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Resource Management From Single-domain 5G to
End-to-End 6G Network Slicing: A Survey

Sina Ebrahimi, Faouzi Bouali, Olivier C. L. Haas, Senior Member, IEEE

Abstract—Network Slicing (NS) is one of the pillars of the
fifth/sixth generation (5G/6G) of mobile networks. It provides
the means for Mobile Network Operators (MNOs) to leverage
physical infrastructure across different technological domains to
support different applications. This survey analyzes the progress
made on NS resource management across these domains, with a
focus on the interdependence between domains and unique issues
that arise in cross-domain and End-to-End (E2E) settings. Based
on a generic problem formulation, NS resource management
functionalities (e.g., resource allocation and orchestration) are
examined across domains, revealing their limits when applied
separately per domain. The appropriateness of different problem-
solving methodologies is critically analyzed, and practical insights
are provided, explaining how resource management should be
rethought in cross-domain and E2E contexts. Furthermore, the
latest advancements are reported through a detailed analysis of
the most relevant research projects and experimental testbeds.
Finally, the core issues facing NS resource management are dis-
sected, and the most pertinent research directions are identified,
providing practical guidelines for new researchers.

Index Terms—Network Slicing, End-to-End (E2E), Resource
Management, Technological Domains, Radio Access Networks
(RANs), Transport Networks (TNs), Core Networks (CNs), 5G/6G
Networks, Orchestration, Resource Allocation (RA).

I. INTRODUCTION

THE FIFTH generation (5G) of mobile networks is trans-
forming connectivity, catalyzing the development of a

digitized society. In this context, network Slicing (NS) has
been pioneered by Research and Development (R&D) teams
in both industry and academia, paving the way towards 5G’s
digitalization. NS enables 5G to support a wide range of
requirements, including enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-Latency Communication (URLLC), and
massive Machine-Type Communication (mMTC). NS divides
the network into slices, each with unique features tailored
to meet the heterogeneous requirements of individual users.
This approach contrasts with the one-size-fits-all strategy of
previous generations (i.e., 2G-4G) of mobile networks, leading
to superior adaptability, enhanced performance, and additional
opportunities for new service offerings for Mobile Network
Operators (MNOs) [1]. In addition to supporting 5G services,
NS allows MNOs to launch novel and unprecedented appli-
cations [2]. The NS technology is continuously evolving with
the development of 5G-Advanced [3] and it is expected to be
incorporated into 6G networks due to its flexibility and cost-
effectiveness. The NS market is projected to grow by over fifty
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percent annually from 2023 to 2030 [4], offering a revenue
opportunity of approximately $45 billion in 2025 and $200
billion in 2030 [2]. Furthermore, it is anticipated that 30% of
potential 5G use cases will require NS as a facilitator [5].

The concept of slice in networking was first introduced in
the late 1980s [6]. Overlay networks were the initial form of
NS, combining diverse resources to create virtual networks
[7]. The division of the physical infrastructure into logical
networks was first applied to the mobile networks by the
Dedicated Core (DECOR) in the 4G standards [8]. This
approach allows multiple Core Networks (CNs) to be deployed
by MNOs over the same infrastructure while offering limited
resource sharing and flexibility to different service consumers.
Introduced in 2015 as a critical enabler for 5G [9], NS goes
beyond DECOR by providing MNOs with full flexibility to
support different applications over the same infrastructure.
Since then, research and industry projects have focused on
overcoming the obstacles associated with the development and
operation of NS, as well as its impact on other communication
services.

Recent R&D initiatives outline the significance of End-to-
End (E2E) NS frameworks in MNO networks (see Fig. 3) [10].
However, most of the literature concentrates on overcoming
the obstacles associated with a particular technological domain
(e.g., CN) of telecommunication networks. To fully unlock the
potential of NS, all technological domains, including Radio
Access Network (RAN), Transport Network (TN), and CN,
must be jointly considered within an E2E NS framework.
This allows to capture the interdependence between these
domains, which can substantially enhance the efficiency of
resource management among other crucial functionalities [11],
ultimately resulting in better support for end-user require-
ments. However, achieving consistent, interoperable, and se-
cure cross-domain coordination presents challenges, as differ-
ent stakeholders may control various technological domains in
diverse administrative domains.

A. Motivation and Aim

The current NS solutions mostly focus on the CN segment
with some initial applications to other domains (e.g., RAN
and TN), while the industry necessitates NS frameworks that
encompass all these domains, also known as E2E NS, to
better satisfy the end-user requirements. Many MNOs have
not yet offered NS-enabled 5G services due to the lack
of vendor solutions supporting NS across all technological
domains. Therefore, researchers in academia and industry
should bridge this gap by enriching state-of-the-art frameworks
with the required NS support in each technological domain
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and managing resources across domains to achieve the highest
efficiency.

In this direction, few recent surveys have been devoted
to review the progress made on NS resource management
functionalities [12]–[15]. However, most of these works have
focused on a single technological domain and cannot capture
the issues that arise in cross-domain contexts1. First, the var-
ious technological domains are strongly interdependent, and
so are their feasibility regions. For instance, virtualized RAN
and CN functions might run on a shared pool of computing
resources. This means that two acceptable RAN and CN
slicing solutions might not be feasible in an E2E context due to
a lack of computing resources. Second, optimizing NS across
domains leads to a high number of optimization variables and
constraints, leading to a larger exploration space. This means
that an acceptable problem-solving methodology for a single
domain might become cumbersome in an E2E context, which
calls for space reduction strategies (e.g., heuristic algorithms
and decomposition methods) to improve scalability. Third,
due to the emergence of various technological enablers, the
borders between domains have become blurry. For instance,
thanks to Multi-access Edge Computing (MEC), it has become
possible to relocate some of the CN functions (e.g., User Plane
Function (UPF)) to run closer to the user inside the RAN. Also,
the virtualization of network functions has made it possible to
run latency-relaxed functions as workloads in the cloud.

The above discussion clearly shows that stitching together
existing single-domain solutions would not be enough to
achieve E2E NS. Resources should rather be managed from
an E2E perspective, with the possibility of relocating functions
between domains.

In this context, this paper aims at surveying the progress
made to achieve efficient NS resource management in cross-
domain and E2E contexts. This requires dissecting the core
issues facing resource management functionalities in current
single-domain, cross-domain, and E2E NS frameworks and
identifying the most pertinent research avenues to tackle them.

B. Contributions

To the best of our knowledge, no detailed review of cross-
domain and E2E NS resource management frameworks has
been conducted. The main contributions of this work are:

• It reports the progress made towards E2E NS, with a focus
on the interdependence between technological domains
and unique issues that arise in cross-domain and E2E
contexts. The limits of single- and cross-domain NS
frameworks are identified, and the potential contributions
of E2E NS in overcoming these are analyzed.

• It formulates a generic optimization problem that can
be instantiated to cover any resource management func-
tionality and/or cross-domain combination and critically
analyzes the appropriateness of different problem-solving
methodologies in solving instances of the formulated
problem in cross-domain and E2E contexts.

1The terms single-domain and cross-domain in this paper refer to the
technological domains of the mobile network architecture (see Fig. 3).

• It examines NS resource management functionalities
across domains, revealing their limits when applied sep-
arately per domain. Practical insights are provided, ex-
plaining how these functionalities should be rethought in
cross-domain and E2E contexts.

• It considers practical aspects, including stakeholders,
methodologies, use cases, and simulation/emulation plat-
forms and captures the latest progress made by the R&D
initiatives and testbeds across the world.

• It dissects the core issues facing NS resource management
functionalities, and points to the most pertinent research
directions to overcome them, providing practical guide-
lines for new researchers.

C. Comparison with Existing Surveys
Most of the previous surveys can be categorized into four

main groups (see Table I).
The first group focused on single-domain frameworks (e.g.,

CN [12], [13], TN [14], and RAN [15]–[17]), with a brief
discussion of cross-domain aspects [18]–[20].

The second group limited their contribution to specific
NS functionalities and capabilities. For example, Resource
Allocation (RA) and orchestration are reviewed thoroughly
in [21]–[23] and [6], [24]–[28], respectively. A recent survey
about Virtual Network Function (VNF) placement in NS only
examined Deep Reinforcement Learning (DRL) techniques
[13]. Other works focused on Admission Control (AC) [29]
and security considerations [23], [30]–[34]. However, most of
the works mentioned only review single-domain NS solutions.

The third group focused on the problem-solving methodolo-
gies of NS frameworks. For instance, optimization problems
supporting the RA functionality are surveyed in [21], [22],
while associated algorithmic aspects of NS orchestration and
RA are reviewed in [35], [36]. A growing number of reviews
(e.g., [16], [15], and [37]) focus on Machine Learning (ML)
approaches and their DRL subset (e.g., [13], [38]–[40]).

The final group tackled a number of miscellaneous as-
pects, including enabling technologies (i.e., Software-Defined
Networking (SDN)/Network Function Virtualization (NFV)
(e.g., [6], [24], and [25]) and MEC (e.g., [41] and [42])),
standardization perspective (e.g., [6], [18], [25], and [30]),
experimentation and R&D projects (e.g., [20] and [43]–[47]),
and use cases (i.e., automotive/transport [18], [48], energy
[18], [49], and industry 4.0 [18]).

As opposed to the aforementioned surveys, this work re-
views the literature on NS resource management with a focus
on domain interdependence in cross-domain and E2E contexts.
Table I positions our work compared to the most relevant
review papers. Readers interested in domain-specific studies
are referred to the papers listed in Table I.

D. Structure
This article surveys the literature on NS resource man-

agement applied to wireless networks (in particular, 5G and
beyond) from 2015 to 2023. As illustrated in Fig. 1, the paper
includes three main sections (i.e., Sec. III-V). The single-
domain literature (Sec. III) is examined in terms of missed op-
portunities compared to cross-domain solutions (Sec. IV). The
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TABLE I: Comparison with other related works.
Subject Categories Our Approach

Technological
Domain CN [12], [13] TN [14] RAN [15]–[17] Cross-domain analysis [18]–[20]

- Analysis of resource management functionalities across domains (Sec. III)
- Covering cross-domain and E2E solutions (Secs. IV, V)
- Focus on interdependence between domains (Secs. III, IV, V)

Functionality RA [21]–[23]
Orchestration
[6], [24]–[28] VNF Placement [13] Security [23], [26], [30]–[34] AC [29] Covering all NS resource management functionalities (Secs. II-F, III, IV, V)

Methodology Optimization [21], [22], [35], [36] ML [13], [15], [16], [37]–[40]
Critical analysis of problem-solving methodologies for different instances of
the NS problem (Secs. II-G, III, IV, V)

Misc. Enabling Technologies
[6], [24], [25], [41], [42]

Standardization View
[6], [19], [25], [30]

Experimentation View and R&D
Projects [20], [25], [43]–[47]

Use Cases
[18], [48], [49] Secs. II-D, VI

*Each row is categorized differently, and the columns in each row are unrelated.

analysis of the E2E literature (Sec. V) identifies weaknesses
and gaps in cross-domain solutions that E2E frameworks can
overcome. In Sec. III and Sec. V, NS frameworks are classified
based on supported resource management functionalities. In
Sec. IV, works are categorized based on supported technologi-
cal domains to outline the considered and overlooked resources
in cross-domain frameworks. For all sections (i.e., Sec. III-
V), the most prominent functionalities are covered in detail in
the subsections, while the additional functionalities are briefly
listed in the summary tables (e.g., Table III-V).

The remainder of this paper is structured as follows (see Fig.
1). Key definitions are presented in Sec. II. Single-domain,
cross-domain, and E2E NS frameworks are examined in Secs.
III, IV, and V, respectively. Sec. VI reviews relevant research
projects and experimental platforms. Research gaps and future
works are presented in Sec. VII. Finally, Sec. VIII concludes
this study. The key acronyms are listed in Table II.

Fig. 1: Paper organization.

II. KEY DEFINITIONS

This section covers essential definitions based on the 3rd

Generation Partnership Project (3GPP) standards, which is
the main Standards Development Organization (SDO) in the
context of NS [11].

A. Definition

An NS is a logical E2E network that can be dynamically
created by a slice producer and delivered to a slice consumer
to support a particular service according to a given Service
Level Agreement (SLA).

Once the slice is activated within the network infrastructure,
it is referred to as the Network Slice Instance (NSI), and each
of its logical portions is represented as a Network Slice Subnet
Instance (NSSI) [11]. For example, an NSI can consist of
RAN, TN, and CN NSSIs.

TABLE II: List of key acronyms.
Acronym Definition
3GPP Third Generation Partnership Project
5G/6G Fifth/Sixth Generation
5G PPP The 5G Infrastructure Public Private Partnership
5GC/EPC 5G/Evolved Packet Core
A2C Advantage Actor-Critic
AC Admission Control
AI Artificial Intelligence
AMF Access and Mobility Management Function
API Application Programming Interface
AR/VR/XR Augmented/Virtual/Extended Reality
AUSF Authentication Server Function
BS Base Station
CN Core Network
CNF Cloud-native Network Functions
CSMF Communication Service Management Function
CU/DU/RU Centralized/Distributed/Radio Unit
DDPG/TD3 (Twin Delayed) Deep Deterministic Policy Gradient
DES Double Exponential Smoothing
DL/SL/UL Deep/Supervised/Unsupervised Learning
DQL/DRL Deep Q-/Reinforcement Learning
DQN/DDQN (Double) Deep Q-Network
eMBB Enhanced Mobile Broadband
ETSI European Telecommunications Standards Institute
GBR Guaranteed Bit Rate
GSMA Global System for Mobile Communications Association
GST Generic Network Slice Template
GT Game Theory
IETF Internet Engineering Task Force
ILP Integer Linear Programming
InP Infrastructure Provider
IoT/IoV Internet of Things/Vehicles
ITU International Telecommunication Union
KPI Key Performance Indicators
LCM Lifecycle Management
LLM Large Language Model
MAC Medium Access Control
MANO Management and Orchestration
ML/FL/RL Machine/Federated/Reinforcement Learning
mMTC Massive Machine-Type Communications
MNO Mobile Network Operator
NEST Network Slice Type
NF/NFV Network Function (Virtualization)
NN Neural Network
NS Network Slice
NSI/NSSI NS (Subnet) Instance
NSMF/NSSMF NS (Subnet) Management Function
OSS Operations Support System
PoP Point of Presence
PPO Proximal Policy Optimization
PRB Physical Resource Block
QoS/QoE Quality of Service/Experience
RA Resource Allocation
RAN/C-RAN (Centralized) Radio Access Network
RDPG Recurrent Deterministic Policy Gradient
RIC Radio Intelligent Controller
SBI SouthBound Interface
SCA Side-Channel Attack
SDN/SDR Software-Defined Network/Radio
SDO Standards Development Organization
SFC Service Function Chain
SLA Service-Level Agreement
SNC Stochastic Network Calculus
SO/NFVO Service/NFV Orchestrator
ST Slice Tenant
TN Transport Network
TS/TR Technical Specification/Report
UAV Unmanned Aerial Vehicles
UE User Equipment
UPF User Plane Function
URLLC Ultra-Reliable Low-Latency Communication
USRP Universal Service Radio Peripheral
VM Virtual Machine
VNF/VNE Virtual Network Function/Embedding
VNFM/VIM VNF/Virtualized Infrastructure Manager
ZSM Zero-Touch Service Management
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The created NSIs can be managed at three levels [50].
The Communication Service Management Function (CSMF)
receives the service-specific requirements from the slice con-
sumer and translates them to network-specific needs. The
Network Slice Management Function (NSMF) controls NSIs
from a higher perspective, and each Network Slice Subnet
Management Function (NSSMF) manages its NSSIs. For ex-
ample, a CN NSSMF controls the sub-slices (NSSIs) within
the CN domain. Fig. 2 shows an illustrative example for these
definitions.

Communication Service Instances (CSIs)

CSI 1 CSI 2 CSI 3

Network Slice Instances (NSIs)

NSI 1 NSI 2 NSI 3

Network Slice Subnet Instances (NSSIs)

Management Functions

NSSI A
NSSI CN-1

NSSI TN-1

NSSI RAN-1

NSSI B
NSSI CN-2

NSSI TN-2

NSSI C
NSSI CN-3

NSSI TN-3

NSSI RAN-2

CSMF

NSMF

RAN NSSMF

TN NSSMF

CN NSSMF

Fig. 2: Mapping NS management functions to NSIs [11], [51].

B. Technological Domains

NS operates in mobile networks, which encompass vari-
ous technological domains (i.e., CN, TN, RAN, and User
Equipment (UE)) (see Fig. 3). Each technological domain
performs one or multiple technology-specific tasks (e.g., rout-
ing in TN). From this point forward, domain refers to one
of the technological domains. Administrative domains will be
explicitly specified when needed (see Sec. II-C). Regarding NS
frameworks, single-domain solutions focus on a single domain,
whereas cross-domain frameworks consider multiple domains.
E2E NS solutions are a subset of cross-domain frameworks
that simultaneously incorporate RAN, TN, and CN domains.

User Equipment 

(UE)

Radio Access Network 

(RAN)

Transport Network 

(TN)

Core Network 

(CN)

Data Network

(e.g., Internet)

RAN 

Orchestrator

TN 

Orchestrator

CN 

Orchestrator

E2E Orchestrator

Fig. 3: Simplified mobile network architecture.

To realize slice management capabilities, a hierarchical
orchestration architecture is required, where each domain is
managed by its own orchestrator, and all of them are overseen
by an E2E orchestrator that has an abstracted view of the
whole network [20]. In the 3GPP terminology, domain orches-
trators can be mapped to NSSMFs, and the E2E orchestrator
consists of CSMF and NSMF [11].

1) CN: CNs facilitate serving end-users by providing func-
tionalities such as access and mobility management, session
management, and slice selection [52]. Traditionally, MNOs
deployed all CN NFs in the most central part of their network.
However, with the advances in NFV and MEC technologies,
MNOs can deploy delay-sensitive network functions (e.g.,
UPF) in the edge sites closer to the end-users.

2) TN: TNs consist of the links connecting RAN and
CN domains as well as their internal nodes [52]. The key
factors when slicing the TN are the link capacity and latency
constraints, together with the efficiency of the routing between
SDN-enabled switches [19].

3) RAN: Thanks to the emergence of network function
disaggregation, a traditional Base Station (BS) can be split into
different logical nodes (e.g., Radio Unit (RU), Distributed Unit
(DU), and Centralized Unit (CU)) that may be geographically
distributed. This functional split can be performed at different
layers of the RAN protocol stack depending on the deployment
scenario [20]. For instance, the emerging Open RAN (O-RAN)
paradigm promotes a low-level split (split 7.2x) between the
RU and DU [53], which complements the standard high-level
split (split 2) between DU and CU [54]. Furthermore, some of
the RAN subcomponents (e.g., CU and DU) can be virtualized
and integrated with MEC servers in appropriate sites. This
makes them easier to manage, especially for NS.

4) UE: UE is the device providing connectivity to the end-
user and serves as a termination point for the RAN, enabling
communication with the network [52].

C. Related Stakeholders

Fig. 4 depicts a simple view of NS stakeholders, includ-
ing the Infrastructure Provider (InP), MNO, Slice Tenants
(STs), and end-users [11]. As demonstrated in Fig. 4, each
stakeholder holds distinct perspectives regarding the network,
potentially conflicting with other stakeholders’ goals. A stake-
holder can be a slice consumer and/or a slice provider; e.g.,
the ST can provide a slice to end-users while consuming the
slice provided by the MNO. Each stakeholder within an NS
framework can be translated into an administrative domain2. In
practical scenarios, two administrative domains, such as an InP
and an MNO, can manage a technological domain like TN. In
addition, one stakeholder, such as an MNO, may have control
over both RAN and TN resources, while another administrative
domain, such as an InP, may be responsible for providing CN
resources for several MNOs.

End-users

Infrastructure 
Provider (InP)

Mobile Network 
Operator (MNO)

Resources

Slice Tenant (ST)

Slices

Services

$

Network Sustainability

Min. no. of packets

Max. Revenue

Min. Costs (CAPEX/OPEX)

Max. Resource Utilization
Max. no. of users

Min. SLA violations

Max. Fairness

Prioritization based on user/
slice type

Max. slice acceptance ratio

Max. user acceptance ratio

Max. service reliability

Min. Energy consumption

Management & Orchestration

Maintenance (e.g., upgrading software/hardware resources)

Marketing (updating service portfolio & advertisement)

Broadening radio/service coverage

Min. Resource Usage

QoS/QoE Satisfaction

Slice Customization Capabilities

Isolation & Security

Service Reliability

Max. data rate

Min. E2E delay

Min. jitter

Min. packet loss

Mobility support

Aims & Objectives Common goals 

of InP/MNO/ST

Min. payments

$

$

Fig. 4: NS stakeholders and their objectives.

2For the sake of simplicity, many NS frameworks operate only within a
single administrative domain, e.g., an MNO that serves end-users.
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1) InP: InP is the entity in charge of operating some
resources, e.g., switching fabrics, computing servers, and
radios. Data center providers and public/private cloud and edge
providers are some examples of InPs.

2) MNO: MNO is the central entity to manage NSs. It may
acquire infrastructure from InPs and serve the STs to deliver
applications to end-users.

3) ST: ST consumes the slices provided by the MNO
and ensures the end-users are served with good Quality of
Service/Experience (QoS/QoE) levels. Examples of STs vary
from small, medium, and large enterprises to vertical industries
(e.g., automotive and manufacturing) and virtual MNOs.

4) End-user: The end-user is an entity (e.g., smartphone,
Internet of Things (IoT) sensor, and (semi)-automated vehicle)
consuming one or more slices provided by an ST/MNO to
support one or more applications [11].

Finally, it is worth pointing out that an organization can
play multiple roles simultaneously (e.g., an MNO that owns
all its infrastructure also plays the role of InP).

D. Enabling Technologies
This section briefly introduces the three essential enabling

technologies to realize NS.
1) NFV: Motivated by the cost-efficiency advantages of

cloud computing [55], this technology has been adopted to
deploy hardware-based proprietary Network Functions (NFs)
as VNFs or Cloud-native Network Functions (CNFs) on Vir-
tual Machines (VMs) or containers, respectively [25]. The de-
ployed VNFs/CNFs can be chained to form a Service Function
Chain (SFC) in co-located or distributed cloud environments,
offering network or value-added services [6].

2) SDN: SDN centralizes network control and intelligence
to simplify network management and enable programmability.
This is achieved by separating the control plane from the
data plane in networking equipment such as switches and
routers [6]. It allows scalability, flexibility, service-oriented
adaption, and robustness, all of which are necessary for an
NS framework [56]. For further information about SDN in the
context of NS, the reader can refer to [6], [25], [57].

3) MEC: MEC exploits the flexibility offered by NFV to
deploy computing and storage infrastructure in locations closer
to the end-users. The local processing reduces the load on the
backhaul links [58], shortens the experienced latency [42], and
ensures privacy preservation of sensitive data [59].

E. Lifecycle Management
Fig. 5 presents the NS Lifecycle Management (LCM) as per

3GPP [11] (please ignore the scroll signs until the end of Sec.
II-F). It involves the following phases:

• Preparation occurs before creating an NSI in the network.
It comprises NS design, onboarding, and environment
setup.

• Commissioning creates the NSI and allocates/configures
all required resources to meet NS requirements.

• Operation includes the activation, supervision, reporting,
modification, and deactivation of an NSI.

• Decommissioning terminates NSIs and relinquishes their
non-shared resources.

F. Resource Management Functionalities

NS resource management frameworks perform a subset of
the following functionalities:

1) AC: This is the mechanism run by the slice producer to
decide whether to accept or reject slice requests [60]. It can be
an initial part of the RA process to ensure that the allocated
resources are available at the NS operation time. AC is always
part of the preparation phase in NS LCM (see Fig. 5).

2) RA: Once AC accepts a slice request, the slice producer
allocates the required resources to the slice to be created.
From the LCM perspective, RA is part of the preparation and
commissioning phase (see Fig. 5).

3) VNF placement: This is also known as Virtual Network
Embedding (VNE) or SFC embedding. It examines the ideal
placement of VNFs/CNFs at nodes (servers) and reserves
the necessary interconnection capacity across them [61]. It
is part of the RA functionality and is performed during the
commissioning phase of the NS LCM (see Fig. 5).

4) Reconfigurability: A slice may require reconfiguration
(e.g., scaling of its VNFs3) due to changing conditions (e.g.,
availability of resources or traffic demands) [62]. From the
LCM point of view, reconfiguration is performed during the
operation phase (see Fig. 5).

5) Orchestration: Orchestration enables interactions be-
tween the management entities in various domains and facili-
tates the configuration/modification of the components within
domains [25], [38]. Advanced orchestration frameworks may
feature LCM automation, security and trust mechanisms, and
multi-stakeholder interworking procedures. Orchestration is
performed in all LCM phases (see Fig. 5).

6) Security considerations: From a security perspective,
the flexibility introduced by NS comes at the cost of a wider
attack surface for all stakeholders. Mitigating the introduced
threats across all domains is a pending issue in the NS
literature. From the LCM viewpoint, security mechanisms can
be run in all phases (see Fig. 5). It should be noted that
this current review solely addresses security-related issues
pertaining to resource management. For a more comprehensive
discussion, see [34].

Summary: Fig. 5 maps the aforementioned functionalities
to 3GPP’s NS LCM phases [11]. Note that orchestration and
security span across all phases.
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Fig. 5: Mapping of NS resource management functionali-
ties/capabilities to NS LCM.

3Horizontal VNF scaling involves changing the number of active VNF
instances, while vertical VNF scaling involves adding or removing resources
from existing VNFs [13].
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G. Considered Problem and Potential Solutions

1) Generic problem formulation: This section formulates
a reference optimization problem that can be mapped to
any resource management problem in the NS context. The
objective function 𝑓 (𝑥1, . . . , 𝑥𝑉 ) can be designed to capture
one or multiple objectives. The optimization direction in (1)
can be either min, max, min - max, or max - min, depending
on the considered objective function [63].

Optimization direction︷                                       ︸︸                                       ︷
min/ max/ min - max/ max - min 𝑓 (

𝑉 Variables︷        ︸︸        ︷
𝑥1, . . . , 𝑥𝑉 )

subject to 𝑀 constraints:

{
𝑔1 (𝑥1, . . . , 𝑥𝑉 ) , . . . ,

𝑔𝑀 (𝑥1, . . . , 𝑥𝑉 ) .

(1)

Optimization variables can typically be categorized as either
continuous or discrete variables [64]. Transmission power
and allocated bandwidth are examples of the former, while
Physical Resource Block (PRB) allocation and VNF placement
variables belong to the latter. Continuous variables can be
computationally intensive due to their infinite possible values.
On the other hand, discrete variables (e.g., binary and integer)
can result in NP-hard problems, signifying that no known
algorithm can solve all instances of the problem in polynomial
time. In addition, they disrupt the problem’s convexity, making
locating the global optimum challenging.

Whether considering a single-domain, cross-domain, or E2E
scenario, the majority of constraints related to NS problems
are usually expressed in the form of inequalities, classified
primarily into the following types [65]. Note that the presented
mathematical formulations are simplified, and the constraints
may include interaction between variables (e.g., cross-product
terms). Also, depending on the specific constraint of the
particular problem, the mathematical operator may be ≤, =,
or ≥.

• Linear constraints: These constraints are expressed as
linear relationships of one or more variables. They are
the most frequently employed model in NS problems and
can be expressed mathematically as follows:∑

𝑖 𝑥𝑖 ≤ 𝑋max, (2)

where 𝑋max represents the total capacity or maximum
threshold, and 𝑥𝑖 is the resource allocated for the 𝑖-th
user/slice/flow. This category of constraints may con-
sider capacity restrictions (e.g., power and computing
resources) or other SLA-related requirements (e.g., max-
imum tolerable E2E delay).

• Non-linear constraints: These can involve functions that
are non-linear in variables, such as exponential, quadratic,
trigonometric, or logarithmic functions. These constraints
can be generally formulated as follows:

𝑔 (𝑥1, . . . , 𝑥𝑉 ) ≤ 𝑐, (3)

where 𝑐 represents the maximum capacity or threshold,
and 𝑔(𝑥1, . . . , 𝑥𝑉 ) is a non-linear function of one or more
variables. One example of these constraints can limit the
maximum power used in beamforming scenarios. Solving
optimization problems with non-linear constraints can
be challenging due to non-convexity, necessitating more
sophisticated techniques [64].

The objective function in (1) can be a single function or a
combination of multiple functions, each affecting a subset of
the defined variables. Increasing the number of objectives in
𝑓 (𝑥1, . . . , 𝑥𝑉 ) raises the problem difficulty. Multiple functions
can be combined using weighted sum, weighted product, and
max-min approaches [66]. The most common objectives used
in NS problems based on the problem’s viewpoint(s) are
summarized in Fig. 44. For instance, we might consider an
E2E NS RA problem with two objectives: maximizing revenue
(from the MNO perspective) and minimizing E2E delay (from
the end-user standpoint). By employing the weighted sum
approach, the two objectives can be normalized and multiplied
by controllable weights to tune their relative importance.

2) Problem analysis: An E2E NS problem inherently in-
volves optimizing multiple (i.e., continuous and discrete) vari-
ables across various technological domains. The set of feasible
points (e.g., admitted users, provisioned slices, selected VNFs)
in these problems is typically discrete or reducible to a discrete
set. Consequently, an E2E NS problem can often be identified
as a combinatorial optimization problem [67]. As shown in
Fig. 6, each technological domain has a feasible region for
a given variable (e.g., the binary PRB variable5) in an E2E
NS problem. The feasible region for such a problem is the
intersection of the feasible sets of all technological domains.
In addition, E2E constraints (e.g., latency of slices) might
further limit the feasible region of E2E NS frameworks. For
instance, there is no point in assigning lots of TN resources
to a given user if there are not sufficient PRB resources in
the RAN. This demonstrates that the constraints and variables
of each technological domain can affect the others, creating
a complex, interconnected system. Therefore, simply stitching
together NS solutions, each focused on a single domain such
as RAN, TN, or CN, is insufficient to meet the E2E NS
requirements. A holistic approach that jointly considers all
domains is required to accurately reflect the interdependencies
and achieve optimal results. This joint coordination among
technological domains is crucial for effectively addressing E2E
NS problems. However, solving such problems can be arduous
due to their complexity and the large number of variables
involved. Therefore, it is often more practical to aim for a near-
optimal answer within a reasonable computational complexity
rather than striving for complete optimality [68].

RAN Feasible
Region

E2E Feasible Region

TN Feasible
Region

CN Feasible
Region

Legend

Binary Integer 
Variable

Fig. 6: An illustration of the need to ensure feasibility across all
NS technological domains and satisfy E2E constraints (e.g., meeting
latency requirements for different slice types).

4It should be noted that the list of objectives presented is not exhaustive
and is provided only as an illustrative guide.

5Denotes the allocation of PRBs in each BS to the users.
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3) Problem-solving methodologies: The following intro-
duces a categorization of approaches for solving resource
management problems in NS.

• Optimization-based techniques provide approximate
or exact answers to optimization problems. These ap-
proaches can be classified into three categories:

– Closed-form approaches provide an exact solution to
the problem without the need for iterative techniques.
They can be applied to problems with relatively small
dimensions. Queueing Theory (QT) and Stochastic
Network Calculus (SNC) are examples of this cat-
egory used to model networks. For instance, E2E
delay is modeled using QT in [69]. However, it is
unlikely that these solutions would be sufficient to
solve an NS problem since many assumptions and
constraints must be taken into account.

– Relaxation-based approaches, such as successive
convex approximation and semi-definite relaxation,
can achieve near-optimal answers for computation-
ally intractable problems [35]. Eq. (1) can be parti-
tioned into sub-problems and solved using relaxation
techniques to achieve acceptable computational com-
plexity (as in [70]). The quality of the approximation
depends on the relaxation technique and degree of
relaxation employed.

– (Meta)heuristic approaches can speed up the search
for answers to large-scale problems with compli-
cated constraints and objective functions, including
discrete and continuous variables [36]. While re-
searchers develop problem-specific heuristics (e.g.,
[71]), metaheuristics (such as evolutionary algo-
rithms) offer a comprehensive framework to map
the problem details into their settings (e.g., [72]).
These approaches are often applied to tackle large-
scale combinatorial problems (e.g., E2E NS RA). For
example, [72] applies a genetic algorithm to improve
resource utilization and minimize fronthaul latency
in RAN slicing. However, the mentioned approaches
may not guarantee finding the globally optimal solu-
tion and can be sensitive to parameter settings (e.g.,
population size and crossover in genetic algorithms).

• ML is a subset of Artificial Intelligence (AI) that de-
velops algorithms that can learn and make predictions
or decisions based on data [16]. ML approaches are
commonly employed in NS frameworks for network
performance prediction, resource optimization, and auto-
mated decision-making [73]. While specific approaches
may vary (or overlap), common approaches include:

– Supervised Learning (SL) enables accurate prediction
of network performance metrics based on labeled
data, helping resource management decisions in NS
[74]. For example, a regression tree algorithm can be
used to predict PRB utilization in the RAN domain
based on the temporal traffic profile of UEs [75].
Nevertheless, these techniques heavily rely on the
availability of high-quality training data that ade-
quately represent the features of NS.

– Unsupervised Learning (UL) techniques can iden-
tify patterns and structures within NS data, guiding
decision-making processes by revealing hidden rela-
tionships. For instance, in [76], normalized spectral
clustering is utilized for slice AC to analyze similar-
ities between incoming slice requests and currently
active slices. This helps to identify the most appro-
priate NSIs that can fulfill requests with efficient
resource usage. Nonetheless, interpreting algorithm
results may require domain expertise and meticulous
analysis.

– Reinforcement Learning (RL) enables automated
decision-making in dynamic environments. Model-
ing the NS environment using RL definitions (e.g.,
Markov Decision Process (MDP)) is straightforward
and does not require pre-trained data [73]. One ex-
ample is to use a Q-learning algorithm to learn nearly
optimal RA policies, which can either approve or dis-
card STs’ requests [77]. However, conventional RL
techniques (without using Neural Networks (NNs))
often struggle to converge in bigger environments,
such as E2E NS problems.

– Federated Learning (FL) allows collaborative train-
ing of shared ML models while preserving data
privacy by not sharing raw data [78]. It facilitates de-
centralized optimization and decision-making among
various technological/administrative domains in NS.
For example, in [79], each BS acts as an agent where
the models are trained, and a central orchestrator
decides to assign PRBs and associate BSs according
to these models. However, these approaches strongly
depend on the reliability of the communication links
between the central point and distributed FL agents.

– Deep Learning (DL) techniques leverage multi-
layered NNs to learn intricate data patterns and
relationships. These networks can be integrated with
other ML paradigms to leverage their strengths and
address high-dimensional and complex NS problems
[73]. Due to using NNs, DRL-based approaches
(e.g., Deep Deterministic Policy Gradient (DDPG))
have better scalability and faster decision-making
than traditional RL techniques, making them suitable
for online NS functionalities (e.g., reconfigurability)
after convergence. For example, DDPG is used in
[80] to determine the continuous actions (i.e., al-
location of radio and computing resources) aiming
to maximize the utility of STs while ensuring end-
user QoS. However, DL techniques require expertise
in hyperparameter tuning and suffer from a lack of
explainability.

• Game Theory (GT) studies the strategic interactions of
rational agents using mathematical models [81]. These
agents (e.g., technological/administrative domain orches-
trators) aim to optimize their own utility to reach equi-
librium where all parties are satisfied. Hence, GT models
offer a compelling option for solving problems with
multiple stakeholders in the context of NS. These tech-
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niques may include cooperative and/or non-cooperative
agents. For instance, in [82], virtual MNOs establish
prices for RAN resources, and end-users bid for them
within a non-cooperative Stackelberg game. Although
GT-based approaches typically involve optimization, the
distinguishing factor is the strategic interaction among
multiple agents. Nevertheless, striking a balance between
complexity and the number of agents involved is crucial.

It is worth point out that the above categories of problem-
solving methodologies are not mutually exclusive. Each of the
discussed categories aims to highlight the primary methodol-
ogy employed, but different approaches may be combined to
solve complex E2E NS problems. For example, heuristically-
assisted DRL techniques (e.g., [83]) might combine elements
of heuristics (optimization-based), RL (ML-based), and poten-
tially GT.

III. SINGLE-DOMAIN NS FRAMEWORKS

This category of NS frameworks exclusively covers one
domain. While some papers may claim to have introduced a
form of E2E NS, we classify them as single-domain solutions
if their problem definition is based on a single domain.
This section evaluates single-domain resource management
functionalities based on their problem-solving approaches.

A. AC

NS AC analyzes abstract requirements from slice requests,
maps them to necessary resources, and evaluates feasibility
regarding the available resources (e.g., computing in CN,
PRBs in RAN) [19]. AC frameworks (e.g., [70]) often ignore
request interpretation and presume fixed slice types for STs
to choose from. Evaluating slice requests against available
resources is referred to as feasibility checking and can be
an initial part of NS RA problems. Single-domain NS AC
solutions lack coordination with other domains, resulting in
a lack of information regarding other domain resources. The
current literature can be categorized into two primary groups:
optimization- and DRL-based approaches. In the following, we
examine the advantages and limitations of these methodologies
while referencing some representative works from CN-only
and RAN-only NS AC frameworks.

Optimization-based approaches are commonly used to eval-
uate the RA problem feasibility in terms of providing resources
for slice requests. Such techniques usually map the AC prob-
lem to a multiple knapsack problem, aiming to maximize the
slice acceptance ratio [84]. These techniques often overlook
the historical data of slice request arrivals, a crucial factor
for making well-informed decisions about RA, rendering them
sub-optimal. For example, [70] shows that their joint Integer
Linear Programming (ILP) formulation for MNO cost min-
imization outperforms a disjoint formulation of CN nodes
and links. AC can also be formulated as stochastic queueing
models of slice requests to provide statistical analysis [85].
Fairness among operational NSIs is often overlooked in RAN
AC frameworks, as in the preemption-based prioritization AC
model proposed in [86].

DRL-based techniques can better adapt to changing con-
ditions (e.g., drastic changes in request arrival time or de-
mand), and learn from historical information about slice
requests. However, they require extensive training data and
lack interpretability. However, excelling in prediction accuracy
necessitates integrating information on resource availability
from other technological domains. Techniques such as Long
Short-Term Memory (LSTM) NNs within Deep Q-Learning
(DQL)-based algorithms have achieved a balance between
averting Service Level Agreement (SLA) violations and re-
source overbooking, as shown in the CN-only AC framework
proposed in [87]. DQL-based schemes can only account for
discrete action spaces, but some actor-critic-based algorithms
(e.g., Proximal Policy Optimization (PPO)) can also handle
continuous action spaces. For instance, a joint RAN slicing
framework uses two DRL agents (for AC and RA) trained
with the PPO algorithm to maximize MNO revenue [88]. The
proposed framework outperforms single-agent RA schemes
(e.g., [89]) in terms of revenue and convergence due to
considering resource feasibility in the AC agent. It allocates
computing resources to VNFs in a Centralized RAN (C-RAN)
environment but overlooks PRB and power allocation.

Despite the advancements in both approaches, resource
verification across technological domains remains a challenge
in single-domain AC, emphasizing the need for more com-
prehensive solutions. As shown in Fig. 6, the feasible set
for CN AC (e.g., [70], [84], [87]) might be reduced when
other technological domains are considered. For example,
accepting a slice request without ensuring the availability of
sufficient TN and RAN resources can lead to diminished QoS
for end-users during the operational stage of slices (see Fig.
5). This issue is partly mitigated by cross-domain solutions
that jointly consider the relevant constraints across multiple
technological domains (see Sec. IV-A1). The emerging Open
RAN architecture provides an opportunity to leverage user
Key Performance Indicators (KPIs) to further improve the
effectiveness of RAN slicing AC (e.g., [85], [86], [88]).

B. RA

RA in single-domain frameworks assigns resources to serve
users with diverse requirements. The primary challenge is to
optimize resource utilization while meeting QoS requirements.
Although each domain evaluates different resources (e.g.,
computing in CN, path selection and link bandwidth allocation
in TN, and PRB and transmission power in RAN), single-
domain RA frameworks may cause bottlenecks due to a lack
of coordination (refer to Fig. 6). Existing works can be classi-
fied into four groups: optimization-based, model-based DRL-
based, model-free DRL-based, and GT-based approaches. This
section assesses these groups using some representative frame-
works.

Optimization-based techniques are popular for optimizing
resources as they can often handle both continuous and dis-
crete variables. Relaxation and heuristic procedures reduce
complexity but may hurt optimality and increase computa-
tional time. They excel at mathematically formulating multiple
objectives and constraints. For instance, the RAN slicing
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technique in [72] utilizes genetic algorithms to optimize C-
RAN design by minimizing fronthaul delay and maximizing
capacity utilization. In an Open RAN-compliant framework,
[90] models PRB, power, and computing resources and uses
relaxation- and greedy-based methods to solve partitioned
sub-problems. Moreover, the linearized Alternating Direction
Method of Multipliers (ADMM) is used to address non-
convexity in a joint TN bandwidth allocation and path se-
lection problem in [91].

Model-based DRL can be effective for single-domain RA
using constrained MDPs and Deep NNs (DNNs). While this
approach can improve accuracy in familiar settings, limited
agent exploration may hinder its effectiveness in dynamic
environments due to anticipated policies. Examples of model-
based RAN slicing frameworks that optimize continuous
variables (e.g., spectrum) include [92] and [93]. The latter
reference extends DQL to continuous action spaces with
discrete normalized advantage functions, resulting in expedited
convergence. However, these frameworks only model a single
BS, rendering them unsuitable for mobility-aware scenarios.

Model-free DRL approaches for single-domain RA are
flexible and easy to deploy. They learn from dynamic envi-
ronmental interactions, not from models. However, hyperpa-
rameter adjustments might be problematic, affecting solution
performance and convergence. In addition, the curse of di-
mensionality may arise due to the significant number of state-
action pairs involved. For instance, a Deep Q-Network (DQN)
system in a fog environment with edge and core tiers has
scalability challenges for diverse use cases [94]. An Advantage
Actor-Critic (A2C)-based approach addresses this issue by
delivering eMBB and URLLC flows through local controllers
for CN nodes and links [95]. To accelerate convergence and
scalability, these controllers transfer their models to other
controllers via transfer learning, which requires more training
episodes. LSTM is used in [96] to predict Channel State
Information (CSI) for users in each RAN slice, and PRB
resources are optimized using a double and dueling DQN
technique to reduce action space size. In [97], a RAN RA
system combines ground BSs, Unmanned Aerial Vehicles
(UAVs), and Low Earth Orbit (LEO) satellites to maximize
throughput, Signal-to-Interference-plus-Noise Ratio (SINR),
and latency across three slice types. A centralized supervisory
module and distributed modules at each layer are used in the
proposed method. The DDPG algorithm in each module can
handle both continuous and discrete actions. It has a critic
DNN that estimates the value function of the current state-
action pair and an actor DNN that maps states to actions. The
authors of [98] propose a two-timescale online methodology
that prioritizes users based on weight for maximum resource
utilization. The problem is divided into power allocation and
user admission sub-problems. First, Lyapunov optimization
solves the long-term power constraint sub-problem. Second,
an offline LSTM that forecasts user request arrivals assists
the Trust Region Policy Optimization (TRPO) algorithm in
maximizing short-term user satisfaction for the admission
sub-problem. A joint network selection and routing scheme
between TN nodes is modeled in [99] utilizing an online MDP
and a gradient temporal-based actor-critic scheme. Overall,

model-free algorithms are more flexible than model-based
ones, with the latter being more accurate in familiar conditions.

GT-based approaches can model stakeholder interactions
in single-domain RA frameworks to find near-optimal strate-
gies for each actor, especially in resource pricing problems.
Nonetheless, the complexity of the problem must be weighed
against the number of players (e.g., BSs), as a delicate
balance must be maintained. For example, the InP resources
are allocated to virtual MNOs through a two-tier scheme
that utilizes a federated DDPG-based algorithm, according to
[82]. Interactions between the stakeholders are modeled as
a Stackelberg game, where MNOs set RAN resource prices
and end-users control demand. In [100], a proxy-Lagrangian
two-player game is modeled to optimize energy efficiency in
C-RAN using a statistical FL technique. Each pair of <CU,
NSI> represents a local agent creating its own model. After
that, a central orchestrator aggregates local models to allocate
PRB and computing resources. A complementary study by the
authors of the latter work demonstrates that channel quality
is the most crucial factor in RAN slicing evaluation using
Explainable AI (XAI) techniques [101].

The works presented overlook other domains. Since un-
expected failures in other domains may disrupt the service,
these frameworks cannot fully meet user needs. For instance,
E2E delay and data rate may be affected by TN congestion or
VNF overload in CN when using RAN slicing RA schemes
(e.g., [72], [90], [92], [93], [96]–[98]). CN RA frameworks
(e.g., [94], [95]) allocate computing and networking resources
without considering virtualized RAN and TN resources. This
can affect the reliability of MEC applications and hinder
support for end-user mobility. TN RA solutions (e.g., [91],
[99], [102]) may experience unexpected peak-hour congestion
due to RAN domain demand. To overcome these limits,
cross-domain frameworks orchestrate resources across several
domains, making them more accurate and dependable than
single-domain RA solutions (refer to Sec. IV-A1). These
frameworks need to support virtualized RAN functions and
incorporate the computing resources within the RAN, which
allows to support future-proof Open RAN-compliant systems.

C. VNF Placement

VNF placement problems fall within the realm of NS RA
problems and thus require balancing end-user/ST satisfaction
with resource utilization (or cost reduction). The most sophis-
ticated research suggests numerous Points of Presence (PoPs)
to coordinate VNF placement on the premises. This strategy
improves VNF placement efficiency and availability but adds
communication overhead. NFV and MEC architectures allow
CN and RAN VNFs to be deployed at central and edge/fog
sites (DU/CU), respectively. Optimization- and DRL-based
techniques are used in single-domain NS VNF placement
research. The pros and cons of each technique are described
below.

Optimization-based techniques effectively address node and
link capacity, latency, and data rate limits via simple modeling.
However, the NP-hard nature of these problems causes scala-
bility limits [103]. Adapting to dynamic network environments
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is also a challenge. A relaxation-based technique in [104]
seeks to reduce energy consumption and slice delay but
may face challenges in dynamic network conditions. This
issue, along with scalability, persists in the multi-PoP model
presented in [105], where the authors provide a heuristic to
minimize the number of VNFs in various slices.

The most advanced VNF placement frameworks use DRL-
based approaches for dynamic decision-making. These tech-
niques often employ a variety of algorithms to solve multi-
objective problems, improving online performance. However,
rapid network topology changes can impact their performance.
For instance, [106] proposes a federated DQN technique in
Open RAN architecture that can migrate user-related RAN
VNF instances between CU-UP and DU nodes in response
to traffic variations. Decisions are made by the local agents
at DU nodes. A near-Real-Time (Near-RT) Radio Intelligent
Controller (RIC) aggregates the local models to create a global
model. This federated technique outperforms local DRL but
may lower QoS owing to communication overhead. DQN-
based algorithms have continuous action space issues, unlike
PPO, DDPG, and Asynchronous A2C (A3C) algorithms. A
heuristically-assisted A3C algorithm is utilized in [83] to op-
timize bandwidth usage, slice acceptance ratio, and node load.
Another study examines the capability of the PPO algorithm to
perform online scaling of UPF CNFs in Kubernetes, explicitly
focusing on online horizontal scaling [107]. A Support Vector
Machine (SVM) classifier is employed to maintain learning
process stability in the face of PPO’s stochastic nature, but it
comes at the expense of losing dynamicity. While these works
addressed the InP’s perspective, multi-agent DRL systems
can be used to envision multiple MNOs and STs (see Fig.
4). This approach promotes competition among MNOs but
poses challenges regarding VNF placement due to possible
resource conflicts. The authors in [108] use a multi-agent
dueling DQL mechanism, where MNOs assign ST requests to
InP resources and adjust rewards based on resource conflicts.
Their methodology incorporates neuron hotplugging to reduce
model retraining in dynamic situations. However, multi-agent
mechanisms must balance communication overhead and re-
source efficiency.

Prior research has not adequately addressed the need for
hybrid placement and orchestration of VNFs and CNFs in
slice-enabled environments [61]. RAN (e.g., [106]) and CN
(e.g., [83], [104], [105], [107], [108]) VNFs need to be
considered together for a more realistic NS architecture. The
CN and RAN NSSMFs must collaborate with the NSMF (i.e.,
part of E2E orchestrator) to follow its policies. RAN VNFs
can change packet size or increase user delay, making their
inclusion vital for precise placement decisions.

D. Reconfigurability

Reconfigurations, such as hardware modifications, VNF
scaling, and path re-routing, is crucial for resource opti-
mization and QoS provisioning in NS. Reconfiguring both
continuous (e.g., power) and discrete (e.g., VNF assignment)
variables in a dynamic environment makes these problems
more complex than RA problems. This section evaluates the

optimization- and DRL-based techniques used to tackle these
challenges while highlighting notable efforts.

Optimization-based approaches are commonly employed for
single-domain reconfigurability schemes in NS. Relaxations
and heuristics reduce problem complexity but might harm op-
timality. For example, [62] adjusts CN resources periodically
and reconfigures flows for slices at a smaller timescale by
employing approximation techniques. By finding a sequence
of feasible reconfigurations, the resource reservation heuristic,
proposed by [109], can reduce unnecessary reconfigurations,
which results in improved runtime efficiency compared to [62].
Nevertheless, these reactive approaches may over-provision
resources because they lack a prediction mechanism. A pro-
posed TN reconfiguration technique in [110] uses a Double
Exponential Smoothing (DES) algorithm to forecast incoming
traffic. Based on predictions, a heuristic reallocates optical
and wireless TN resources to maximize resource utilization.
Furthermore, in [111], a RAN reconfiguration technique uses
NNs to predict behavior when KPIs are not satisfied for a slice.
It then heuristically reconfigures the AC and packet scheduler
until all slices meet the SLA. However, disregarding other
domains leads to sub-optimal solutions in all surveyed works.

DRL-based approaches offer greater resilience to dynamic
reconfigurations. Nonetheless, traditional DQL-based systems
adapt slower to environmental changes than newer techniques
(e.g., DDPG). According to [112], using the dueling DQL
algorithm can speed up convergence and make the DQL algo-
rithm more stable. The Branching Dueling Q-network (BDQ)
scheme uses action branching to improve DQL scalability and
convergence. Using BDQ with a partial exploration policy,
[113] reduces SFC reconfiguration costs in CN. Heuristics can
also alleviate DQN scalability issues, as shown in the periodic
TN slice embedding reconfiguration approach in [114]. The
Twin Delayed DDPG (TD3) technique used in [115] enhances
CU reconfiguration by adjusting RAN VNF computing ca-
pacity depending on traffic variations. TD3 resolves some
of DQN’s issues by reducing Q-value overestimation and
handling continuous action spaces.

None of the evaluated studies take cross-domain orches-
tration into account, which can impact reconfiguration per-
formance. For example, overlooking TN and RAN resources
in CN reconfiguration schemes (e.g., [62], [109], [113]) may
result in over- and/or under-utilization of these domains while
reconfiguring the CN resources (refer to Sec. IV-A3). Fur-
thermore, while these frameworks can automate tasks such
as scaling of RAN VNFs and power adjustment, their level
of automation and reconfiguration remains a design choice.
The challenge lies in monitoring potential detrimental effects
on active slices and ensuring performance improvement. The
Open RAN architecture enables automated RAN functions,
and improves KPIs (e.g., latency and availability) [53], which
can be leveraged to improve RAN reconfiguration.

E. Orchestration

Balancing communication overhead and resource efficiency
is the paramount challenge in this functionality. Furthermore,
coordinating different units inside a single domain (e.g., RU,
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DU, and CU in RAN slicing) might face scalability issues.
Some of the aforementioned single-domain CN frameworks,
including [94], [95], [105], involve orchestration. The majority
of the existing works in this space can be categorized into TN
and RAN orchestration designs. The following discusses these
two classes before highlighting open issues.

Managing scalability is easier for MNOs/InPs with effective
TN orchestration. A hierarchical SDN-enabled architecture
lets local controllers send abstracted topologies to a higher-
level orchestrator (TN NSSMF) to enable on-demand node
adjustments. However, an important issue is how to cover
different TN technologies in these frameworks. In [116], an
abstraction model for passive optical networks is proposed,
ignoring equipment from other technologies. Segmenting the
TN domain into technological (i.e., microwave, optical, and
IP [117]) or topological (i.e., fronthaul, midhaul, backhaul,
metro, and core [57]) sub-domains may enhance scalability.
These sub-domains can improve the TN NSSMF’s vision, but
signaling overhead should be reduced.

Hierarchical RAN orchestration can enable Open RAN-
compliant frameworks. Communication overhead and effi-
ciency must be balanced in these schemes. For example, a
federated architecture is proposed in [79] to minimize SLA
violations. Each BS allocates PRB resources using multi-agent
double DQN. A federated DRL orchestrator organizes these
agents to enforce local model-based long-term rules.

SDN- and NFV-based technologies are not supported by all
equipment in TN and RAN, making real-world implementa-
tions difficult. Achieving full programmability in the TN and
RAN domains may require years due to their large scale [118].
This may limit the ability of these domain orchestrators to fully
expose slice-related information to higher-level orchestrators
(e.g., NSMF). If a well-correlated subset of agents cooperates,
FL can enhance agent efficiency. The accuracy achieved via
federated agent collaboration should outweigh the commu-
nication overhead. Finally, these mechanisms are limited to
a single domain, and they must collaborate with NSMF for
cross-domain orchestration (see Sec. IV-A4).

F. Security Considerations

Security mechanisms for single-domain NS resource man-
agement are examined here. Some of the most important
concerns include isolating slices to reduce the impact of
Distributed Denial-of-Service (DDoS) attacks, securing the
Southbound Interface (SBI) in TN, and preventing jamming
and Side-Channel Attacks (SCAs) in RAN. Slice isolation, a
pillar in NS [6], ensures that the performance of one active
slice does not affect the performance of others. In general,
a balance should be maintained between isolating slices (i.e.,
securing them against attacks) and increasing resource usage
efficiency. In the following, the most representative works in
this area are grouped according to their operational domain
before highlighting open issues.

In the CN domain, isolation-aware optimization techniques
have been devised to prevent DDoS attacks. However, their
inflexibility to network changes is a big drawback. A Mixed
ILP (MILP) problem is presented in [119] to isolate inter-

and intra-slice CN resources while focusing on reducing con-
gestion and finding efficient paths. NN-based classifiers, such
as the LSTM-based system in [120], can enhance resource
efficiency and detection accuracy by assigning benevolent
flows to the appropriate NSIs.

In the TN domain, SDN controllers and infrastructure nodes
can be attacked via the SBI. Securing it may affect the
performance of related RA/reconfigurability schemes. [121]
proposes a quantum key distribution for SBI security, allowing
secret key extraction from pre-shared keys for TN device
authentication and data transmission in NS-enabled settings.

In the RAN domain, nodes might be subject to various
attacks, including SCA and jamming [34], [122]. In an SCA,
if two slices use separate VNF instances on the same server,
a malicious VNF could extract sensitive information from the
other slice [123]. To mitigate this vulnerability, [124] presented
an SCA-aware VNF placement heuristic to maximize the
number of slices in RAN. In [125], an adversarial Q-learning
algorithm is used to jam PRBs, maximizing failed slices in
a PRB allocation framework. However, the latter work only
shows the attack scenario without security measures.

Securing slices in a single domain is insufficient due to
the presence of attack vectors in other domains. For instance,
attacking TN nodes in a framework only guarded for CN
(e.g., [120]) might cause catastrophic failures, disrupting the
entire service. Decentralizing single-domain orchestrators im-
proves NS safety and resilience. For instance, Blockchain-
enabled SDN architectures (e.g., [126]), still in their infancy,
can enhance TN device security but increase communication
overheads. Furthermore, third-party Open RAN xApps can
access different KPIs, raising additional security risks in the
RAN domain that need further investigation.

G. Summary

Resource management functionalities in single-domain NS
solutions and their inherent limitations were discussed in this
section. The 3GPP has yet to standardize RAN slicing. There-
fore, the prevalence of single-domain RAN slicing frameworks
will persist. In Table III, resource management functionalities
are compared for single-domain NS solutions. Cross-domain
NS frameworks can overcome the majority of the identified
limitations of single-domain NS solutions, as discussed later
in Sec. IV.

IV. CROSS-DOMAIN NS FRAMEWORKS

This section examines the cross-domain solutions depending
on which technological domains they cover, i.e., RAN+CN,
RAN+TN, and TN+CN. The UE domain is not part of the
examined combinations, as it has not been explicitly covered
by the existing cross-domain solutions.

A. RAN+CN

This section discusses the NS frameworks covering the
RAN and CN domains based on their resource management
functionality.
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TABLE III: Summary of resource management functionalities in single-domain NS frameworks.
Functio-
nality Expected behavior Metho-

dology Advantage Disadvantage Main issue Exam-
ple ref.

Methodo-
logy sub-
class

Algorithm(s) Objective(s)

AC - Feasibility check before RA
- History & behavior of slice
requests can be considered

Opt.* Reducing the complexity of
the original problem Overlooking historical data Inaccurate decisions about

slice requests due to in-
complete info.

CN
[84] Heuristic Partially adaptive

greedy heuristic
Max. MNO revenue &
Min. SLA violations

ML Learning from historical
info

Lack of explainability and
strenuous hyperparameter tuning

RAN
[88] DRL Multi-agent PPO Max. long-term

MNO revenue

RA
- Assigning predetermined resources
to serve end-users/STs
- Balancing resource utilization with
QoS satisfaction

Opt.* Ability to handle discrete &
continuous variables

Sub-optimality may occur due
to relaxations and heuristics Lack of cross-domain

coordination may result
in unexpected bottle-
necks

RAN
[90]

Relaxation
& Heuristic

Iterative & greedy
algorithms

Max. sum rate of
all UEs

ML Can be adaptable to the
environment changes

Hyperparameter tuning is
challenging

TN
[99] DRL Multi-task actor-

critic
Max. resource utiliza-
tion & QoS satisfaction

GT Fairer RA due to considering
various stakeholders Difficult modeling RAN

[82]
Federated
DRL Federated DDPG Max. resource utiliza-

tion & social welfare

VNF
Place-
ment

- Achieving a trade-off between mini-
mizing SLA violations & cost reduction
- Multi-PoP and MEC-aware scenarios
greatly improve QoS satisfaction

Opt.* Simple modeling Sub-optimality may occur due
to relaxations and heuristics SLA violation may occur

due to high demand from
other domains

CN
[105] Heuristic Greedy-based

heuristic
Min. no. of VNFs
in different slices

ML Topology updates can be
learned using model-free DRL

Communication overhead in
multi-agent DRL

RAN
[106]

Federated
DRL Federated DQN

Max. resource utiliza-
tion & Min. VNF re-
configuration overhead

Recon-
figura-
bility

- e.g., VNF scaling, path reconfiguration,
and hardware adjustments
- Achieving full automation is challen-
ging

Opt.* Simple modeling Less adaptability to rapid
environmental changes Maintaining user QoS is

challenging as changes
in other domains are
not coordinated

CN
[109] Heuristic Divide & con-

quer-based Min. SLA violations

ML More resilience to dynamic
circumstances

Lack of explainability and
strenuous hyperparameter tuning

TN
[114]

DRL
& Heuristic Soft Q-Network

Min. spectrum frag-
mentation across
optical nodes

Orchest-
ration

- Coordinating the intra-domain re-
sources via hierarchical abstraction ML Topology updates can be

learned using model-free DRL
Communication overhead in
multi-agent mechanisms

Sub-optimality due to not
coordinating with other
domains’ orchestrators

RAN
[79]

Federated
DRL

Multi-agent
double DQN Min. SLA violations

Security - Isolating inter-slice resources
- Reducing the attack surface using
levels of slice isolation

Opt.* Simple modeling Sub-optimality may occur due
to relaxations and heuristics Other domains are still

vulnerable to attacks

RAN
[124] Heuristic Heuristic Max. no of RAN

slices

ML Detecting anomalies Data collection may be
challenging

CN
[120] UL & DL LSTM DDoS attack detection

*Opt.: Optimization-based. The last three right columns refer to the cited framework in the ’Example ref.’ column.

1) AC: Performing AC across both RAN and CN necessi-
tates the joint consideration of PRBs in the RAN alongside
computing resources in CN nodes. This introduces a level
of complexity that is not present in single-domain solutions.
Optimization- and DRL-based approaches can be used to eval-
uate the feasibility of RAN+CN RA problems, as discussed
in Sec. III-A. Our survey has revealed just one study centered
on optimization. Therefore, this section will concentrate on
the discussion of this methodology.

By splitting the problem into two domain-specific sub-
problems, two-step optimization can solve AC in the RAN
and CN. This approach decreases complexity but may cause
sub-optimality. The authors in [127] introduce a two-step
heuristic that maximizes MNO revenue while honoring slice
SLAs. Joint modeling of the RAN and CN yields superior
performance compared to single-domain AC solutions (e.g.,
[84]). However, the model also relies on many oversimplifying
assumptions. For example, it assumes that all CN-related tasks
for one slice are processed in one node without considering
VNF placement.

Future research should integrate the main RAN and CN
resources into a unified AC framework for enhanced accuracy.

2) RA: Joint RA across RAN and CN resources can
be modeled as a combinatorial optimization problem (as
discussed in Sec. II-G). The major challenge in RAN+CN
RA problems is managing increased complexity compared to
single-domain solutions by balancing efficiency and optimal-
ity. The existing literature can be classified into three groups:
optimization-, GT-, and DRL-based approaches. This section
discusses the advantages and limits of each of these classes
before highlighting the open challenges in this space.

Combinatorial problems in RAN and CN can be ad-
dressed through optimization-based approaches. To achieve
this, heuristics or relaxation techniques may be utilized,
and large problems can be divided into sub-problems to
reduce complexity. However, this approach may lead to sub-
optimality. For instance, a combinatorial model based on
Latin squares is proposed in [128] to emulate the NSMF
functionality. The authors employ a heuristic to maximize

resource usage and reduce wait times for slice requests, but
they fail to consider the cost imposed on the MNO because
they do not properly model the particular RAN (e.g., PRB) and
CN (e.g., computing) resources. In [129], coverage and traffic
constraints in RAN and SFC embedding in CN are modeled,
where two schemes (i.e., joint and sequential) are developed.
In the joint scheme, which provides better cost efficiency, each
sub-problem is solved for all slices together. In the sequential
method, which is simpler and faster, sub-problems are solved
for slices serially. Similarly, the authors in [130] propose a
joint energy-efficient scheme that outperforms their disjoint
formulation by 34%. In [131], the RAN power allocation
sub-problem is solved using the Lagrangian gradient method.
Nevertheless, their VNF placement sub-problem, simplified
into a queue-based system, only calculates incoming traffic
service rates using SNC.

Unlike optimization-based techniques, GT-based approaches
focus more on the interactions between NS stakeholders.
However, apart from their high computational complexity,
they often rely on assuming that all players are rational.
For instance, RA and orchestration are optimized in [132] to
jointly maximize the social welfare among STs and minimize
Operational Expenditure (OPEX) for InPs. Each ST bids for
different resources to maximize a local payoff function, and
InPs decide on the resource prices. Nevertheless, this approach
neglects TN-related resources, leading to coordination issues
among InPs and STs during the auction game.

DRL-based approaches can effectively handle RAN+CN
complexities. However, they encounter trade-offs between
efficiency and optimality, and some techniques may struggle
with uncertainties or continuous action spaces. For example,
[133] presents a mobility-aware DQN scheme maximizing
user access rates, where two RAN and CN sub-problems are
solved using a dynamic knapsack algorithm and a link map-
ping heuristic, respectively. The authors demonstrate that this
approach outperforms RAN-only baselines. However, DQN-
based techniques lose crucial information due to discretization
and do not address uncertainties such as channel conditions
and user demands. In [80], a twin-actor DDPG algorithm,
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capable of handling high-dimensional and continuous action
space, is used to solve a two-level RA problem in a MEC-
enabled NS framework, enhancing performance compared to
a CN-only actor-critic scheme (i.e., [134]) by generating slice-
level actions before user-level actions. Additionally, in [67],
the authors propose a dueling DQL scheme for combinato-
rial optimization of radio, computing, and storage resources
under uncertain tenant demands. Still, it oversimplifies radio
resources and neglects power capacity. Lastly, [135] considers
both user demand and CSI uncertainties, proposing a Recurrent
Deterministic Policy Gradient (RDPG) algorithm that uses a
history of uncertain information in an LSTM NN to handle
continuous action spaces under partial observations.

The main challenges across RAN+CN works are the com-
plexity of the algorithms and/or the large problem size. It is
also essential to ”slice” the TN in these frameworks to make
them more practical in real-world scenarios [136]. Finally,
finding the best trade-off between resource utilization and
timescales for both RAN (e.g., allocation of PRBs) and CN
(e.g., VNF placement) still requires further research.

3) Reconfigurability: Reconfiguring the resources in RAN
and CN requires orchestration across these domains. This is
the main difference between cross- and single-domain recon-
figuration schemes reviewed in Sec. III. The main challenge
is balancing the coordination overhead with the efficiency of
reconfigurations. This section first reviews the progress made
using mostly ML- and optimization-based approaches. Then,
the open challenges are identified and discussed.

ML-based reconfiguration schemes possess the key ability to
operate under unknown dynamic conditions. While traditional
DQN-based approaches may struggle to adapt to dynamically
changing environments, newer techniques (e.g., A2C, DDPG,
and LSTM) are better equipped to handle uncertain circum-
stances. For example, an A2C scheme in [137] optimally
triggers VNF migration in response to user mobility but faces
scalability issues that can be mitigated by partial exploration
policy [113] or DDPG [80]. An LSTM NN in [138] collects
testbed data to enhance resource scalability and assurance in
NS LCM automation using Intent-based Networking (IBN)
[139]. This framework outperforms average throughput accu-
racy compared to a RAN reconfiguration scheme (i.e., [115])
due to considering the RAN and CN domains together.

Optimization-based techniques, while useful for known net-
work changes, require a complete network model, which is
often impractical. For instance, a heuristic scheme is proposed
by [140], where slices are reconfigured online across RAN and
CN domains using a vector graph. The Dijkstra-based algo-
rithm, used for resource remapping, reduces reconfiguration
delay by approximately 50% compared to a CN reconfigura-
tion scheme [109].

Proper integration of the RAN and CN resources is
paramount, as a reconfiguration decision in the RAN may
require another reconfiguration in the CN and vice versa.
For most of the cited works (e.g., [137] and [140]), the
most critical RAN resources (i.e., PRBs) are not considered.
Moreover, a reconfiguration in the TN domain can impact the
accuracy of decisions made in these two domains, urgently
calling for E2E NS reconfiguration systems.

4) Orchestration: Most RAN+CN orchestration progress
has exploited DRL to utilize resources more efficiently in
the long term. The performance of these DRL frameworks
hinges on the choice of states, actions, reward functions, and
hyperparameters. A few representative works are first analyzed
before identifying the open challenges.

Many DRL schemes in this context use the DQL algorithm,
which is simple to implement but faces difficulty adapting
swiftly to topology changes because it relies on a target
network—a fixed replica of the estimated value function used
for stabilization. This is evident in [141], which innova-
tively customizes the combinatorial resources across RAN and
CN but struggles with large state-action pairs. Additionally,
[142] splits the SLA-guaranteed latency into RAN and CN
components, and uses a double DQN scheme and a pointer
network for SFC mapping to minimize each of these com-
ponents, respectively. [143] applies a DDPG-based algorithm
for an Internet of Vehicles (IoV) scenario, outperforming an
optimization-based baseline in the long run.

Albeit these works achieve good performance, they do not
consider the TN domain and the characteristics of forwarding
nodes (e.g., routing and bandwidth), which can cause unprece-
dented events, such as congestion in TN nodes. Furthermore,
capturing the different timescales associated with each domain
can make cross-domain orchestration of resources more effi-
cient. Efficiently accounting for all related resources across
domains would empower the orchestration modules to make
more accurate decisions regarding resource (re)allocation for
NSs, as will be discussed later in Sec. V-D.

5) Security considerations: This section reviews security
mitigation schemes associated with RAN+CN NS resource
management. The references identified use optimization-based
techniques. Therefore, we evaluate the optimization-based
approaches before discussing open challenges, although other
methodologies may also be useful.

Optimization-based techniques can model DDoS-aware re-
source management restrictions. However, a trade-off between
DDoS detection accuracy and resource efficiency should be
found. For instance, [144] first identifies DDoS attacks using
ML-assisted proximal gradient estimation, and then breaks
down utility maximization into node-specific sub-problems
using ADMM.

Although NS still faces challenges in considering DDoS
attacks, it must also address other security issues associated
with RAN and CN domains (e.g., VNF/CNF manipulation
attacks, privacy concerns of STs, and slice configuration
attacks [32]). Furthermore, neglecting the TN domain exposes
the created slices to potential attacks on TN nodes.

B. RAN+TN

Most existing RAN+TN solutions focus on the RA and
reconfiguration functionalities.

1) RA: Coordination among the NSSMFs of RAN and TN
is necessary for RA. The main issue in these problems is
balancing coordination overhead with efficiency. The works
in this area can be classified into combined (i.e., AC+RA)
and standalone (i.e., RA) approaches. Each class is evaluated
before discussing the associated open challenges.
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The AC module helps the RA strategy optimize resource
usage and QoS. However, it requires complex heuristics and
iterative processes. For example, [71] proposes a two-tier
architecture, where RAN/MEC servers and central office/TN
nodes are located in the lower and upper tiers, respectively, and
uses a heuristic to minimize resource over-provisioning subject
to user latency constraints. It first checks resource availability,
then iteratively adjusts node and link capacity and traffic allo-
cation until user latency requirements are met. It outperforms
TN-only proposals (e.g., [99]) in terms of resource utilization.
Similarly, [145] synchronizes resource provisioning in RAN
and backhaul to maximize QoS satisfaction, outperforming a
RAN-only scheme presented in [146]. However, their DQN
algorithm is bound by discrete actions and suffers from the
curse of dimensionality.

The standalone approach does not perform feasibility check
before allocating resources to reduce the ST/end-user waiting
time before slice provisioning. For instance, a heuristic pro-
posed in [147] maps RAN slices to a given isolation level
for different RAN functional splits and TN constraints while
minimizing the number of TN wavelength channels and active
CU/DUs. It is shown that higher isolation levels result in lower
resource utilization and higher costs. Furthermore, control and
traffic tasks are handled in two BS tiers in [148] to maximize
the long-term utility of end-users in the presence of backhaul
constraints. This is achieved by first activating certain traffic
BSs to heuristically assign resources, and then minimizing
the loss function in the DDPG algorithm. Although DDPG
is shown to be more complex than DQN, it outperforms DQN
in terms of RAN coverage and resource utilization.

The aforementioned works have achieved good performance
under a variety of conditions but face some limits. First, they
do not integrate the VNF placement in the CN domain, which
can ensure more reliable QoS guarantees to end-users. Second,
they do not support the latest TN features (e.g., segment
routing), which can help prioritize and isolate incoming traffic
from different slices [136]. Finally, they do not comply with
the emerging Open RAN standards [149], which could signif-
icantly simplify the management of fronthaul and midhaul in
complex NS scenarios.

2) Reconfigurability: The RAN+TN joint reconfiguration
is still in its infancy. It requires orchestration between the
two domains, in which its communication overhead must be
balanced with the efficiency of reconfigurations. The only
reference found in this category uses optimization-based tech-
niques, although alternative approaches may also be useful.

Optimization-based relaxation techniques can be used to
enhance the efficiency of reconfiguration schemes in RAN
and TN. However, it is important to strike a balance between
efficiency and optimality. For example, [150] proposes a two-
timescale framework, where RA is performed on the long
timescale to maximize the expected utility of STs, while
activated slices are reconfigured on a shorter timescale in
response to dynamic user traffic and channel state changes.
Regularization is used to resolve the problem’s non-convexity
using a reservation-based heuristic. This approach outperforms
a similar benchmark operating only in the CN (i.e., [62])
in terms of revenue and backhaul bandwidth. However, this

approach does not consider the history of slice requests and
therefore cannot cope with sudden traffic fluctuations.

Future work in this area should focus on the pending issues,
such as introducing slice priorities and ensuring fairness across
slices. In addition, considering more RAN-specific resources
(e.g., power and PRB), as well as modeling the VNF scaling
in the CN domain, can significantly enhance the accuracy and
performance of these frameworks; see Sec. V-C.

C. TN+CN

The main areas of interest in this area include VNF place-
ment across physical servers (CN), efficient routing (TN),
and an efficient coordination mechanism to allocate resources
across these domains. Existing works can be classified into
SNC-, optimization-, and DRL-based approaches. The follow-
ing discusses the advantages and limits of each class before
outlining the open challenges.

SNC frameworks, a subset of probabilistic optimization-
based approaches, are advantageous for TN+CN slicing be-
cause they can analyze the interplay between resources, de-
lay, and traffic demand. They often ignore RAN resources,
leading to inaccurate E2E latency estimates. [151] employs
SNC to reduce packet processing and transmission per VNF,
outperforming TN slicing (i.e., [152]) in supported slices
per wavelength. According to [153], an SNC-based latency
estimation heuristic can be used to adjust slice resources under
dynamic but known traffic conditions.

Optimization-based heuristics can solve the NS design
problem, which is performed during the preparation phase of
the slice LCM (see Fig. 5). These techniques should hit a
balance between optimality and efficiency. Disregarding RAN
resources makes the framework impractical, as competition
for these resources can greatly affect slice performance in real-
world scenarios. For instance, a multi-objective Particle Swarm
Optimization (PSO)-based heuristic is proposed in [154] to
accommodate heterogeneous 5G services (i.e., eMBB, mMTC,
and URLLC) while maximizing resource utilization across TN
and CN nodes regardless of RAN resources.

Some DRL algorithms (e.g., PPO) are capable of handling
continuous and discrete action spaces to maximize resource
efficiency. However, hyperparameter tuning in these schemes
is challenging. For instance, [155] presents a three-tier MEC
system that utilizes two (i.e., independent and joint) PPO-
based schemes to handle TN constraints. The joint scheme
uses centralized critics and global information, while the
independent scheme updates each slice individually, making
it faster but less accurate. The joint method outperforms the
CN-only RA (i.e., [156]) in terms of resource utilization.

Given the wide range of constraints in the TN and CN
domains, action/state spaces in these frameworks can be very
large and intractable. Some works (e.g., [154] and [155]) have
developed optimization- and DRL-based schemes to reduce
the state space and the associated runtime. However, they have
emphasized the MNO-ST relationship and thus cannot directly
capture the end-user requirements. This makes it difficult to
extend these solutions to E2E NS frameworks. Moreover, other
critical functionalities (e.g., reconfiguration) have not yet been
fully addressed in the existing TN+CN NS frameworks.
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D. Extending NS into the UE Domain

Extending the NS architecture to the UE domain can foster
improved decision-making in the NS LCM but also poses
additional MNO security risks and UE privacy concerns.
Architectural extension of the UE into the CN is discussed in
[157] and [158]. Some RAN slicing frameworks (e.g., [159]–
[162]) also incorporate ML-based approaches to improve RA
decisions by considering UE feedback (e.g., Channel Quality
Indicators (CQIs)). While 5G networks can handle up to 8
Single-Network Slice Selection Assistance Information (S-
NSSAIs) per UE [52], further study is needed on privacy and
user-level isolation among various S-NSSAIs.

E. Summary

Table IV summarizes the cross-domain frameworks dis-
cussed in this section. The table is not exhaustive, as our goal
is to identify the shortcomings of the most mature works.
Most of the identified limits of cross-domain NS solutions
can be overcome by E2E NS frameworks; see Sec. V. Most
reviewed papers cover the RAN and CN domains. This is
because these works have striven to be compliant with the
main SDO in NS (i.e., 3GPP [11]), which delegates the
standardization of TN slicing to another SDO (i.e., Internet
Engineering Task Force (IETF) [136]). Future cross-domain
solutions may use hierarchical multi-agent DRL techniques
(agents per NSSMF, node, or slice) to address the pending
issues (e.g., orchestration).

V. E2E NS FRAMEWORKS

Recall that E2E NS frameworks are a subset of cross-
domain solutions that comprehensively cover RAN, TN, and
CN domains [11]. In most of the proposed frameworks, each
domain has its own controller/orchestrator that manages and
controls the infrastructure within its territory using SDN and
NFV technologies. In E2E NS, these orchestrators are con-
trolled by an upper-layer orchestrator that can deploy an E2E
slice and orchestrate heterogeneous resources from various
domains (e.g., see Fig. 3). The contributions made towards
E2E NS can be classified into:

• Generic (i.e., inter-domain) frameworks, which only
account for high-level coordination among multiple do-
mains but neglect the specific attributes of each domain.

• E2E solutions, which incorporate domain-specific re-
sources and cross-domain orchestration, allowing for
more accurate network modeling. Both Inter- and intra-
domain slicing are performed in this category.

This section discusses the progress made by these con-
tributions for each of the relevant NS functionalities. The
methodologies used for each functionality are evaluated, and
the references are thoroughly analyzed and compared to their
counterparts in cross- and single-domain solutions.

A. AC

Compared to single- and cross-domain AC, E2E AC is more
complex because it considers the feasibility of RAN, TN, and
CN resources as a whole (refer to Sec. II-G). This section
analyzes the progress made on generic and E2E AC schemes,
followed by a discussion of the open issues.

1) Generic frameworks: Cross-domain orchestration,
based on abstract domain models, can lead to inaccurate slice
request approvals in AC problems if the underlying resources
are disregarded.

Optimization-based techniques, while efficient, may cause
sub-optimality. For example, the SLA decomposition problem
in [165] minimizes slice rejection risk using domain-specific
risk models. An E2E orchestrator partitions the E2E slice SLA
into portions for each domain controller, which provides a
parameter-free risk model of its resources. This abstraction
improves AC decision-making compared to a RAN+CN cross-
domain benchmark (i.e., [127]). The online AC framework
in [60] focuses on slice prioritization and fairness using a
multi-queue heuristic similar to a RAN-only benchmark (i.e.,
[85]), but it is fairer due to jointly considering resources across
domains.

2) E2E solutions: E2E AC mechanisms should cope with
the high dimensionality of the problem due to the considera-
tion of heterogeneous resource types. The literature in this area
can be divided into RL- and optimization-based frameworks.

RL-based approaches can account for the history of slice
arrivals. For instance, the State-Action-Reward-State-Action
(SARSA) algorithm is suitable for online interactions with
the environment but only handles discrete action spaces. The
framework proposed in [76] uses a SARSA scheme for online
cross-slice AC and congestion control to maximize the MNO’s
revenue. It strikes a balance between maximizing resource uti-
lization efficiency and minimizing the likelihood of dropping
high-priority slices by reducing the resources of elastic slices
to admit new inelastic ones. This yields better outcomes than
single-domain solutions (e.g., RAN-only AC [111]) due to
its E2E visibility. However, the efficiency and convergence
of SARSA can be improved using NNs. Furthermore, power
allocation in RAN is not considered since SARSA cannot work
in continuous action spaces.

Optimization techniques can be used to increase the effi-
ciency of solving joint AC+RA problems. However, oversim-
plifying assumptions or relaxations can lead to sub-optimality.
For instance, the authors in [166] formulate a multi-MNO
max-min optimization problem to maximize accepted slices
and minimize MNO costs jointly. After linearizing the for-
mulated problem, it is solved using heuristic algorithms (i.e.,
joint and sequential), both of which outperform a similar
cross-domain solution (i.e., RAN+CN RA in [129]) in terms
of acceptance ratio due to the combined consideration of
resources and constraints across all domains. Nevertheless, the
RAN model is oversimplified because power resources are
not considered, which can affect the energy efficiency and
accuracy of the RAN model.

3) Open challenges: The lack of available information
on the AC module to predict future failures can lead to the
performance degradation of operational slices. By collecting
and processing more detailed information from all domains,
online AC schemes can enhance end-user QoS satisfaction.
This is partly done by [76], but can be further improved by
considering more resources.
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TABLE IV: A summary of the literature on cross-domain NS solutions.
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eference
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Simu-
lation
Tools

Improvement
against

single-domain
solutions

ShortcomingsA
C

R
A

V
N

F
P.*

R
econf.*

O
rch.*

Security

M
N
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on-linear
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R
elaxation

H
euristic

R
L
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L

FL

R
A

N
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N

[127] ⋆
⋆

⋆ ✓ ✓ ✓
ILP relaxa-
tion, heuris-
tics

Two-step
AC

Max. MNO
revenue ✓ ✓ ✗

Matlab,
Mosek,
CVX

- More reliable AC [84]
- Scalability
- Oversimplifying CN
assumptions

[129] ⋆
⋆

⋆
⋆
⋆

⋆
⋆

✓ ✓ ✓
Column
generation

Mobility-
& coverage-
aware

Min. MNO
costs ✓ ✓ ✗

Matlab,
CPLEX

- Mobility support [95]
- More reliable resource
provisioning [98]

- Possible congestion
due to ignored TN
resources

[67] ⋆
⋆
⋆
⋆

⋆ ✓ ✓ ✓
Dueling
DQL

Demand un-
certainty-
aware

Max. MNO uti-
lization & slice
satisfaction

✓ ✓ ✗
Tensor-
Flow

- Better slice satisfac-
tion ratio [70]

- Oversimplifying RAN
assumptions (e.g., ignored
power)

[132]
⋆
⋆
⋆

⋆
⋆

✓ ✓ ✓
Iterative
auction
game

Auction
among
STs

Max. social wel-
fare among STs
& Min. OPEX
for InPs

✓ ✓ ✓ Matlab

- Better resource utili-
zation [72]
- Better InP-ST coor-
dination [82]

- Possible miscoordina-
tion among stakeholders
- Potential bottleneck in
TN

[135]
⋆
⋆
⋆

✓ ✓ ✓ RDPG
Demand &
CSI uncer-
tainty-aware

Max. MNO
utility ✓ ✓ ✓ ✓ ✗

PyTorch,
Tensor-
Flow

- More accurate RAN
behavior [105]

- Scalability
- Potential bottleneck
in TN

[137] ⋆
⋆

⋆
⋆

✓ ✓ ✓
DQN,
A2C Mobility-aware

Min. latency &
reconfiguration
overheads

✓ ✓ ✓ ✓
Python,
PyTorch

- Considering mobility
in RAN [109]

- Scalability
- Unnecessary reconfi-
gurations due to disregar-
ding TN

[142] ⋆
⋆
⋆

⋆
⋆
⋆

✓ ✓ ✓ ✓
Double
DQN

SLA decom-
position
among CN
& RAN

Max. no. of
users & Min.
hop count of
SFCs

✓ ✓ ✓
Python,
PyTorch

- More accurate
delay model
[93]

- No URLLC support
- No multi-cell support

[144] ⋆
⋆

⋆
⋆
⋆

✓ ✓ ✓
Proximal
gradient,
ADMM

DDoS
mitigation

Max. NS
utility ✓ ✓ ✓

Testbed
based
on OAI

- Better resource
utilization [119]

- Security vulnerabili-
ties in TN

R
A

N
+T

N

[71] ⋆
⋆

⋆ ✓ ✓ Heuristic
MEC-based
two-tier
architecture

Min. resource
over-provisio-
ning

✓ ✓ ✗
Python,
Testbed

- No congestion in
TN [99]

- Scalability
- CN resources disregar-
ded

[145]
⋆
⋆
⋆

⋆ ✓ ✓ ✓ ✓
Heuristic-
assisted
DQN

Fairness
among
slices

Min. resource
utilization &
Max. QoS
satisfaction

✓ ✓ ✓
Python,
Tensor
Flow

- No unexpected con-
gestion [114]

- Neglected computing
resources in RAN
- Possible QoS degra-
dation because of over-
looked CN

[147] ⋆
⋆

⋆
⋆
⋆

✓ ✓ Heuristic MEC &
WDM

Min. no. of es-
tablished wave-
length channels
& no. of active
CU/DUs

✓ ✓ ✓ ✗
sklearn,
Keras

More reliable isola-
tion of slices [82]

- Oversimplified TN
design
- Less accurate delay
due to disregarding CN

[148]
⋆
⋆
⋆

⋆
⋆
⋆

✓ ✓ ✓ ✓
DDPG,
heuristic

Two-tier
RAN
design

Max. long-term
utility for various
slice types

✓ ✓ ✓ ✓
Python,
Tensor-
Flow

- No potential bottle-
neck in TN [90]

- Less accurate delay due
to disregarding CN

[150] ⋆
⋆

⋆
⋆
⋆

⋆
⋆

✓ ✓ ✓ ✓
ADMM &
other tech-
niques

Two-time-
scale recon-
figuration

Max. expected
utility of STs ✓ ✓ ✓ ✓ ✓ N/A

- Higher revenue [62]
- Less unexpected re-
configurations [114]

- Mobility not supported
- Power resources not
considered

T
N

+C
N

[153]
⋆
⋆
⋆

⋆ ⋆ ✓ ✓ ✓ ✓
SNC-based
heuristic,
clustering

Online ad-
justment of
slices

Min. sum of
processing pa-
ckets in all VNFs

✓ ✓ ✓ ✓ ✓
ns-3,
Hadoop

- No unexpected con-
gestion in TN [105] - Mobility not supported

[154]
⋆
⋆
⋆

⋆ ✓ ✓ PSO
Traffic un-
certainty-
aware

Max. resource
utilization for
various services

✓ ✓ ✗
Matlab,
ROME
[163]

- Better utilization &
execution time [164]

- Fairness among diffe-
rent slices overlooked
- Mobility not supported

[155] ⋆
⋆

⋆ ✓ ✓ ✓ ✓ PPO MEC

Max. resource
efficiency &
Max. QoS
satisfaction

✓ ✓ ✓ ✓
Python,
PyTorch

- Better utilization of
resources [156]

- Scalability
- Inaccurate resource
utilization due to igno-
ring RAN

*VNF P.: VNF Placement, Reconf.: Reconfigurability, Orch.: Orchestration, Stak.: Stakeholders, Opt.: Optimization-based, Var./Con.: Variables and
Constraints categorization. *Significance of solutions in their supported functionalities are ranked from ⋆ (basic) to ⋆⋆⋆ (advanced).

B. RA

Considering resources acrosss all domains makes E2E re-
source provisioning more intricate and susceptible to scalabil-
ity issues. This section examines the progress made on generic
and E2E RA before discussing the open challenges.

1) Generic frameworks: This category presents a generic
model for network resources across domains, with nodes and
links having finite capacities. This section critically evaluates
optimization- and ML-based methodologies.

Optimization-based approaches using complex network the-
ory can generically model network elements and resources,
enabling efficient placement and chaining of VNFs for diverse
service deployments. However, developing effective heuris-
tics to assist RA can be complex and may not capture the
specificities of each domain due to the generic modeling. For
instance, [167] models slices across domains and develops
different heuristics for each service type (i.e., eMBB, URLLC,
and mMTC). A subsequent study by the same group analyzes

slice performance and proposes schemes to enhance RA by
scaling infrastructure and node capacity [168]. The latter study
proposes two heuristic schemes for adding more servers (i.e.,
scaling out) and increasing the capacity of forwarding nodes
(i.e., scaling up).

ML-based techniques can leverage historical data to make
RA decisions. DL approaches offer more scalability through
the use of NNs. For example, [169] uses graph NNs in a
network digital twin to predict the E2E latency of slices, which
are composed of ordered VNFs. The trained model supports
a heuristic scheme for RA.

The solutions discussed above ignore the specific resources
in each domain (e.g., PRB allocation in RAN nodes) and math-
ematically model domain-specific generic resources. While
this approach is theoretically effective, it cannot be used in
practical deployments.

2) E2E solutions: Optimizing both intra- and inter-domain
RA across all domains is more complex and poses scala-
bility and efficiency challenges that can be addressed using
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optimization- and ML-based approaches.
Optimization-based (e.g., closed-form, relaxation, and

heuristic) methodologies can find near-optimal solutions to
complex E2E RA problems. For instance, QT can be used to
estimate E2E delays of slices, as demonstrated in [69] for an
industrial private 5G scenario. Time-Sensitive Network (TSN)-
based Ethernet switches are used between nodes to provide
more reliable smart factory services. A relaxed uncertainty-
aware ILP formulation of InP revenue maximization is pro-
posed by [170] in the presence of legacy (i.e., non-NS)
services. In addition, a non-convex RA problem is introduced
by [171] to minimize energy consumption in E2E NS. The
authors transform their problem into a convex quadratic pro-
gramming problem that can be solved using state-of-the-art
optimization tools (e.g., CVX [64]). Their scheme outperforms
a RAN slicing benchmark (i.e., [172]) by 20% in energy
consumption and 30% in bandwidth usage. Nevertheless, this
work presupposes the existence of only one backhaul link,
which is not applicable in extensive deployments.

ML-based techniques can capture the hidden features and
complexities of E2E resources. However, dealing with the
high dimensionality of E2E RA problems is arduous. ML-
based traffic forecasting can help optimize RA problems. For
instance, in [173], a soft Gated Recurrent Unit (GRU) predicts
slice traffic and optimizes E2E RA under non-convex SLA
constraints. Using the prediction model, a heuristic balances
slice isolation and resource over-provisioning by adjusting the
Lagrange multiplier radius of the constraints. Model-free DRL
approaches dynamically account for environmental changes
but are sensitive to hyperparameter tuning and state/action
determination. In [174], radio, power, transport, and bandwidth
resources are jointly considered to minimize network usage
and SLA violations. The E2E orchestration agent and domain
agents use the PPO algorithm to allocate both continuous and
discrete resources, outperforming DDPG agents used by cross-
domain solutions (e.g., RAN+TN RA in [148]). Performance
can be further improved by capturing mutual effects between
resources across domains using FL-based methodologies.

3) Open challenges: Controlling and reducing the state and
action spaces are essential for improving the tractability of
E2E RA schemes. Several techniques can be used to achieve
this, including (i) splitting the problem into sub-problems (e.g.,
[133]), (ii) constraint relaxation (e.g., [166]) in optimization
problems, (iii) experience replay memory (e.g., [142]), and (iv)
deep dueling architecture (e.g., [175]) in DRL-based problems.
Nevertheless, this should not affect the quality of the solutions,
but rather, a trade-off should be sought between reducing
complexity (i.e., shortening response time) and increasing
accuracy (i.e., exploring most of the action/state space). The
effectiveness of E2E RA mechanisms hinges on factors such
as training data quality and quantity, as well as hyperparameter
tuning, which are still challenging for researchers.

Finally, E2E VNF placement, which is strongly coupled
with RA, still requires many enabling technologies (e.g., NFV,
MEC, and SDN) to mature across all domains. For instance,
the recent virtualization of RAN functions in the Open RAN
paradigm [53] calls for a more efficient RA and a simpler
orchestration architecture for E2E deployments.

C. Reconfigurability

E2E NS RA frameworks can be augmented with a recon-
figurability capability, which would make them more efficient
and practical. Hierarchical orchestration could be a key feature
to achieve that; see Sec. (IV-A3) for cross-domain frameworks.
Balancing efficiency and optimality is the main challenge in
these frameworks. This section reviews the progress made in
this area before outlining the open issues.

1) Generic frameworks: Optimization-based heuristics can
be used to dynamically reconfigure cross-domain resources.
For instance, domains and their resources are generically
modeled in [176] to perform three tasks: (i) initial intra-domain
RA, (ii) inter-domain delay budget redefinition, and (iii) inter-
domain reconfiguration. While inter-domain interactions are
well covered, intra-domain reconfiguration is not considered,
which reduces efficiency.

2) E2E solutions: Dynamic E2E reconfiguration has
not yet been thoroughly investigated in the literature.
Optimization- and DRL-based schemes can be used for this
purpose. For instance, an online joint AC+RA mechanism
proposed in [166] uses heuristics to reconfigure intra- and
inter-domain resources. A decision period is assumed to re-
configure the resources previously allocated to other slices
to cope with the dynamicity of slice requests. The proposed
E2E methodology outperforms single-domain reconfigurability
frameworks (i.e., CN [62] and RAN [111]) in terms of slice
acceptance rate.

3) Open Challenges: Considering all domains can lead to
high reconfiguration times for the operational slices, affecting
their QoS levels. Reducing the problem action/state space by
using a partial exploration policy [113] and DDPG [80] can
help solve these problems. Still, their impact on reconfigu-
ration efficiency should be minimized. A trade-off between
increasing resource usage efficiency and meeting end-user
requirements is needed. Advanced AI/ML techniques (e.g.,
baseline switching in imitation learning [177] and XAI [101])
can help strike a balance, but training should be done in a test
environment to avoid unprecedented failures.

D. Orchestration

Orchestration between domains is necessary for E2E NS
frameworks to coordinate their resource management function-
alities (e.g., RA). Since configuring an E2E slice requires ad-
justing many variables across all domains, utilizing traditional
model-based or closed-form solutions to orchestrate resources
can be complicated. This section evaluates the methodologies
used to achieve that before discussing the open issues.

1) Generic frameworks: To achieve highly interoperable
systems, orchestration architectures that connect multiple tech-
nical and administrative domains are highly desirable. A bal-
ance between the level of abstraction, coordination overhead,
and security should be maintained to enable efficient resource
provisioning. For example, individual orchestrators associated
with each of the considered domains can interact in a federated
manner, as in [178], where Open-Source MANO (OSM)
achieves interoperability between different sites by means of
standard interfaces of NFV Orchestrator (NFVO) and Service
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Orchestrator (SO) [179]–[181]. A recent proposal constructs
a MANO platform for multi-InP environments using a Per-
missioned Distributed Ledger (PDL) Blockchain architecture
[182]. This platform connects SOs of different InPs, introduc-
ing competition, transparency, and resource redundancy, result-
ing in CAPEX/OPEX savings for MNOs. While Blockchain-
based orchestration brings the aforementioned advantages, it
can delay decision-making due to coordination overhead. The
reviewed architectures, albeit useful, still need to specify how
each domain manager can abstract and expose its resources to
the cross-domain orchestrator.

2) E2E solutions: E2E orchestration frameworks, which
support both intra- and inter-domain coordination, inherently
face scalability challenges. Therefore, effective strategies are
needed to address the massive size of their problem. Multi-
agent DRL algorithms can be augmented with other ap-
proaches to alleviate this problem. The authors in [177]
envision a hierarchical orchestration framework where each
domain orchestrator (i.e., NSSMF) is a DRL agent that reports
to the high-level orchestrator (i.e., NSMF). In addition to
multi-agent DRL, other techniques are utilized to overcome the
following issues in DRL-based E2E orchestration: (i) safety
DRL is used to address free action space exploration and
performance requirements; (ii) imitation learning is devised to
accelerate the online learning process by imitating decisions
from a baseline heuristic when the model has not yet con-
verged. Distributed DRL techniques (e.g., [177]) are promising
for partitioning the problem space but impose a communica-
tion overhead between agents that should be balanced with
their efficiency and response time. Thus, there is still room to
make these frameworks more practical.

3) Open challenges: Existing solutions have made good
progress toward E2E orchestration but still face some open
challenges. Orchestration of resources across different admin-
istrative domains is explored in a few works (e.g., [182]),
but it should be effectively integrated with the RA modules
associated with each of the technological domains. Stakehold-
ers need to collaboratively orchestrate resources by enabling
visibility to each other through Application Programming
Interfaces (APIs), which is not straightforward due to the re-
sulting signaling overhead and security concerns. To overcome
these issues, a promising direction is to standardize a common
and secure protocol for communication among stakeholders.

E. Security Considerations

This section reviews the progress on E2E NS security in the
context of resource management, together with the associated
challenges. All the works found are generic trust frameworks,
and there is a lack of E2E solutions that operate in both intra-
and inter-domain interactions in the literature.

1) Generic frameworks: Given that E2E slices may span
various technological and/or administrative (sub-)domains,
trusted relationships between stakeholders should be estab-
lished through SLAs. Blockchain technology supports the
negotiation and provision of E2E slices and the management of
SLAs in multi-stakeholder scenarios. For example, in the trust
architecture proposed in [183], a resource selection problem is
formulated as an ILP to minimize the cost and maximize the

reputation of InPs. Based on this, a smart contract algorithm
is designed to manage stakeholder negotiations. In [184], a
Blockchain consensus scheme is proposed to ensure security
and information consistency across nodes from different do-
mains. Their scheme involves a bilateral evaluation mechanism
based on GT that suppresses malicious behavior during orches-
tration between consensus nodes. While these works contribute
to securing inter-domain and multi-stakeholder NS orchestra-
tion, their lack of support for non-virtualized resources (e.g.,
power in RAN) among other specific resources in each domain
limits their applicability to actual NS deployments.

2) Open challenges: Blockchain-based orchestration plat-
forms can significantly increase security and reliability levels
by involving a large number of nodes in their consensus
algorithm, but this comes at the cost of increased coordination
overhead, which can severely impact the performance of
critical NS functionalities (e.g., RA and orchestration). The
balance between security and performance is still an ongoing
challenge that requires more practical implementation.
F. Summary

There are fewer works presented in this section compared
to Secs. III and IV, indicating that research on E2E NS
frameworks is still in its infancy. Many of the cross-domain
solutions described in Sec. IV claim a form of E2E NS
support. However, some domains are either not modeled or
oversimplified (e.g., TN in [80] and [129]). Fig. 7 summarizes
the shortcomings and open issues discussed in Secs. III, IV,
and V, respectively. Many of the challenges associated with
E2E NS frameworks still apply to cross-domain solutions. In
addition, as the enabling technologies (e.g., SDN, NFV, MEC,
TN slicing [136], and RAN virtualization [53]) mature and
become more standardized, it will be easier to implement more
reliable E2E NS frameworks with more features.
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Fig. 7: Shortcomings and open challenges in NS frameworks.

Table V provides a summary of the E2E solutions discussed
in this section. The main findings are that no existing work
has addressed the need for automation from an E2E per-
spective, and reconfigurability and security considerations still
need further development. In summary, future research should
account for the available resources across all domains (i.e.,
RAN, TN, and CN) to achieve the most effective and efficient
E2E NS framework, regardless of the specific functionality
being targeted.

VI. RESEARCH PROJECTS AND EXPERIMENTAL TESTBEDS

This section summarizes the latest related research projects
and experimental frameworks in the context of NS.



EBRAHIMI et al.: RESOURCE MANAGEMENT FROM SINGLE-DOMAIN 5G TO E2E 6G NS: A SURVEY 19

TA
B

L
E

V
:

A
su

m
m

ar
y

of
th

e
lit

er
at

ur
e

on
E

2E
N

S
so

lu
tio

ns

Reference

Fu
nc

tio
na

lit
y

St
ak

.*
M

et
ho

do
lo

gy
A

lg
o-

ri
th

m
(s

)
Fo

cu
s

Sp
ec

ifi
c

us
e

ca
se

O
bj

ec
tiv

e(
s)

Va
r.*

C
on

.*

Online

Si
m

u-
la

tio
n

To
ol

s

Sc
op

e
Im

pr
ov

em
en

t
vs

.
si

ng
le

-
&

cr
os

s-
do

m
ai

n
so

lu
tio

ns

Sh
or

tc
om

in
gs

AC
RA

VNF P.*
Reconf.*
Orch.*
Security
MNO-ST
MNO-User
InP-ST

O
pt

.*
M

L

GT-based

Continuous
Discrete
Linear
Non-linear

Intra-domain
Inter-domain

Ig
no

re
d

re
so

ur
ce

s
&

ov
er

si
m

pl
ify

in
g

as
su

m
pt

io
ns

O
pe

n
C

ha
lle

ng
es

Closed
Relaxation
Heuristic

RL
DL
SL
UL
FL

[1
65

]
⋆ ⋆

⋆ ⋆
✓

✓
Se

qu
en

tia
l

qu
ad

ra
tic

pr
o-

gr
am

m
in

g

SL
A

de
co

m
-

po
si

tio
n

N
/A

M
in

.o
ve

ra
ll

ri
sk

of
sl

ic
e

re
je

ct
io

n
✓

✓
✓

✗
Ja

va
[1

85
]

#
 

-
M

or
e

re
lia

bl
e

A
C

[1
27

]

-
R

A
N

:
no

PR
B

s
&

po
w

er
re

so
ur

ce
s

-
C

N
:

no
co

m
pu

tin
g

ca
pa

ci
ty

-
Pr

ed
ic

tin
g

fu
tu

re
fa

ilu
re

s
us

in
g

M
L

m
od

el
s

to
pe

rf
or

m
m

or
e

ac
cu

ra
te

A
C

[6
0]
⋆ ⋆ ⋆

⋆ ⋆
✓
✓

✓
M

ul
ti-

qu
eu

e
he

ur
is

tic
Fa

ir
ne

ss
E

la
st

ic
&

in
el

as
-

tic
sl

ic
es

M
ax

.f
ai

rn
es

s
am

on
g

sl
ic

es
✓

✓
✓

C
++

#
 

-
Fa

ir
er

sl
ic

e
A

C
[8

5]

-
R

A
N

:
no

PR
B

s
&

po
w

er
re

so
ur

ce
s

-
C

N
:

no
co

m
pu

tin
g

ca
pa

ci
ty

[7
6]
⋆ ⋆

⋆ ⋆ ⋆
⋆
⋆ ⋆

✓
✓

✓
✓

SA
R

SA
Sl

ic
e

pr
io

-
ri

tiz
at

io
n

M
ax

.r
ev

en
ue

&
M

in
.s

lic
e

re
je

ct
io

n
ra

tio

✓
✓

✓
N

/A
G#
 

-
L

ow
er

re
je

ct
io

n
ra

tio
[1

11
]

-
A

ll
do

m
ai

ns
:

si
m

pl
ifi

ed
N

Fs
-

R
A

N
:

no
PR

B
s

&
po

w
er

re
so

ur
ce

s

[1
66

],
[1

70
]

⋆ ⋆ ⋆

⋆ ⋆ ⋆
⋆
⋆

✓
✓

✓
✓

H
eu

ri
st

ic
s

U
nc

er
ta

in
ty

in
sl

ic
e

re
-

qu
ir

em
en

ts

V
id

eo
st

re
am

in
g

M
ax

.n
o.

of
ac

ce
pt

ed
sl

ic
es

&
M

in
.

to
ta

l
co

st

✓
✓
✓
✓

M
at

la
b,

C
PL

E
X

 
 

-
M

or
e

re
lia

bl
e

A
C

[1
29

]
&

co
st

es
tim

at
e

[1
27

]
-

L
es

s
re

co
nfi

-
gu

ra
tio

ns
[1

37
]

-
R

A
N

:
no

po
w

er
re

so
ur

ce
s

[1
67

],
[1

68
]

⋆ ⋆
⋆

✓
✓
✓

H
eu

ri
st

ic
s

C
om

pl
ex

ne
tw

or
k

th
eo

ry

eM
B

B
,

U
R

L
L

C
,

m
M

T
C

M
ax

.u
til

iz
a-

tio
n

fo
r

eM
B

B
/m

M
T

C
&

M
in

.p
at

h
le

ng
th

fo
r

U
R

L
L

C

✓
✓

✓
M

at
la

b,
C

PL
E

X
#
 

-
D

is
tin

ct
io

n
of

se
rv

ic
es

[1
51

]
-

M
or

e
ac

cu
ra

te
re

so
ur

ce
ut

i-
liz

at
io

n
[1

55
]

-
R

A
N

:
no

PR
B

s
-

U
nb

ou
nd

ed
la

te
nc

y
-

Tr
ad

e-
of

f
be

tw
ee

n
co

m
-

pl
ex

ity
&

pr
ob

le
m

si
ze

-
Fi

ne
-t

un
in

g
M

L
/o

pt
im

iz
at

io
n

pa
ra

m
et

er
s

-
M

or
e

m
at

ur
e

en
ab

lin
g

te
ch

-
no

lo
gi

es

[1
69

]
⋆ ⋆
⋆ ⋆

⋆ ⋆
✓

✓
✓
✓

G
N

N
-b

as
ed

he
ur

is
tic

D
ig

ita
l

tw
in

N
SF

N
E

T
to

po
lo

gy

M
in

.d
el

ay
&

M
ax

re
so

ur
ce

ef
fic

ie
nc

y
✓
✓
✓
✓

✗

Te
ns

or
-

Fl
ow

,S
te

lla
r-

gr
ap

h
#
 

-
B

et
te

r
de

la
y

pr
ed

ic
tio

n
[1

86
]

-
R

A
N

:
no

PR
B

s
&

sp
ec

tr
um

al
lo

ca
tio

n

[6
9]

⋆ ⋆
⋆

✓
✓
✓

Q
T-

ba
se

d
an

al
yz

er
[1

87
]

Pr
iv

at
e

5G
Sm

ar
t

fa
ct

or
y

M
ax

.r
el

ia
bi

-
lit

y
of

E
2E

de
la

y
es

ti-
m

at
io

n

✓
✓

✓
N

/A
 
 

-
B

et
te

r
de

la
y

pr
ed

ic
tio

n
[1

86
]

-
C

an
pr

ov
id

e
E

2E
de

la
y

bo
un

d
[1

51
]

-
T

N
:

no
is

ol
at

io
n

in
no

de
s

[1
71

]
⋆
⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆
✓

✓
C

on
ve

x
qu

ad
ra

tic
pr

og
ra

m
m

in
g

E
ne

rg
y

E
ffi

ci
en

cy
m

M
T

C
,

eM
B

B

M
in

.t
ot

al
en

er
gy

co
n-

su
m

pt
io

n
✓

✓
✓

✗
M

at
la

b,
C

V
X

 
 

-
B

et
te

r
ba

nd
w

id
th

co
ns

um
pt

io
n

[1
72

]
-

M
or

e
ac

cu
ra

te
de

la
y

&
ut

ili
za

tio
n

[1
47

],
[1

54
]

-
R

A
N

:
no

PR
B

s
-

T
N

:
ov

er
si

m
pl

ifi
ed

ba
ck

ha
ul

[1
73

]
⋆ ⋆

⋆
⋆
✓

✓
✓

✓
✓

G
R

U
,

he
ur

is
tic

Tr
af

fic
fo

re
ca

st
in

g

H
et

er
og

e-
ne

ou
s

w
eb

ap
ps

M
ax

.r
es

ou
rc

e
ov

er
-p

ro
-

vi
si

on
in

g
✓
✓
✓
✓

✗

Py
th

on
,

Te
ns

or
-

Fl
ow

G#
 

-
In

si
gh

t
ab

ou
t

fu
tu

re
tr

af
fic

[7
1]

-
R

A
N

:
no

PR
B

s

[1
74

],
[1

77
]

⋆ ⋆ ⋆

⋆ ⋆ ⋆
✓

✓
✓
✓

M
ul

ti-
ag

en
t

PP
O

H
ie

ra
rc

hi
ca

l
di

st
ri

bu
te

d
D

R
L

H
et

er
og

e-
ne

ou
s

m
o-

bi
le

ap
ps

M
in

.u
til

iz
a-

tio
n

&
M

in
.

SL
A

vi
ol

a-
tio

ns

✓
✓
✓

✓
Py

th
on

,
Py

To
rc

h,
Te

st
be

d
 
 

-
Fa

st
er

co
nv

er
-

ge
nc

e
[1

48
]

-
N

o
bo

ttl
en

ec
ks

in
T

N
[1

32
],

[1
42

]

-
C

N
:

no
st

or
ag

e
ca

pa
ci

ty

[1
76

]
⋆

⋆ ⋆
⋆ ⋆

✓
✓
✓

H
eu

ri
st

ic

Fa
ir

ne
ss

in
ac

hi
ev

ed
la

te
nc

ie
s

ac
-

ro
ss

sl
ic

es

U
R

L
L

C
M

in
.r

es
ou

rc
e

ut
ili

za
tio

n
&

to
ta

l
de

la
y

✓
✓
✓
✓

M
at

la
b

G#
 

-
L

es
s

un
ne

ce
ss

ar
y

re
co

n-
fig

ur
at

io
ns

[1
11

]

-
R

A
N

:
no

PR
B

s
&

po
w

er
re

so
ur

ce
s

-
C

N
:

no
co

m
pu

tin
g

&
m

em
or

y
re

so
ur

ce
s

-
St

an
da

rd
&

se
-

cu
re

A
PI

s
am

on
g

st
ak

eh
ol

de
rs

-
R

ed
uc

in
g

si
gn

al
in

g
ov

er
he

ad
s

-
B

al
an

ci
ng

se
cu

-
ri

ty
le

ve
l

&
pe

rf
or

m
an

ce

[1
82

]
⋆ ⋆
⋆
✓

✓
✓

Q
uo

ru
m

B
lo

ck
-

ch
ai

n

PD
L

ar
ch

ite
ct

ur
e

Sm
ar

t
m

an
uf

ac
-

tu
ri

ng

E
ns

ur
in

g
tr

us
t

am
on

g
In

Ps
/M

N
O

s
N

/A
✓

Q
uo

ru
m

B
lo

ck
-

ch
ai

n
#
 

-
U

sa
bi

lit
y

in
m

ul
ti-

st
ak

eh
ol

de
r

sc
en

ar
io

s
[1

43
]

-
R

A
N

:
no

PR
B

s
&

po
w

er
re

so
ur

ce
s

[1
83

]
⋆

⋆
⋆

✓
✓

✓
IL

P,
he

ur
is

tic
Sm

ar
t

co
nt

ra
ct

s
U

R
L

L
C

,
eM

B
B

E
ns

ur
in

g
SL

A
am

on
g

st
ak

e-
ho

ld
er

s
✓
✓

✓
G

ur
ob

i,
E

th
er

eu
m

G#
 

-
U

sa
bi

lit
y

in
m

ul
ti-

st
ak

eh
ol

de
r

sc
en

ar
io

s
[1

42
]

-
R

A
N

:
no

PR
B

s
&

po
w

er
re

so
ur

ce
s

-
C

N
:

no
co

m
pu

tin
g

ca
pa

ci
ty

-
T

N
:

ov
er

si
m

pl
ifi

ed
ba

ck
ha

ul

[1
84

]
⋆ ⋆
⋆ ⋆

✓
✓

✓
G

T-
ba

se
d

he
ur

is
tic

Fa
ir

ne
ss

,
B

lo
ck

-
ch

ai
n

D
at

a
ce

nt
er

M
in

.r
es

ou
rc

e
ca

pa
ci

ty
ga

p
N

/A
✓

C
C

F,
O

pe
n-

E
nc

la
ve

#
 

-
O

rc
he

st
ra

tio
n

&
se

cu
ri

ty
co

ns
i-

de
re

d
[8

2]

-
R

A
N

:
no

PR
B

s
-

N
on

-c
oo

pe
ra

tiv
e

ag
en

ts
no

t
co

ns
id

er
ed

*V
N

F
P.

:
V

N
F

Pl
ac

em
en

t,
R

ec
on

f.:
R

ec
on

fig
ur

ab
ili

ty
,O

rc
h.

:
O

rc
he

st
ra

tio
n,

St
ak

.:
St

ak
eh

ol
de

rs
,O

pt
.:

O
pt

im
iz

at
io

n-
ba

se
d,

Va
r./

C
on

.:
V

ar
ia

bl
es

an
d

C
on

st
ra

in
ts

ca
te

go
ri

za
tio

n.
Si

gn
ifi

ca
nc

e
of

so
lu

tio
ns

in
th

ei
r

su
pp

or
te

d
fu

nc
tio

na
lit

ie
s

ar
e

ra
nk

ed
fr

om
⋆

(b
as

ic
)

to
⋆
⋆
⋆

(a
dv

an
ce

d)
.

Fo
r

in
tr

a-
an

d
in

te
r-

do
m

ai
n

su
pp

or
t,
#

,G#
,a

nd
 

re
pr

es
en

t
’n

ot
su

pp
or

te
d’

,’
pa

rt
ia

lly
su

pp
or

te
d’

,a
nd

’f
ul

ly
su

pp
or

te
d’

,r
es

pe
ct

iv
el

y.



20 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. X, NO. X, SECOND QUARTER 2024

TABLE VI: Summary of ongoing/recent NS projects.

Initiative
C

ountry

Project Title Dom.* Functionality Stak.* Relevance to NS Use case(s) Status Relevant
Publications

C
N

T
N

R
A

N

A
C

R
A

V
N

F
P.*

R
econf.*

O
rch.*

Security

M
N

O
-ST

M
N

O
-U

ser
InP-ST

5G
PPP

Phase
3

(2021-24)
E

uropean
countries

5G ZORRO: Zero-tOuch secuRity & tRust for ubi-
quitous cOmputing & connectivity in 5G networks ✓ ✓

⋆
⋆
⋆

⋆
⋆
⋆ ✓ ✓

Cross-domain security & trust between
stakeholders

Smart
contracts

Finished
(Q4 2022) [188]–[190]

MonB5G: Distributed management of network
slices in beyond 5G ✓ ✓

⋆
⋆
⋆
⋆

⋆
⋆
⋆ ✓

Zero-touch orchestration & administ-
ration of slices

Tactile
Intenet

Finished
(Q4 2022)

[83], [115], [182],
[151], [191]–[194]

TeraFlow: Secured autonomic traffic management
for a Tera of SDN flows ✓

⋆
⋆
⋆

⋆
⋆
⋆
⋆
⋆ ✓ ✓

Integrating heterogeneous TN resources
in a multi-layer SDN controller IoV Finished

(Q3 2023) [195]–[197]

5GMediaHUB: 5G experimentation en-
vironment for 3rd party media services ✓ ✓ ⋆

⋆
⋆

⋆
⋆
⋆

✓
Cross-domain orchestration of slices in
testbed sites to validate various apps

Immersive
AR/VR/XR

Ongoing -
ends Q2 2024 [198]–[200]

6G BRAINS: Bringing Reinforcement learning Into
Radio Light Network for Massive Connections ✓ ✓ ✓ ⋆

⋆
⋆
⋆
⋆
⋆
⋆

⋆
⋆
⋆

✓ ✓ ✓
Implementing IoT testbeds within an
NS framework

Smart
factory

Finished
(Q4 2023) [201]–[203]

MARSAL: ML-based networking & computing
infrastructure resource management of
5G & beyond intelligent networks

✓ ✓ ⋆
⋆
⋆
⋆
⋆

✓
A suitable SDN control plane for NS,
along with a security & trust frame-
work for multi-tenant infrastructure

Content
distribution

Ongoing -
ends Q2 2024 [204]

VITAL-5G: Vertical Innovations in Transport And
Logistics over 5G experimentation facilities ✓ ✓ ✓

⋆
⋆

⋆
⋆
⋆

✓ ✓
A slice orchestration platform to sup-
port three testbed sites

Transport
& logistics

Ongoing -
ends Q2 2024 [205], [206]

B5G-OPEN: Beyond 5G - OPtical nEtwork
coNtinuum ✓

⋆
⋆

⋆
⋆
⋆ ✓

Enabling slicing control in the Multi-
Band & optical TN domains

Video
streaming

Ongoing -
ends Q4 2024 [207]

SEMANTIC: E2E Slicing and data-drivEn auto-
MAtion of Next-generation cellular neT-
works with mobIle edge Clouds

✓ ✓ ⋆
⋆
⋆
⋆ ✓

Zero-touch NS automation with a fo-
cus on MEC offloading with FL eMBB Ongoing -

ends Q3 2024 [173], [208]

6G
SN

S
Phase

1
(2023-25)

6Green: Green Technologies For 5/6G Service-
Based Architectures ✓ ✓

⋆
⋆
⋆

⋆
⋆
⋆
⋆

✓
Promoting energy efficiency in cross-
domain slices between stakeholders AR Initial -

ends Q4 2025 [209]

PRIVATEER: Privacy-First Security Enablers For
6G Networks ✓ ✓ ✓ ⋆ ⋆ ⋆

⋆
⋆
⋆
⋆

✓
Privacy-aware slicing & orchestration
in 6G

Logistics &
smart city

Initial -
ends Q4 2025 [210]

Hexa-X-II: A holistic flagship towards the 6G
network platform & system ✓ ✓ ✓

⋆
⋆

⋆
⋆
⋆

⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
✓ ✓ ✓

A flagship project for 6G develop-
ment, including NS as a key enabler

XR & collabo-
rative robots

Initial -
ends Q3 2025 [27]

6G-XR: 6G eXperimental Research infrastructure
to enable next-generation XR services ✓ ✓

⋆
⋆

⋆
⋆

✓
Building a multi-site 6G testbed with
E2E slicing capabilities

Immersive
XR

Initial -
ends Q4 2025 [211]

TrialsNet: TRials Supported By Smart Networks
Beyond 5G ✓ ✓ ⋆

⋆
⋆

✓ ✓
Innovative 6G apps on network digital
twins based on dynamic NS management

eHealth, smart
transport

Initial -
ends Q4 2025 [212]

6G-BRICKS: Building Reusable testbed
Infrastructures for validating Cloud-to-device
breaKthrough technologieS

✓ ✓ ✓
⋆
⋆
⋆
⋆
⋆
⋆

⋆
⋆
⋆
⋆ ✓ ✓ Open RAN-compliant NS testbed Metaverse,

Smart factory
Initial -
ends Q4 2025 [101], [213], [214]

ACROSS: Automated zero-touch CROSS-
layer provisioning framework for
5G and beyond vertical services

✓ ✓ ✓
⋆
⋆

⋆
⋆
⋆

⋆
⋆

⋆
⋆
⋆
⋆ ✓ ✓

Automated and trusted orchestration
among multiple administrative/techno-
logical domains

eHealth,
etc.

Initial -
ends Q4 2025 [215], [216]

PAW
R

U
S

POWDER: Platform for Open Wireless Data-
driven Experimental Research ✓ ✓ ✓

⋆
⋆
⋆

⋆
⋆
⋆

✓ ✓
Open RAN-compliant xApp development
for RAN slicing

Research
testbed

Available
since 2019 [217], [218]

Colosseum: The World’s Most Powerful Wire-
less Network Emulator ✓

⋆
⋆
⋆

⋆
⋆
⋆
⋆
⋆

✓ ✓ Open RAN-compliant NS testbed Research
testbed

Available
since 2022 [219]–[221]

N
ational

Projects
G

erm
any

6G-ANNA: 6G Access, Network of Networks,
Automation, and Simplification ✓ ⋆

⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
✓ ✓ ✓

AI-enabled Cloud-based RAN archi-
tecture supporting NS

Smart
factory

Initial -
ends Q3 2025 [222]

6GEM: 6G research hub for open, efficient and
secure mobile communications systems ✓ ✓ ⋆

⋆
⋆
⋆
⋆
⋆
⋆

⋆
⋆
⋆

⋆
⋆
⋆
✓ ✓ ✓

Providing various testfields to evaluate
NS frameworks

Port logistics,
Smart hospital

Ongoing -
ends Q4 2025 [223]–[227]

Spain

6GDAWN: Decentralized AI and Architectures for
Massive Wireless NS Scalability and Sustainability ✓ ✓ ⋆

⋆
⋆
⋆

⋆
⋆
⋆
⋆

⋆
⋆
⋆
✓ ✓

NS utilization and security with ex-
plainable AI Monitoring Ongoing -

ends Q4 2024 [191], [228]

6G-CHRONOS: AI-assisted beyond 5G-6G
arCHitectuRe with deterministic netwOrking
for iNdustrial communicatiOnS

✓ ✓ ⋆
⋆
⋆

⋆
⋆
⋆
⋆
⋆

✓
Exploring the usage of NS using 5G
& TSN technologies

Smart
factory

Ongoing -
ends Q4 2024 [229], [230]

U
K

BEACON-5G: Building REconfigurable, Agile,
SeCure, & TrustwOrthy Systems for OpeNness
in 5G

✓ ✓
⋆
⋆

⋆
⋆
⋆
⋆ ✓ ✓ ✓

Developing a RAN slicing solution based
on Open RAN and integrating it with
existing NS solutions

Smart city, IoV,
& smart
healthcare

Finished
(Q3 2023) [231]

B
razil

SFI2: Slicing Future Internet Infrastructures ✓ ⋆
⋆
⋆

⋆
⋆
⋆

⋆
⋆
⋆
⋆

⋆
⋆
⋆

✓
Integrating several national projects into
an automated NS testbed IoV Ongoing -

ends Q2 2024
[39], [122],
[232]–[234]

*Dom.: Domains, VNF P.: VNF Placement, Reconf.: Reconfigurability, Orch.: Orchestration, Stak.: Stakeholders.
Significance of solutions in their supported functionalities are ranked from ⋆ (basic) to ⋆⋆⋆ (advanced).

A. Research Projects

The state-of-the-art research projects on NS are briefly
presented in this section.

In Europe, some projects in the third phase of the 5G Infras-
tructure Public Private Partnership (5G PPP) of the European
Union’s Horizon 2020 program are still ongoing [235]. More
recent European projects are defined under the European Smart
Networks and Services (6G SNS) Joint Undertaking, a part of
the Horizon Europe funding program [236]. The architectural
landscape of 5G/6G networks collected by these initiatives can
be found in [10], [237]. AI/ML algorithms are harnessed in
5GZORRO, MonB5G, 6G BRAINS, MARSAL, SEMANTIC,
and ACROSS projects to enhance the RA and orchestration
functionalities in NS frameworks with multiple technological
and administrative domains [173], [188], [192], [202], [204],

[215]. Enabling a trusted, secure relationship among various
stakeholders in the 5G ecosystem to use cross-domain NSs
is presented in 5GZORRO and PRIVATEER projects [188],
[210]. The integration of different TN technologies (e.g.,
wireless and optical) into NS by monitoring, programming,
and orchestration is being investigated in the TeraFlow and
B5G-OPEN projects [195], [207]. In addition, 5GMediaHUB,
6G-XR, 6G-BRICKS, and TrialsNet are implementing NS-
enabled testbeds to investigate the feasibility of deploying
novel use cases (e.g., Augmented/Virtual/Extended Reality
(AR/VR/XR)) [198], [211]–[213].

Platforms for Advanced Wireless Research (PAWR) is an
initiative funded by the National Science Foundation (NSF),
a U.S.-based agency that provides four city-scale testbeds
for 5G and beyond networks [238]; one of them is called

https://www.5gzorro.eu/
https://www.monb5g.eu/
https://www.teraflow-h2020.eu/
https://www.5gmediahub.eu/
https://www.6g-brains.eu/
https://www.marsalproject.eu/
https://www.vital5g.eu
https://www.b5g-open.eu/
https://www.semantic2020.eu/
https://www.6green.eu/
https://www.privateer-project.eu/
https://www.hexa-x-ii.eu/
https://www.6g-xr.eu/
https://www.trialsnet.eu/
https://6g-bricks.eu/
https://across-he.eu/
https://northeastern.edu/colosseum
https://6g-anna.de/en/
https://6gem.de/en/
https://6gdawn.cttc.es
https://wimunet.ugr.es/projects/6gchronos.php
https://www.beacon-5g.com/
https://sites.google.com/view/sfi2/home
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TABLE VII: Components used in state-of-the-art NS testbeds

D
om

ain

Module Software/Hardware components Used in

C
N

(&
N

FV
)

NFVO
& VNFM

OSM [239] [240]–[244]
ONAP [245] [246]

VIM OpenStack [247] [240], [241], [244]
LXC and Docker [174], [248], [249]

CN
VNFs

OpenAirInterface (OAI)-CN [250] [144], [174], [240]
Open5GS [251] [71]

T
N

SDN
Cont-
roller

ONOS [252] [249], [253]
OpenDaylight [254] [174], [177]
Ryu [255] [248]

Emulation OVSs as emulated switches [256]
& the OpenFlow SBI [257]

[174], [244],
[248], [253]

R
A

N

Radio
Front-end

Software-Defined Radio (SDR)
e.g., Universal Service Radio
Peripheral (USRP) and Zynq

[138], [144], [174],
[242], [243], [248],
[249]

RAN
NSSMF FlexRAN [258] [174], [242], [249]

Emulation OAI [250] [144], [242], [244]
UERANSIM [259] [260]

POWDER [217], which includes a set of O-RAN xApps that
support NS. Another PAWR platform, Colosseum, consists of
the OpenRAN Gym project, which supports RAN slicing in
an Open RAN-compliant framework [219].

Several national R&D projects around the world, such
as 6G-ANNA [222], 6GEM [223], 6G-CHRONOS [230],
6GDAWN [191], and SFI2 [122], investigate NS-related chal-
lenges. These initiatives emphasize AI/ML-based automation,
XAI, security, and smart factories in NS.

Table VI provides a brief summary of the relevant ongoing
(and some recently finished) projects. Since 6G SNS projects
are in the initial stages, their findings have not been widely
published. As seen in Table VI, orchestration is covered by
all recent projects due to its importance in cross-domain
and E2E NS. For further studies, already-finished NS-related
projects are reviewed in [18], [47]. Although R&D projects
promote E2E NS frameworks, relevant SDOs each focus on a
particular scope (e.g., IETF focuses on TN slicing [136]), and
harmonization across them is urgently required [19].

B. Experimental Testbeds

This section presents the most mature experimental NS
testbeds. The state-of-the-art components of the presented
testbeds are briefly listed. Then, the experimental works
covering single- and cross-domain NS are described before
reviewing the few available E2E testbeds.

Table VII shows some of the mostly used software and
hardware components in NS testbeds. However, the list is
not exhaustive, and the reader is referred to [44] for a
comprehensive list of NS experiments.

Most of the available testbeds support one single domain.
For instance, in the CN domain, the experimentation facility
of [240] implements resource forecasting and dynamic scaling
of VNFs. In the TN domain, an experimental NS framework
for optical metro networks that utilizes ONOS is proposed in
[241]. In the RAN domain, the testbed constructed in [243]
introduces a virtualization system where STs can either (i)
choose one of the available virtual baseband units or (ii)
specify a set of available VNFs for a desired NS functionality.

In addition, [219] introduces an NS-enabled Open RAN-
compliant testbed for the development of ML-assisted xApps.
However, as other domains are not considered in these solu-
tions, they are not practical for more realistic NS scenarios.

Several testbeds offer a form of support for cross-domain
NS. For instance, in a smart factory use case with time-critical
applications, an NS orchestration system that uses a TSN
control plane within an Xhaul scenario is implemented and
analyzed [242]. A two-level spectrum allocation mechanism
is proposed in [244], where a master Medium Access Control
(MAC) optimizes the number of spectrum resources among
different slices, and multiple slave MACs are in charge of
scheduling the resource in their associated slices. A demon-
stration with proprietary hardware and open-source software is
conducted without integrating an allocation scheme. Further-
more, the usage of the Open Network Automation Platform
(ONAP) orchestrator in a RAN+CN NS testbed is studied
in [246] from an architectural perspective, but no numerical
analysis is presented. A Mininet-based Python package is in-
troduced in [261] to facilitate KPI management and monitoring
in NS simulation. Moreover, a Cloud-native Lightweight Slice
Orchestration (CLiSO) framework is proposed in [214] to
enable container-based interaction of RAN, edge, and CN.

Very few testbeds support E2E NS. In [248], an E2E
orchestrator, called Hyperstrator, is implemented with well-
defined domain orchestrators, each of which interacts with
the domain managers (i.e., PyLXD controller for CN, Ryu
controller for TN, and OpenWifi controller for RAN) to
access the underlying resources. This work also includes an
analysis of NS deployment time and an empirical evaluation
of the optimal resource utilization ratios in each domain to
yield better performance in terms of throughput and delay.
However, their testbed generalizes the TN components with
Open vSwitch (OVS) containers, which cannot emulate optical
switches used in large-scale networks.

Table VIII provides a summary of the experimental solu-
tions discussed in this section, including some papers marked
as testbeds in Tables IV and V (i.e., [71], [138], [144]).
Compared to the other studied testbeds, Hyperstrator is more
modular and can be used in future studies due to its open-
source access. As seen in Table VIII, only a few testbeds pro-
vide open-source implementations with limited documentation
for further research.

VII. CHALLENGES AND FUTURE DIRECTIONS

This section highlights the ongoing challenges in E2E NS
frameworks and possible future directions to overcome them.

A. E2E Orchestration Across Technological and Administra-
tive Domains

Orchestrating and interworking among diverse administra-
tive domains continues to pose a challenge that requires
further investigation as it incorporates multiple parties who
must all trust one another and communicate through common
interfaces. Governments may need to intervene in select-
ing/developing these interfaces to ensure consensus among all
stakeholders.

As investigated in Secs. III, IV, and V, many studies fail to
integrate all available resources associated with slices across
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TABLE VIII: A summary of experimental NS testbeds.

Reference Dom.* Functionality Stak.* Project Focus Use Case Shortcomings Orchestrator Used
RF

O
pen-Source?

C
N

T
N

R
A

N

A
C

R
A

V
N

F
P.*

R
econf.*

O
rch.*

Security

M
N

O
-ST

M
N

O
-U

ser
InP-ST

Dynamic CN
scaling [240] ✓

⋆
⋆

⋆ ⋆ ✓ N/A
Predictive
scaling of
CN VNFs

DC Traffic
Dataset

Only supporting
NFV-enabled
resources

OSM ✗ ✗

METRO-HAUL
[241], [253] ✓ ⋆ ⋆

⋆
⋆

✓
METRO-

HAUL

Optical
metro
networks

Crowdsourced
live video
streaming

No direct end-
user support OSM ✗ ✗

AIRTIME
[243] ✓ ⋆

⋆
⋆

⋆
⋆
⋆ ✓ ORCA

- Virtualizing
RAN
- Flexibility for
slice requests

eMBB, IoT Possible conges-
tion in TN nodes OSM USRP

B210 ✓

OpenRAN
Gym [219], [220] ✓

⋆
⋆
⋆

⋆
⋆
⋆
⋆
⋆

✓ ✓ Colosseum
Open RAN
compliant
RAN slicing

RAN slice
scheduling
xApp

No integration with
TN & CN nodes

OrchestRAN
[221]

USRP
X310

& B210

✓
✓

TSN-based NS
[242] ✓ ✓

⋆
⋆

⋆
⋆

✓ 5G-Victori
Achieving more
reliability using
TSN techniques

eMBB, URLLC
in a smart
factory

- Considering few
slices
- Only suitable for
private 5G networks

JOX slice
orchestrator
[262]

USRP
(Undec-
lared)

✗

Two-level RA
of NSs
[244]

✓ ✓
⋆
⋆

⋆ ⋆ ✓ ✓ N/A Two-level spec-
trum allocation

eMBB, URLLC,
mMTC

Not guaran-
teeing performance
isolation

Proprietary Prop-
rietary ✗

NS Mgmt. w/
ONAP [246] ✓ ✓

⋆
⋆
⋆ ✓ N/A NS LCM Best-effort No results ONAP Undec-

lared ✗

Slicenet
[261] ✓ ✓ ⋆ ⋆

⋆
⋆
⋆ ✓ N/A Monitoring eMBB, URLLC,

mMTC
Disregarding TN
resources Slicenet Undec-

lared ✓

CLiSO
[214] ✓ ✓

⋆
⋆

⋆
⋆
⋆
⋆ ✓ 6G-BRICKS Cloud-native

orchestration
eMBB, URLLC,
mMTC

Disregarding
legacy VNFs

Kubernetes-
based

USRP
B210 ✗

IBN-based NS
LCM [138] ✓ ✓

⋆
⋆

⋆
⋆
⋆

✓ N/A
- NS LCM
automation
- IBN

IoT, GBR*,
Non-GBR slices Scalability issues OSM USRP

B210 ✗

ML-assisted secure
NS [144] ✓ ✓ ⋆ ⋆

⋆
⋆

✓ N/A Balancing isola-
tion & utilization N/A

Only supporting
hardware-based
isolation

ML-assisted
resource
orchestrator

USRP
B210 ✗

2-tier resource
slicer [71] ✓ ✓

⋆
⋆

⋆ ✓ 5TONIC Latency analy-
sis in C-RAN

MEC-based
streaming

- Scalability issues
- No routing support Tacker Prop-

rietary ✗

NexRAN
[218] ✓ ✓

⋆
⋆
⋆
⋆

⋆
⋆

✓ ✓ POWDER RAN slicing
xApp for O-RAN

Various RIC
use cases

CN NFs not
integrated

O-RAN
RIC

X310
& B210 ✓

Arena
[263] ✓ ✓ ⋆

⋆
⋆

⋆ ✓ ✓ Arena Spectrum
sharing IoT

RAN computing
resources not
considered

N/A X310
& N210 ✗

Hyperstrator
[248] ✓ ✓ ✓

⋆
⋆

⋆
⋆
⋆

✓ ORCA
- Hierarchical
Orchestration
- Microservices

N/A Not supporting opti-
cal TN nodes Hyperstrator Zynq

SDR ✓

OnSlicing
[174], [177] ✓ ✓ ✓

⋆
⋆
⋆

⋆
⋆
⋆

✓ N/A
Online DRL-
based policy
configuration

Heterogeneous
mobile apps

- Scalability issues
- Few slices
considered

Distributed
DRL-based
Orchestrator

USRP
B210 ✗

UWS NS
manager [201], [203] ✓ ✓ ✓ ⋆

⋆
⋆

⋆
⋆
⋆
⋆
⋆
⋆
⋆

✓ ✓ 6G BRAINS Topology-aware
orchestration

Industrial
IoT Scalability issues ONAP USRP

X310 ✗

Dynamic NS
mgmt. [205], [206] ✓ ✓ ✓

⋆
⋆

⋆
⋆
⋆

✓ ✓ VITAL-5G
LCM & dynamic
orchestration of
3 testbed sites

Transport
& logistics

Not using ML-
based NS mgmt.

VITAL-5G
Orchestrator

Undec-
lared ✗

*Dom.: Domains, VNF P.: VNF Placement, Reconf.: Reconfigurability, Orch.: Orchestration, Stak.: Stakeholders, GBR: Guaranteed Bit Rate.
Significance of solutions in their supported functionalities are ranked from ⋆ (basic) to ⋆⋆⋆ (advanced).

technological domains (i.e., RAN, TN, and CN). Resources
can be allocated/reconfigured in different timescales, and the
E2E orchestrator should account for this heterogeneity (see
Sec. IV-A4). Additionally, as 5G-Advanced and 6G networks
increasingly incorporate new nodes (e.g., UAVs) and segments
(e.g., Non-Terrestrial Networks (NTNs)) [97], NS orchestra-
tors must effectively integrate all these elements. Advanced
capabilities, such as automation, security mechanisms, and re-
configurability, can be leveraged to support E2E orchestration.

B. Integrating Open RAN into E2E NS

The Open RAN paradigm has recently emerged to transform
the RAN into an open, intelligent, virtualized, and interoper-
able system. In the context of E2E NS, Open RAN could

increase the flexibility and efficiency of resource management
[264]. For example, with its disaggregated and modular func-
tionalities, this architecture can accommodate the RAN slicing
requirements for isolation, scaling, and dedicated processing
[90], [220]. Remaining challenges include interoperability
with state-of-the-art orchestrators, optimizing performance,
KPI data provisioning, and ensuring security in open and
multi-vendor environments [265]. Furthermore, to establish
the optimal policy for parameter adjustment, there is a need
to enhance conflict mitigation among different xApps (e.g.,
PRB scheduler and interference mitigator) and rApps (e.g.,
higher-level SLA assurance) operating in the near-RT and
non-Real-Time (non-RT) RICs, respectively. Future research
should prioritize these facets, alongside effectively integrating

www.metro-haul.eu
https://github.com/maiconkist/gr-hydra
https://github.com/open-5g/openrangym
https://github.com/wineslab/openrangym-pawr
https://pypi.org/project/slicenet/
https://6g-bricks.eu/
www.5tonic.org
https://gitlab.flux.utah.edu/powderrenewpublic/nexran
www.ece.northeastern.edu/wineslab/arena.php
https://github.com/orca-project/hoen
www.vital5g.eu
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Open RAN with other key technologies such as AI/ML, MEC,
and Blockchain for efficient and secure E2E NS.

C. Scaling up NS Frameworks

It is paramount for an NS framework to scale properly since
the problem state and action spaces can be huge. Most of
the reviewed papers provide evaluations based on simulations
but cannot scale up in actual network deployments. Moreover,
even if the scalability of these frameworks is improved,
unforeseen circumstances can always arise in real large-scale
networks. One promising way to overcome such challenges is
to build a network digital twin across domains that enables
virtual testing of E2E NS solutions before deploying them in
production networks [46], [169], [266].

D. AI/ML-driven Automation

As presented in Tables III, IV, and V, there are only a
few works focused on automating the lifecycle of NSs [115],
[138], which do not consider all technological domains. The
Zero-Touch Service Management (ZSM) architecture recently
standardized by ETSI enables automation in NFV deploy-
ments, but it is still not fully supported across all technological
domains. Besides, integrating ETSI ZSM [267] with Open
RAN into a single NS automation framework can significantly
increase efficiency and thus should be investigated in future
works.

To introduce automation into NS frameworks, data should
be collected and integrated from various nodes/NFs (e.g., O-
RAN RIC, Network Data Analytics Function (NWDAF) [268],
NFVO, NSMF, and NSSMFs), which is a significant challenge
MNOs still face. Once the data collection and integration
processes mature, the AI/ML-driven automation of the E2E
NS lifecycle can become more efficient.

E. Large Language Model-assisted NS Configuration and
Instantiation

With the recent emergence of Large Language Models
(LLMs), such as GPT-4 [269], both low-level network config-
urations and higher-level service instantiations/modifications
can be automated to a certain extent, making them more
human-friendly [270]. LLMs can understand complex patterns
in data, which can be leveraged to optimize network configu-
rations for specific services. Given the practical complexities
of deploying E2E NS, MNOs/STs require a highly skilled
workforce to maintain NS-related services. Automating the
NS lifecycle is not only desirable but also inevitable. A
few vendors already offer limited NS automation. The use
of customized LLMs can assist MNOs/STs in transitioning
toward full automation of E2E NS. For instance, a customized
LLM could be employed to translate the service requirements
of STs received in the MNO’s Operations Support System
(OSS) during the NS preparation phase. The LLM could
suggest a slice template to the ST and, upon approval, initiate
the onboarding process.

F. The Role of Multi-agent DRL in E2E NS

DRL algorithms, adept at navigating intricate and dynamic
environments, have gained prominence in NS for resource
management [73]. Multi-agent DRL, where multiple agents
learn to make decisions from unstructured input data, has
displayed significant potential [271]. In the context of E2E NS,
multi-agent DRL has the ability to enable efficient RA and
orchestration across diverse technological domains without
needing centralized control [177]. E2E NS suggests that these
agents should function cooperatively. Nonetheless, interwork-
ing among various stakeholders may incorporate competitive
agents. Balancing the above-mentioned trade-off, as well as
developing a hybrid multi-agent framework6 that can incor-
porate both technological and administrative domains, can be
pursued in future research.

G. Distributed/Federated Learning for E2E NS

Distributed learning involves training models across mul-
tiple nodes, where each node learns from its local data. FL,
a subset of distributed learning, takes this a step further by
training a global model across multiple nodes, where each
node learns from its local data and shares only the model
updates, thereby preserving data privacy [78].

In the context of E2E NS, these techniques can facili-
tate efficient resource management across various technolog-
ical domains without requiring centralized control or data
exchange. This approach can enhance scalability, decrease
communication overhead, and improve privacy preservation
[79], [161]. However, addressing challenges such as managing
data heterogeneity across different network nodes, ensuring
resilience against malicious or straggling nodes, and opti-
mizing the balance between global model performance and
communication efficiency is crucial. Future research may
concentrate on creating innovative algorithms and frameworks
for these learning paradigms, taking into account the unique
qualities and necessities of E2E NS.

H. Application of Imitation/Transfer Learning for E2E NS

Imitation learning can be particularly beneficial in E2E
NS, where the complexity and dynamism of the network
environment can make traditional learning approaches inef-
ficient [272]. For instance, an NS agent can learn optimal
slicing policies by observing and mimicking the actions of
an expert agent (e.g., a heuristically guided agent), thereby
reducing the exploration space and expediting convergence
[177]. This is particularly useful in managing resources across
various technological domains within an E2E context, where
the number of state-action pairs may be exponential.

Transfer learning can boost the performance of E2E NS
frameworks by leveraging knowledge acquired in one techno-
logical domain to improve learning in another [273], [274].
For instance, optimal RA strategies learned in one RAN area
can be transferred to another, improving performance and
accelerating convergence, especially in dynamic networks with

6A hybrid (or mixed) multi-agent framework deals with both competitive
and cooperative agents.
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fluctuating conditions [95]. Future works could explore the de-
velopment of novel imitation and transfer learning algorithms
specifically tailored for E2E NS.

I. Hierarchical Slicing
In hierarchical slicing, an ST is both a slice consumer and a

producer. It initially receives a slice (i.e., NSI) from an MNO
and then splits it into a few sub-slices that are offered to its
own STs (see Fig. 8). In this case, the aggregated requirements
of the created sub-slices should match the capabilities of the
original slice. This problem, also known as hierarchical or
recursive slicing [57], [136], has been barely investigated due
to the initial focus on maturing NS as a technology. For
instance, [275] proposes a form of hierarchical slicing for the
RAN without support of other domains (i.e., TN and CN).
To fully achieve hierarchical slicing, each slice request should
have a separate slice orchestrator while ensuring harmoniza-
tion between all orchestrators.

MNO

ST 1

ST 1-A

ST 2

Slice 1
Slice

2

Resources

End-user

Specific orchestrator for MNO or ST

MNO-O

ST1-O

ST 1-B

Sub-
slice-
1-B

Sub-
slice-
1-A

Fig. 8: An illustrative example of hierarchical slicing.

J. UE Slicing
Most of the current slicing mechanisms (e.g., [135]) do not

account for more than one active slice for a given UE, as op-
posed to the standardized 8 active slices (see Sec. IV-D). The
resource management and signaling overhead among multiple
slices within each UE should be balanced with QoS provi-
sioning and fairness between all UEs. Furthermore, achieving
privacy and user-level isolation together (i.e., between multiple
S-NSSAIs) may be elusive and require further research.

K. Promoting Open-Source NS Frameworks and Datasets
Leveraging existing work is necessary to advance research

in NS. Using open-source simulation and experimentation
facilities allows researchers to enhance E2E NS performance
instead of creating new frameworks from scratch [276]. This
strategy, similar to the approach adopted by the O-RAN
Software Community (OSC), promotes efficiency and collab-
oration [264]. In our survey, we found that only a limited
number of simulation platforms (e.g., [92], [129], [135], [142])
and experimental testbeds (e.g., [218], [220], [243], [248])
have publicly released their source code.

It is important to note that many of the AI/ML-based
algorithms reviewed rely on synthetic, simulated data that may
not fully capture the intricacies of real-world scenarios. The
datasets currently used, which are often outdated and limited
to the CN domain, do not adequately reflect the intricacies
of E2E NS solutions. As a result, there is an urgent need for
more comprehensive, up-to-date, and context-specific datasets
to facilitate future research in E2E NS.

L. Harmonization of efforts

As introduced in Sec. VI, there is a need for SDOs and
industry forums to work more collaboratively than before. In
this context, IETF and O-RAN Alliance have been recently
working on TN slicing [136] and RAN slicing [149], aligned
with the 3GPP specifications [52], respectively. More effort in
this direction will lead to more harmonized definitions and NS
solutions, which will promote multi-vendor interoperability
and facilitate the widespread adoption of NS functionalities.

VIII. CONCLUSIONS

This work has presented a survey of NS resource man-
agement with a focus on domain inter-dependence in cross-
domain and E2E contexts. In addition to highlighting the
shortcomings of single- and cross-domain NS frameworks, the
open challenges facing E2E NS solutions are discussed, with a
reflection on the most promising directions to overcome them.

The main lessons learned from our analysis include: (i)
resource management should be conducted across heteroge-
neous technological domains throughout the slice creation and
operation phases; (ii) relevant resources for NS in each domain
(e.g., PRBs in RAN; link throughput in TN; computing capac-
ity in CN) should be jointly considered; (iii) promoting self-
optimization and self-(re)configuration in E2E NS is required
through intelligent resource orchestration.

By evaluating different NS frameworks, we realize that the
more domains a framework spans, the more comprehensive
and reliable it is, but the more intricate and challenging it is to
develop and deploy. In this context, AI/ML-assisted functional-
ities are increasingly needed to deal with the increased level of
complexity. Due to its inherent flexibility, NS is likely to be a
key pillar in 5G-Advanced and 6G networks. However, further
improvements in cross-administrative domain orchestration,
security mechanisms, and automation capabilities are needed
to overcome the limitations of the current 5G NS frameworks.
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Blocking Probability Model for Planning 5G Guaranteed Bit Rate
(GBR) RAN Slices,” IEEE Transactions on Vehicular Technology,
vol. 72, no. 9, pp. 12 124–12 138, 2023.
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