419 research outputs found

    Enable advanced QoS-aware network slicing in 5G networks for slice-based media use cases

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Media use cases for emergency services require mission-critical levels of reliability for the delivery of media-rich services, such as video streaming. With the upcoming deployment of the fifth generation (5G) networks, a wide variety of applications and services with heterogeneous performance requirements are expected to be supported, and any migration of mission-critical services to 5G networks presents significant challenges in the quality of service (QoS), for emergency service operators. This paper presents a novel SliceNet framework, based on advanced and customizable network slicing to address some of the highlighted challenges in migrating eHealth telemedicine services to 5G networks. An overview of the framework outlines the technical approaches in beyond the state-of-the-art network slicing. Subsequently, this paper emphasizes the design and prototyping of a media-centric eHealth use case, focusing on a set of innovative enablers toward achieving end-to-end QoS-aware network slicing capabilities, required by this demanding use case. Experimental results empirically validate the prototyped enablers and demonstrate the applicability of the proposed framework in such media-rich use cases.Peer ReviewedPostprint (author's final draft

    Network slicing to enable scalability and flexibility in 5G mobile networks

    Get PDF
    We argue for network slicing as an efficient solution that addresses the diverse requirements of 5G mobile networks, thus provid-ing the necessary flexibility and scalability associated with future network implementations. We elaborate on the challenges that emerge when we design 5G networks based on network slicing. We focus on the architectural aspects associated with the coexistence of dedicated as well as shared slices in the network. In particular, we analyze the realization options of a flexible radio access network with focus on network slicing and their impact on the design of 5G mobile networks. In addition to the technical study, this paper provides an investigation of the revenue potential of network slicing, where the applications that originate from such concept and the profit capabilities from the network operator's perspective are put forward.This work has been performed in the framework of the H2020-ICT-2014-2 project 5G NORMA

    A 5G mobile network architecture to support vertical industries

    Get PDF
    The telecom industry is moving from a "horizontal" service delivery model, where services are defined independent of their consumers, toward a "vertical" delivery model, where the provided services are tailored to specific industry sectors and verticals. In order to enable this transition, an end-to-end comprehensive 5G architecture is needed, with capabilities to support the use cases of the different vertical industries. A key feature of this architecture is the implementation of network slicing over a single infrastructure to provision highly heterogeneous vertical services, as well as a network slicing management system capable of handling simultaneous slices. On top of the network slicing technology, functionality needs to be devised to deploy the slices required by the different vertical players and provide them with a suitable interface to manage their slice. In this article, we design a 5G mobile network architecture to support vertical industries. The proposed architecture builds on ongoing standardization efforts at 3GPP and ETSI, and incorporates additional modules to provide enhanced MANO and control functionality as well as artificial-intelligence-based data analytics. On top of these modules, a service layer is provided to offer vertical players an easyto- use interface to manage their services.This work was supported by the H2020 5G-TOURS European project (Grant Agreement No. 856950)

    Resource Management From Single-domain 5G to End-to-End 6G Network Slicing:A Survey

    Get PDF
    Network Slicing (NS) is one of the pillars of the fifth/sixth generation (5G/6G) of mobile networks. It provides the means for Mobile Network Operators (MNOs) to leverage physical infrastructure across different technological domains to support different applications. This survey analyzes the progress made on NS resource management across these domains, with a focus on the interdependence between domains and unique issues that arise in cross-domain and End-to-End (E2E) settings. Based on a generic problem formulation, NS resource management functionalities (e.g., resource allocation and orchestration) are examined across domains, revealing their limits when applied separately per domain. The appropriateness of different problem-solving methodologies is critically analyzed, and practical insights are provided, explaining how resource management should be rethought in cross-domain and E2E contexts. Furthermore, the latest advancements are reported through a detailed analysis of the most relevant research projects and experimental testbeds. Finally, the core issues facing NS resource management are dissected, and the most pertinent research directions are identified, providing practical guidelines for new researchers.<br/

    Network slicing with flexible mobility and QoS/QoE support for 5G networks

    Get PDF
    Proceeding of: 2017 IEEE International Conference on Communications. Workshops (ICC Workshops)Network slicing is an emerging area of research, featuring a logical arrangement of resources to operate as individual networks, thus allowing for massively customizable service and tenant requirements. The focus of this paper is to present the design of a flexible 5G architecture for network slicing, building on SDN and NFV technologies as enablers. More specifically, we place the emphasis on techniques that provide efficient utilization of substrate resources for network slicing, ultimately optimizing network performance. The key areas of consideration in our architecture revolve around flexible service-tailored mobility, service-aware QoS/QoE control as well as network-wide orchestrationThis research work has been performed in the framework of H2020-ICT-2014-2 project 5G NORMA
    • …
    corecore