373 research outputs found

    Interferometric switches for transparent networks : development and integration

    Get PDF
    Magneto-optic devices are a potential enabler of better scaling, transparent networks that are bit-rate, protocol and format insensitive. Transparency is critical given the paradigm shift from connection-oriented communications to IP-centric packet switched data traffic driven by the influx of high bandwidth applications. This is made more urgent by the large and growing optical-electronic bandwidth mismatch as well as the rapid approach of device dimensions to the quantum limit. Fiber-based switches utilizing bismuth-substituted iron garnets as Faraday rotators in Mach-Zehnder and Sagnac interferometer configurations are proposed, analyzed and characterized. The issues and limitations of these switches are investigated and efforts are undertaken to model and optimize the field generating coil impedance parameters. While alleviating the concerns associated with free-space switches and being compatible with contemporary optical networks, the performance of the fiber-based interferometric switches is still below theoretical limits and could be improved. Moreover, the discrete components of a fiber-based implementation engender scalability concerns. In keeping with the spirit of Richard Feynman\u27s lectures, the maturity of planar lithographic techniques that are widely used in microelectronics is leveraged to realize integrated versions of the fiber-based interferometric switches. The design, analysis, fabrication and characterization of these integrated switches are detailed herein, including the selection of a suitable material system, design of the waveguide geometry, creation and calibration of a fabrication process based on direct-write scanning electron-beam lithography as well as determination of the switches\u27 fabrication tolerance. While the larger waveguide cross-section of the microphotonic switches enables efficient coupling to fiber and greatly reduces geometrical birefringence, the weak confinement results in longer device lengths. Moreover, the small but finite birefringence induces some polarization dependence in switch performance. Consequently, compact and nominally non-birefringent nanophotonic versions of the interferometric switches are proposed and analyzed in the interest of further improving switch performance and scalability

    Programmable photonics : an opportunity for an accessible large-volume PIC ecosystem

    Get PDF
    We look at the opportunities presented by the new concepts of generic programmable photonic integrated circuits (PIC) to deploy photonics on a larger scale. Programmable PICs consist of waveguide meshes of tunable couplers and phase shifters that can be reconfigured in software to define diverse functions and arbitrary connectivity between the input and output ports. Off-the-shelf programmable PICs can dramatically shorten the development time and deployment costs of new photonic products, as they bypass the design-fabrication cycle of a custom PIC. These chips, which actually consist of an entire technology stack of photonics, electronics packaging and software, can potentially be manufactured cheaper and in larger volumes than application-specific PICs. We look into the technology requirements of these generic programmable PICs and discuss the economy of scale. Finally, we make a qualitative analysis of the possible application spaces where generic programmable PICs can play an enabling role, especially to companies who do not have an in-depth background in PIC technology

    Silicon photonics for optical fiber communication

    Get PDF

    Open-access silicon photonics: current status and emerging initiatives

    Get PDF
    Silicon photonics is widely acknowledged as a game-changing technology driven by the needs of datacom and telecom. Silicon photonics builds on highly capital-intensive manufacturing infrastructure, and mature open-access silicon photonics platforms are translating the technology from research fabs to industrial manufacturing levels. To meet the current market demands for silicon photonics manufacturing, a variety of open-access platforms is offered by CMOS pilot lines, R&D institutes, and commercial foundries. This paper presents an overview of existing and upcoming commercial and noncommercial open-access silicon photonics technology platforms. We also discuss the diversity in these open-access platforms and their key differentiators

    6G White Paper on Edge Intelligence

    Get PDF
    In this white paper we provide a vision for 6G Edge Intelligence. Moving towards 5G and beyond the future 6G networks, intelligent solutions utilizing data-driven machine learning and artificial intelligence become crucial for several real-world applications including but not limited to, more efficient manufacturing, novel personal smart device environments and experiences, urban computing and autonomous traffic settings. We present edge computing along with other 6G enablers as a key component to establish the future 2030 intelligent Internet technologies as shown in this series of 6G White Papers. In this white paper, we focus in the domains of edge computing infrastructure and platforms, data and edge network management, software development for edge, and real-time and distributed training of ML/AI algorithms, along with security, privacy, pricing, and end-user aspects. We discuss the key enablers and challenges and identify the key research questions for the development of the Intelligent Edge services. As a main outcome of this white paper, we envision a transition from Internet of Things to Intelligent Internet of Intelligent Things and provide a roadmap for development of 6G Intelligent Edge

    A Platform for Practical Nanophotonic Systems Nitrides and Oxides for Integrated Plasmonic Devices

    Get PDF
    The fields of nanophotonics and metamaterials have revolutionized the way we think of optical space (ε,µ), enabling us to engineer the refractive index almost at will, to confine light to the smallest of volumes, as well as to manipulate optical signals with extremely small foot prints and energy requirements. Throughout the past, this field of research has largely been limited to the use of noble metals as plasmonic materials, largely due to the high conductivity (low loss) and wide availability in research institutions. However, the research which follows focuses on the development of two alternative material platforms for nanophotonics: namely the transition metal nitrides and the transparent conducting oxides. Through this research, we have explored the nonlinear optical properties of thin films, demonstrating unique and ultrafast dynamic response, and have designed and realized high performance integrated plasmonic devices. Ultimately, this work aims to demonstrate the impact and potential of alternative plasmonic materials for numerous nanophotonic applications
    • …
    corecore