6,869 research outputs found

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Freeze-drying modeling and monitoring using a new neuro-evolutive technique

    Get PDF
    This paper is focused on the design of a black-box model for the process of freeze-drying of pharmaceuticals. A new methodology based on a self-adaptive differential evolution scheme is combined with a back-propagation algorithm, as local search method, for the simultaneous structural and parametric optimization of the model represented by a neural network. Using the model of the freeze-drying process, both the temperature and the residual ice content in the product vs. time can be determine off-line, given the values of the operating conditions (the temperature of the heating shelf and the pressure in the drying chamber). This makes possible to understand if the maximum temperature allowed by the product is trespassed and when the sublimation drying is complete, thus providing a valuable tool for recipe design and optimization. Besides, the black box model can be applied to monitor the freeze-drying process: in this case, the measurement of product temperature is used as input variable of the neural network in order to provide in-line estimation of the state of the product (temperature and residual amount of ice). Various examples are presented and discussed, thus pointing out the strength of the too

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose

    Automating Vehicles by Deep Reinforcement Learning using Task Separation with Hill Climbing

    Full text link
    Within the context of autonomous driving a model-based reinforcement learning algorithm is proposed for the design of neural network-parameterized controllers. Classical model-based control methods, which include sampling- and lattice-based algorithms and model predictive control, suffer from the trade-off between model complexity and computational burden required for the online solution of expensive optimization or search problems at every short sampling time. To circumvent this trade-off, a 2-step procedure is motivated: first learning of a controller during offline training based on an arbitrarily complicated mathematical system model, before online fast feedforward evaluation of the trained controller. The contribution of this paper is the proposition of a simple gradient-free and model-based algorithm for deep reinforcement learning using task separation with hill climbing (TSHC). In particular, (i) simultaneous training on separate deterministic tasks with the purpose of encoding many motion primitives in a neural network, and (ii) the employment of maximally sparse rewards in combination with virtual velocity constraints (VVCs) in setpoint proximity are advocated.Comment: 10 pages, 6 figures, 1 tabl

    Power Quality Improvement Based On PSO Algorithm Incorporating UPQC

    Get PDF
    The usage of the term power quality is increasing day by day with extensive usage of large capacity loads and nonlinear loads. The major power quality issues are voltage disturbances and current disturbances in the present-day power systems. Today, with the advent of power semiconductor devices these power quality issues are solved to a great extent. The unified power quality conditioner is one such power semiconductor device which utilizes active filtering methodology to deal with the concerned power quality issues. Here an attempt is made to control and generate the reference currents and voltages for a unified power quality conditioner with the optimal tuned synchronous reference frame theory. The particle swarm optimization is employed to evolve gains of the proportional-integral controller. The unified power quality conditioner is a combination of shunt and series voltage source converters. The hysteresis band current controller for series and the pulse width modulation current controller for the shunt active filter are used for generation of gating pulses required by the switches of the voltage source converters in the unified power quality conditioner. The performance evaluation of multi-objective convergence fitness function (dealing: the voltage sag, the source current variations, and the load voltage variations) with unified power quality conditioner based on particle swarm optimization algorithm is performed. The efficacy of the proposed work is validated by conducting simulations in MATLAB/SIMULINK software environment.

    NSF CAREER: Scalable Learning and Adaptation with Intelligent Techniques and Neural Networks for Reconfiguration and Survivability of Complex Systems

    Get PDF
    The NSF CAREER program is a premier program that emphasizes the importance the foundation places on the early development of academic careers solely dedicated to stimulating the discovery process in which the excitement of research enriched by inspired teaching and enthusiastic learning. This paper describes the research and education experiences gained by the principal investigator and his research collaborators and students as a result of a NSF CAREER proposal been awarded by the power, control and adaptive networks (PCAN) program of the electrical, communications and cyber systems division, effective June 1, 2004. In addition, suggestions on writing a winning NSF CAREER proposal are presented

    Fractional Order Load-Frequency Control of Interconnected Power Systems Using Chaotic Multi-objective Optimization

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Fractional order proportional-integral-derivative (FOPID) controllers are designed for load frequency control (LFC) of two interconnected power systems. Conflicting time domain design objectives are considered in a multi objective optimization (MOO) based design framework to design the gains and the fractional differ-integral orders of the FOPID controllers in the two areas. Here, we explore the effect of augmenting two different chaotic maps along with the uniform random number generator (RNG) in the popular MOO algorithm - the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Different measures of quality for MOO e.g. hypervolume indicator, moment of inertia based diversity metric, total Pareto spread, spacing metric are adopted to select the best set of controller parameters from multiple runs of all the NSGA-II variants (i.e. nominal and chaotic versions). The chaotic versions of the NSGA-II algorithm are compared with the standard NSGA-II in terms of solution quality and computational time. In addition, the Pareto optimal fronts showing the trade-off between the two conflicting time domain design objectives are compared to show the advantage of using the FOPID controller over that with simple PID controller. The nature of fast/slow and high/low noise amplification effects of the FOPID structure or the four quadrant operation in the two inter-connected areas of the power system is also explored. A fuzzy logic based method has been adopted next to select the best compromise solution from the best Pareto fronts corresponding to each MOO comparison criteria. The time domain system responses are shown for the fuzzy best compromise solutions under nominal operating conditions. Comparative analysis on the merits and de-merits of each controller structure is reported then. A robustness analysis is also done for the PID and the FOPID controllers
    • …
    corecore