110 research outputs found

    Emissivity of Frozen Regions Retrieved from Aquarius Measurements

    Get PDF
    The land emissivity model used in the Aquarius data processing has been updated for the latest data release (V5.0). In order to improve the estimates of the brightness temperatures of frozen regions, the new model uses values of surface emissivity that have been estimated from the Aquarius measurements averaged over the entire duration of the mission. The retrieved emissivities depend on the geographic location, but they depend only marginally on time, temperature and snow cover

    Relationship between aquarius L-band active and passive multi-year observations over Australia

    Get PDF
    This PFC is focused in evaluating the feasibility of doing a combined changed algorithm to simplify the process of low resolution downscaling using high resolution.The aim of this Thesis is to further our understanding of the geophysical information that can be estimated from active and passive L-band sensors. All data was obtained from NASA's satellite Aquarius durin the period Sept. 2011- August 2014

    Weekly Gridded Aquarius L-band Radiometer-Scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 2: Initial Product Analysis

    Get PDF
    Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze-thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of 5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze-thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used a redistributed by the US Snow and Ice Data Center at http:nsidc.orgdataaquariusindex.html, and show potential for cryospheric studies

    L-Band Vegetation optical depth and effective scattering albedo estimation from SMAP

    Get PDF
    Over land the vegetation canopy affects the microwave brightness temperature by emission, scattering and attenuation of surface soil emission. Attenuation, as represented by vegetation optical depth (VOD), is a potentially useful ecological indicator. The NASA Soil Moisture Active Passive (SMAP) mission carries significant potential for VOD estimates because of its radio frequency interference mitigation efforts and because the L-band signal penetrates deeper into the vegetation canopy than the higher frequency bands used for many previous VOD retrievals. In this study, we apply the multi-temporal dual-channel retrieval algorithm (MT-DCA) to derive global VOD, soil moisture, and effective scattering albedo estimates from SMAP Backus-Gilbert enhanced brightness temperatures posted on a 9 km grid and with three day revisit time. SMAP VOD values from the MT-DCA follow expected global distributions and are shown to be highly correlated with canopy height. They are also broadly similar in magnitude (though not always in seasonal amplitude) to European Space Agency Soil Moisture and Ocean Salinity (SMOS) VOD. The SMOS VOD values are based on angular brightness temperature information while the SMAP measurements are at a constant incidence angle, requiring an alternate approach to VOD retrieval presented in this study. Globally, albedo values tend to be high over regions with heterogeneous land cover types. The estimated effective scattering albedo values are generally higher than those used in previous soil moisture estimation algorithms and linked to biome classifications. MT-DCA retrievals of soil moisture show only small random differences with soil moisture retrievals from the Baseline SMAP algorithm, which uses a prior estimate of VOD based on land cover and optical data. However, significant biases exist between the two datasets. The soil moisture biases follow the pattern of differences between the MT-DCA retrieved and Baseline-assigned VOD values

    Statistical analysis and combination of active and passive microwave remote sensing methods for soil moisture retrieval

    Get PDF
    Knowledge about soil moisture and its spatio-temporal dynamics is essential for the improvement of climate and hydrological modeling, including drought and flood monitoring and forecasting, as well as weather forecasting models. In recent years, several soil moisture products from active and passive microwave remote sensing have become available with high temporal resolution and global coverage. Thus, the validation and evaluation of spatial and temporal soil moisture patterns are of great interest, for improving soil moisture products as well as for their proper use in models or other applications. This thesis analyzes the different accuracy levels of global soil moisture products and identifies the major influencing factors on this accuracy based on a small catchment example. Furthermore, on global scale, structural differences betweenthe soil moisture products were investigated. This includes in particular the representation of spatial and temporal patterns, as well as a general scaling law of soil moisture variability with extent scale. The results of the catchment scale as well as the global scale analyses identified vegetation to have a high impact on the accuracy of remotely sensed soil moisture products. Therefore, an improved method to consider vegetation characteristics in pasive soil moisture retrieval from active radar satellite data was developed and tested. The knowledge gained by this thesis will contribute to improve soil moisture retrieval of current and future microwave remote sensors (e.g. SMOS or SMAP)

    The simulation of L-band microwave emission of frozen soil during the thawing period with the Community Microwave Emission Model (CMEM)

    Get PDF
    One-third of the Earth's land surface experiences seasonal freezing and thawing. Freezing-thawing transitions strongly impact land-atmosphere interactions and, thus, also the lower atmosphere above such areas. Observations of two L-band satellites, the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) missions, provide flags that characterize surfaces as either frozen or not frozen. However, both state transitions-freezing and thawing (FT)-are continuous and complex processes in space and time. Especially in the L-band, which has penetration depths of up to tens of centimeters, the brightness temperature (TB) may be generated by a vertically-mixed profile of different FT states, which cannot be described by the current version of the Community Microwave Emission Model (CMEM). To model such complex state transitions, we extended CMEM in Fresnel mode with an FT component by allowing for (1) a varying fraction of an open water surface on top of the soil, and (2) by implementing a temporal FT phase transition delay based on the difference between the soil surface temperature and the soil temperature at 2.5 cm depth. The extended CMEM (CMEM-FT) can capture the TB progression from a completely frozen to a thawed state of the contributing layer as observed by the L-band microwave radiometer ELBARA-III installed at the Maqu station at the northeastern margin of the Tibetan Plateau. The extended model improves the correlation between the observations and CMEM simulations from 0.53/0.45 to 0.85/0.85 and its root-mean-square-error from 32/25 K to 20/15 K for H/V-polarization during thawing conditions. Yet, CMEM-FT does still not simulate the freezing transition sufficiently.</p

    Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations

    Get PDF
    icrowave radiometry has provided valuable spaceborne observations of Earth’s geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observ- ing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsur- face at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500–1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under veg- etation canopies. However, the absence of significant spectrum re- served for passive microwave measurements in the 500–1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500–1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities

    Earth remote sensing with SMOS, Aquarius and SMAP missions

    Get PDF
    The first three of a series of new generation satellites operating at L-band microwave frequencies have been launch in the last decade. L-band is particularly sensitive to the presence of water content in the scene under observation, being considered the optimal bandwidth for measuring the Earth's global surface soil moisture (SM) over land and sea surface salinity (SSS) over oceans. Monitoring these two essential climate variables is needed to further improve our understanding of the Earth's water and energy cycles. Additionally, remote sensing at L-band has been proved useful for monitoring the stability in ice sheets and measuring sea ice thickness. The ESA's Soil Moisture and Ocean Salinity (SMOS, 2009-2017) is the first mission specifically launched to monitor SM and SSS. It carries on-board a novel synthetic aperture radiometer with multi-angular and full-polarization capabilities. NASA's Aquarius (2011-2015) was the second mission, devoted to SSS monitoring with a combined real aperture radiometer/scatterometer system that allows correcting for sea surface roughness. NASA's Soil Moisture Active Passive (SMAP, 2015-2018) is the second mission dedicated to measure SM. It carries on-board a real aperture full-polarimetric radiometer and a synthetic aperture radar (SAR) for enhanced spatial resolution and freeze/thaw detection. This Ph.D. Thesis is focused on analyzing the geophysical information that can be obtained from L-band SMOS, Aquarius and SMAP observations. The research activities are structured as follows: -Inter-comparison of radiometer brightness temperatures at selected targets. A novel methodology to measure the consistency between SMOS and Aquarius radiometric data over the entire dynamic range of observations (land, ice and ocean) is proposed. It allows detecting spatial/temporal differences or biases without latitudinal limitations neither cross-overs. This is a necessary step to combine observations from different instruments in a long term dataset for environmental, meteorological, hydrological or climatological studies. -Ice thickness effects on passive remote sensing of Antarctic continental ice. The relationship between Antarctic ice thickness spatial variations and changes detected by SMOS and Aquarius measurements is explored. The emissivity of Antarctica is analyzed to disentangle the role of the geophysical contributions (snow layers at different depths and subglacial lakes) to the observed signal. The stability of the L-band signal in the East Antarctic Plateau, calibration/validation site for microwave satellite missions, is assessed. -Microwave/optical synergy for multi-scale soil moisture sensing. The relationship of SM and land surface temperature (LST) dynamics is evaluated to better understand the fundamental SM-LST link through evapotranspiration and thermal inertia physical processes. A new approach to measure the critical soil moisture from time-series of spaceborne SM and LST is proposed. The synergistic use of SMOS SM and remotely sensed LST for refining SM disaggregation algorithms is also analyzed. -Comparison of passive and active microwave vegetation parameters. Recent research has shown that microwave vegetation opacity, sensitive to biomass and water content, and albedo, related to canopy structure, can be retrieved from passive L-band observations. The relationships between these two parameters and radar-derived vegetation descriptors have been explored using airborne observations from the SMAP Validation Experiment 2012 (SMAPVEX12). The obtained relations could allow for improved SM retrievals in active-passive systems, and also to estimate the vegetation properties at high resolution using SAR observations. The Ph.D. Thesis has been developed within the activities of the Barcelona Expert Centre (BEC). The presented results contribute to the use of L-band remote sensing in different scientific disciplines such as climate, cryosphere, hydrology and ecology.Els primers tres d'una sèrie de satèl·lits de nova generació funcionant a la banda L han sigut llançats a l'última dècada. La banda L es molt sensible a la presència d'aigua a l'escena observada, sent considerada òptima per mesurar la humitat del sòl (SM) i la salinitat del mar (SSS) de manera global a la superfície de la Terra. Monitoritzar aquestes dues variables climàtiques essencials es necessari per millorar el nostre coneixement dels cicles de l'aigua i l'energia. La teledetecció a banda L també ha sigut útil per monitoritzar l'estabilitat de les capes de gel i mesurar el gruix de gel marí. La missió Soil Moisture and Ocean Salinity (SMOS, 2009-2017) de l'ESA és la primera específicament llançada per monitoritzar SM i SSS. Porta un nou radiòmetre d'apertura sintètica amb capacitat multiangular i polarització completa. La missió Aquarius (2011-2015) de la NASA va ser la segona, dedicada a monitoritzar SSS amb un sistema de radiòmetre/escateròmetre d’apertura real que permet corregir la rugositat de la superfície del mar. La missió Soil Moisture Active Passive (SMAP, 2015-2018) de la NASA és la segona dedicada a mesurar SM. Porta un radiòmetre d'apertura real i polarització completa i un radar d'apertura sintètica (SAR) per una millor resolució espaial i detecció de congelació/descongelació. Aquesta tesi està enfocada en analitzar la informació geofísica que pot obtenir-se de les observacions a banda L d'SMOS, Aquarius i SMAP. La seva investigació està estructurada com: -Intercomparació de temperatures de brillantor en zones seleccionades. Es proposa un nou mètode per mesurar la consistència entre les dades radiomètriques d'SMOS i Aquarius sobre el rang dinàmic complet d'observacions (terra, gel, oceà). Això permet detectar diferències espaials/temporals o biaixos sense limitacions latitudinals ni creuaments. Aquest pas es necessari per combinar observacions de diferents instruments en un llarg conjunt de dades per estudis mediambientals, hidrològics o climatològics. -Efecte de gruix de gel en teledetecció de gel continental a l'Antàrtida. S'explora la relació entre les variacions espaials del gruix de gel antàrtic i els canvis detectats a les mesures d'SMOS i Aquarius. L'emissivitat de l'Antàrtida es analitzada per discernir el rol de les contribucions geofísiques (capes de gel a diferents profunditats i llacs subglacials) al senyal observat. S'avalua l'estabilitat del senyal a banda L sobre la zona est de l'altiplà antàrtic, lloc per calibratge/validació de satèl·lits de microones. -Sinèrgia de microones/òptic per teledetecció de SM multiescala. S'avalua la correlació entre la SM i la temperatura de la superfície del sòl (LST) per entendre millor la relació SM-LST a través de processos físics d'evapotranspiració i inèrcia tèrmica. Es proposa un nou mètode per mesurar la humitat crítica utilitzant sèries temporals de SM i LST de satèl·lit. S'analitza l'ús de la SM de SMOS amb la LST de teledetecció per refinar algorismes de desagregació de SM. -Comparació de paràmetres passius i actius de microones relatius a la vegetació. Recent investigació ha mostrat que l'opacitat, sensible a la biomassa i el contingut d'aigua, i l'albedo, relacionat amb l'estructura, poden ser recuperats d'observacions passives a banda L. S'exploren les relacions entre aquests dos paràmetres i estimadors de vegetació derivats de radar utilitzant les observacions d'avió de l'experiment de validació d'SMAP 2012 (SMAPVEX12). Les relacions obtingudes podrien permetre millors recuperacions de SM en sistemes actius/passius i estimar les propietats de la vegetació a alta resolució utilitzant mesures de SAR. La tesi s'ha desenvolupat dins les activitats del Barcelona Expert Centre (BEC). Els resultats presentats contribueixen a l'ús de la banda L a diferents disciplines científiques com la climatologia, la criosfera, la hidrologia i l'ecologia

    EVALUATION OF THE NASA MICROWAVE RADIATIVE TRANSFER MODEL FOR SOIL MOISTURE ESTIMATION USING AQUARIUS BRIGHTNESS TEMPERATURE OBSERVATIONS OVER THE CONTINENTAL UNITED STATES

    Get PDF
    The implications of near-surface soil moisture (~5 cm) variability in land surface processes and land-atmosphere interactions is important in regional and global scale climatology since it controls the partitioning of precipitation and radiation fluxes that play a crucial role in dictating weather and climate. Passive microwave (PMW) remote sensing is an increasingly popular approach to measure soil moisture because of its global coverage of the Earth. This study evaluates the performance of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) radiative transfer model (RTM) using Aquarius brightness temperature (Tb) observations with the eventual goal of integrating the RTM into a data assimilation (DA) framework for the purpose of improved soil moisture estimation. Statistics were calculated from two plus years of observations across different climate regions of the United States. Seasonal variations of soil moisture were also investigated. Results suggest the RTM reasonably reproduces Aquarius Tbs, but that systematic biases exist, which must be mitigated prior to inclusion into the DA framework
    • …
    corecore