency and Computation: Practice & Experience, Jan 2005.

[203] Yves A Lussier and Yang Liu. Computational approaches to phenotyping: high-throughput
phenomics. Proceedings of the American Thoracic Society, 4(1):18–25, Jan 2007.

[204] Yuya Machida, Shin’ichiro Takizawa, Hidemoto Nakada, and Satoshi Matsuoka. Intelligent
data staging with overlapped execution of grid applications, Jan 2008.

[205] Natalia Maltsev, Elizabeth Glass, Dinanath Sulakhe, Alexis Rodriguez, Mustafa H Syed,
Tanuja Bompada, Yi Zhang, and Mark D’Souza. Puma2–grid-based high-throughput anal-
ysis of genomes and metabolic pathways. Nucleic Acids Res, 34(Database issue):D369–72,
Jan 2006.

[206] RG Mann. Astrogrid: the uk’s virtual observatory initiative. Astronomical Data Analysis
Software and Systems XI, ASP Conference Series, 281, Jan 2002.

[207] Marcel Margulies, Michael Egholm, William E Altman, Said Attiya, Joel S Bader, Lisa A Be-
mben, Jan Berka, Michael S Braverman, Yi-Ju Chen, Zhoutao Chen, Scott B Dewell, Lei Du,
Joseph M Fierro, Xavier V Gomes, Brian C Godwin, Wen He, Scott Helgesen, Chun Heen
Ho, Chun He Ho, Gerard P Irzyk, Szilveszter C Jando, Maria L I Alenquer, Thomas P Jarvie,
Kshama B Jirage, Jong-Bum Kim, James R Knight, Janna R Lanza, John H Leamon, Steven M

266

http://www.limewire.com/

Lefkowitz, Ming Lei, Jing Li, Kenton L Lohman, Hong Lu, Vinod B Makhijani, Keith E Mc-
Dade, Michael P McKenna, Eugene W Myers, Elizabeth Nickerson, John R Nobile, Ramona
Plant, Bernard P Puc, Michael T Ronan, George T Roth, Gary J Sarkis, Jan Fredrik Simons,
John W Simpson, Maithreyan Srinivasan, Karrie R Tartaro, Alexander Tomasz, Kari A Vogt,
Greg A Volkmer, Shally H Wang, Yong Wang, Michael P Weiner, Pengguang Yu, Richard F
Begley, and Jonathan M Rothberg. Genome sequencing in microfabricated high-density pi-
colitre reactors. Nature, 437(7057):376–80, Sep 2005.

[208] Neelan J Marianayagam, Nicolas L Fawzi, and Teresa Head-Gordon. Protein folding
by distributed computing and the denatured state ensemble. Proc Natl Acad Sci USA,
102(46):16684–9, Nov 2005.

[209] A Matsunaga, M Tsugawa, and J Fortes. Cloudblast: Combining mapreduce and virtualization
on distributed resources for bioinformatics applications. eScience, 2008. eScience ’08. IEEE
Fourth International Conference on, pages 222 – 229, Dec 2008.

[210] A M Maxam and W Gilbert. A new method for sequencing DNA. Proc Natl Acad Sci USA,
74(2):560–4, Feb 1977.

[211] CJ McNeil, BJ Gallacher, CR Harwood, J Hedley, P Manning, A Wipat, J R Henderson, and
N Keegan. AptaMEMS-ID. http: // gow. epsrc. ac. uk/ ViewGrant. aspx? GrantRef=
EP/ G061394/ 1 . [accessed 2009/09/30].

[212] R Melamede. Automatable process for sequencing nucleotide. United States Patent 4863849,
Jan 1989.

[213] Raquel Menezes, Carlos Baquero, and Francisco Moura. A portable lightweight approach to
NFS replication. In Proceedings of ROSE’94 Conference, Oct 1994.

[214] E Merelli, G Armano, N Cannata, and F Corradini. Agents in bioinformatics, computational
and systems biology. Brief Bioinformatics, 8(1):45–59, Jan 2007.

[215] E Merelli, R Culmone, and L Mariani. Bioagent: A mobile agent system for bioscientists.
NETTAB—Agents in Bioinformatics, Jan 2002.

[216] Sun Microsystems. Java. http: // java. sun. com/ . [accessed 2009/04/19].

[217] Sun Microsystems. Java remote method invocation - distributed computing for java.
http: // java. sun. com/ javase/ technologies/ core/ basic/ rmi/ whitepaper/

index. jsp . [accessed 2009/04/27].

[218] Sun Microsystems. Sun grid engine. http: // gridengine. sunsource. net/ . [accessed
2009/05/07].

[219] Sun Microsystems. RFC1094 - NFS: network file system protocol specification. http:

// www. faqs. org/ rfcs/ rfc1094. html , 1989. http://www.faqs.org/rfcs/rfc1094.html.

[220] Alex Mira, Howard Ochman, and Nancy A Moran. Deletional bias and the evolution of
bacterial genomes. Trends in Genetics, 17(10):589–596, Sep 2001.

[221] R Montero, E Huedo, and I Llorente. Dynamic deployment of custom execution environments
in grids. Advanced Engineering Computing and Applications in Sciences, 2008. ADVCOMP
’08. The Second International Conference on, pages 33 – 38, Jan 2008.

267

http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=EP/G061394/1
http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=EP/G061394/1
http://java.sun.com/
http://java.sun.com/javase/technologies/core/basic/rmi/whitepaper/index.jsp
http://java.sun.com/javase/technologies/core/basic/rmi/whitepaper/index.jsp
http://gridengine.sunsource.net/
http://www.faqs.org/rfcs/rfc1094.html
http://www.faqs.org/rfcs/rfc1094.html

[222] H Monti, A Butt, and S Vazhkudai. Timely offloading of result-data in HPC centers. Pro-
ceedings of the 22nd annual international conference on Supercomputing, pages 124–133,
Jan 2008.

[223] Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of SIGCOMM 2001, Jun
2001.

[224] T Mowry, C Chan, and A Lo. Comparative evaluation of latency tolerance techniques for
software distributed shared memory. High-Performance Computer Architecture, 1998. Pro-
ceedings., 1998 Fourth International Symposium on, pages 300 – 311, Jan 1998.

[225] Nicola Mulder and Rolf Apweiler. InterPro and InterProScan: tools for protein sequence
classification and comparison. Methods Mol Biol, 396:59–70, Jan 2007.

[226] James M Musser and Samuel A Shelburne. A decade of molecular pathogenomic analysis of
group a streptococcus. J Clin Invest, 119(9):2455–63, Sep 2009.

[227] Matt W Mutka and Miron Livny. Profiling workstation’s available capacity for remote execu-
tion. Proceedings of the 12th IFIPWG International Symposium on Computer Performance
Modelling, Measurement and Evaluation, pages 529–544, 1987.

[228] Anthony Nadalin, Chris Kaler, Phillip Hallam-Baker, and Ronald Monzillo. Web services
security v1.0 (WS-Security 2004) [OASIS 200401]. http: // www. oasis-open. org/

specs/ index. php{ #}wssv1. 0 . [accessed 2009/09/30].

[229] S Nakjang. Extracellular protein identification pipeline. http: // homepages. cs. ncl. ac.
uk/ sirintra. nakjang/ phd/ figures/ ExtProteinExtractor_ pipline2. png . [ac-
cessed 2009/10/02].

[230] S Nakjang. Personal communication, Newcastle University, UK., 2009.

[231] S B Needleman and C D Wunsch. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–53, Mar
1970.

[232] P Neerincx and J Leunissen. Evolution of web services in bioinformatics. Brief Bioinformat-
ics, 6(2):178–188, Jan 2005.

[233] Lei Ni, Aaron Harwood, and Peter Stuckey. Realizing the e-science desktop peer using a
peer-to-peer distributed virtual machine middleware. MCG ’06: Proceedings of the 4th inter-
national workshop on Middleware for grid computing, Nov 2006.

[234] M Nieto-Santisteban, A Szalay, A Thakar, WJ O’Mullane, Jim Gray, and James Annis. When
database systems meet the grid. MSR-TR-2004-81, Microsoft Research(Technical Report),
Jan 2004.

[235] T Oinn, M Greenwood, M Addis, and M Alpdemir. Taverna: Lessons in creating a workflow
environment for the life sciences. Concurrency and Computation: Practice and Experience,
Jan 2006.

[236] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Greenwood,
Tim Carver, Kevin Glover, Matthew R Pocock, Anil Wipat, and Peter Li. Taverna: a tool for
the composition and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–54,
Nov 2004.

268

http://www.oasis-open.org/specs/index.php{#}wssv1.0
http://www.oasis-open.org/specs/index.php{#}wssv1.0
http://homepages.cs.ncl.ac.uk/sirintra.nakjang/phd/figures/ExtProteinExtractor_pipline2.png
http://homepages.cs.ncl.ac.uk/sirintra.nakjang/phd/figures/ExtProteinExtractor_pipline2.png

[237] Athanasios I Papadopoulos and Patrick Linke. A decision support grid for integrated molecular
solvent design and chemical process selection. Comput Chem Eng, 33(1):72–87, Jan 2009.

[238] J Parkhurst, J Darringer, and B Grundmann. From single core to multi-core: Preparing for
a new exponential. Computer-Aided Design, 2006. ICCAD ’06. IEEE/ACM International
Conference on, pages 67 – 72, Oct 2006.

[239] Terence Parr. ANTLR (ANother Tool for Language Recognition). http: // www. antlr.

org/ . [accessed 2009/10/05].

[240] L Pearlman, C Kesselman, S Gullapalli, B Spencer, J Futrelle, K Ricker, I Foster, P Hubbard,
and C Severance. Distributed hybrid earthquake engineering experiments: experiences with a
ground-shaking grid application. High performance Distributed Computing, 2004. Proceed-
ings. 13th IEEE International Symposium on, pages 14 – 23, May 2004.

[241] M Carmen Garcia Pelayo, Swapna Uplekar, Andrew Keniry, Pablo Mendoza Lopez, Thierry
Garnier, Javier Nunez Garcia, Laura Boschiroli, Xiangmei Zhou, Julian Parkhill, Noel Smith,
R Glyn Hewinson, Stewart T Cole, and Stephen V Gordon. A comprehensive survey of single
nucleotide polymorphisms (snps) across mycobacterium bovis strains and m. bovis bcg vac-
cine strains refines the genealogy and defines a minimal set of snps that separate virulent m.
bovis strains and m. bovis bcg strains. Infect Immun, 77(5):2230–8, May 2009.

[242] R H Perrott. Parallel programming. Addison-Wesley, 1987.

[243] K Petersen and K Li. Cache coherence for shared memory multiprocessors based on virtual
memory support. Parallel Processing Symposium, 1993., Proceedings of Seventh Interna-
tional, pages 49 – 55, Mar 1993.

[244] S Pillai, V Silventoinen, K Kallio, and M Senger. Soap-based services provided by the euro-
pean bioinformatics institute. Nucleic Acids Research, Jan 2005.

[245] J Postel and J Reynolds. RFC 959: File transfer protocol (FTP). http: // www. faqs. org/
rfcs/ rfc959. html , Jan 1985. [accessed 2009/04/20].

[246] S Potter, L Clarke, V Curwen, S Keenan, and E Mongin. The Ensembl analysis pipeline.
Genome Research, Jan 2004.

[247] Apache Maven Project. Maven getting started guide. http: // maven. apache. org/

guides/ getting-started/ index. html . [accessed 2009/10/08].

[248] Apache Maven Project. Maven philosophy. http: // maven. apache. org/ background/
philosophy-of-maven. html . [accessed 2009/09/30].

[249] Azureus Project. Azureus. http: // azureus. sourceforge. net/ . [accessed
2009/04/19].

[250] Kim D Pruitt, Tatiana Tatusova, William Klimke, and Donna R Maglott. Ncbi reference
sequences: current status, policy and new initiatives. Nucleic Acids Research, 37(Database
issue):D32–6, Jan 2009.

[251] J Pullen, R Brunton, D Brutzman, D Drake, and M Hieb. Using web services to integrate
heterogeneous simulations in a grid environment. Future Generation Computer Systems, Jan
2005.

[252] Yutao Qi and Feng Lin. Parallelisation of the blast algorithm. Cell Mol Biol Lett, 10(2):281–5,
Jan 2005.

269

http://www.antlr.org/
http://www.antlr.org/
http://www.faqs.org/rfcs/rfc959.html
http://www.faqs.org/rfcs/rfc959.html
http://maven.apache.org/guides/getting-started/index.html
http://maven.apache.org/guides/getting-started/index.html
http://maven.apache.org/background/philosophy-of-maven.html
http://maven.apache.org/background/philosophy-of-maven.html
http://azureus.sourceforge.net/

[253] A Rajasekar, M Wan, R Moore, G Kremenek, and T Guptil. Data grids, collections, and grid
bricks. Mass Storage Systems and Technologies, Jan 2003.

[254] R Rajkumar, M Gagliardi, and Lui Sha;. The real-time publisher/subscriber inter-process
communication model for distributed real-time systems: design and implementation. Real-
Time Technology and Applications Symposium, 1995. Proceedings, pages 66 – 75, Apr 1995.

[255] K Ranganathan and I Foster. Decoupling computation and data scheduling in distributed data-
intensive applications. High Performance Distributed Computing, Jan 2002.

[256] Virginie Lopez Rascol, Anthony Levasseur, Olivier Chabrol, Simona Grusea, Philippe Gouret,
Etienne G J Danchin, and Pierre Pontarotti. Cassiope: an expert system for conserved regions
searches. BMC Bioinformatics, 10:284, Jan 2009.

[257] R Rettberg and R Thomas. Contention is no obstacle to shared-memory multiprocessing.
Communications of the ACM, Jan 1986.

[258] M Riley, T Schmidt, I Artamonova, and C Wagner. Pedant genome database: 10 years online.
Nucleic Acids Research, Jan 2006.

[259] Jonathan M Rothberg and John H Leamon. The development and impact of 454 sequencing.
Nat Biotechnol, 26(10):1117–24, Oct 2008.

[260] Antony Rowstron. Pastry: Scalable, decentralized object location and routing for large-scale
peer-to-peer systems. In Proceedings of IFIP/ACM Middleware, Sep 2001.

[261] M Roy and A Edward. Inside dcom: Microsoft’s distributed object architecture extends the
capabilities of com to work across the network. DBMS, 10(4):26–34, Jan 1997.

[262] S Roy and V Chaudhary. Strings: a high-performance distributed shared memory forsymmet-
rical multiprocessor clusters. High Performance Distributed Computing, Jan 1998.

[263] Mark Russell and Tim Hopkins. CFTP – a caching FTP server. Third International WWW
Caching Workshop, Apr 1998.

[264] Declan Ryan, Maryam Rahimi, John Lund, Ranjana Mehta, and Babak A Parviz. Toward
nanoscale genome sequencing. Trends Biotechnol, 25(9):385–9, Sep 2007.

[265] F Sacerdoti, S Chandra, and K Bhatia. Grid systems deployment & management using rocks.
Cluster Computing, 2004 IEEE International Conference on, pages 337 – 345, Sep 2004.

[266] Carlos Sanchez, John Casey, Vincent Massol, and Jason van Zyl. Better builds with
maven (online book). http: // www. maestrodev. com/ better-build-maven . [accessed
2009/04/19].

[267] F Sanger and A Coulson. Rapid method for determining sequences in dna by primed synthesis
with dna-polymerase. Journal of Molecular Biology, 94(3):441–&, Jan 1975.

[268] F Sanger, A R Coulson, T Friedmann, G M Air, B G Barrell, N L Brown, J C Fiddes, C A
Hutchison, P M Slocombe, and M Smith. The nucleotide sequence of bacteriophage phix174.
Journal of Molecular Biology, 125(2):225–46, Oct 1978.

[269] F Sanger, S Nicklen, and A R Coulson. DNA sequencing with chain-terminating inhibitors.
Proc Natl Acad Sci USA, 74(12):5463–7, Dec 1977.

[270] F Sanger and E.O.P Thompson. The amino-acid sequence in the glycyl chain of insulin.
Biochem J, 52(1):iii, Sep 1952.

270

http://www.maestrodev.com/better-build-maven

[271] Magdalena Sawinska, Dawid Kurzyniec, Jarosaw Sawinski, and Vaidy Sunderam. Automated
deployment support for parallel distributed computing. Parallel, Distributed and Network-
Based Processing, 2007. PDP ’07. 15th EUROMICRO International Conference on, pages
139 – 146, Jan 2007.

[272] Jennifer M Schopf and Bill Nitzberg. Grids: The top ten questions. Scientific Programming,
10(2):103–11, Jul 2002.

[273] K Schreiner. Distributed projects tackle protein mystery. Computing in Science & Engineer-
ing, 3(1):13 – 16, Jan 2001.

[274] L Schroeder and A Bazzan. A multi-agent system to facilitate knowledge discovery: an appli-
cation to bioinformatics. Proceedings of the 2006 IEEE/WIC/ACM international conference
on Web Intelligence and Intelligent Agent Technology, pages 11–14, Jan 2002.

[275] M Senger, P Rice, and T Oinn. Soaplab-a unified sesame door to analysis tools. Proceedings
of the UK e-Science All Hands Meeting, Jan 2003.

[276] Robert F Service. The race for the $1000 genome. Science, 311:1544–1546, 2006.

[277] A Shah, D Barthel, P Lukasiak, and J Blazewicz. Web & grid technologies in bioinformatics,
computational and systems biology: A review. Current Bioinformatics, 3(1):10–31, 2008.

[278] A Shah, V Markowitz, and C Oehmen. High-throughput computation of pairwise sequence
similarities for multiple genome comparisons using scalablast. Life Science Systems and Ap-
plications Workshop, 2007. LISA 2007. IEEE/NIH, pages 89 – 91, Oct 2007.

[279] Michael Shirts and Vijay S Pande. Screen savers of the world unite! Science, 290(5498):1903–
1904, Oct 2000.

[280] T F Smith and M S Waterman. Identification of common molecular subsequences. Journal of
Molecular Biology, 147(1):195–7, Mar 1981.

[281] S Soltis, T Ruwart, and M O’Keefe. The global file system. Proceedings of the Fifth NASA
Goddard Space Flight Center Conference on Mass Storage Systems and Technologies, Jan
1996.

[282] D.J Sorin, M.M.K Martin, M.D Hill, and D.A Wood. Safetynet: improving the availability
of shared memory multiprocessors with global checkpoint/recovery. Computer Architecture,
2002. Proceedings. 29th Annual International Symposium on, pages 123–134, 2002.

[283] Lincoln D Stein. Integrating biological databases. Nat Rev Genet, 4(5):337–345, May 2003.

[284] Robert D Stevens, Alan J Robinson, and Carole A Goble. mygrid: personalised bioinformatics
on the information grid. Bioinformatics, 19 Suppl 1:i302–4, Jan 2003.

[285] H Stockinger. Distributed database management systems and the data grid. Mass Storage
Systems and Technologies, 2001. MSS ’01. Eighteenth IEEE Symposium on, pages 1 – 1, Apr
2001.

[286] H Stockinger, T Attwood, S Chohan, and R Cote. Experience using web services for biological
sequence analysis. Brief Bioinformatics, Jan 2008.

[287] H Sugawara, O Ogasawara, K Okubo, T Gojobori, and Y Tateno. Ddbj with new system and
face. Nucleic Acids Research, 36(Database issue):D22–4, Jan 2008.

271

[288] Dinanath Sulakhe, Alex Rodriguez, Michael Wilde, Ian Foster, and Natalia Maltsev. Interop-
erability of gadu in using heterogeneous grid resources for bioinformatics applications. IEEE
transactions on information technology in biomedicine : a publication of the IEEE Engineer-
ing in Medicine and Biology Society, 12(2):241–6, Mar 2008.

[289] Guangzhong Sun, Jiulong Shan, and Guoliang Chen. Job scheduling for campus-scale global
computing with machine availability constraints. Computer and Computational Sciences,
2006. IMSCCS ’06. First International Multi-Symposiums on, 1:385– 388, 2006.

[290] Hao Sun and Ramana V Davuluri. Java-based application framework for visualization of gene
regulatory region annotations. Bioinformatics, 20(5):727–34, Mar 2004.

[291] Xian-He Sun and Jianping Zhu. Performance considerations of shared virtual memory ma-
chines. Parallel and Distributed Systems, IEEE Transactions on, 6(11):1185–1194, 1995.

[292] VS Sunderam. PVM: A framework for parallel distributed computing. Concurrency Practice
and Experience, Jan 1990.

[293] M Swanson, L Stoller, and J Carter. Making distributed shared memory simple, yet efficient. In
Proc. of the 3rd Int’l Workshop on High-Level Parallel Programming Models and Supportive
Environments, pages 2–13, Jan 1998.

[294] F Tandiary, S Kothari, A Dixit, and E Anderson. Batrun: utilizing idle workstations for large
scale computing. Parallel & Distributed Technology: Systems & Applications, IEEE [see also
IEEE Concurrency], 4(2):41 – 48, Jan 1996.

[295] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems principles and paradigms.
Pearson Prentice Hall, 2007. ISBN: 0-13-613553-6.

[296] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: using data parallelism to program
gpus for general-purpose uses. ACM SIGOPS Operating Systems Review, 40(5):325–335, Oct
2006.

[297] M Taschuk. Personal communication, Newcastle University, UK., 2009.

[298] Ian J Taylor. From p2p to web services and grids: Peers in a client/server world. Springer,
2005. ISBN: 1-85233-869-5 Compuing Library.

[299] JBoss Team. Hibernate. http: // www. hibernate. org . [accessed 2009/04/19].

[300] The Axis Development Team. Axis. http: // ws. apache. org/ axis/ . [accessed
2009/04/19].

[301] Top500 Team. Top 500 supercomputer sites. http: // www. top500. org/ stats/ list/

31/ archtype . [accessed 2009/04/20].

[302] D Thain, T Tannenbaum, and M Livny. Distributed computing in practice: the condor experi-
ence. Concurrency and Computation: Practice & Experience, Jan 2005.

[303] Douglas Thain, John Bent, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, and Miron Livny.
Gathering at the well: creating communities for grid i/o. Supercomputing ’01: Proceedings of
the 2001 ACM/IEEE conference on Supercomputing (CDROM, pages 58–68, Nov 2001.

[304] J D Thompson, D G Higgins, and T J Gibson. Clustal w: improving the sensitivity of progres-
sive multiple sequence alignment through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Research, 22(22):4673–80, Nov 1994.

272

http://www.hibernate.org
http://ws.apache.org/axis/
http://www.top500.org/stats/list/31/archtype
http://www.top500.org/stats/list/31/archtype

[305] Nicholas R Thomson, Debra J Clayton, Daniel Windhorst, Georgios Vernikos, Susanne David-
son, Carol Churcher, Michael A Quail, Mark Stevens, Michael A Jones, Michael Watson,
Andy Barron, Abigail Layton, Derek Pickard, Robert A Kingsley, Alex Bignell, Louise Clark,
Barbara Harris, Doug Ormond, Zahra Abdellah, Karen Brooks, Inna Cherevach, Tracey Chill-
ingworth, John Woodward, Halina Norberczak, Angela Lord, Claire Arrowsmith, Kay Jagels,
Sharon Moule, Karen Mungall, Mandy Sanders, Sally Whitehead, Jose A Chabalgoity, Dun-
can Maskell, Tom Humphrey, Mark Roberts, Paul A Barrow, Gordon Dougan, and Julian
Parkhill. Comparative genome analysis of salmonella enteritidis pt4 and salmonella galli-
narum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res,
18(10):1624–37, Oct 2008.

[306] P Trunfio, D Talia, H Papadakis, and P Fragopoulou. Peer-to-peer resource discovery in grids:
Models and systems. Future Generation Computer Systems, Jan 2007.

[307] P Uppuluri, N Jabisetti, U Joshi, and Y Lee. P2p grid: service oriented framework for dis-
tributed resource management. Services Computing, 2005 IEEE International Conference on,
1:347– 350 vol.1, 2005.

[308] S Vazhkudai, Xiaosong Ma, V Freeh, J Strickland, N Tammineedi, and S Scott. Freeloader:
Scavenging desktop storage resources for scientific data. Supercomputing, 2005. Proceedings
of the ACM/IEEE SC 2005 Conference, pages 56 – 56, Oct 2005.

[309] S Vinoski. Distributed object computing with corba. C++ Report, Jan 1993.

[310] W Vogels. Web services are not distributed objects. IEEE INTERNET COMPUTING, 7(6):59–
66, Jan 2003.

[311] Andreas von Bubnoff. Next-generation sequencing: the race is on. Cell, 132(5):721–3, Mar
2008.

[312] G von Laszewski, I Foster, J Gawor, and P Lane. A java commodity grid kit. Concurrency
and Computation Practice and Experience, Jan 2001.

[313] Mathias C Walter, Thomas Rattei, Roland Arnold, Ulrich Gueldener, Martin Muensterkoetter,
Karamfilka Nenova, Gabi Kastenmueller, Patrick Tischler, Andreas Woelling, Andreas Volz,
Norbert Pongratz, Ralf Jost, Hans-Werner Mewes, and Dmitrij Frishman. Pedant covers all
complete refseq genomes. Nucleic Acids Research, 37:D408–D411, Jan 2009.

[314] Jingwen Wang, Songnian Zhou, Khalid Ahmed, and Weihong Long. LSBATCH: A distributed
load sharing batch system. Technical Report CSRI-286, Computer Systems Research Institute,
University of Toronto, Jan 1993.

[315] B Wei, G Fedak, and F Cappello. A case for efficient execution of data-intense applications
with bittorrent on computational desktop grid. distributed computing, Jan 2005.

[316] Baohua Wei, G Fedak, and F Cappello. Collaborative data distribution with bittorrent for
computational desktop grids. Parallel and Distributed Computing, 2005. ISPDC 2005. The
4th International Symposium on, pages 250 – 257, Jun 2005.

[317] Baohua Wei, Gilles Fedak, and Franck Cappello. Towards efficient data distribution on com-
putational desktop grids with bittorrent. Future Gener Comp Sy, 23(8):983–989, Jan 2007.

[318] A Wespi and E Rothauser. Utilizing idle cpu cycles in a distributed computing system.
Aerospace and Electronics Conference, 1997. NAECON 1997., Proceedings of the IEEE 1997
National, 1:173 – 180 vol.1, Jun 1997.

273

[319] Brian White, Michael Walker, Marty Humphrey, and Andrew Grimshaw. LegionFS: a secure
and scalable file system supporting cross-domain high-performance applications. Supercom-
puting ’01: Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM,
page 59, Nov 2001.

[320] M Wiesmann, F Pedone, A Schiper, B Kemme, and G Alonso. Understanding replication in
databases and distributed systems. Distributed Computing Systems, 2000. Proceedings. 20th
International Conference on, pages 464 – 474, Apr 2000.

[321] Barry Wilkinson and Michael Allen. Parallel programming: techniques and applications using
networked workstations and parallel computers. Prentice Hall, 1999. ISBN: 0136717101.

[322] Mark Wilkinson, Heiko Schoof, Rebecca Ernst, and Dirk Haase. BioMOBY successfully
integrates distributed heterogeneous bioinformatics web services. the planet exemplar case.
Plant Physiol, 138(1):5–17, May 2005.

[323] Mark D Wilkinson and Matthew Links. BioMOBY: an open source biological web services
proposal. Brief Bioinformatics, 3(4):331–41, Dec 2002.

[324] Paul Wilkinson, Nicholas R Waterfield, Lisa Crossman, Craig Corton, Maria Sanchez-
Contreras, Isabella Vlisidou, Andrew Barron, Alexandra Bignell, Louise Clark, Douglas Or-
mond, Matthew Mayho, Nathalie Bason, Frances Smith, Mark Simmonds, Carol Churcher,
David Harris, Nicholas R Thompson, Michael Quail, Julian Parkhill, and Richard H Ffrench-
Constant. Comparative genomics of the emerging human pathogen photorhabdus asymbiotica
with the insect pathogen photorhabdus luminescens. BMC Genomics, 10:302, Jan 2009.

[325] Anil Wipat, Jennifer Hallinan, Daniel Swan, Morgan Taschuk, Matthew Pocock, Mike Cool-
ing, Craig Turner, Mathew Robinson, Goksel Misirli, Hang Zhao, Arunkumar Krishnakumar,
Jessica Tarn, James Murray, and Jane Hong. http://2009.igem.org/Team:Newcastle.
[accessed 2009/09/27], 2009.

[326] Adrianto Wirawan, Chee Keong Kwoh, Nim Tri Hieu, and Bertil Schmidt. CBESW: sequence
alignment on the Playstation 3. BMC Bioinformatics, 9:377, Jan 2008.

[327] Paul R Woodward, Jagan Jayaraj, Pei-Hung Lin, and Pen-Chung Yew. Moving scientific codes
to multicore microprocessor cpus. Computing in Science & Engineering, 10(6):16 – 25, Nov
2008.

[328] Ming-Wei Wu and Ying-Dar Lin;. Open source software development: an overview. Com-
puter, 34(6):33 – 38, Jun 2001.

[329] Yoshiki Yamaguchi, Tsutomu Maruyama, and Akihiko Konagaya. An approach for homology
search with reconfigurable hardware. Genome Informatics, 12:374–375, Nov 2001.

[330] Yoshiki Yamaguchi, Tsutomu Maruyama, and Akihiko Konagaya. High speed homology
search with fpgas. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing,
pages 271–82, Jan 2002.

[331] J Yang, Y Wang, and Y Chen. Gpu accelerated molecular dynamics simulation of thermal
conductivities. Journal of Computational Physics, 221(2):799–804, Jan 2007.

[332] Jian Yang, Jinhua Wang, Zhi-Jian Yao, Qi Jin, Yan Shen, and Runsheng Chen. Genomecomp:
a visualization tool for microbial genome comparison. Journal of Microbiological Methods,
54(3):423–6, Sep 2003.

274

http://2009.igem.org/Team:Newcastle

[333] X Ye and Y Shen. A middleware for replicated web services. Web Services, 2005. ICWS 2005.
Proceedings. 2005 IEEE International Conference on, Jan 2005.

[334] Yongjin Yeom, Yongkuk Cho, and Moti Yung;. High-speed implementations of block cipher
aria using graphics processing units. Multimedia and Ubiquitous Engineering, 2008. MUE
2008. International Conference on, pages 271 – 275, Mar 2008.

[335] T Ylonen. RFC 4252: The secure shell (SSH) authentication protocol. 2006.

[336] M Zaki, M Ogihara, S Parthasarathy, and W Li. Parallel data mining for association rules on
shared-memory multi-processors. Supercomputing, 1996. Proceedings of the 1996 ACM/IEEE
Conference on, pages 43 – 43, Jan 1996.

[337] E M Zdobnov and R Apweiler. InterProScan - an integration platform for the signature-
recognition methods in InterPro. Bioinformatics, 17(9):847–848, Sep 2001.

[338] Y Zhang, H Franke, J Moreira, and A Sivasubramaniam. Improving parallel job scheduling by
combining gang scheduling and backfilling techniques. Parallel and Distributed Processing
Symposium, 2000. IPDPS 2000. Proceedings. 14th International, pages 133 – 142, Apr 2000.

[339] Ming Zhao, Jian Zhang, and R Figueiredo. Distributed file system support for virtual machines
in grid computing. High performance Distributed Computing, 2004. Proceedings. 13th IEEE
International Symposium on, pages 202 – 211, May 2004.

275

	Introduction
	Data explosion in Bioinformatics
	Scalability
	Motivation
	Project aims and objectives
	Thesis structure

	Background
	Distributed Systems
	Architectures
	Client-server architectures

	High-throughput computing
	Programming models and scalable parallel computing
	High-throughput computing platforms
	Shared memory parallel computing
	Distributed parallel computing
	Distributed high-throughput computing
	Distributed Computing

	Summary

	Data transfer protocols
	Peer to peer, global-scale file transfer protocols and file systems
	BitTorrent

	Summary

	Technologies underlying Grid systems
	Web services
	Workflows and pipelines
	Notification-based orchestration

	Grid architectures
	Introduction
	High performance grids
	Commodity grids
	P2P architectures in Grid organisation and communications
	Peer to Peer approaches to resource matching
	Mobile agents in Grids
	Ensuring fairness in a P2P Grid

	Cloud computing
	Data management in high-throughput systems

	High-throughput computation in e-Science and bioinformatics
	Summary

	Microbase
	Introduction
	Motivation
	System-level requirements
	Environment-specific considerations
	Scalability requirements
	Data handling requirements
	Maintenance and extensibility requirements
	Application support and workflow structuring
	User requirements
	Developer requirements
	System administrator requirements

	Architecture Overview
	Facilitating flexible and extensible analysis pipelines

	Supporting technologies

	Notification system
	Introduction
	Motivation
	Requirements
	Architecture
	Handling persistent messages
	Handling broadcast messages

	Implementation
	Conclusion

	Resource system
	Introduction
	Motivation
	Data identification and storage
	Data distribution
	File version control
	File querying
	Pipeline extensibility
	Developer usability

	Requirements summary
	Terminology

	Architecture
	Bulk data transport protocol
	Resource client API
	Azureus-Microbase integration

	Torrent registry
	Resource archiving
	Downloading a resource
	Publishing a resource

	Discussion

	Responders
	Introduction
	Motivation
	Bridging Microbase and domain applications
	Responder pipelining, extendibility and developer convenience

	Requirements
	Responder structure

	Developer support for responders in Microbase
	Responder initialisation
	Handling notification events
	Executing command line applications

	Maven project layout
	Responder project layout and interdependencies
	Runtime role of Maven artifact information

	Conclusions

	Job management and enactment
	Introduction
	Motivation
	Requirements
	Architecture
	Failure handling
	Logging
	File versioning
	Overseeing computational work
	Process of enacting a task

	Job enactment

	Compute client
	Job execution by compute clients
	Performance analysis
	Introduction
	Data collection and analysis
	Timing results
	Benchmarking methodology

	Results
	Performance benchmarks
	Administration toolkit

	Conclusions

	Automated Genome Analyser
	Introduction
	Motivation
	Architecture
	AGA responders
	AGA Viewer

	Results
	System configuration
	BLAST-P NR responder using Amazon EC2 and Newcastle nodes
	BLAST-P Pairwise responder using Amazon EC2

	Benchmarking an entire pipeline of responders

	Conclusions
	Responder development experience and data flow
	Future work

	Discussion and conclusions
	The Microbase System
	Architecture choices
	Scalability
	Responder development framework
	Comparisons with other frameworks
	Programming models

	Use cases
	AGA
	Mucosa project
	Parallel metaSHARK
	AptaMEMS-ID
	iGem 2009

	Evaluation
	System efficiency and job design considerations
	Service and data security in a Microbase system
	Achievements

	Future work

	How to write a responder
	Introduction
	Microbase
	Requirements

	Quick-start virtual machine image
	Responder architecture
	Writing a responder
	Root project directory
	Compute job sub-project
	BLAST
	Java component
	Implementing the Java component of a job
	Packaging platform-native applications
	Final job implementation directory

	Event handler sub-project
	Implementing the event handler
	Modifying services.xml

	Installation / Deployment
	Testing

