2,062 research outputs found

    Evaluating the Differences of Gridding Techniques for Digital Elevation Models Generation and Their Influence on the Modeling of Stony Debris Flows Routing: A Case Study From Rovina di Cancia Basin (North-Eastern Italian Alps)

    Get PDF
    Debris \ufb02ows are among the most hazardous phenomena in mountain areas. To cope with debris \ufb02ow hazard, it is common to delineate the risk-prone areas through routing models. The most important input to debris \ufb02ow routing models are the topographic data, usually in the form of Digital Elevation Models (DEMs). The quality of DEMs depends on the accuracy, density, and spatial distribution of the sampled points; on the characteristics of the surface; and on the applied gridding methodology. Therefore, the choice of the interpolation method affects the realistic representation of the channel and fan morphology, and thus potentially the debris \ufb02ow routing modeling outcomes. In this paper, we initially investigate the performance of common interpolation methods (i.e., linear triangulation, natural neighbor, nearest neighbor, Inverse Distance to a Power, ANUDEM, Radial Basis Functions, and ordinary kriging) in building DEMs with the complex topography of a debris \ufb02ow channel located in the Venetian Dolomites (North-eastern Italian Alps), by using small footprint full- waveform Light Detection And Ranging (LiDAR) data. The investigation is carried out through a combination of statistical analysis of vertical accuracy, algorithm robustness, and spatial clustering of vertical errors, and multi-criteria shape reliability assessment. After that, we examine the in\ufb02uence of the tested interpolation algorithms on the performance of a Geographic Information System (GIS)-based cell model for simulating stony debris \ufb02ows routing. In detail, we investigate both the correlation between the DEMs heights uncertainty resulting from the gridding procedure and that on the corresponding simulated erosion/deposition depths, both the effect of interpolation algorithms on simulated areas, erosion and deposition volumes, solid-liquid discharges, and channel morphology after the event. The comparison among the tested interpolation methods highlights that the ANUDEM and ordinary kriging algorithms are not suitable for building DEMs with complex topography. Conversely, the linear triangulation, the natural neighbor algorithm, and the thin-plate spline plus tension and completely regularized spline functions ensure the best trade-off among accuracy and shape reliability. Anyway, the evaluation of the effects of gridding techniques on debris \ufb02ow routing modeling reveals that the choice of the interpolation algorithm does not signi\ufb01cantly affect the model outcomes

    A survey of new technology for cockpit application to 1990's transport aircraft simulators

    Get PDF
    Two problems were investigated: inter-equipment data transfer, both on board the aircraft and between air and ground; and crew equipment communication via the cockpit displays and controls. Inter-equipment data transfer is discussed in terms of data bus and data link requirements. Crew equipment communication is discussed regarding the availability of CRT display systems for use in research simulators to represent flat panel displays of the future, and of software controllable touch panels

    Analysis of Spatial Uncertainty in LiDAR-derived Building Data and Uncertainty Propagation in Modeling of Urban Atmospheric Dispersion

    Get PDF
    Results of environmental models (EMs) are often used to assist decision making. However, EM outcomes vary significantly with different input data, model parameters and model assumptions. Therefore, informed decision making requires an in-depth understanding of how the changes in input data, model parameters and model assumptions influence the model outputs. While EMs are now accustomed to geo-spatial data, the influences of spatial uncertainty are often overlooked. This research examines the influence of spatial uncertainty throughout the three stages of general environment modeling: 1) examine the uncertainty in geo-spatial data as representation of the environment, 2) examine the uncertainty in the linkage between EMs and Geographic Information System (GIS) and, 3) examine and compare the influence of spatial uncertainty with the uncertainty of model parameters. LiDAR data and urban atmospheric dispersion model (UADM) are used as a use case, to demonstrate the methods and benefits of examining the influence of spatial uncertainty toward EMs

    Operationalization of Remote Sensing Solutions for Sustainable Forest Management

    Get PDF
    The great potential of remote sensing technologies for operational use in sustainable forest management is addressed in this book, which is the reprint of papers published in the Remote Sensing Special Issue “Operationalization of Remote Sensing Solutions for Sustainable Forest Management”. The studies come from three continents and cover multiple remote sensing systems (including terrestrial mobile laser scanning, unmanned aerial vehicles, airborne laser scanning, and satellite data acquisition) and a diversity of data processing algorithms, with a focus on machine learning approaches. The focus of the studies ranges from identification and characterization of individual trees to deriving national- or even continental-level forest attributes and maps. There are studies carefully describing exercises on the case study level, and there are also studies introducing new methodologies for transdisciplinary remote sensing applications. Even though most of the authors look forward to continuing their research, nearly all studies introduced are ready for operational use or have already been implemented in practical forestry

    Development and evaluation of a digital tool for virtual reconstruction of historic Islamic geometric patterns

    Get PDF
    For the purpose of cultural heritage preservation, the task of recording and reconstructing visually complicated architectural geometrical patterns is facing many practical challenges. Existing traditional technologies rely heavily on the subjective nature of our perceptual power in understanding its complexity and depicting its color differences. This study explores one possible solution, through utilizing digital techniques for reconstructing detailed historical Islamic geometric patterns. Its main hypothesis is that digital techniques offer many advantages over the human eye in terms of recognizing subtle differences in light and color. The objective of the study is to design, test and evaluate an automatic visual tool for identifying deteriorated or incomplete archaeological Islamic geometrical patterns captured in digital images, and then restoring them digitally, for the purpose of producing accurate 2D reconstructed metric models. An experimental approach is used to develop, test and evaluate the specialized software. The goal of the experiment is to analyze the output reconstructed patterns for the purpose of evaluating the digital tool in respect to reliability and structural accuracy, from the point of view of the researcher in the context of historic preservation. The research encapsulates two approaches within its methodology; Qualitative approach is evident in the process of program design, algorithm selection, and evaluation. Quantitative approach is manifested through using mathematical knowledge of pattern generation to interpret available data and to simulate the rest based on it. The reconstruction process involves induction, deduction and analogy. The proposed method was proven to be successful in capturing the accurate structural geometry of the deteriorated straight-lines patterns generated based on the octagon-square basic grid. This research also concluded that it is possible to apply the same conceptual method to reconstruct all two-dimensional Islamic geometric patterns. Moreover, the same methodology can be applied to reconstruct many other pattern systems. The conceptual framework proposed by this study can serve as a platform for developing professional softwares related to historic documentation. Future research should be directed more towards developing artificial intelligence and pattern recognition techniques that have the ability to suplement human power in accomplishing difficult tasks

    Optical remote sensing for biomass estimation in the tropics: the case study of Uganda

    Get PDF
    This study investigates the capabilities and limitations of freely available optical satellite data at medium resolution to estimate aboveground biomass density of vegetation at national scales in the tropics, and compares this approach with existing methodologies to understand and quantify the sources of variability in the estimations. Uganda was chosen as a case-study because it presents a reliable national biomass reference dataset. As a result of this thesis, aboveground woody biomass for the year circa-2000 was mapped at national scale in Uganda at 30-m spatial resolution on the basis of Landsat ETM+ images, a national land cover dataset and field data using an object-oriented approach. A regression tree-based model (Random Forest) produced good results (cross-validated R² 0.81, RMSE 13 Mg/ha) when trained with a sufficient number of field plots representative of the vegetation variability. This study demonstrated that in certain contexts Landsat data can effectively spatialize field biomass measurements and produce accurate and detailed estimates of biomass distribution at national scale. This approach tended to provide conservative biomass estimates and its limitations were mainly related to the saturation of the optical signal at high biomass density and to the cloud cover. When compared with the Uganda national biomass dataset, the map produced in this study presented higher agreement than other five regional/global biomass maps. The comparative analysis showed strong disagreement between the products, with estimates of total biomass of Uganda ranging from 343 to 2201 Tg and different spatial distribution patterns. Maps based on biome-average biomass values, such as the Intergovernmental Panel on Climate Change default values, and global land cover datasets strongly overestimated biomass stocks, while maps based on satellite data provided conservative estimates. The comparison of the maps predictions with field data confirmed the above findings
    corecore